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1 Introduction 
Solutions of electromagnetic scattering problems involving 3D planar (Fig. 1) and quasi- 
planar [Fig. 4(a)] geometries in  homogeneous and layered [Fig. 4(b)] media are of great 
interest due to  the existence of a multitude of useful applications, such as frequency 
selective surfaces (FSSs), printed circuit boards (PCBs), microstrip structures, mono- 
lithic microwave integrated circuits (“ICs), and phased-array antennas, to name a 
few. Although several different techniques [l-31 existed for the solution of these prob- 

Figure 1: Planar geometries in a homogeneous medium. 

lems, the need to solve larger problems with limited computational resources recently 
sparked the successful development of numerous new fast solvers  [4-lo].  However, no 
method can be expected to solve all classes of problems. For instance, the iterative 
solvers [4-61, which are perfectly suited for large problems, perform poorly for near- 
resonant structures. Some techniques are limited to 2D geometries [7,8], whereas  some 
others  are limited homogeneous-medium problems [9,10]. Development of a new nonit- 
erative method and its application to planar geometries in homogeneous media will  be 
presented in this paper. The method can easily and naturally be extended to  the cases of 
quasi-planar structures and/or layered-media problems as will be discussed  in Section 5. 
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2 Fast  Direct  Algorithm  Based on the Steepest 
Descent Path  (FDA/SDP) 

The FDA/SDIP takes advantage of the fact that  the induced currents (i.e., basis and 
testing functions) on planar  and quasi-planar geometries interact with each other within 
a very limited solid angle. Thus, all the degrees of freedom that  are required to solve 
a  “truly 3D”  lgeometry are not required  for a  planar or a quasi-planar geometry, and 
this  situation can be exploited to develop  efficient solution algorithms. The FDA/SDP 
achieves its eficiency by essentially converting a 3D planar geometry to a “quasi-2D” 
geometry and  then employing a fast 2D solver to efficiently  solve this resulting “quasi- 
2D” problem (Fig. 2). Assuming that  the planar geometry is placed on the x-y plane, 

3D Problem 2D Problem 
Figure 2: Perceiving a 3D planar object as a quasi-2D geometry. 

tangential components of the electric field  on the same plane are given  by 

where p = i x  -t gy and p’ are arbitrary position vectors on the x-y plane, dp’ = dx‘dy‘, 
and 0; = ea,, + $av,. In the above, g(p, p’) is the 3D scalar Green’s function restricted 
to  the in-plane interactions  and can be expressed in terms of the 2D Green’s function 
using the identity [ll] 

Equation (3) is obtained by deforming the  path of integration in Eq. (2) to  the steepest 
descent path (SIDP), where the integrand is rapidly decaying. The SDP integral in Eq. (3) 
can be numerically evaluated by sampling the integrand at a set of appropriately chosen 
points sm with associated weights wm: 

Thus, the 3D Green’s function for this problem can be  expressed as a sum of several 2D 
Green’s functions. At this  point, the problem can be solved  using any 2D solver that has 
less than O ( N 3 )  computational complexity such as the RTMA [9], the RATMA [lo], or 
the NEPAI, [12]. In this work, the  RATMA  will be used t,n solve the “qnasi-2D” problem. 
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3 Numerical  Integration 
Let Dmin and Dm,, denote the smallest feature size and  the largest dimension, respec- 
tively, of the “quasi-2D” problem such that  the two  may be different by several orders of 
magnitude. In order to solve the “quasi-2D” problem using the RATMA, the integrals 

I f i s ’  H?)[SD,,,(l +is2)]} (5) 

have to be evaluated by sampling their integrands at  the same set of points s, to  obtain 
the same accuracy for all of the integrals. Although the decay rates of the integrands can 
be  very  different as depicted in Fig. 3(a),  an integration rule can be developed such that 
all of the above integrals can be computed using the same set of sampling points. The 
number of sampling points  can be bounded by  O(1og (Dmaz/Dmin)). Figure 3(b) shows 
the number of sampling points required to numerically compute the integrals of Eq. ( 5 )  
for different  levels of accuracy. 

Sampling  Points (s) 

( 4  

Figure 3: (a) Magnitude of the integrands corresponding to various feature sizes and 
distances ( D )  in the problem, (b) number of sampling points required to obtain 3 to 6 
correct significant digits (CSDs) in the computation of all integrals with different D,,,. 

4 Computational  Complexity 
A careful analysis shows that  the RATMA has O ( N P 2 )  computational complexity and 
O(P2)  memory requirement [lo], where P is O ( f i l o g f i )  for the dense “quasi-2D” 
problems considered in this work. Thus, the FDA/SDP has O(N’ log’ N) computational 
complexity and O(Nlog2 N) memory requirement. 
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Figure 4: Cross-sectional views of (a) two quasi-planar geometries, and  (b) a  planar or 
quasi-planar geometry in a layered medium. 

5 Extensions 
The FDA/SDP can be extended from planar to quasi-planar structures, as shown  in 
Fig. 4(a), where the geometry is not  strictly  planar, however, the size  of the geometry in 
one dimension is much smaller than  the other two dimensions. Furthermore, extension 
from homogeneous-media problems to layered-media problems [Fig. 4(b)] is also straight- 
forward since the spectral-domain representation of the Green’s function in Eq. (2) exists 
for layered media. 
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