
Chapter 5
Theoretical Approaches: Exciton Theory,
Coulomb Interactions
and Fluctuation-Dissipation Theorem

In this chapter, we introduce the main framework for Förster-type nonradiative
energy transfer; starting from exciton theory, going through Coulomb interaction,
and finalizing with the fluctuation-dissipation theorem. Part of this chapter is rep-
rinted (adapted) with permission from Ref. [1]. Copyright 2013 American Physical
Society.

5.1 Electron-Hole Interaction (Exciton)

An exciton is a quasiparticle consisting of a bound state of an electron and a hole
interacting via Coulomb force. An exciton can move through the medium (e.g.,
semiconductor crystal) and transport energy; and since an exciton is electrically
neutral, it does not transport charge. An exciton can be created by external exci-
tation, for example, through the absorption of a photon, with E�Eg. In this direct
process, an electron is excited from the valence band to the conductive band,
leaving behind a hole with opposite charge in the valence band, to which the
electron can bind due to the attractive Coulombic interaction. Because of the
Coulombic attraction between the electron and the hole in an exciton, the internal
states are analogous to those of the hydrogen atom, and some of the lower energy
states lie below the conduction band by an energy equivalent to the exciton binding
energy in that state (Figs. 5.1 and 5.2).

An exciton has two quantities: (1) the pseudomomentum of the electron-hole pair
and (2) the relative momentum of the electron and the hole. The pseudomomentum,
which is equal to the vector sum of the individual momenta of the electron and the
hole, enables an exciton to move throughout a crystal; and the relative momentum
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determines its internal structure. Excitons are classified into (1) a tightly bound
exciton (Frenkel exciton) and (2) a weakly bound exciton (Mott-Wannier exciton).

5.1.1 Frenkel Excitons

In a tightly bound exciton the excitation is localized on a single atom (Fig. 5.3), i.e.,
a Frenkel exciton is an excited state of a single atom. A Frenkel exciton can hop
from one atom to another via coupling between neighbors. Similar to all other
excitation in a periodic structure, the translational states of Frenkel excitons take the
form of propagating waves.
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Fig. 5.1 Exciton levels for a simple band structure at k = 0
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Fig. 5.2 Energy levels of an exciton created in a direct process. Optical transitions are shown by
arrows
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Consider a crystal of N atoms on a line or ring. If uj is the ground state of atom j,
the ground state of the crystal is [2]

wg ¼ u1u2 � � � uj � � � uN�1uN ð5:1Þ

If a single atom j is in an excited state vj, the system is described by

/j ¼ u1u2 � � � uj�1vjujþ 1 � � � uN�1uN ð5:2Þ

If we consider that the excited atom interacts only with nearby atoms in its
ground state, then the excitation will be passed from atom to atom.

Applying the Hamiltonian of the system on the function /j with the jth atom
excited, we obtain the following

H/j ¼ e/j þ T /j�1 þ/jþ 1

� � ð5:3Þ

where e is the free atom excitation energy; T is the transfer rate of the excitation
from j to its nearest neighbors, j − 1 and j + 1. The solutions of (5.3) are the waves
of the Bloch form:

wk ¼
X
j

exp ijkað Þ/j ð5:4Þ

Operating the Hamiltonian on (5.4)

Hwk ¼
X
j

eijkaH/j ¼
X
j

eijka e/j þ T /j�1 þ/jþ 1

� �� � ð5:5Þ

Rearranging the right-hand side of (5.5)

-

Frenkel ExcitonFig. 5.3 Schematic
illustration of a tightly-bound
exciton (Frenkel exciton)
localized on one atom in a
crystal

5.1 Electron-Hole Interaction (Exciton) 43



Hwk ¼
X
j

eijka eþ T eika þ e�ika
� �� �

/j ¼ eþ 2T cos kað Þð Þwk ð5:6Þ

so that the energy eigenvalues are (Fig. 5.4):

Ek ¼ eþ 2T cos kað Þ ð5:7Þ

Applying the periodic boundary conditions, the allowed values of the
wavevector k are:

k ¼ 2pn
Na

; n ¼ � 1
2
N;�1

2
Nþ 1; . . .;

1
2
N � 1 ð5:8Þ

5.1.2 Mott-Wannier Excitons

In a weakly bound exciton, the electron-hole distance is larger than the lattice
constant of the crystal, meaning that the exciton is delocalized over several atoms
(Fig. 5.5). The Mott-Wannier exciton is similar to the hydrogen atom problem. In
other words, the Mott-Wannier exciton can be treated as a two-particle system
weakly interacting, in which case the electron and hole energy (at k ¼ 0) is given
by [3, 4]

ec kð Þ ¼ ec 0ð Þþ �h2k2

2m�
e

ð5:9Þ
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Fig. 5.4 E–k diagram for a
Frenkel exciton
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And

ev kð Þ ¼ ev 0ð Þ � �h2k2

2m�
h

ð5:10Þ

where m�
e and � ej j are the electron mass and charge; and m�

h and þ ej j are the hole
mass and charge, respectively. For simplicity, we assume that the crystal has simple
valence and conduction bands.

The total kinetic energy is

P ¼ p2e
2m�

e
þ p2h

2m�
h

ð5:11Þ

where p2e and p2h are the electron and hole momenta, respectively. The effective
Hamiltonian for the two-particle system when interacting in a dielectric medium of
relative dielectric constant e is

Heff ¼ � �h2

2m�
e
r2

e �
�h2

2m�
h
r2

h �
1

4pe0e
e2

re � rhj j ð5:12Þ

The solution for this Hamiltonian is

Mott-Wannier Exciton

-

+

Fig. 5.5 Schematic illustration of a weakly bound exciton (Mott-Wannier exciton) delocalized
over several atoms in the crystal
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En ¼ Eg � 1

4pe0ð Þ2
lexe

4

2�h2e2
1
n2

þ �h2K2

2M� ð5:13Þ

where En is the exciton energy, Eg ¼ ec 0ð Þ � ev 0ð Þ is the bandgap energy, 1
lex

¼
1
m�

e
þ 1

m�
h
is the reduced exciton mass, and M� ¼ m�

e þm�
h is the effective exciton

mass. A useful parameter for an exciton is the exciton Bohr radius aexð Þ. It is
obtained from the second term of (5.13). Therefore, the exciton Bohr is given by

aex ¼ 4pe0
�h2e
lexe2

n2 ð5:14Þ

5.2 Coulombic Interaction

In both cases, the Coulombic interaction between the electron and the hole is treated
with standard second order perturbation [5].

E ¼ E0 þ k 0h jH0 0j i þ k2
X
i

0h jH0 ij ij j2
E0 � Ei

ð5:15Þ

where E0 and 0j i are the unperturbed eigenenergy and eigenvector of the e-h
ground state based on a kinetic energy, H0 is the perturbation Hamiltonian, Ei and
ij i are the unperturbed eigenenergy and eigenvector of all the other states. The
effective Coulombic interaction is given by

H0 re; rhð Þ ¼ k�1V ra; rb
� � ð5:16Þ

where V ra; rb
� �

is the potential function, which depends on RNC, overall
nanocrystal (NC) radius, and e ¼ eNC

eM
with eNC and eM being the NC and surrounding

medium dielectric constants, respectively.

V ra; rb
� � ¼ 1

4pe0eNC

X
a;b

qaqb
1

ra � rb
�� �� þ e� 1ð Þ

RNC

(

X1
i¼1

rarb
� �i

1þ e i
iþ 1

� �Pl
ra � rb
rarb

� �
þ 1

2

X1
j¼1

rað Þ2j þ rb
� �2j

1þ e j
jþ 1

	 

2
4

3
5
9=
;

ð5:17Þ

Thus, EX energy is given by
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EX ¼ Ee
0 þEh

0 þ k 0; 0h jH0 0; 0j i þ k2
X
a;b

0; 0h jH0 a; bj ij j2

Ee
a � Ee

0

� �þ Eh
b � Eh

0

	 
 ð5:18Þ

EX ¼ Ee
0 þEh

0 � kV00 � k2
X
a;b

Vab

�� ��2
Ee
a � Ee

0

� �þ Eh
b � Eh

0

	 
 ð5:19Þ

with a 6¼ 0 and b 6¼ 0 and Vab is defined as

Vab ¼ 0; 0h jH0 a; bj i ð5:20Þ

5.3 Exciton in Quantum Dots: Single-Particle
Quantization Energy and Coulomb Interaction

The aim is to determine for the particle in a spherical box problem the envelope
wavefunction w for electron and hole. We consider a two-band (valance and
conduction) system (Fig. 5.6). The eigenfunctions of the hole and electron are
written as a product of an envelope function ue;h rð Þ and a lattice periodic function
uV ;C rð Þ [6]:

we rð Þ ¼ ue rð ÞuC rð Þ ð5:21Þ

wh rð Þ ¼ uh rð ÞuV rð Þ ð5:22Þ

Conduction band

Valence band

Fig. 5.6 Quantum dot energy
levels for the electron and
hole in the conduction and
valance band, respectively
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The envelope functions are the zero order eigenfunctions of the electron-hole
pair Hamiltonian

Heff ¼ � �h2

2m�
e
r2

e �
�h2

2m�
h
r2

h þVe reð ÞþVh rhð Þ � 1
eQD

e2

re � rhj j ð5:23Þ

where m�
e , m

�
h is the electron and home effective mass, respectively; eQD is the static

dielectric constant of the nanocrystals (quantum dot); and the confinement poten-
tials are given as follows

Ve hð Þ re hð Þ
� � ¼ 0 for re hð Þ\RQD

1 for re hð Þ [RQD

(
ð5:24Þ

Here RQD is the quantum dot radius.
Note that the last term on the right hand side of (5.23) is the first order per-

turbation term. The orthonormal functions are zero outside of the dot, and inside it
are given by

ue hð Þ
nlm re hð Þ
� � ¼

ffiffiffiffiffiffiffiffi
2

R3
QD

s
jl vnl

r
RQD

	 

jlþ 1 vnlð Þ Ylm h;/ð Þ ð5:25Þ

where Ylm h;/ð Þ is the spherical harmonics functions, jl xð Þ is the spherical Bessel
functions, and vnl are the spherical Bessel functions nth-order zeros. The energy
eigenvalues Enl;n0l0 , including the requirement that the wavefunction vanishes at
r ¼ RQD and the first order perturbation term, are given by

Enl;n0l0 ¼ Eg þ �h2

2m�
e

v2nl
R2
QD

 !
þ �h2

2m�
h

v2n0l0
R2
QD

 !
� 1:8e2

eQDRQD
ð5:26Þ

Here, Eg is the bulk bandgap.

5.4 Fermi’s Golden Rule and Fluctuation Dissipation
Theorem

In this section, we outline a macroscopic approach to the problem of dipole-dipole
energy transfer. We restrict ourselves to the case of a single electron-hole pair
(exciton) in the donor nanostructure. Moreover, we consider only two states ( 0j i—
the ground state and excj i—the excited state). These states are constructed using
simplified wavefunctions, i.e., we consider excitonic states without mixing of the
heavy- and light-hole states. Furthermore, the spin part is not included in our model.
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FRET is a directional process initiated by an absorbed photon in a donor that
creates an exciton in a higher excited state, relaxing very fast to the first excited
state by higher order processes. This exciton can subsequently be either recombined
(through radiative or nonradiative means) or transferred to an acceptor because of
the Coulomb interaction between dipoles in the D-A pair. If the exciton is trans-
ferred, it will occupy a higher excited state in the acceptor and relax (very fast) to its
first excited state to finally recombine through a radiative or nonradiative process.
Note that FRET occurs only when the donor possesses a greater or equal bandgap
compared to the acceptor. Figure 5.7 shows the energy diagram for this process.

The probability of an exciton transfer from the donor to the acceptor is given by
the Fermi’s Golden Rule (5.27).

ctrans ¼
2
�h

X
f

fexc; 0exch jV̂int iexc; 0excj i�� ��2d �hxexc � �hxf
� �( )

ð5:27Þ

where iexc; 0excj i is the initial state with an exciton in the donor and zero exciton in
the acceptor; fexc; 0excj i is the final state with an exciton in the acceptor and zero
exciton in the donor; V̂int is the exciton Coulomb interaction operator; and �hxexc is
the exciton’s energy. Neglecting the coherent coupling between excitons, i.e., the
initial and final states can be written as iexc; 0excj i ¼ iexcj i 0excj i and
fexc; 0excj i ¼ fexcj i 0excj i, and the Fermi’s Golden Rule can be approximated by

Acceptor (A)

0 0

laserω

Donor (D)
E

D cxe,ω
A cxe,ω

Coulomb

Energy Diagram

Fig. 5.7 Energy diagram for the directional process of exciton transfer from the donor to the
acceptor. Blue dash lines represent the absorption process of the nanostructure (donor/acceptor).
Blue solid lines denote fast relaxation process. Red dash lines illustrate light emission process
(relaxation from the lowest excited state to ground state). Black solid lines represent the energy
transfer from the donor to the acceptor. Horizontal solid black line illustrates the Coulomb
interaction between the donor and the acceptor [reprinted (adapted) with permission from Ref.
9 (Copyright 2008 American Physical Society)]
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ctrans ¼
2
�h

X
f

fexc; 0exch jV̂int iexc; 0excj i�� ��2d �hxexc � �hxf
� �( )

ð5:28Þ

ctrans �
2
�h

X
f

fexch jÛint 0excj i�� ��2d �hxexc � �hxf
� �( )

ð5:29Þ

where Ûint ¼ 0exch jV̂int iexcj i is the potential energy created by the exciton. With the
help of the fluctuation dissipation theorem (FDT) [7] and the formalism given in
elsewhere [8, 9], the Fermi’s Golden Rule can be simplified into

ctrans �
2
�h

X
f

fexch jÛint 0excj i�� ��2d �hxexc � �hxf
� �( )

ð5:30Þ

ctrans ¼
2
�h

1
2p

Z1
�1

exp ixexctð Þ 0exch jÛint tð ÞÛint 0ð Þ 0excj idt
8<
:

9=
; ð5:31Þ

ctrans ¼ � 2p
�h

1
p
Im Fexc xexcð Þ½ �

� 

ð5:32Þ

where Fexc xexcð Þ is the response function given by

Fexc xexcð Þ ¼
Z

dVq rð ÞUint rð Þ ð5:33Þ

Here q rð Þ is the local non-equilibrium charge density and Uint rð Þ the effective
electric potential created by the exciton. Since the charge density is given by
r � e r;xð ÞE r;xð Þð Þ ¼ 4pq xð Þ, the response function can be written as

Fexc xexcð Þ ¼
Z

dVq rð ÞUint rð Þ ¼ �
Z

dV
eA xð Þ
4p

� �
Ein rð Þ � E�

in rð Þ ð5:34Þ

where eA xð Þ is the dielectric function of the acceptor and Ein rð Þ is the electric field
inside the acceptor, induced by an exciton in the donor. Finally, the energy transfer
rate from the donor to the acceptor is given by

ctrans ¼
2
�h
Im

Z
dV

eA xð Þ
4p

� �
Ein rð Þ � E�

in rð Þ
� �

ð5:35Þ

where Ein rð Þ includes the effective electric field created by an exciton in the donor.
Here, the electric field is calculated by
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E rð Þ ¼ �rU rð Þ ð5:36Þ

The electric potential, U rð Þ, which is needed to compute ctrans (5.35), should be
expressed as a total potential created by the electric potential of an exciton (on the
donor side)

Ua rð Þ ¼ edexc
eeffD

� �
r� r0ð Þ � â
r� r0j j3 ð5:37Þ

where edexc is the dipole moment of the exciton and eeffD is the effective dielectric
constant of the donor, which depends on the geometry and the exciton dipole
direction, a ¼ x; y; z. Note that, to estimate the FRET rate, we need to calculate the
effective electric potential due to an exciton in the donor in the vicinity of an
acceptor.

The average FRET rate is calculated as

ctrans ¼
cx;trans þ cy;trans þ cz;trans

3
ð5:38Þ

where ca;trans is the transfer rate for the a-exciton (a ¼ x; y; z).
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