
Steady-state entanglement of two atoms created by classical driving field

Özgür Çakir, Alexander A. Klyachko, and Alexander S. Shumovsky
Faculty of Science, Bilkent University, Bilkent, Ankara 06800, Turkey

sReceived 12 June 2004; published 10 March 2005d

The stabilization of entanglement caused by action of a classical driving field in the system of two-level
atoms with the dipole interaction accompanied by spontaneous emission is discussed. An exact solution shows
that the maximum amount of concurrence that can be achieved in the Lamb-Dicke limit is 0.43. Dependence
of entanglement on interatomic distance and the classical driving field, beyond the Lamb-Dicke limit, is
examined numerically.
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The main aim of this paper is to show that classical driv-
ing field can be used to stabilize entanglement in atomic
systems.

It is well known that two-level atoms can be successfully
used to model entangled states of qubits as well as realiza-
tion of different quantum communication protocols. In fact,
two-level atoms have been used for decades as the main tool
for testing fundamentals of quantum mechanicsssee Refs.
f1,2g and references thereind.

The practical applications require therobust entangled
states. This notion includes long enough lifetime of the states
and high amount of entanglementsas close to perfect en-
tanglement as possibled. However, in many cases entangle-
ment of two-level atoms is not stable enough. In the case of
atoms trapped in high-quality cavities, absence of stability is
caused mainly by Rabi oscillations. In free space, entangle-
ment related to exited atomic states decays because of the
spontaneous emission processes.

To stabilize atomic entanglement, an engineered environ-
ment can be utilized. For example, it was shown in Refs.
f3–5g that the presence of a squeezed vacuum field can sta-
bilize entanglement of a pair of two-level atoms with dipole-
dipole interaction. The use of a bad cavity as a stabilizing
environment was considered in Ref.f6g. Stabilization in a
bad cavity with optical white-noise field was discussed in
Ref. f7g. A scheme of stabilization based on the use of three-
level L-type atoms in two-mode cavities with leakage and
absorption was proposed in Ref.f8g and then discussed in
Ref. f9g.

In this note, we show that a reasonable amount of steady-
state entanglement can be achieved in a system of two-level
atoms in the weak-coupling regimeshigh lossesd, in particu-
lar for free space, in the presence of a classical driving field.
The collective effects, i.e., dipole-dipole interaction and col-
lective spontaneous emission, are the mechanisms respon-
sible for generation of entanglement. However, in the ab-
sence of a special environment that compensates the losses
of energy caused by spontaneous emission, the entanglement
is a transient one. We show that instead of a more sophisti-
cated squeezed vacuum field the simple classical driving
field can be succesfully used for this aim. The classical driv-
ing field alone acts only locally on the atoms, so that it can-
not create specific quantum correlations between the atoms
peculiar for the entangled state. However, it continuously
provides atomic excitations that are responsible for survival

of the collective effects thus enabling a steady-state entangle-
ment.

The system of two identical two-level atoms in free space
is governed by the master equationf10g
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where the atomic dipoles are aligned in the same direction
along the interatomic axis and driven by a linearly polarized
classical field, with dipole coupling constantE. Here s+
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the single atom decay rate,G=v3umW u2/3p"e0c
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atomic dipole moment. The collective decay rates are
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and the coupling constant for dipole-dipole interaction has
the form

V = −
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We are going to consider the case when the classical field
is in phase at the atomic locations, namelykW ·rW12=0. If the
density matrix is initially block diagonal,

r = FrT 0

0 rS
G → rT = 3r11 r12 r13

r21 r22 r23

r31 r32 r33
4, rS= r44, s5d

in the total angular momentum basis, consisting of the four
stateshueel, usl=suegl+ ugeld /Î2, ual=suegl− ugeld /Î2, ugglj,
then it will always preserve the block diagonal form. HererT
is defined in the triplet part of the Hilbert space spanned by
the symmetric vectors in the above basis, whilerS corre-
sponds to singlet subspace with antisymmetric base vector
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ual. This fact directly follows from the equations of motion
for rT andrS,

ṙT = − isHTrT − rTHT
†d +

G + G12

2
J−rSJ+

+ sG − G12drSugglkggu,

ṙS= − sG − G12dsrS− keeurTueeld. s6d

Here HT denotes the non-Hermitian Hamiltonian, corre-
sponding to the interaction picture, which can be represented
in the triplet part of the basis as follows:

HT = 3− iG Î2E 0

Î2E V − i
2sG + Gs12dd Î2E

0 Î2E 0
4 . s7d

From Eq.s6d it is clearly seen that ifG=G12, the population
of the antisymmetric state will remain constant, i.e., equa-

tions of motion forrT and rS will decouple. In this case,
there are two independent steady-state solutions. Otherwise
there will be only one solution.

It is evident from Eq.s7d that in the absence of the clas-
sical driving field, all states exceptuggl are damped, so that
the steady-state entanglement atE=0 is impossible, and the
system evolves towards the unentangled ground stateuggl.

Because we are interested in the robust entanglement, let
us consider the steady-state solutions of the master equation
s6d for rT. Consider first the Lamb-Dicke limit of short in-
teratomic separation. Then, it follows from the definition of
the decay rates3d that

Gs12d < G.

In this case, assuming that the atoms are initially prepared in
their ground states, the steady-state density matrix will be
determined in the triplet sector as follows:

rT =
1

N3 64E4 − 16iE3Î2 8E2s2iV − 1d

16iE3Î2 8E2s1 + 8E2d − 2EÎ2s2V + i + 8iE2d
− 8E2s2iV + 1d − 2EÎ2s2V − i − 8iE2d 4sV2 + 2E2 + 16E4d + 1

4 . s8d

HereN is the normalization factor andV andE are replaced
by the dimensionless parametersV /G andE/G, respectively.

To determine the settings, leading to the maximum pos-
sible amount of entanglement in the system under consider-
ation, we chooseV=tE2, where t is a dimensionless
constant to be determined upon the maximization of concur-
rence. This factor in the Lamb-Dicke limit can be repre-
sented as follows:

t =
3

4pa
fskrd3Qn̄Vg−1, s9d

where a=1/137 is the fine-structure constant,Q denotes
atomic quality factorsQ=v0T, and T is the lifetime of the
excited atomic stated, n̄ is the mean number of photons per
unit volume in classical driving field, andV denotes the vol-
ume of interaction between atom and field, so thatn̄V gives
the mean number of photons interacting with atom during the
time T.

The concurrencesmeasure of entanglement in the case of
two-qubit systemd is defined as followsf11g:

C = maxsl1 − l2 − l3 − l4,0d, s10d

wherel denotes the spectrum of matrixR=sÎrr̄Îrd1/2 andr̄
denotes the complex conjugation of Eq.s8d in the so-called
“magic basis”f11g. The maximum entangled state provides
C=1, while the unentangled states giveC=0.

One can see from Eq.s4d that at fixedt and in the Lamb-
Dicke limit kW0·rW!1, both dimensionless parameters
V /G ,E/G@1. In this case, the density matrixs8d takes the
form

rT <
1

t2 + 481 16 0 4it

0 16 0

− 4it 0 16 +t22 . s11d

To our surprise, the concurrences10d in this limit turns out to
be rational function oft,

Cstd =
8t − 16

t2 + 48
, t ù 2,

extended by zero attø2. Thus entanglement is impossible if
tø2. The maximum value of the concurrence

Cmax=
2

Î13 + 1
< 0.43

is attained at

tmax= 2 + 2Î13< 9.21.

The corresponding amount of entanglementf11g is

Emax= HS1 −Î1 − Cmax
2

2
D < 0.285 ebit.

Taking into account the form of the dimensionless parameter
t given by Eq.s9d, we can examine the dimensionless inter-
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atomic distancekW0·rW, corresponding to the maximum en-
tanglement provided bytmax=9.21, as a function of the num-
ber of photonsn̄V, which should obey the conditionn̄V@1
in the case of classical driving field. It is seen that in the case
of a mean number of photonsn̄V,10, the interatomic dis-
tance should be of the order of 10−2l swherel is the wave-
lengthd to achieve the maximum possible amount of en-
tanglement. An increase of the mean number of photons in
the driving field, considered as a coherent stateual with
uau2@1, decreases the interatomic distance, which is re-
quired to have a maximum amount of entanglement.

So far we have discussed the Lamb-Dicke limit. The re-
sults of numerical calculations beyond the Lamb-Dicke limit
for different values of the classical driving field are shown in
Fig. 1. Both cooperations, the dipole coupling and collective
decay, are oscillating functions of distancefEqs.s3d ands4dg,
and even when one of them becomes zero, the other can still
give rise to entanglementssee Fig. 2d. The deviation from the
Lamb-Dicke limit decreases the cooperation effects, thus de-
creases steady-state entanglement.

Summarizing, we have examined the system of two iden-
tical two-level atoms, interacting with each other by means
of vacuum induced dipole forces and collective decay. The
dissipation of energy in the system is provided by the spon-
taneous decay of the excited atomic states. The compensa-
tion of losses is provided by a classical driving field.

It is shown that in the absence of the classical driving
field, the system evolves towards an unentangled statesboth
atomic dipoles are in the ground stated. The presence of the
classical driving field stabilizes the entanglement.

In the Lamb-Dicke limit of a pointlike system, we ob-
tained an exact solution for the steady-state density matrix,
that manifests a high amount of entanglementsthe concur-

rence Cmax=0.43 and the entanglementEmax=0.285 ebitd.
This amount is much higher than in a number of recent pro-
posals. In particular, it is higher than that in the case when
the squeezed vacuum is used for stabilization of entangle-
ment instead of the classical driving fieldf3g.

Outside the Lamb-Dicke limit, i.e., whenG12,G, both
the triplet and the singlet sectors of the density matrixs5d are
populated, and this leads to a decrease in the amount of
entanglement.

In free space small, interatomic distances are required for
strong atomic cooperation. However, atoms can exhibit col-
lective effects in cavities, or in the vicinity of dielectric bod-
ies f12g even when they are spatially well separated. The
prescribed scheme of steady-state entanglement generation
can as well be applied to these cases.

In the above consideration, we always assumed that atoms
are identical. It seems interesting to extend our consideration
to the case of nonidentical atoms. In view of the result of
Ref. f3g, we can expect that this may lead to a significant
increase of entanglement.

We also restricted our consideration to the case of polar-
ization of the classical driving field parallel to the inter-
atomic axis. The alternative choice of the polarization per-
pendicular to the interatomic axis can lead to a strong change
of picture as well. First of all, the change of polarization
changes the form of the coupling constants4d. Then, it
causes the consideration of the different values of the classi-
cal driving field in the atomic locations.

The detailed analysis of the above-mentioned two exten-
sions of the model deserves special consideration.

FIG. 1. Numerical dependence of concurrence on the inter-
atomic distance and classical driving field. The dimensionless quan-
tities r /l andE/G are used here.l is the wavelength corresponding
to atomic transition.

FIG. 2. The dipole interaction constantV fEq. s4dg sdashed
curved and collective decay rateG12 fEq. s3dg ssolid curved as a
function of interatomic separationr. Here r is given in terms of
wavelength corresponding to atomic transition.
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