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Quadratic Signaling With Prior Mismatch at an

Encoder and Decoder:

Equilibria, Continuity,

and Robustness Properties

Ertan Kazikl ©“, Serkan Saritas

and Serdar Yiksel

Abstract—We consider communications through a Gaus-
sian noise channel between an encoder and a decoder
which have subjective probabilistic models on the source
distribution. Although they consider the same cost func-
tion, the induced expected costs are misaligned due to their
prior mismatch, which requires a game-theoretic approach.
We consider two approaches: a Nash setup, with no prior
commitment, and a Stackelberg solution concept, where
the encoder is committed to a given announced policy a
priori. We show that the Stackelberg equilibrium cost of the
encoder is upper semicontinuous, under the Wasserstein
metric, as encoder’s prior approaches the decoder’s prior,
and it is also lower semicontinuous with Gaussian priors.
For the Stackelberg setup, the optimality of affine policies
for Gaussian signaling no longer holds under prior mis-
match, and thus, team-theoretic optimality of linear/affine
policies are not robust to perturbations. We provide condi-
tions under which there exist informative Nash and Stack-
elberg equilibria with affine policies. Finally, we show exis-
tence of fully informative Nash and Stackelberg equilibria
for the cheap talk problem under an absolute continuity
condition.

Index Terms—Nash equilibrium, signaling games, Stack-

elberg equilibrium, subjective priors.
HE team-theoretic formulation in systems theory (e.g., as
I studied by Witsenhausen [1]) requires that all decision
makers have the same probabilistic system model, even though
they may have different local information. While this also has
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been the norm for nearly all information-theoretic applications,
in some applications, an encoder and a decoder may have
subjective probabilistic models, especially when an encoder may
realize that the model as seen by a remote decoder is inaccurate.
Even though the decision makers employ the same cost function,
induced expected costs, given encoding and decoding functions,
are different from the perspective of the encoder and the decoder
due to their subjective probabilistic beliefs, which turns the team
problem into a game-theoretic one. For cooperative setups, the
encoder needs to account for this inconsistency, which leads to
a leader—follower (Stackelberg) game formulation. In some fur-
ther applications, the encoder and the decoder may be engaged
in a signaling game where their models may not be available to
each other a priori or they may belong to separate organizations,
leading to a Nash game theoretic setup. Accordingly, in this
article, we study communications between an encoder and a
decoder, viewed as two decision makers, which have subjective
beliefs on the probabilistic model of the source distribution.
Depending on the cooperation or commitment nature of the
encoder to its policies, we study Stackelberg and Nash equilibria
for signaling problems and establish equilibrium solutions and
their properties. These equilibria can be used to model different
practical communication scenarios.

In scenarios modeled by the Stackelberg equilibrium concept,
there is a hierarchy in the decision making procedure [2]. In
particular, the encoder first makes a decision and announces its
decision and then the decoder acts after observing the encoder’s
decision. In this setting, the encoder commits to employ this
announced strategy, and the decoder trusts the encoder and
employs its best response. In this scenario, the encoder knows
its own prior as well as the prior of the decoder whereas the
decoder only knows its own prior. This happens especially when
the encoder realizes that the decoder employs an inaccurate
prior. In this setting, the encoder decides on what information to
reveal to the decoder in order to optimize its objective function.
This scenario can be viewed as a cooperative communication
scenario since we know that the encoder’s announcement is
observed by the decoder and the decoder acts by using this
information. We note that the classical communication setup
with no strategic decision makers corresponds to the Stackelberg
equilibrium concept since the decision makers trust each other in
such a setting. Different from the classical communication setup,
we incorporate prior mismatch into the problem. This type of
cooperative communication setup with mismatched priors can
be used to model scenarios where it is not feasible for the encoder
to share its prior probability distribution with the decoder, the
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Fig. 1. Signaling game models. (a) Signaling game, (b) Cheap talk.

encoder conveys only the message, and the encoding function
used for generating this message (which is designed offline).

On the other hand, for a Nash equilibrium, there is no
hierarchy in the decision making procedure and there is no
commitment assumption [2]. This happens, for instance, when
decision makers do not trust announcements of each other, and
thus, keep in mind that the other decision maker may backtrack
its commitment. This type of interaction is covered by the Nash
equilibrium concept where each decision maker announces their
policies at the same time. In this scenario, the decision makers
do not need to know the prior distribution seen by the other
decision maker. This scenario is also referred to as noncooper-
ative scenario since none of the decision makers take the other
decision maker’s announcement for granted.

A. Preliminaries

A signaling game problem, which is depicted in Fig. 1(a), can
be formulated as follows. Suppose that there is an encoder and
a decoder. The encoder wishes to transmit a random variable M
taking values in M. The encoder encodes M into an X-valued
random variable X via an encoding policy denoted by v¢ € I'®
where I'® denotes the set of possible encoding strategies. We
take I'® to be the set of all stochastic kernels from M to X.!
There exists an additive Gaussian noise channel between the
encoder and the decoder where the additive noise is independent
of the source. In this setup, the encoder designs its policy by
incorporating either a soft or a hard power constraint into its
objective function, as explained below. The decoder observes a
noise-corrupted version of the message denotedby Y = X + W
which is a Y-valued random variable. The decoder generates its
optimal decision U, which is also an M-valued random variable,
given its observation Y via a decoding policy v¢ € I'?. Here, I'?
denotes the set of possible decoding strategies which is the set
of all stochastic kernels from Y to M. We also consider a cheap
talk setup where the encoded message is directly observable by
the decoder and there is no power constraint at the encoder and
this setup is depicted in Fig. 1(b).

In many applications (in networked systems, recommendation
systems, and applications in economics), the objectives of the
encoder and the decoder, and the perception on the probability
measure of the common source may not be aligned. For example,
the encoder may aim to minimize J¢(v¢,v?) = E.[c®(m,u)]
whereas the decoder may aim to minimize J%(y¢,~v%) =
Eq4[c?(m,u)] where c¢®(m,u) and c¢?(m,u) denote the cost
functions of the encoder and the decoder, respectively, when

1P is a stochastic kernel from M to X if P(-|m) is a probability measure
on B(X) for every m € M, and P(A|-) is a Borel measurable function of m
for every A € B(X). Note that if Ml and X are finite, then P corresponds to a
transition matrix.

the action w is taken for the corresponding message m, and
E.[-] and E,4[-] denote that the expectation is taken over the
probability measure from the perspective of the encoder and the
decoder, respectively.” Note that each decision maker computes
their expected cost with respect to its own subjective prior since
it believes that its subjective prior is the true prior distribu-
tion. Each player designs its policy by minimizing its expected
cost computed with respect to its subjective prior distribution.
Thus, although the actual true distribution can be a different
distribution than these subjective prior distributions, this true
distribution does not affect policies employed by the decision
makers. Nevertheless, in the following remark, we provide a
motivation for a case that the encoder’s prior is the true prior
distribution.

Remark I.1: Note that the encoder designs its message by ob-
serving the source random variable. Thus, in some applications,
it may be possible for the encoder to correct its prior before
the information transmission stage by observing a large number
of samples. Therefore, in these applications, it is reasonable to
assume that the encoder’s view corresponds to the true distri-
bution of the source. On the other hand, the decoder may have
an incorrect belief since its observations are limited to what the
encoder reveals.

In this article, we consider a quadratic cost structure where
either a soft power constraint or a hard power constraint is
employed at the encoder. In the case of soft power constraint,
the encoder employs the following objective function:

J(v%77) = Ee [¢(m, 2, u)] (1)
and the decoder employs the objective function
Ty, 7 ) = Ea [¢*(m, u)] )

where c¢(m,z,u) = (m —u)? + rz? and c?(m,z) = (m —
u)?, and X represents the appended soft power constraint to
encoder’s objective. Appending a soft power constraint in this
manner is encountered in stochastic control problems, see,
e.g., [3] and [4]. Notice that when A = 0, the case without
any power constraint is recovered. Note also that it is possible
to append this additional Az? term to the cost function of the
decoder and this does not make a difference in the analysis. In
other words, misalignment between the encoder and the decoder
essentially arises from subjective probabilistic beliefs of the
players and not from the considered costs. For the case in which
the encoder has a hard power constraint instead of a soft power
constraint, the goal of the encoder is to minimize

T (v*, 7T = Ee [¢"(m, u)]

st E, [(ye(m))ﬂ <P 3)
whereas the decoder aims to minimize
Jd('ye’ ’Yd) =Eq [Cd(m7 u)] )

where c¢(m,u) = (m —u)? and c*(m,u) = (m —u)?. In

communication-theoretic settings, a hard power constraint for
an encoder is commonly imposed, and many results in informa-
tion theory with regard to communication through a Gaussian

>When we need to emphasize that we are working with a random variable, we
consider upper case letters, otherwise we use small letters both for realizations
and the variables, and emphasize their distinction when there is room for
confusion.
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channel involve a hard power constrained encoder, see, e.g.,
[5, Ch. 9] and [6, Ch. 11].

Our aim s to analyze the previously described communication
scenarios using two important game-theoretic concepts which
make different assumptions on how decision makers interact:
Nash equilibrium and Stackelberg equilibrium [2]. Under the
Nash equilibrium concept, the encoder and the decoder an-
nounce their policies simultaneously without knowing the policy
of the other player or with no commitment to the announced
plays. A set of policies is said to be a Nash equilibrium if
neither of the players has incentive to unilaterally deviate from
its current strategy. In particular, a pair of encoding and decoding
policies v*¢ and "¢ forms a Nash equilibrium if [2]

Tyt < T4 VAt eTe, (5)
Jhy"e ) < Ty ) vyt e T (©)

We note that in this article we consider only subjective Gaussian
priors for the Nash equilibria analysis.

On the other hand, under the Stackelberg equilibrium concept,
the game is played in a sequential manner where first the encoder
chooses and announces its policy and then the decoder deter-
mines its policy given the announcement of the encoder. In this
scenario, the encoder commits to employ its announced strategy
and the encoder cannot change its strategy once the decoder
learns the strategy of the encoder. Since the decoder knows
the strategy of the encoder, it takes its optimal response given
the announced strategy of the encoder. A pair of encoding and
decoding policies 7" and 7" forms a Stackelberg equilibrium
if [2]

Je(,y*,e7,y*,d(,y*,e)) S Je(’)/e,’)/*’d<’76)) V’ye c re (7)

where 7% (v) satisfies
T () <IN (9) vAtert @®)

where for the policy of the decoder we use the notation v%(~¢)
to indicate that the decoder decides on its policy after observing
the encoder’s policy. In contrast to Nash equilibria, we present
general results concerning arbitrary distributions for Stackel-
berg equilibria analysis with more specific results regarding the
Gaussian case.

Remark 1.2: Note that, under the Stackelberg assumption,
the encoder must know decoder’s subjective prior so that it,
as a leader, can anticipate decoder’s optimal actions. On the
other hand, for the Nash case, the agents do not need to know
their subjective priors; they know only their policies as they
(simultaneously) announce to each other.

In a signaling game problem, it is of interest to investigate
the existence of equilibrium in which the encoder conveys
information related to its observation, i.e., the encoded random
variable X is not statistically independent of the source random
variable M. Such kind of equilibria are referred to as informative
equilibrium. On the other hand, if the encoded random variable
does not depend on the source M, this type of equilibrium is
referred to as noninformative equilibrium or babbling equilib-
rium.

For the Stackelberg setup, an important quantity is the induced
cost for the encoder as the encoder performs an optimization of
its objective given that the decoder best responds. In that respect,
we investigate the continuity properties of the encoder’s cost
with respect to perturbations of the priors around the team setup.
We say that a Stackelberg equilibrium is robust with respect to

perturbations around the team setup if the encoder’s expected
cost continuously changes as the prior of the encoder (decoder)
approaches the prior of the decoder (encoder). We also have
results where one can only guarantee upper semicontinuity or
lower semicontinuity of the encoder’s cost. Moreover, we also
investigate continuity properties for the affine Nash equilibria.
For the Stackelberg setup, in the case when the cost is upper
semicontinuous, there cannot be a drastic degradation in en-
coder’s performance with prior mismatch around the point of
identical priors. In that respect, upper semicontinuity ensures
that the worst case performance under prior mismatch behaves
continuously. On the other hand, in the case when the cost
is only lower semicontinuous, a small prior perturbation in
principle may lead to a large performance degradation of the
game-theoretic cost in comparison with the team-theoretic cost.

B. Literature Review

Crawford and Sobel in their seminal work [7] investigate
a communication scenario between an encoder and a decoder
which do not share a common objective function due to a bias
term appearing in the objective function of the encoder. They
establish that under certain technical conditions the encoder is
required to apply a quantization policy at a Nash equilibrium. In
particular, due to the misalignment in the objective functions of
the encoder and the decoder, the encoder hides information by
reporting the quantization bin that its observation lies in, rather
than revealing its observation completely. This is in contrast
with the classical team-theoretic communication setup where
revealing more information is always beneficial for the system.
In contrast with the Nash setup, it is also possible to consider
a Stackelberg game setup and an important line of work in this
context in the economics literature is the Bayesian persuasion
problem where signaling scenarios are investigated under the
Stackelberg equilibrium concept [8].

Signaling game problems find applications in various contexts
including communication and control theory literature [9]-[20].
For instance, the work in [9] considered a quadratic cost structure
for transmitting a scalar Gaussian source from an encoder to a
decoder where encoder’s cost included a bias term which was
modeled as jointly Gaussian with the source message. The au-
thors analyzed such communication scenarios under the Stack-
elberg equilibrium concept and derived equilibrium solutions,
which turned out to be linear. In [12], signaling scenarios un-
der a general quadratic cost structure were investigated under
the Stackelberg equilibrium concept and for multidimensional
Gaussian sources, the optimality of linear policies was estab-
lished for the considered cost structure. The work in [10] in-
vestigated communication scenarios between an encoder and a
decoder under quadratic costs using either Nash or Stackelberg
equilibria concepts where the encoder’s objective contained a
deterministic bias term. An important observation from [10] is
the existence of linear Nash equilibria for Gaussian sources.
We note that various studies consider also more general cost
functions [15], [16], [19]-[21], rather than focusing on the
quadratic case. For instance, [21] analyzed the Bayesian per-
suasion problem with general cost functions where the encoder
and decoder have subjective probabilistic beliefs. In addition,
the works [15] and [16] analyzed information-theoretic limits
of the Bayesian persuasion problem with general cost functions.
Anotherrelated work [22] investigated optimal stochastic signal-
ing in a binary communication setup with aligned cost structure
for an encoder and a decoder (i.e., team-theoretic setup) and
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provided sufficient conditions under which stochastic signaling
improves the performance or not.

Subjective probabilistic models are encountered in various
contexts. For instance, the setup in decentralized decision mak-
ing where the priors of decision makers may be different has
a practical significance. There have been a number of stud-
ies on the presence of mismatches in the priors of decision
makers [21], [23]-[26]. In such setups, even when the objec-
tive functions to be optimized are identical, the presence of
subjective priors alters the formulation from a team problem
to a game problem involving strategy/policy spaces (see [6,
Sec. 12.2.3] for a comprehensive literature review on subjective
priors also from a statistical decision making perspective). For
example, the work [23] investigated equilibrium behavior under
either Nash or Stackelberg equilibria in a two-person decision
making scenario with quadratic cost where the decision makers
have subjective probabilistic beliefs. An interesting observation
from [23] is that in the special case of Gaussian priors, the
decision makers employ linear policies under Nash equilibria
whereas the policies under Stackelberg equilibria are in general
nonlinear. In addition, in almost all practical applications, there
is some mismatch between the true and an assumed probabilistic
system/data model, which results in performance degradation.
This performance loss due to the presence of mismatch has
been studied extensively in various setups (see, e.g., [27]-[34]
and references therein). Moreover, the subjectivity may appear
when there are prospect theoretic agents in the system where
the decision makers may have different views on the proba-
bilistic models due to their subjective biases [17], [35], [36].
In prospect theory, the subjective views of the agents on the
prior probabilities are modeled via a weight function which,
for instance, reflects a common misconception of overesti-
mating (underestimating) the probability of less (more) likely
events. For instance, in [17], communication scenarios through
an additive noisy channel with an encoder and a decoder which
have different weight functions were analyzed under the Stack-
elberg equilibrium concept where there is an affine policy re-
striction at the encoder. It is shown that for Gaussian source
and noise case policies at the equilibrium are not affected by
subjective biases whereas for exponential source and noise case
policies at the equilibrium depend on subjective biases.

C. Contributions

We analyze the signaling game problem described earlier
under the Stackelberg equilibrium or the Nash equilibrium con-
cepts. Our results concerning the Stackelberg equilibria involve
arbitrary distributions with more specific results for the Gaussian
case. On the other hand, we focus on the Gaussian case for the
Nash equilibria analysis. In addition, we consider a cheap talk
problem under the Stackelberg or Nash equilibria for which
mutually absolutely continuity assumption® is made for the
subjective prior distributions. Main contributions of this article
can be summarized as follows.

1) We prove that the Stackelberg equilibrium cost of the
encoder is upper semicontinuous (under the Wasserstein
metric) when the prior of encoder is perturbed from the

3Both subjective probability measures agree on the sets with zero measure,
i.e., the Radon—Nikodym derivative of either measure with respect to the other
exists.

prior of decoder considering any subjective prior distribu-
tions for the players (Theorem 2.1). For the special case
of Gaussian priors, it is proven that the cost around the
team setup is lower semicontinuous, as well. Therefore,
for the Gaussian priors case, the equilibrium is robust
with respect to perturbations around the team setup (in
both the Wasserstein metric and under weak convergence)
where robustness refers to the fact that the Stackelberg
equilibrium cost of the encoder is continuous with respect
to prior perturbation around the team setup. In addition,
we also provide a duality result which states that if the
prior of decoder is perturbed from the prior of encoder,
the Stackelberg equilibrium cost of encoder is lower
semicontinuous (under both the Wasserstein metric or the
weak convergence topology).

2) We show that the Stackelberg equilibrium solution for
Gaussian signaling with subjective priors is in general
nonlinear by providing specific examples where a non-
linear policy outperforms the best affine policy (Theo-
rem 2.2). Thus, team-theoretic optimality of linear/affine
policies are not robust to prior perturbations.

3) For the signaling game problem with Gaussian priors
(under a soft power constraint or a hard power constraint),
we show that the Stackelberg equilibrium under affine
policy restriction is either informative or noninformative
depending on conditions stated explicitly (Theorems 2.3
and 2.4). Moreover, these game-theoretic solutions do not
coincide with the corresponding team-theoretic solutions
in general. In particular, when there is a hard power con-
straint, game-theoretic solution may be noninformative
whereas team-theoretic solution is always informative
regardless of the parameters. For the signaling game
problem with Gaussian priors under a soft power con-
straint, we show that there exists a unique informative
affine Nash equilibrium under a certain condition involv-
ing the subjective prior of the decoder (Theorem 3.1).
On the other hand, we prove that there always exists a
unique informative affine Nash equilibrium when there is
a hard power constraint at the encoder (Theorem 3.5).
In addition, we show that the informative affine Nash
equilibrium solution under a soft power constraint or a
hard power constraint is robust to perturbations around
the team setup.

4) We show that there exist fully informative Nash and
Stackelberg equilibria for the dynamic cheap talk as in
the team-theoretic setup when the encoder and the de-
coder have subjective priors on the source distribution
and identical costs, provided that the priors are mutually
absolutely continuous (Theorem 4.1).

Il. COOPERATIVE/COMMITMENT SETUP (STACKELBERG
EQUILIBRIA)

In this section, we analyze the Stackelberg equilibria when
there is either a soft power constraint or a hard power constraint
at the encoder. Before presenting our results, we make the
following remark.
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Remark 11.1: We note that if both players share the same
probabilistic belief on the source distribution, then the problem
reduces to the classical team-theoretic setup with a power con-
strained encoder. Although obtaining optimal coding/decoding
policies for general source distributions is in general difficult, for
the special case of scalar Gaussian source, the optimal solution
involves linear policies at the encoder and decoder, see, e.g., [6,
p- 376]. This optimality result for linear policies is obtained by
using channel capacity and rate distortion bounds.

A. Continuity and Robustness to Perturbations Around
the Team Setup

In this section, we investigate continuity and robustness of the
Stackelberg equilibria around the team setup for general subjec-
tive source priors with more specific results for the Gaussian
priors case. In the literature, analytical properties such as conti-
nuity of mean squared error for estimation under additive noise
are investigated in [37] when there is no prior mismatch, i.e., a
team-theoretic setup. In addition, the authors in[38] investigated
robustness and continuity with respect to prior probability mea-
sures for partially observed stochastic control problems where
the priors can be incomplete or incorrect. Here, [38] showed that
indeed under total variation, strong continuity results with a rate
of continuity/convergence hold, but in our work, the presence of
an encoder adds further challenges. We leave this problem for
future work.

In our article, the subjective probabilistic belief of the one
of the players deviates from that of the other player, i.e., a
deviation from the team-theoretic setup. In this case, we analyze
if the cost function of the encoder behaves continuously with
respect to such a difference on the priors. To be more precise,
a robust Stackelberg equilibrium means that J*¢(¢., ¢q) —
J*C(ba, da) as po — pg, Where J*¢ (e, ¢4) denotes the Stack-
elberg equilibrium cost of the encoder when the priors of the
encoder and decoder are ¢.(-) and ¢4(-), respectively. Such a
continuity resultis equivalent to J* (e, pg) — J*(Pe, Pc) as
¢4 — ¢.. We also have semicontinuity results where depending
on whether ¢, — ¢4 or ¢4 — ¢, is considered, upper or lower
semicontinuity can be guaranteed.

While performing a continuity analysis with respect to sub-
jective priors, one applies a perturbation to these subjective
priors around the point of identical priors. This perturbation is
quantified via a convergence notion for probability measures as
defined in the following. We also emphasize that these continuity
results hold only at the point of identical priors.

In order to investigate continuity properties of the encoder’s
cost, we need to define a probability space and a convergence
notion for probability measures in this space. Toward that goal,
let X = R and P(X) denote the family of all probability mea-
sures on (X, B(X)) where B(X) denotes the Borel o-algebra
on X. Let {u,, n € N} be a sequence in P(X). A sequence
{pn} is said to converge to p € P(X) as n tends to infinity
weakly if the following convergence relation holds as n tends
to infinity:

[ canatin) » [ clantaa)

for every continuous and bounded ¢ : X — R.

The Prohorov metric can be used to metrize this space. As a
more practical metric, the Wasserstein metric can also be used
(for compact X).

Definition I1.1 (Wasserstein metric): The Wasserstein metric
of order p > 1 for two distributions 4, v € P(X) with finite pth
order moments is defined as

1

inf

dzx,dy)||z — yl||? '
nﬁwwﬁémm Dl m)

where H (11, ) denotes the set of probability measures on X x X
with first marginal p and second marginal v and || - || is a norm
(such as the Euclidean norm).

As noted, for compact X, the Wasserstein distance of or-
der p metrizes the weak topology on the set of probability
measures on X (see [39, Th. 6.9]). For noncompact X, weak
convergence combined with convergence of moments (i.e., of
[ pn(dz)||z||? — [ p(dz)||z||? for all orders ¢ < p) is equiva-
lent to convergence in W), (see [39, Def. 6.8] and [39, Th. 6.9]).

In the following theorem, we investigate continuity and ro-
bustness properties of the encoder’s cost around the point of
identical priors. We analyze the cost of the encoder since in the
Stackelberg setup the encoder performs an optimization of its
objective, and thus, encoder’s objective determines whether the
equilibrium is robust or not.

Theorem II.1: Suppose that the prior of the source is ¢.(+)
and ¢4(-) from the perspective of the encoder and the decoder,
respectively, where these prior distributions are arbitrary. Sup-
pose further that variance of the source under ¢4(-) is finite.
Then, the following are true where there is either a soft power
constraint or a hard power constraint at the encoder.

1) The Stackelberg equilibrium cost of the encoder is upper
semicontinuous (under the Wasserstein metric) as sub-
jective prior of the encoder approaches subjective prior
of the decoder, i.e., ¢.(-) — da(-).

2) If the prior distributions ¢, (-) and ¢4(-) are Gaussian, the
Stackelberg equilibrium cost of the encoder is lower semi-
continuous as subjective prior of the encoder approaches
subjective prior of the decoder, i.e., ¢e () — da(-).

3) If the prior distributions ¢, () and ¢4(-) are Gaussian, the
Stackelberg equilibria are robust with respect to perturba-
tions around the team setup (under both the Wasserstein
metric or the weak convergence topology), i.e., the Stack-
elberg equilibrium cost of the encoder is continuous.

4) The Stackelberg equilibria cost of the encoder is lower
semicontinuous (under both the Wasserstein metric or the
weak convergence topology) as subjective prior of the
decoder approaches subjective prior of the encoder, i.e.,
ga() = e ().

Remark I1.2: For a communication setup, it is reasonable to
assume that the source to be conveyed has a finite average power,
which holds when the variance of the source is finite. Please also
note that if the variance is unbounded, infinite Shannon capacity
would be implied, which would reduce the problem to a cheap
talk problem, as the noise can be suppressed with arbitrarily
large encoder gain. Therefore, the assumption of having a finite
variance from the perspective of the decoder in Theorem 2.1
is not unnatural, and this assumption is commonly imposed in
practice.

Proof: In the following, we focus on the case with a soft
power constraint. We note that all the derived identities in the
following proof identically hold when the soft power constraint
is replaced with a hard power constraint. Therefore, the proof in

Wp(#» V) =
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Fig. 2. Suboptimal scheme used in proving upper semicontinuity result

where the coupling channel f(-) is such that marginal distribution of its
output is ¢4(+).

the case of a hard power constraint follows the same steps as in
the proof for the case with a soft power constraint.
1) Let M, and M, denote random variables distributed
according to the priors ¢.(-) and ¢4(+), respectively. The
Stackelberg equilibrium cost is given by

min E{(me — u)’] + AE[y*(me)?] ©)
~e -

where there is an implicit constraint that the decoder
employs its best response with respect to its own prior. In
particular, the decoder’s action is a deterministic function
of its observation given by u = E4[m|y¢(m) + w]. Now
consider a suboptimal scheme in which the encoder maps
its observation into an auxiliary variable via f(-) which is
then mapped into the transmitted message through 5¢(-)
under constraint that the marginal distribution of this
auxiliary random variable is fixed to ¢4(-). This scheme is
depicted in Fig. 2. By introducing such an auxiliary ran-
dom variable which has a fixed marginal distribution, the
proposed scheme is in general a suboptimal scheme. Here,
the encoder is given by ~v¢(m.) = 7°¢(f(m.)) where
f(me) = mg has a fixed marginal distribution ¢g4(-).
Observe that

inEl(me — )*] + 2B (o)’
< _min E[(me — )] + AE[7*(ma)’]
= _min E{(me = mq+ma 0] + 2B (ma)’]

+ 2E[(me — ma)(mag — u)] + AE[F€(ma)?]
< min . E[(me — mq)®] + E[(mq — u)?]

+ 2\/ E — md \/ E mq — u

+AE W(md)Q] (10)
where the first inequality is due to suboptimality of the
scheme with f(-) and 4¢(-) and the second inequality
follows from Cauchy—Schwarz inequality. The final opti-

mization problem in (10) can be first solved with respect
to f(-) which leads to

i E[(me —ma)*] + E[(mq — u)*] + AE[3* (ma)’]

+2VE[(me — ma)2]VE[(mg — u)?]
n Wa(oe, $a)” + E[(ma — u)?] + AE[T* (ma)?]

Q

+ 2Wa(ge, da) vV E[(mg — u)?] Y

where W (¢, ¢q) denotes quadratic Wasserstein dis-
tance between the distributions ¢.(+) and ¢,4(+). Note that
the optimal value for the solution to (11) is finite when
W (e, Pa) is finite. To see this, observe that if ¢ (mg) =
0 for all mg4, then the optimal decoder action becomes u =
g where 114 denotes the mean of the source message from
decoder’s perspective. Then, the objective functionin (11)
takes the value of (Wa(¢e, ¢a) + E[(ma — ua)?]*/?)?,
which is finite as the variance of the source is finite from
the perspective of decoder. Thus, an optimal solution to
(11) must yield a finite objective value. From this obser-
vation, it follows that as ¢. — ¢4, the optimal solution
of (11) leads to a finite value for the term E[(mg — u)?]
since Wa (e, dqa) — 0 in this case. As a result, we get
lim sup min E[(m. — u)?] + AE[y¢(m.)?]
be—rda 1°0)

< lim sup min Wa(¢e, ¢a)* + E[(ma — u)?]
¢e‘>¢d ()

+ 2 Wa(@e, pa) VE[(ma — u)?] + AE[T* (ma)?]
= E[(ma — E[ma|y**(ma) + w])?] + AE[y**(ma)?]

where the inequality is due to (10) and (11), v*¢(-)
denotes the optimal encoding policy under team-theoretic
setup with common prior distribution ¢,4(-), and the
equality follows from the facts that E[(mg — u)?] is finite
and Wa(¢e, pq) — 0 as ¢, — ¢q. Since the last term
corresponds to the cost for team-theoretic setup with prior
¢a(+), this analysis shows that the Stackelberg equilib-
rium cost is upper semicontinuous around the team setup.

2) We note that if the decoder employs the encoder’s prior

rather than its own prior, the objective function of the
encoder is improved. Therefore, the following inequality
holds:

min B, [(m — Eafm|y®(m) +w]) ?] + AE[2?]

2 minEe[(m — Ec[m|y"(m) + w])?] + ABc[2%]
~e (-
12)
For the latter optimization problem, it is well-known that

the optimal encoding and decoding policies are affine. By
using this observation, we get

lim inf min E[(m — Eq[m|y¢(m) + w])?] + AE.[z?]
be—=ba ve()

> liminf min E.[(m — E.[m|y¢(m) + w])?] 4+ AE[2?]
be—da ve(")

= hm mfIE e[(m — ﬁi"d(a?em ol +w) — ;,d)2}

be—rda
+AE [(a)m + ay©)?]
= Eqgf(m — 87 (a7 m + 03" +w) — 57)%]
+ AEd[(a7 m + ay)?] (13)
Where e, o€, Br¢ and B¢ (resp. o, ay?, g7 and

62 ) are the optimal coefficients at the affine encoder
and decoder for the problem of transmitting a Gaussian
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source M, (resp. M) over an independent additive Gaus-
sian channel under quadratic criterion with soft power
constraint. This establishes the lower semicontinuity of
the Stackelberg equilibrium cost around the point of
identical priors.

3) The result follows from 1) and 2).

4) The lower semicontinuity result in this case can be estab-
lished easily. In particular, we note that the inequality in
(12) holds for general subjective priors. In other words, if
the decoder employs encoder’s prior rather than its own
prior while computing its estimate, the cost of the encoder
improves. From this inequality, we get

liminf min E,[(m — Eq[m|y¢(m) + w])?] + AE.[z?]
bPa—de "/e(')

> liminf min E.[(m — E.[m|y¢(m) + w])?] + AE.[z?%]
Pa—¢e vo(")

= minEc(m — Ec[mpy(m) + u])?] + AE.[s]

where the equality follows from the fact that the optimiza-
tion problem does not depend on ¢4(+). This proves the
lower semicontinuity of encoder’s cost. |

Theorem 2.1 reveals an interesting duality property of en-
coder’s cost in the sense that if ¢, — ¢4, then upper semicon-
tinuity holds whereas if ¢4 — ¢., then lower semicontinuity
holds. On the other hand, for mismatched Gaussian priors, both
upper semicontinuity and lower semicontinuity hold, which
proves the robustness of the Stackelberg equilibria around the
point of identical priors.

Remark I1.3: 'We note that the property of upper semicontinu-
ity also holds when the source is multidimensional. On the other
hand, when the source is multidimensional Gaussian from the
perspective of both players, then the analysis regarding lower
semicontinuity in Theorem 2.1 does not apply since the optimal
encoding policy may not be linear for the team-theoretic setup
with a multidimensional Gaussian source. Nonetheless, if there
is an affine policy restriction for the encoder, a similar analysis
to that in (13) can be carried out to obtain lower semicontinuity
result for a setup with multidimensional Gaussian priors.

We note that in a related work [37] in this context, continuity
property of minimum mean squared error was investigated in a
team-theoretic setup. In particular, it was shown that minimum
mean squared error is continuous for the case with a linear
encoder and an additive channel where the noise density is
continuous and bounded [37, Th. 4] and the Gaussian density
satisfies these properties. In other words, there is essentially no
encoding in [37] other than a scaling factor, and the analysis takes
only decoding into account from an information transmission
perspective. As opposed to [37], our work analyzes the scenario
with prior mismatch and there is an encoder which may also be
nonlinear.

B. Affine Policies May No Longer Be Optimal for
Gaussian Signaling Even With Gaussian Subjective
Priors

Here, the subjective probabilistic beliefs of the encoder and
the decoder are taken as Gaussian. In particular, the Gaussian
source has different mean and variance from the perspectives of
the encoder and the decoder; i.e., the source is M ~ ¢.(m) =

N (pte,02) and M ~ ¢q(m) = N (pq, 0%) from encoder’s and
decoder’s perspective, respectively. In addition, the additive
noise, which is independent of the source, is modeled by a
zero-mean Gaussian random variable; i.e., the noise is W ~
N(0,0%).

For Gaussian signaling, affine class of policies is an important
class of policies due to its desirable optimality property for
the classical team-theoretic communication setup with identical
costs and priors. On the other hand, for the Stackelberg setup,
the optimality of affine policies for Gaussian signaling no longer
holds due to the presence of subjective probabilistic beliefs of
the players, and thus, team-theoretic optimality of linear/affine
policies are not robust to perturbations. In order to show this re-
sult, the following theorem provides examples where nonlinear
encoding policies yield better performance for the encoder than
the best affine policies.

Theorem I1.2: Consider the quadratic signaling games prob-
lem with subjective Gaussian priors where there is no affine pol-
icy restriction at the encoder. Then, for a soft power constrained
or a hard power constrained encoder, it is not necessarily true
that an affine policy always gives the Stackelberg equilibrium
solution.

Proof: Tt suffices to provide examples where a nonlinear pol-
icy yields a better cost than the best affine policy. First, consider
the soft power constrained setup. We provide an example where
a quantization policy leads to a cost (for the encoder) which is
better than the optimal cost under affine policy restriction. Let
e = pg = 0,02 = 6.25, 0% = 0.25, 0%, = 0.25, and > = 1.5.
The aim of the encoder is to solve the optimization problem
(1) after plugging in the best response of the decoder which is
givenby u = E4[m|v¢(m) + w]. Under affine policy restriction
at the encoder, the best response of decoder also becomes affine.
Numerically solving the optimization problem at the encoder un-
der affine policy restriction leads to the optimal encoding policy
~v*¢(m) = 0.30 m and the corresponding cost of the encoder is

given by Jg . = 6.12. Now consider an encoding policy in the

form of a quantization policy specified by v¢(m) = /P sgn(m)
with P = 0.5. Such a quantization policy is in fact used in the
seminal work of Witsenhausen while constructing a nonlinear
control policy that outperforms the best linear policy for the
considered control system [3]. In our setting, the best response
of the decoder to such a quantization policy at the encoder can be
computed as 4 (y) = /2/7o tanh(v/Py/o?,). With this best
response of the decoder, we compute the expected cost of the
encoder via numerical integration and obtain Jg .y ization = 9-90.
This shows that such a quantization policy outperforms the best
affine policy.

Now, consider the hard power constrained case. Let u, =
pa=0, c2=1, 02 =3, 0, =04, and P=0.1. In this
case, by numerically solving the optimization problem (3)
under affine policy restriction with decoder’s best response
plugged in yields a noninformative equilibrium. In this
case, the cost of the encoder becomes J . = 02 = 1. Now
consider an encoding policy in the form of a quantization policy

specified by v¢(m) = VP sgn(m). In a similar manner to the
soft power constrained case, by computing the expected cost
of the encoder numerically, we obtain J,,nisaion = 0-94. This
shows that such a quantization policy outperforms the best affine
policy. |

Theorem 2.2 shows that when the players have different
perception on the prior probability of the message, then the
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optimality of linear policies (which holds under identical priors)
may break down. Nonetheless, it is observed through numerical
simulations that such a quantization policy outperforms the best
affine policy when the players have very different perceptions
on the prior probability of the source.

C. Gaussian Signaling Under Affine Policy Restriction

In the following theorem, we analyze the Stackelberg equi-
librium under the affine policy restriction where there exists a
soft power constraint at the encoder. In addition to its simplicity
for the Gaussian case, one other motivation for employing affine
policies is as follows.

Remark I1.4: Note that in the classical team-theoretic setup
with identical priors, the optimal solution is attained by affine
policies. We also know that the Stackelberg equilibrium concept
is used to model scenarios where the decoder trusts the encoder
and employs its best response. In such a setting, if the encoder
employs a nonlinear policy, then the decoder will be able to learn
that its prior is incorrect (as otherwise the encoder must employ
an affine policy). As a result, the decoder realizes that the setup
is a game setup with mismatched priors (or the decoder may
even think that the encoder employs a different cost function).
Therefore, the encoder may prefer employing an affine policy
rather than a nonlinear policy in order not to damage its credi-
bility. In the case of affine encoding policies, since the decoder
may not have the knowledge of power constraint at the encoder,
the decoder cannot extract the subjective prior distribution of
the encoder using the announced encoding policy. Thus, from
an affine policy announcement, the decoder may not realize that
its prior is inconsistent in general.

Theorem II.3: In the quadratic signaling games with sub-
jective Gaussian priors under soft power constraint, the affine
Stackelberg equilibrium is informative if

roloy, < o5 (202 4 2(pe — pa)® — 03) - (14)

When (14) does not hold, there exists an informative affine
Stackelberg equilibrium if the following conditions simultane-
ously hold:

3 (02 + (pta — pe)?) < 203, (15)
dratoyy (07— 02 — (pte — p1a)®)
< 03 (02 + (e — 11a)?)". (16)

Otherwise, the affine Stackelberg equilibrium is noninformative.
Proof: See Section VII-A. |
Remark I1.5: 1t is noted that the nature of the affine Stackel-

berg equilibrium can be noninformative or informative depend-

ing on the system parameters. This is because the conditions in

(14)—(16) may or may not hold. For instance, the following are

examples of informative and noninformative scenarios.

1) Leto? =1,02 =4,0%, =0.25, A = 2 and pte = pg. In
this case, (15) holds whereas (14) and (16) do not hold,
which lead to a noninformative equilibrium.

2) Let Jg =1, 03 =4, 0‘24, =0.25, A =1 and pe = pq.
As (15) and (16) are satisfied in this case, the affine
Stackelberg equilibrium is informative.

Remark I1.6: The conditions in Theorem 2.3 for the informa-
tiveness of the affine Stackelberg equilibrium depend on the

subjective priors of both players. In particular, Theorem 2.3

shows that the Stackelberg equilibrium solution in general does
not coincide with the team-theoretic solution when the common
prior is the subjective prior of either of the players.

Remark 11.7: When the consistent priors and the zero-mean
Gaussian source are assumed, i.e., jio = pg = 0and 02 = 02 =
O'JQW, then (14) turns into the condition that AU%V < a%/[ whereas
(15) is always violated. Therefore, we recover the result of [10,
Th. 4.5] (with b = 0) whose proof indicates that the affine
equilibrium is informative if A < 03, /0%, and noninformative
otherwise.

The analysis in Theorem 2.3 can be carried over to the /N-stage
signaling game: The encoder searches over the affine class to
find its optimal policy by anticipating the best response of the
decoder, and this would involve an optimization over N 24N
parameters for an N-stage problem.

Next, we analyze the Stackelberg equilibrium under the affine
policy restriction when there is a hard power constraint at the
encoder. Due to prior mismatch, the affine equilibrium solution
may be noninformative in contrast with the informative nature
of team-theoretic solution. The following theorem presents a
necessary and sufficient condition for the informativeness of the
affine Stackelberg equilibria.

Theorem I1.4: In the quadratic signaling games with subjec-
tive Gaussian priors under hard power constraint, there exists a
unique informative affine Stackelberg equilibrium if*

2 202 P
AT A S D
02+ (e — pa) 04 Ow

Otherwise, the affine equilibrium is always noninformative.
Proof: See Section VII-B. |
When p. = pg = pps and o, = o4 = oy, 1., the team-

theoretic setup, the left-hand side of (17) becomes negative

leading to a fully informative scenario, as expected.

Remark 11.8: Unlike the team-theoretic solution which is
always informative, the affine Stackelberg equilibrium solution
is either informative or noninformative depending on the system
parameters.

Now, we derive the costs at the affine Stackelberg equilibrium
in the hard power constrained case to illustrate the effects of
subjectivity.

Theorem I1.5: In the quadratic signaling games with subjec-
tive Gaussian priors and hard power constraint, if (17) holds,
then the cost of the encoder and decoder at the informative affine
Stackelberg equilibrium are

Jre _ Pricioh + obot + obyotlpe — ) o
8 (Po2 + c20%,)? ’
2 .2 2
;k,d _ UEOdUW (19)

Po? + o203,

On the other hand, if (17) does not hold, the affine Stackelberg
equilibrium is noninformative with costs J:¢ = 02 + (e —
pa)? and J? = o2,
Proof: See Section VII-C. |
It is noted that if both players share a common prior with
0e = 0q = oy and e = g = pp leading to a team-theoretic

setup, then (18) and (19) reduce to .J; ¢ = J;*% = %%702".
Tw

“In the case of equality in (17), it is possible to have a noninformative
equilibrium as well and the informative and noninformative equilibria induce
the same cost for the encoder in this case.
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Remark I1.9: Note that one can analyze the Stackelberg equi-
librium solutions under affine policy restriction to investigate
continuity and robustness properties. On the other hand, we
can conclude the continuity result directly from Theorem 2.1.
In particular, the analysis in the proof of Theorem 2.1 can
be carried out when the optimization problem imposes an
additional affine policy restriction. This implies that for the
Gaussian prior case, the Stackelberg equilibrium cost of the
encoder under affine policy restriction is robust with respect to
perturbations around the team setup under either a soft or a hard
power constraint.

[ll. NONCOOPERATIVE/NO-COMMITMENT SETUP
(NASH EQUILIBRIA)

In certain communication applications, it may not possible for
the encoder and decoder to inform their policies to the other de-
cision maker a priori. In addition, subjective prior distributions
of the decision makers may not be known by the other decision
maker. In these applications, a Nash theoretic treatment is re-
quired to analyze the interaction between the decision makers
where there is no hierarchy in the decision making procedure.
Furthermore, this type of interaction is used to model scenarios
where the decision makers guard themselves against a mislead-
ing announcement from the other decision maker, i.e., a decision
maker employs a policy other than its announced policy to gain
advantage. Motivated by such applications, we investigate affine
Nash equilibria when the encoder have subjective probabilistic
beliefs on the source distribution where these subjective prior
distributions are Gaussian, i.e., the source is M ~ ¢.(m) =
N (pe,02) and M ~ ¢4(m) = N (pq,03) from encoder’s and
decoder’s perspective, respectively.

We first focus on the soft power constrained setup. The
following theorem provides a condition under which the affine
Nash equilibrium solution is informative or noninformative.

Theorem I11.1: In the quadratic signaling games with subjec-
tive Gaussian priors and soft power constraint, if A > %, the
unique affine equilibrium is noninformative; otherwise, there
exists a unique informative affine Nash equilibrium.

Proof: See Section VII-D. |

Remark II1.1: From the proof of Theorem 3.1, it is seen that
none of the parameters that specify policies at the equilibrium
depend on the subjective priors from the perspective of the
encoder since the encoder minimizes its cost for every realization
m of source M without considering its distribution.

Remark I11.2: 1t is seen that the policies for the equilibrium
characterized in Theorem 3.1 are the same policies as in the
team-theoretic setup where both the encoder and decoder take
¢a(m), i.e., the subjective prior of the decoder in the game-
theoretic setup, as the source distribution. This is in contrast with
the Stackelberg setup where the equilibrium solution does not
reduce to a team-theoretic solution when either of the player’s
prior is taken as the common prior in general.

Next, we investigate effects of the subjectivity in priors on the
equilibrium cost. Due to Remark 3.2, only the objective function
of the encoder deviates from its value with the team-theoretic
solution.

Theorem II1.2: In the quadratic signaling games with subjec-

2
. . . . g
tive Gaussian priors and soft power constraint, when 1 < —-,
w

the encoder cost J7¢ and decoder cost J:*¢ at the Nash equilib-
rium are

*,e __
Jo¢ =
x,d 2 2
Jo = ogoy .

2
Otherwise, i.e., if A > ;T‘j/’ the costs are J¢ = 02 + (e —

2 2 _ 2
ro2o?, <J€ + 9 t}_é“"’ Ha) ) — 0%, (20)

2L

pa)? and J34 = o2
Proof: See Section VII-E. |
If the priors were equal as p, = g = pa and o, = o4 =
o, 1.e., the team case with a soft power constraint, then the costs

are given by J;* = 2\/10%,0%, — Aofy, S = \/ioR 0%

2
for 2 < Z (i.e., at the informative equilibrium), and J;*“ =
w

d 2 . . . .
o2, J0% =02, for A > Z% (i.e., at the noninformative equi-
w
librium).

We now discuss the robustness of the equilibrium with respect
to perturbations around the team setup. Since the encoding and
decoding policies do not depend on encoder’s subjective prior,
perturbing encoder’s prior with respect to decoder’s prior does
not lead to a change in the policies at the equilibrium. On the
other hand, if we consider perturbation of decoder’s prior with
respect to encoder’s prior, i.e., iy = pe + €, and og = o, + €4,
the policies at the equilibrium change in a continuous manner
with perturbation. These observations imply that the equilibrium
is robust to perturbations around the team setup. Notice that even
though the nature of the equilibrium may change depending
on €., the policies are still altered continuously, which ensures
robustness of the equilibrium.

We next generalize our results to the multidimensional
source setting. Let the source be M ~ N (., X.) and M ~
N (pg,X4q) from encoder’s and decoder’s perspective, respec-
tively, and let the channel noise be W ~ A (0, Xw ). Let the
cost function of the encoder and the decoder be c¢(m, z, u) =
lm — u||? + Al|z||? and c?(m, u) = ||m — u|%. Accordingly,
the objective function of the encoder and decoder are ex-
pressed as J¢(7¢, %) = E.[c®(m,x,u)] and J¥(v¢,7%) =
E 4[c?(m, u)], respectively. Before presenting our result for the
case when the encoder has subjective probabilistic models, we
first restate a related result that appears in [10, Th. 5.1] for com-
pleteness. In this theorem, a multidimensional signaling game
setup with identical priors and a biased encoder is considered.
The difference with the setup considered in this article is that we
consider a zero-biased encoder and the priors are not identical.

Theorem II1.3 ([10, Th. 5.1]): Consider the multidimen-
sional signaling setup with identical priors where the cost func-
tions are given by c¢*(m, z,u) = ||m — u — b||?> + A||z||* and
e(m, ) = [lm — ul]%.

1) The encoder (decoder) is affine for an affine decoder
(encoder) in a multidimensional signaling game when the
priors are consistent.

2) For an affine Nash equilibrium, an encoding
policy ~7°(m) = Am+ C must satisfy A =T(A)
where T(A) = (FFT +1I)"! and F = (AX AT +
Ew)ilAEd.

3) There exists at least one equilibrium.
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We note that Remark 3.2 is valid also for the multidimensional
case. In particular, an equilibrium solution is given by the team-
theoretic solution by taking the subjective prior of the decoder
as the common prior. The following result uses this observation
together with Theorem 3.3 by taking b = 0. Thus, we state the
following result without proof.

Corollary I1I.1: Consider the multidimensional signaling
setup with inconsistent priors where the cost functions are
given by c¢*(m, z,u) = |m — u||* + A||z||? and c?(m,u) =
[[m — wl®

1) The encoder (decoder) is affine for an affine decoder
(encoder) in a multi-dimensional signaling game when
the priors are inconsistent.

2) For an affine Nash equilibrium, an encoding
policy ~¢(m) = Am+ C must satisfy A=T(A)
where T(A) = (FFT +AI)™' and F = (AS;AT +
Zw)_lAZd.

3) There exists at least one equilibrium.

As noted in [10], there always exists a noninformative
equilibrium. In fact, it is possible to guarantee the existence
of an informative equilibrium considering a special case. In
particular, [10, Th. 5.1] focuses on a special case with diagonal
covariance matrices to establish the existence of an informative
equilibrium under a certain condition, and this result is valid for
the case of inconsistent priors analyzed in this manuscript by
taking b = 0 and employing the subjective prior of the decoder
as the common prior.

It is possible to generalize our results to multistage setting. In
this context, a related result is presented in [13]. For complete-
ness, we first restate this result in the following.

Theorem I11.4 ([13, Th. 11]): Consider the multistage signal-
ing game setup where the priors are identical and the source is
scalar or multidimensional as follows:

1) If the encoder uses affine policies at all stages, then the
decoder is affine at all stages.

2) If the decoder uses affine policies at all stages, then the
encoder is affine at all stages.

By using the results of Theorem 3.1, Corollary 3.1, and
Theorem 3.4, the following conclusion can be made. Thus, we
state the following result without proof.

Corollary II1.2: Even if the priors are inconsistent from the
perspectives of the encoder and the decoder in the multistage sig-
naling game, affine policies constitute an invariant subspace un-
der best response maps for scalar and multidimensional sources
under Nash equilibria.

In the remainder of this section, we focus on the case where
the encoder has a hard power constraint, i.e., the encoder’s
objective is given by (3). Unlike the soft power constrained
case, there always exists an informative Nash equilibrium for the
hard power constrained case as stated in the following theorem.
Nevertheless, this informative Nash equilibrium is not the same
as the team-theoretic solution when decoder’s subjective prior
is the common prior.

Theorem I11.5: There always exists an informative affine
Nash equilibrium in the hard power constrained scalar quadratic
signaling game in contrast to the soft power constrained scalar
quadratic signaling game.

Proof: See Section VII-F. [ |

By examining the proof of Theorem 3.5, it is seen that when
e = ptg = pps and o, = o4 = oy leading to a team-theoretic
setup, the encoding and decoding policies become v¢(m) =
VP

Y= (m — par) and 7% (y) =

oM

Por
ﬁ+a‘2,v ’

as expected.

Remark I11.3: Note that although both the Nash equilibrium
solution and the team-theoretic solution are always informative,
the resulting policies are not the same in general. In other words,
the subjectivity in the priors affects the equilibrium solution.

Remark II1.4: When there is a hard power constraint, the
policies at the equilibrium are affected by the priors from the
perspective of both players, which is in contrast with the case of
soft power constraint. When there is a hard power constraint,
it is shown that the encoder equates its average power level
(with respect to its own prior) to the maximum possible level
at the equilibrium. As a result, the encoding policy at the Nash
equilibrium depends also on the priors of the encoder in the hard
power constrained case.

Then, we investigate effects of subjectivity in priors on the
equilibrium cost.

Theorem I11.6: In the quadratic signaling games with subjec-
tive Gaussian priors and hard power constraint, the encoder cost
J#+¢ and the decoder cost .J:*¢ at the Nash equilibrium are

— 0.4
(Pm + (e — pa)® + 03)0‘2/[/) oty

*,e __
S = B o3 2 \? ’
(P ((uefud)ﬂa?’,) + UW)
2 2
wd _ T4%Ww
Jot =

J— 0.2 9 °
P ((l‘e*l‘dd)z""a'g) o

Proof: See Section VII-G.

If the priors were equal as p. = pg = pps and o, = oy
o, 1.e., the team case with a hard power constraint, then, Jt* € =

*,d 02,02
Jo0 = 7P7]i Ug‘;.

When the priors are perturbed around the team setup, un-
like the soft power constrained case, the equilibrium is always
informative regardless of the perturbation. In addition, when
a perturbation is applied, the policies change in a continuous
manner, i.e., the affine Nash equilibrium is robust with respect
to perturbations around the team setup.

IV. SIGNALING UNDER SUBJECTIVE PRIORS WITHOUT
ADDITIVE NOISE: CHEAP TALK REVISITED

In this section, different from the previous communication
scenario, there does not exist an additive noise term, i.e., the
decoder observes the encoded message directly, and there is
no power constraint at the encoder. The setup is depicted in
Fig. 1(b). We consider encoders and decoders with subjective
priors, and to reflect mainly the effects of the subjectivity in the
priors we assume that the costs are identical with ¢¢(m,u) =
c?(m,u) = ||m — u|2. In contrast with the previously analyzed
scenarios, there does not exist a power constraint at the encoder
in this case. In fact, the problem can be viewed as a cheap
talk game as the cost function of the encoder does not depend
on the transmitted message, i.e., transmitting information does
not induce a cost for the encoder. For the cheap talk problem,
the existence of babbling equilibrium can always be established
and in that respect the following is a useful observation, which
follows from [7, Th. 1] and [40]:

Proposition IV.1: A noninformative (babbling) equilibrium
always exists for the cheap talk game.

Let M ~ f. and M ~ f; from the perspectives of encoder
and decoder, respectively. We assume mutual absolute conti-
nuity of f. and fg; i.e., for any Borel set B, f.(B)=0=
fa(B) =0and f4(B) =0 = f.(B) = 0. This means that even
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though the encoder and the decoder have subjective priors,
they believe that the source has the same support, i.e., there
is no inconsistency with regard to the support of the source.
For instance, this holds when the source has unbounded sup-
port with a strictly positive probability density function (e.g.,
Gaussian and Laplacian distributions) from the perspectives of
both players.

Theorem IV.1:

1) If the priors are mutually absolutely continuous, there
exists a fully informative Nash equilibrium.

2) If the priors are mutually absolutely continuous, there
exists a fully informative Stackelberg equilibrium.

Proof:

1) Let the encoder and the decoder use fully informative
policies; i.e., the encoder transmits every individual mes-
sage distinctly as x = ¢(m) = m, and the decoder
takes unique actions for each distinct message it re-
ceives as u = 74(x) = x. Then, the cost of the encoder
and the decoder is zero almost surely (due to the mu-
tual absolute continuity assumption, the set of m val-
ues in the support of both the encoder and the decoder
priors has measure 1 under either of the encoder and
the decoder prior); and thus J¢ = E; [|m — u]||?] =0
and J¢ = E,[|/m — u]||?] = 0. Since both the encoder
and the decoder achieve the minimum possible cost,
none of the players deviate from their current choices;
i.e., they prefer to stick at the fully informative poli-
cies, which implies that there exists a fully informative
equilibrium.

2) Under the Stackelberg assumption, the optimal decoder
action is u* = y"¢(x) = E,[m|x]. Then, the encoder
aims to choose the optimal encoding policy v*¢(m) =
x* = xargmin E_[|m — E y, [m|x]||?]. Thus, for every
possible realization of m, the encoder can choose x =
~¢(m) such that m = E;, [m|x], and this is achievable
at fully informative equilibria, i.e., v¢(m) = x* = m.
Under this encoding policy and due to the mutual ab-
solute continuity assumption, the optimal encoder cost
is zero almost surely, and the optimal decoder policy
is u* = v%4(x) = x = m, which entails a zero decoder
cost almost surely. |

Remark IV.1: Under the mutually absolutely continuous pri-
ors assumption, the subjectivity in priors does not make a
difference; i.e., both the team setup and game setup result in
fully informative equilibria.

Corollary IV.1: Theorem 4.1 and Remark 4.1 also apply to
the multistage case; i.e., if the priors are mutually absolutely
continuous, there exist fully informative Nash and Stackelberg
equilibria in multistage and/or multidimensional cheap talk as
in the team-theoretic setup.

V. NUMERICAL EXAMPLES

In this section, we provide numerical examples for the Gaus-
sian case. We illustrate the performance values of the unique
informative affine Nash and Stackelberg equilibria considering
hard power constrained case. In Fig. 3, we assume that the prior
of the encoder is the true prior, and thus, we plot the induced cost
of the encoder at the informative equilibria with respect to o3.

Fig. 3. Attained costs at the unique informative equilibria considering
hard power constrained case for the Stackelberg and the Nash setup
where |pe — pg|l =2, P=1 and o3, =0.01. The condition (17) for
the existence of informative affine Stackelberg equilibria holds for all
considered parameter values in the figures. (a) The encoder’s prior is
the true prior where o2 = 1. (b) The decoder’s prior is the true prior
where 02 = 1.

Note that there always exists an informative affine Nash equilib-
ria regardless of the parameter values whereas for the existence
of Stackelberg equilibria it is required that (17) holds. For the
considered parameter values, this condition always holds. It is
observed that for small values of 03, the costs are large whereas
for large values of o2, the costs get smaller for both equilibria.
This is intuitive since for small values of af,, the decoder has an
incorrect belief with high certainty (as e # j14) and the encoder
cannot persuade the decoder to take an accurate action. On the
other hand, for large values of afl, the costs get smaller since
the conveyed information from the encoder gets more effective.
It is also interesting to observe the difference between the costs
attained at the informative Stackelberg and the Nash equilibria.
This difference arises from the difference in subjective means,
and if the subjective means are the same, i.e., p. = jiq, the
costs become the same at the informative Stackelberg and Nash
equilibria.

In Fig. 3, we now assume that the prior of the decoder is the
true prior. Accordingly, we plot the induced cost of the decoder
at the informative equilibria with respect to o2. It is seen that
for small values of ag, the costs are small whereas for large
values of o2, the costs get larger for both equilibria. This can be
explained by the the following: For large o2, the encoder believes
that the source has high variance, and thus, has large average
power. Then, in order not to violate the power constraint, the
encoder applies a small scaling factor. This effectively reduces
the informativeness of the conveyed message since there is an
additive noise with a fixed variance. On the other hand, for small
o2, the encoder applies a large scaling, which in turn reduces
the costs.

VI. CONCLUSION

We have investigated Nash and Stackelberg equilibria for
quadratic signaling games under subjective/inconsistent priors.
We have established qualitative (e.g., full revelation, linearity, in-
formativeness, noninformativeness, robustness around the team
setup, etc.) and quantitative properties (on linearity or explicit
computation) of Nash and Stackelberg equilibria. We have estab-
lished that the Stackelberg equilibrium cost is upper semicontin-
uous around the point of identical priors and in the particular case
of Gaussian priors it is also lower semicontinuous, which shows
the robustness of the Stackelberg equilibria around the team
setup. Moreover, we have shown that for Gaussian signaling, the
Stackelberg equilibrium solution is in general nonlinear, which
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is in contrast with the linearity property of team optimal solution.
In addition, we have proven that there exist informative affine
Nash and Stackelberg equilibria depending on conditions stated
explicitly for the signaling game setup under soft power con-
straints. Furthermore, we have shown that the Nash equilibrium
solution reduces to the team theoretic solution when decoder’s
prior is the common prior. Moreover, we have established that
there always exists a unique affine Nash equilibrium for the
signaling game under the hard power constraint as in the team
theoretic setup. In addition, we have proven that the affine
Stackelberg equilibrium for the signaling game under the hard
power constraint is informative or noninformative depending on
the system parameters, which is in contrast with the informative
nature of the team theoretic solution. Finally, when the source
is perceived to admit different probability measures from the
perspectives of the encoder and the decoder, under identical cost
functions and mutual absolute continuity, we have shown that
there exist fully informative Nash and Stackelberg equilibria for
the dynamic cheap talk (noiseless case) as in the usual team
theoretic setup.

APPENDIX A
A. Proof of Theorem 2.3
Assuming an affine encoder, ie., x=~°(m)=Am+
C, from the previous part, we know that the op-

. . A2

timal decoder is u* = y"%(y) = Ey4[mly] = e oy +
oitow

o pa—ACo?

A2oTol, £ Ky + L, where y = Am + C 4+ w. Then, by
inserting the best response of the decoder into the objective
function of the encoder and after some manipulation, the goal
of the encoder becomes

min E. [(m — u)® + Az?]
z=~¢(m)=Am+C

oy (e — pa)* + 02 — 03)

A, C (A%02 + 0%,)?
CUTW 4% 4 (A + O (22)
———— o e .
A2a§ + cr%,v ¢ H
Here, the optimal encoder cost is achieved when C* = — A* .,
and A* can be found by solving
4 (2 _ 2 2
A* = arg minUW(UG + (/ée "éd) 73)
A (A205 + o7y )?
G0 2 s Ay, @3)
Azag + U%,V e '

In order to investigate the optimization problem in (23), we need
the first and second derivatives of f(A?) with respect to AZ.
Taking the first derivative of f(A?) with respect to A2, we get

df(A?) 20500 (02 + (e — p1a)* — 3)
d(A?) (A%0] + ofy)?
4 2
_ 94%W 2
@2+ g T

Differentiating further leads to

2 f(A%) ooy, (6(te — pa)® + 602 — 402) + 2 A0S0},
d(A?)2 (4207 + o) '

Itis seen that if (15) holds, the objective function is first concave

and then convex when A? is increased starting from zero. If

(15) does not hold, the objective function is always convex.

Therefore, a solution to (23) always exists.

Now, we wish to see if the optimal solution of (23) leads
to A # 0 or not. If the first derivative at A% = 0 is negative, it
means that there exists A # 0 which induces a lower cost than the
noninformative scenario for the encoder. Therefore, the affine

Stackelberg equilibrium is informative under the condition that

df (A2)
d(A?)
in (14).

If (14) does not hold, then the objective function is nonde-
creasing at A2 = 0. Notice that if (15) does not hold, then the
objective function becomes strictly convex when A2 > 0. Since
a strictly convex function with a nonnegative first derivative
at A%2 =0 is an increasing function for A2 > 0, the optimal
solution becomes noninformative with A* = 0 in this case.

In the remainder of the proof, we consider the remaining
scenario when (15) holds and (14) does not hold. In this case,
we wish to see if there exists a solution to f(z) = f(0) with
a positive x. We note that in this remaining case, f(z) is
nondecreasing at z = 0 and strictly concave when z < 0. Hence,
when there exists a solution to f(z) = f(0), this solution must
be attained with a positive x. Now, we are looking for a solution
to the following equation for an informative equilibrium:

< 0 when A = 0, and this condition can be expressed as

oy (02 + (e — pa)® — a3) aioty 4 AA202
(4202 + 02,) A%02 + o2, ¢
=07 + (pe — pa)’- 24)

Note that (24) is equivalent to
A'wogo? + A (2nologon, — o (02 4 (te — 1a)?))
+ogoiy +roloyy, — 2050 (07 + (e — pa)®) =0

which is a second order polynomial in A% whose discriminant is
expressed as A £ 05(02 + (pe — pa)?)? + 4ro20%02, (02 +
(pe — pra)? — 02). Hence, when A >0 or equivalently (16)
holds, there exists a solution to (24). This implies that there

exists an informative affine Stackelberg equilibrium in this case.

B. Proof of Theorem 2.4
Assuming an affine encoder, ie., x=~(m)= Am+
C, from the previous part, we know that the op-

. . Ac?

timal decoder is u* =~""(y) = Eglm|y] = zriey +
d w

oavltd—ACrr:‘; 2

et Ky + L, where y = Am + C' + w. Then, after
d w

inserting the best response of the decoder, the objective function
of the encoder becomes

Ec [(m —u)?] =E. [(m — AKm — KC — Kw — L)?]

_ Rokoly + b (02 + (e — i) &
(A%02 + 012/1,)2

f(A%). (25)
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Thus, the goal of the encoder is to solve the following optimiza-
tion problem:

JHe = rAilig f(A%) st (Ape +C)* + A%02 < P.

It is seen that the cost to be minimized is independent of C.
Therefore, if we set C' = —Apu,, we obtain all feasible values
of A. Hence, the optimization problem can be solved under the
constraint that A%02 < P. Taking the derivative of the objective
function with respect to A2, we get

df(4%) _ odoiy (Ao + oiy)
aA? (4205 + ;)"
x (o3 (07 — 202 — 2(pe — pa)?) — A%0}) .
Here, if 0% — 202 — 2(pe — pa)* < 0, then f(A?) is a decreas-

ing function of A2 Therefore, the minimization can be accom-

plished by choosing A? as large as possible satisfying the con-

straint, which makes the optimal encoding policy (4*)? = £

and C* = —A* .

On the other hand, if 02 — 202 — 2(ue — pq)? > 0, then
f(A?) is first an increasing and then a decreasing function
of A2. As the goal is to minimize the cost, the optimal A2
value is obtained by choosing either the largest or the smallest
A? depending on the value of P. The objective function takes
the value of 02 + (e — p1q)? when A% = 0. It is necessary to
check if the solution of f(A?) = 02 + (e — pq)? for nonzero
A2 is feasible. In particular, f(A?) = (02 + (e — pq)?) yields

~ 2 272 272 . 2 . .
A2 = Zwlgi—20e2ne—1a)") 404 such a value is feasible when
U,i(ac‘i’(l‘e*l"d) )

A262 <P. As a result, if (17) holds, then there exists an
informative affine equilibrium with A* = +,/ %. On the other

hand, if (17) does not hold, then the largest possible A? gives
an objective value larger than the objective value at A = 0,

which leads to a noninformative equilibrium. Hence, for a nonin-

. ey . 0‘2/1,0'2(0 —202-2(pe—pa)?)
formative equilibrium, we need e R >P

and 0% — 202 — 2(pe — p1a)> > 0 to hold simultaneously and
otherwise the affine equilibrium is informative. Since the former
condition implies the latter condition, the former condition
becomes the only condition which leads to a noninformative
equilibrium.

C. Proof of Theorem 2.5

As shown in Theorem 2.4, an encoding policy v*¢(m) =

Am + C with A = \/f/ae and C = — Ay, leads to an infor-
mative affine equilibrium. In response to this encoding policy,

the decoder takes its optimal action as u* = v*%(y) = Ky +
L=AKm+ KC+ L+ Kw with K = # and L =
od

hq — K\/f(,ud — 1e)/ 0. By inserting the optimal value of A
into (25), the cost of the encoder becomes as in (18). Now, we
derive the cost of the decoder at the informative equilibrium.
By using best response characterization of the decoder, it can
be shown that KC' + L = (1 — AK)pg. Then, the cost of the
decoder becomes

Eg4[(m —u)?] = Eg[(m — K(Am + C +w) — L)?%]

=E4[((1 — AK)m — (KC + L))?] + KzU%V
(1~ AKPEd(m — o)+ Ky
020203,

Po? + o203,

When (17) does not hold, an encoding policy v¢(m) = C with
< v/P leads to an affine Stackelberg equilibrium. In this case,
the best response of the decoder becomes 74 (y) = E4[m|y] =
E4[m] = pq4. Then, the costs are given by

J2¢ = Eel(m — u)?]) = Eel(m — 1a)?] = 02 + (e
Jo = Bal(m —u)?]

7/1@)2’
= Eq[(m — pa)*] = o3.

D. Proof of Theorem 3.1

If the encoder is affine, i.e., x = v¢(m) = Am + C, then the

optimal decoder becomes

[

Ag
_— Apg — C
(ZU Ha )

= [d + Ay
_ AO’d Uw,ud - ACO'(%
o AQgﬁ + 0%, A203 + 0%,

Now suppose that the decoder is affine, i.e., u = y¢(y)
L, then the optimal encoder is given as follows [10]:
“e(m) K KL
“(m) = m — .
K2+ ) K2+ A
We now wish to see if these optimal sets of policies satisfy a
fixed point equation. By combining the optimal policies, we get

't =r

K Ao?
=——\ K=—->%— 26
K2+’ A%262% + o2’ (26)
_ —KL :O"Q/V[LdeCCTd 27)
K24+ )’ A%02% + o},

Since 1 — AK = ;%% and C = — AL from (26) and (27),
d w

it follows that L = p4g and C = ﬁjﬁ— Hence, it suffices to find

A and K that satisfy (26) for an affine equlhbrium Similar
to [10, Th. 4.1], we obtain (K2 +A) = Ac3 from (26)
by assuming A # 0. Here, for A > —- (K2 +A1)%0%, = o2
cannot be satisfied, thus A =0and the affine equilibrium isnon-
holds, then (K2 4 1)?0, = Ao2 leads
to K =0, and thus the affine equilibrium is noninformative.

informative. If A = ‘l

Finally, if 1 < Ud holds, the unique informative affine Nash
equilibrium is attained by the encoding and decoding policies

v¢(m) = Am + C and v (y) = Ky + L with
A= s C= —Ha7, (28)
K = (yoaV1)/ow, L= pq (29)

2 2

A o o
where v = + \ 5 — %
94 T4
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E. Proof of Theorem 3.2

We first consider the informative equilibrium, i.e., the case
with A < —-
icy is a* = fy ¢(m) = Am + C, and the decoder receives y =
x +w = Am + C 4 w. Then, the decoder takes its optimal ac-
tion as u* =y (y) = Ky+ L =AKm + KC + L + Kuw.
From (26)—(29), it follows that L + KC' = L + K(—AL) =
L(1 - AK) =

Now observe the following:

. At the affine Nash equilibrium, the encoder pol-

2
_ ATy

K2+A o2 *

pa(l—AK) and 1 — AK =

E[(m —u)?] =E[(m — AKm — KC — L — Kw)?|
=E[(m(1 — AK) — pa(1 — AK))’] + Koy

ka
= UW]E[(m pa)®] + [ radod, — hody .

d

Since z = Am + C = Am — AL = A(m — pq), the cost of
the encoder becomes

—u)? + Az’

AT
— ( ng + AA2> Ec[(m — pa)?] +\/Ac20d, — Aoty
Ao
= TW (02 + (e — 11a)*) + \/Ao30%, — Aogy
2 2 RY
= ,/)Lagaa, <Ue % Jraé'ue d) > - AU‘Q,V .

Similarly, the cost of the decoder is given by
Aoty 2 2 92
3 Ea[(m — pa)”] + 1/ rogoy,
94
— )»0"2;[/ = \/)»030‘2/‘,.

As stated in Theorem 3.1, the case with A > —-
to a noninformative equilibrium with A =0, C' = 0 K =0,
and L = g from (26) and (27). Then, z* = v*¢(m) = Am +
C=0, y=r+w=mw, and u* =~ (y) = Ky + L = pg
are obtained. Thus, the objectives of the encoder and de-
coder at the noninformative equilibrium are given by J}*¢ =
Ec[(m — u)® +2%] = 02 + (pe — pa)* and J3* = Eg[(m —
u)?] = o2.

Jot = Eal(m — )’ =

leads

F. Proof of Theorem 3.5

For an affine encoder, i.e., © = v¢(m) = Am + C which
satisfies E.[12] = A%(u2 + 02) + 2ACu, + C* < P, the op-
timal decoder is affine, namely

Ao? G%Vud - ACO'(%
A%02 + 0%, 4 A%02% + 0%,

v y) =

For an affine decoder, i.e., u = y¢(y) = Ky + L, we inves-
tigate the optimal encoder as follows: With y = v¢(m) + w,
it follows that u = Ky¢(m) + Kw + L. Then, under the hard
power constraint E.[(7¢(m))?] < P, the optimal cost of the

encoder can be written as

J9¢= min E.[(m

z=v°(m)

_ u)2]

= min E. [(m — K7°(m)

— Kw — L)?
7%(m) w= L]

= min E. [(m — K7°(m) (30)

— L)?] + K?opy.
y¢(m)

For the optimization problem in (30), the corresponding La-
grangian function is expressed as

L(v*(m),v) = Ec [(m — Kv°(m)

+v (E. [(*(m))?] - P)

— L)’] + K?oyy,

(m—L)K
K? —
( + V [(7 K2 +u ) ]
) _
| LU RS !
the dual function is given by
gw) = ind Ly (m),v) (32)
ye(m
and the Lagrangian dual problem of (30) is defined as
min g (v) s.t.v > 0. (33)

Since the optimization problem is convex, the duality gap be-
tween the solutions of the primal and the dual problem is zero.

It is observed from (31) that the Lagrangian function
L(v¢(m), v) can be decomposed into

L(y¢(m),v) = (K2 —|—1/) (

14
K2 +v
m—L)K
( ) )

where L, (7¢(m),v) £ (v¢(m) — “z=7%~)?. Evidently, the
optimal encoder policy that minimizes £(v¢(m), ) obtained
from (32) should also minimize £,,(~v¢(m), ) for each given
value of m. This is known as dual decomposition and it facilitates
the decomposition of the dual problem into suboptimization
problems which are coupled only through m. More explicitly,

we need the compute
m—L)K\?
(2°m - B2 69

Lon (4(m), v) pe(m) dm)
meR
+ z/ﬁ

Ee[on-Lf}4—Aﬂaa,— (34)

min L, (v¢

ve(m)

min

(m).v) = ye(m)

K%+

for each value of m € R.
The Karush—Kuhn—Tucker (KKT) conditions can be obtained
for the optimization problem in (30) as follows:

9L (v%(m),v)

ToGm) o

v (E. [((m)’] = P) =0, 37
v >0, (38)
Eeﬁfumf}—ﬁgo. (39)

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on February 23,2023 at 16:57:31 UTC from IEEE Xplore. Restrictions apply.



KAZIKLI et al.: QUADRATIC SIGNALING WITH PRIOR MISMATCH AT AN ENCODER AND DECODER 719
. . . e _ K _ =Y
From (36), the optimal encoder policy is v¢(m) = 7z, m o2, ((Ug + (e — pa)?)o? + (ufuI:)HaE 03)
Klgiy. By (37), we must have either v = 0 or E.[(7¢(m))?] = = - S,
P. If v=0, for an informative affine equilibrium, K = ((,chud)ugg og+ UW)
Acr?i K 1 . . .
e and A = 7rrp — 7 must be satisfied simultane-  hereas the decoder cost is
ously, which is not possible. .Thus, we must il?vestigate the g (m — u)?]
case of E.[(v¢(m))?] = P with v > 0 to obtain the condi- s d
tions for an informative affine equilibrium. More specifically, Uév ) AQUg )
we need T (A202 4+ o2 s Ea[(m — pa)’] A202 4+ o2 29
, (4205 + o) (4205 + o)
= K KL 2 92 2 92
P=E. [(ﬂm))ﬂ —E. ( ——m—— > I i 050ty
K24+ v K?+v T A202 402, 5 o2 2
d w Pl—t—|+o
(/“'c*/id) +oz w
K § 2 2 2
e (e + ¢ = 2Lpe + L?) (40) REFERENCES
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