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ABSTRACT
In the present work, the acoustic band structure of a two-dimen-
sional (2D) phononic crystal containing a multiferroic and liquid
were investigated by the plane-wave-expansion method. 2D PnC
with triangular and honeycomb lattices composed of LiCu2O4 cylin-
drical rods embedded in the seawater matrix are studied to find the
existence of stop bands for the waves of certain energy. Phononic
band diagram x¼x(k) for a 2D PC, in which nondimensional fre-
quencies xa/2pc (c-velocity of wave) were plotted versus the wave-
vector k along the u-X-M-u path in the Brillouin zone show few stop
bands in the frequency range between 10 and 110 kHz.
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1. Introduction

Phononic crystals (PnCs) and acoustic metamaterials have generated rising scientific inter-
ests for very diverse technological applications ranging from sound abatement to ultrasonic
imaging to telecommunications to thermal management and thermoelectricity [1]. PnCs
and acoustic metamaterials are artificially structured composite materials that enable the
manipulation of the dispersive properties of vibrational waves. Finally, the study of PnCs
and acoustic metamaterials has also extensively relied on a combination of theory and
experiments that have shown extraordinary complementarity [2]. Due to their interesting
property, the phononic structures have extensive practical applications by suppressing
sound waves for a given frequency range. Therefore, the applicatıon of PnCs can be mainly
determined by manipulating the regulation performance level of the band gap. The condi-
tion of controlling and tuning band gap in conventional research is primarily met by chang-
ing the geometry of lattice, filling fraction and orientation of scatterers in a PnC [3, 4].
Characteristics of PnCs can be altered by changing the geometry of the inclusions or by
varying the elastic characteristics of the constitutive materials. Therefore, different materials
are needed to fabricate phononic structures to obtain reachable frequencies for the energy
band gaps from about kilohertz to megahertz range and even to ultra- high frequencies
(very high-frequency sound, with f< 1GHz) [5–10]. For our calculations we have consid-
ered the case of the propagation of a longitudinal wave in the phononic crystal structure.
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2. Model and method of calculation

The wave propagation in a homogeneous medium can be strongly changed by inserting
periodical inclusions with different elastic constants. The periodic arrangement in these
so-called PnCs induces a wave scattering and destructive interferences can appear in
some frequency ranges, leading to forbidden band-gaps. The system in our study was
modeled as solid-fluid phononic crystal. We consider a 2D system consisting of infin-
itely long cylinders aligned along the z direction and any material based parameters are
independent of the z direction. The phononic crystal also extends infinitely in the xy
plane. Therefore, the mechanical properties of the phononic crystal vary periodically in
the xy plane. In this study we only consider the longitudinal polarization and, therefore,
the propagation of the acoustic wave is assumed to be only in the xy plane. For software
implementation and calculation the code written by Elford was used [11]. In this work,
we adopted the COMSOL Multiphysics, a commercial package based on the finite-elem-
ent method (FEM).

3. Results and discussion

The numerical calculation in this study has the parameters with the column radius of
16.5mm and a lattice size of a¼ b¼ 33mm for an array of circular LiCu2O4 cylinders
embedded in an liquid background (filling ratio change from 30% up to 70%). The pho-
nonic material parameters used in the calculations are E¼ 156.4GPa (Young modulus),
qLiCu2O4¼6.29 kg/m3 and qseawater ¼3.67 kg/m3, sound velocity (C) are CLiCu2O4¼6690
m/s and Cseawater¼1560 m/s. PnCs with triangular and hexagonal lattices are considered.
These lattices consist of LiCu2O4 circular cylinders placed in seawater forming two-
dimensional lattices with lattice spacing a. Figu. 1(a,b) is the Brillouin regions of the tri-
angular lattice and the hexagonal lattice, respectively. The irreducible part of the
Brillouin zone of a triangular lattice is shown in Fig. 1(a) which is a triangle with verti-
ces C, X, M. The irreducible part of the Brillouin zone of a honeycomb lattice is shown
in Fig. 1(b), which is a triangle with vertices C, X, M.
In order to show the feature appearing in the band structures of the proposed struc-

ture (honeycomb), we illustrate the dispersion curves for a typical circular hole with an
r/a¼ 0.5 in Fig. 2 that corresponds to the maximum filling ratio. The plots were given

Figure 1. Brillouin zone of (a) the triangular lattice and (b) the honeycomb lattice.
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in terms of the reduced frequency xa=2pcl; which is the vertical axis and the horizontal
axis is the reduced wave vector. All of the parameters are independent of the z direc-
tion. That means the 2D PnC structure is invariant along the z direction. The first
eighteen bands for propagation in the (x, y) plane were computed while the irreducible
triangle C- X - M - C of the Brillouin zone along its periphery was being scanned. For
band structure calculations, moving along the high symmetry axes of the first Brillouin
zone was good enough. Fig. 2 shows full band gaps along the C-X-M-C direction for
honeycomb lattice. First (0.4054–0.7812), second (0.9575–1.2411), third (1.2411–1.2611),
fourth (1.5503–1.5901), fifth (1.9665–2.0478), and sixth (2.4747–2.6705).
Then we investigated the case with composite rods placed in the seawater in triangu-

lar lattice with a circular cross section. For the triangular lattice, the largest absolute
phononic stop band is produced when the filling fraction f¼ 0.58, the maximum
gap (between the 2nd and 3rd bands) has the largest width (gap–midgap
ratio) Dx/xg¼ 0.1355.
It is known that for a wave propagating in an isotropic medium with a fixed fre-

quency x, the equi-frequency surface represents a sphere. In this case, the wave vector
~k and group velocity vector ~Vg ; which determines the ray direction, are always parallel.
However, the equi-frequency surface is not spherical for anisotropic media and the vec-
tors ~Vg and ~k are not parallel [12, 13] By analogy with 3D case, the propagation, reflec-
tion, and refraction of the wave in 2D structure can be described in terms of the equi-
frequency dependence that can be considered as the section of the dispersion surface
xðkx; kyÞ in the space of variables x; kx; ky

� �
by the plane corresponding to con-

stant frequency. It is well known that the analysis of equi-frequency dependences is the
most efficient in the studies of 2D geometries, especially in solving problems when only
orientations of the ~Vg and ~k vector of incident, reflected, and refracted waves are of
interest, and are not the amplitudes of the reflected and refracted rays. The equi-fre-
quency dependence has a simple physical meaning for the analysis of 2D geometries:
since this dependence describes all the possible waves with the given frequency x and

Figure 2. Acoustic band structures for solid LiCu2O4 rods in the seawater host.
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various wave vectors, the directions of the reflected and the refracted rays can be deter-
mined by simply finding the points in equi-frequency dependences of media that satisfy
the momentum conservation law at a known orientation of the boundary and a given
angle of incidence of the wave. Now, we present some numerical examples for our PnC
structures. In all of these examples, we exploit symmetry to calculate the equi-frequency
surfaces over the irreducible Brillouin zone of the entire Brillouin zone. First, we con-
sider the equi-frequency surface of a honeycomb lattice of LiCu2O4 layers in seawater.
Here, the map was discretized using 441 points per edge of the unit cell for the first
band in Fig. 3(a). The map was discretized using 441 points per edge of the unit cell
for the next band in Fig. 3. The curves shown correspond to equi-frequency surfaces of
the lowest order band up to frequencies just below the band gap starting at around
0.4(2pc/a). For the next band, the curves shown correspond to equi-frequency surfaces
of the lowest order band up to frequencies just below the band starting at around
0.78(2pc/a).
A pulse wave propagating along the PC let the pulse be finite in dimension along the

direction of propagation. Theoretically, such a pulse can be represented as a wave
packet formed as a superposition of the modes, but with a different propagation con-
stant [12]. From [12–13], it follows that the envelope of the wave packet propagates
with the velocity Vz

g ¼ xn bð Þ; where b is propagation constant. The direct calculation
of the derivative of the dispersion relation calculated numerically is not always conveni-
ent and can give an error. The group velocity of the wave packet Vz

g ; is equal to the vel-
ocity of energy transfer by the mode nb: Thus, by using these results the group velocity
can always be calculated with more accuracy, irrespective of the number of points in
the dispersion curve with LiCu2O4 layers in a seawater background. Fig. 3 shows the
dispersion curves for the lowest and second mode with their associated reduced veloc-
ities along the X-C-X direction in (a) and (b), respectively. The dependences Vz

g bð Þ;
which describe the wave packets of localized modes of any polarization and any order,
exhibit (generally) a maximum at certain propagation constants.

4. Conclusion

In this paper, the band gap properties of a honeycomb and triangular lattices phononic
crystals consisting of multiferroic LiCu2O4 cylindrical rods in seawater were investigated

Figure 3. 3D dispersion curves and equifrequency contours for the first (a) and for the second
(b) modes.
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by FEM calculation. We considered a new design of LiCu2O4 metamaterial to study
wave propagation. A series of numerical simulation for the full waveforms of elastic
waves was performed in a frequency domain in order to investigate the band gap char-
acteristics of proposed PnC structure. The modal behavior was utilized to understand
the elastic wave propagation in a honeycomb and triangular lattices configurations. It is
found that significant band gaps are available at low frequencies. The appearance of
these absolute bands at low frequencies is due to the complexity of the medium. It
must be noted that the filling ratio for the composite system is not small and therefore
for such a filling ratio, noticeable pass-bands were obtained at low frequencies.
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