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The exchange-correlation potentials, f„,(q = 0, u), to be used in the local-density approximation
to the density-functional theory for two-dimensional homogeneous electron liquids in the normal and
fully spin-polarized phases are calculated. We make use of accurate Monte Carlo energies and sum
rules in the local-field correction, G(q, ur), to construct f„,(q, u) which is valid in the long-wavelength
limit. Our results are qualitatively similar to the three-dimensional case.

I. INTRODUCTION

The density-functional theory proposed by Hohenberg
and Kohni and Kohn and Sham2 provides an excellent
tool to study the ground-state properties of condensed-
matter systems. The success of local-density approxima-
tion (LDA) in time-independent problems is well known,
so it is very important to develop and test its counterpart
for time-dependent ones, especially in connection with re-
sponse theory. Recently, Gross and Kohns extended the
density-functional formalism to treat the dynamic (lin-
ear) response of electron liquids within the LDA. They
constructed an exchange-correlation functional that sat-
isfied some exact conditions, including the compressibil-
ity and third-frequency moment ((its)) sum rules. In
their application of the formalism to three-dimensional
(3D) electron liquids, using an approximate form for the
(iv ) sum rule, correlation effects were partially neglected.
Iwamoto and Gross corrected the condition based on the
(iv ) sum rule and obtained a strong frequency depen-
dence of the exchange-correlation functional even though
it was evaluated in the long-wavelength limit. A de-
tailed review of the subject of time-dependent density-
functional theory and its applications is recently given
by Gross and Kohn. s

In the method of Gross and Kohn, contact is made
with the homogeneous electron gas, of which the theo-
retical formulation is based on the dynamic local-field
correction G(k, u). There have been several attempts to
construct a dynamic G(q, ur) for the elecron gas in vari-
ous approximations. In relation to the time-dependent
LDA, Dabrowski proposed a simple parametrized form
for G(q, u) of a 3D electron liquid, which satisfies the
low- and high-frequency limits exactly, and generalizes
the Gross and Kohn results to finite-q values. In their
study of the high-frequency damping of collective exci-
tations in fermion systems, Holas and Singwis also pro-
posed a model local-field correction G(q, u), and formally
constructed the exchange-correlation potential f„,(q, u)
for a two-dimensional (2D) electron liquid. At the time,
the static structure factor S(k) and a parametrized form
of the correlation energy s, (r, ) from Monte Carlo (MC)
simulations were not available to construct G(q, io) ex-
plicitly.

The purpose of this article is to provide explicit expres-
sions for the exchange-correlation potentials f«(q = 0, io)
that enter the local-density approximation for 2D elec-
tron liquids both in the normal and fully spin-polarized
phases. We use the results of a recent MC calculations
of 2D electron gas to construct the model local-field cor-
rection G(q, ~) proposed by Holas and Singwis that sat-
isfies the sum rules. Note that we are interested in the
dynamic correlations in the density fluctuations of the
electron liquid both in the normal (paramagnetic) and
fully spin-polarized (ferromagnetic) cases. In particular,
we do not investigate the dynamic response of the system
due to spin fluctuations. The dynamic spin susceptibility
within the framework of the time-dependent spin density-
functional theory has recently been studied by Liu and
Vosko. In the rest of this article, we first discuss the fre-
quency dependence of the exchange-correlation potential,
f«(q, u), within the linear-response density-functional
theory. Our results for f«(q, ~) in the normal and fully
spin-polarized cases are presented in Sec. III, and we
conclude with a brief summary.

II. DYNAMIC RESPONSE
IN THE DENSITY-FUNCTIONAL THEORY

To make this note self-contained we outline the basic
steps of density-functional formalism (following closely
the original work of Gross and Kohns) for a 2D elec-
tron liquid, and later explicitly construct the exchange-
correlation potentials required in the LDA. In the
density-functional theory, 3 one considers an unperturbed
homogeneous electronic system with density no(r) in
the ground state of the static external potential vo(r).
For a small perturbing potential vi(r, t) and correspond-
ing density ni(r, t), the associated Fourier components
vi(r, ~) and ni(r, u) are related by

n, (r, ~) = f d'r' y(~r —r'~; ~)v, (r', ~),

where y(~r —r'~; ~) is the exact density-density response
function. If we now assume that the density no(r) +
ni(r, t) can be reproduced by the noninteracting system
in an appropriate potential vP(r)+v~P (r, t), we can write
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Dl I', (d d r' yp(~r —r'~; ~)v', (r', ~), (2) G(q, cu) is proposed that interpolates between the small-u
and large-~ behaviors,

where yp denotes dynamic response of a noninteract-
ing system, i.e. , the Lindhard function. Defining the
exchange-correlation part of v& by

v, (r, ~) = vi(r, &u) + d r, + vi „,(r, ~),eff 2 I fll I ibad

/r —r'
f

we introduce the functional relation

G(q, u)) = G(q, oo)+ i~i(q)
cu+iu2 q

(10)

where cur(q) and ~q(q) are q-dependent functions to be
determined. They are obtained by taking certain limits
of G(q, ~), viz. ,

lim [~lmG(q, ~)] = ~i(q),

vi „,(r, u) = d r' f„,(~r —r'~;u)ni(r', cu), (4) G(q, 0) = G(q, oo) + ~i(q)
~2(q)

where the exchange-correlation potential f„, depends on
the unperturbed ground-state density np(r). From the
above definition of f„„we can formally write (in Fourier
space),

f-(q, ~) = X '(q, ~) —X '(q, ~) —v(q)

Hence ~i(q) and u2(q) are given by

llew
~i(q) =

32 q,

( )
~i(q)

G(q, 0) —G(q, oo)
' (14)

where v(q) is the Coulomb potential in 2D, and yp(q, u)
is the dynamic susceptibility of the noninteracting sys-
tem (Lindhard function). To obtain an approximation
for vi «, the LDA is invoked, np(r) and ni(r, u) are as-
sumed to be slowly varying so that f„, is evaluated for
the local density np(r), and ni(r', ~) in Eq. (4) is replaced
by ni(r, u). This yields

The high- and low-frequency limits of the local-field cor-
rection G(q, ~) at long wavelengths were calculated by
Iwamoto' consistent with the compressibility and (~ )
sum rules,

limG(q, oo) = err, +——n r, s, + —n r, q,
5 7, , 19, 3d~,

vi «(r, u) f„,(q = 0, 4); np(r))ni(r, ~) . (6)

Hence we need to find an expression for the exchange-
correlation potential f„,of the homogeneous electron liq-
uid in the long-wavelength limit (q ~ 0). Using the
defining equation for the local-field correction G(q, ~)

x(q, ~) = 1+ v(q)G(q, ~)gp(q, ~) '

we can make contact with the exchange-correlation po-
tential

(8)

where the Coulomb potential reads v(q) = 4rr/q (in a.u.).
The above relation holds for homogeneous systems within
the linear-response theory.

Holas and Singwis derived an asymptotic expres-
sion for the imaginary part of the dielectric func-
tion, Ime(q, u), considering a selected set of diagrams
(particle-hole diagrams) in the second-order perturbation
theory. They obtained the corresponding high-frequency
limit for the local-field correction G(q, ~) in 2D (Ref. 8)
[we use atomic units (a.u.), so that energies are in Ryd-
bergs and lengths are in units of Bohr radius a~],

11m qlim Im G(q, u) =
M ~OO 32 4)

Strictly speaking the above expression is only valid at
high densities, i.e. , r, ~ 0, but it is assumed here as in
the 3D case to hold for a wide range of densities. Then a
simple form (following the work of Gross and I&ohn ) for

lim G(q, 0) =
q~p

Or n2r3 dZ, 0'r4 d'Z

vr 8 dr, 8 dr 2 q)

(11rrz/8)

0

It is clear that the exchange-correlation potential con-
structed above obeys all the conditions and has proper-
ties set out by Gross and Kohns for the 3D case, and
in particular f„, satisfies the Kramers-Kronig relations,
Vlz. ,

(18)

d~' Re[f„,(q, ~')] —f
Im xc q (d I i

7r (d —4J

where P denotes the principal part of the integral. We
have also checked the relation fp ( f ( 0 (for all r, )
for the MC data and observed that it is fulfilled for both
the normal and the fully spin-polarized liquid phases.

III. RESULTS

We present our results of the frequency-dependent
exchange-correlation pot, ential in the long-wavelength

where n = 2 i and c, is the correlation energy. If
we further define f~ = —limz p v(q)G(q, oo) and fp ——

—lim& p v(q)G(q, 0), we can express the function rvz(q)
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FIG. 1. Frequency dependence of the real part of the
model exchange-correlation potential f„,(q = 0, ur) for a 2D
electron system in the normal fluid phase for r, = 1 (solid
line), 2 (dashed line), and 5 (dotted line).
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FIG. 3. Frequency dependence of the real part of the
model exchange-correlation potential f„,(q = 0, ~) for a 2D
electron system in the spin-polarized Quid phase for r, = 1
(solid line), 2 (dashed line), and 5 (dotted line).

limit, f«(q = 0, ~), in the following. We display in Fig. 1
the frequency dependence of the real part of f„,(q = 0, u)
for r, = 1, 2, and 5, indicated by solid, dashed, and
dotted lines, respectively. Also shown is f~(r, = 5)
by the dotted-dashed line. We may estimate the error
that would ensue in the adiabatic approximation, when

f(q = 0, ~) is replaced by its value at ~ = 0, i.e. , by
fo For r., = 5 the maximum error 6 = (fp —f~)/fo,
would be 70Fo. In practice, there exists a character-
istic frequency of the system 0 ( a' ( oo for which f„,
is dominant and the errors of using f«(u') rather than
the full frequency range is considerably less than our es-
timate L. In Fig. 2 we show the frequency dependence
of the imaginary part of f„~(q = 0, u) for r, = 1, 2, and
5 indicated by solid, dashed, and dotted lines, respec-
tively. The behavior of f« is qualitatively similar to the
3D case, but since Im f«1/u as u ~ oo, it approaches
zero slower than its counterpart in 3D.

The formalism we have set out to construct the dy-
namic local-field correction and the exchange-correlation

potential may readily be extended to calculate these
quantities for the fully spin-polarized electron liquid. The
correlation energy s,(r, ) (which enters fo and f~) for
the spin-polarized system obtained from a MC calcu-
lation has a parametrized form. Note that we are not
evaluating the spin-density response functions, hence the
exchange-correlation potential is still given by Eq. (5) but
the Fermi wave vector qF that enters y(q, u) is the one
appropriate for the fully spin-polarized liquid. Since the
Fermi wave vectors of a spin-polarized and normal liq-
uids (in 2D) are related by qFl

—~2qF, the expressions
for the local-field factor G(q, ~) given in Eqs. (15) and
(16) are accordingly scaled. In Figs. 3 and 4 we show the
real and imaginary parts of the exchange-correlation po-
tential f„c(q = O, u) for the fully spin-polarized electron
liquid. We have plotted Figs. 3 and 4 on the same scale
as Figs. 1 and 2, for easy comparison. We observe that
Re f«has a somewhat stronger frequency dependence
in the normal fluid phase than that in the spin-polarized
case. The same is true for Im f«and the difference in the
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FIG. 2. Frequency dependence of the imaginary part of
the model exchange-correlation potential f„,(q = 0, u) for a
2D electron system in the normal fluid phase for r, = 1 (solid
line), 2 (dashed line), and 5 (dotted line).

FIG. 4. Frequency dependence of the imaginary part of
the model exchange-correlation potential f„,(q = O, u) for a
2D electron system in the spin-polarized fluid phase for r, = 1
(solid line), 2 (dashed line), and 5 (dotted line).
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high-frequency behavior of Imf„, for normal and spin-
polarized electron liquids diminishes with increasing r,
(see Figs. 2 and 4).

IV. SUMMARY

In summary, we have presented explicit expressions for
the exchange-correlation potentials f„,(q = O, u) for 2D
electron liquids in normal and spin-polarized phases as
proposed by Holas and Singwis and the results are qual-
itatively similar to the 3D case. They should be useful
in future applications of the density-functional theory to
2D homogeneous electron liquids. The time-dependent
density-functional theory in 3D has been successfully
applied to a range of problems including the photore-
sponse of atoms and molecules, metallic and semiconduc-
tor surfaces, and bulk semiconductors. The exchange-
correlation potentials obtained here could be used in sim-
ilar problems where the physical system has a 2D charac-

ter, and to the extent the linear-response theory is appli-
cable such as the calculation of atomic polarizabilities.
In this work we presented a model f„,(q = 0, ~)»mi-
lar to the 3D case, using appropriate limiting forms
of G(q, ~). It would be interesting to construct a G(q, cu)
with the MC structure factor S(q) as input or some other
scheme, such as the self-consistent field approximation of
Singwi et al. or the approach advanced by Dabrowski,
thereby avoiding the q ~ 0 approximation.
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