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ABSTRACT

In this work, we investigate the effects of noise on real-time focal distance control for laser material processing
by generating the images of a sample at different focal lengths using Fourier optics and then designing, training,
and testing a deep learning model in order to detect the focal distances from the simulated images with varying
standard deviations of added noise. We simulate both input noise, such as noise due to surface roughness,
and output noise, such as detection camera noise, by adding zero-mean Gaussian noise to the source wave and
the simulated image, respectively, for different focal distances. We then train a convolutional neural network
combined with a Gaussian process classifier to predict focus distances of noisy images together with confidence
ratings for the predictions.

Keywords: Focus detection, Fourier optics, machine learning, surface roughness, deep learning, Gaussian pro-
cess

1. INTRODUCTION

In high precision laser micro-machining, it is required to actively control the machining setup’s performance and
make the necessary corrections when needed. One of the most critical control mechanisms required for precise
machining is controlling the focus position on the work-piece. One focus detection method, which relies on the
diffraction effect,1 is achieved by curve fitting the reflected beam’s intensity from the work-piece when landed
on a camera. Although they achieve low focal distance prediction error, their method works best on noise-free
images. However, in many laser machining setups, noisy images are inevitable, whether due to a low-resolution
camera or noise due to the surface roughness of the work-piece, like in micro-machining.

In our work, we investigate the effects of noise on active focal distance detection by simulating the image of
a sample at different focal lengths using Fourier optics2 and then designing, training, and testing a novel deep
learning model combined with Guassian processes to classify the focal distances from the simulated images with
varying strengths of added noise.

2. FOURIER OPTICS SIMULATION

2.1 Wave Propagation Simulation

We use a similar approach of1 for the simulation setup. As for the main difference, we consider the initial wave
a Gaussian beam and include the noise effects simultaneously at both input and output. Explicit form3 of the
initial beam’s electric field can be given as (1).

E0(x, y, z = 0) = E0
w0

w(0)
e
− r2

w2(0) , (1)
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we simulate the free-space propagation for distance L with the Fresnel approximation4 as shown in (2).

U1(x, y, L) = −i
e

i2πL
λ e

iπ(x2+y2)
Lλ

λL

∫ ∫
E0(x

′, y′, z = 0)eiπ
x′2+y′2

λL e−2iπ xx′+yy′
λL dx′dy′, (2)

with this propagation, our reflected wave arrives at the surface of the first lens, which collimates the wave when
the sample is at focus. A lens’s effect can be expressed as a modulation of the incoming wavefront. We can
model the lens5 with a focal length of f1 as shown below

L1(x, y) = e−iπ
(x2+y2)

λf1 , (3)

so after the first lens we have the our wave as

U2(x, y) = U1(x, y)L1(x, y), (4)

again, we propagate the wave to the lens for d distance. This can be calculated by changing L to d and E0 to
U2 in equation (2). We call this wave U3. Then we modulate it with a lens having a focal length of f2. So f2
instead of f1 in the equation (3) and call it L2. We obtain the wave just after the second lens as below

U4(x, y) = U3(x, y)L2(x, y), (5)

now lastly, we make the wave reach the detection camera by propagating it for f2 distance using (2) and calling
it U5. In order to obtain the intensity value at the camera, we need to take the absolute square of this wave.
Therefore we have the intensity distribution at the camera as

I(x, y) = |U5|2. (6)

2.2 Input and Output Noise Simulation

We consider the input noise, which corresponds to surface roughness, as a Gaussian,6 by adding a random phase
of the initial electric field, given by

E′
0(x, y, z = 0) = E0

w0

w(0)
e
− r2

w2(0)
−iηin , (7)

where ηin is the zero mean Gaussian input noise with standard deviation σin. Thus, we write ηin ∼ N (0, σ2
in).

There is an important parameter when considering surface roughness which is correlation length. Sample simula-
tion for different correlation length can be seen in Figure 2. As for the output noise, we also consider a Gaussian,
but this time we add it to equation (6) in both dimensions. We base our output noise level compatible with
available cheap camera’s readout noise. Thus, given that I(x, y) is the image intensity at point (x, y), the noisy
image intensity is given by

I ′(x, y) = I(x, y) + ηout, (8)

where ηout ∼ N (0, σ2
out).

2.3 Simulation Parameters and Generated Images

Since we are interested in the laser machining application, our range for defocus positions will be based on the
Rayleigh length.7 Starting from the calculation of beam waist (2ω0) as shown below

2ω0 =

(
4λ

π

)(
F

D

)
, (9)

where λ is the beam’s wavelength, F is the focal length of the lens that focuses the light onto the sample, and D
is the diameter of the source beam. One can obtain the value of Rayleigh length (LR) from the equation below

LR =
πω2

0

λ
, (10)
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Table 1: Simulation parameters for the data generation.

Rayleigh
length

Laser
wavelength

Collimating
beam diameter

Beam
waist

Defocus distances Input noise stds. Output noise stds.

20 µm 976 µm 2 mm 5 µm {−250,−200, . . . , 0, . . . , 200, 250} µm {0, 0.33, 0.67, 1.0} µm {0, 0.01, 0.02, 0.03} µm

Figure 1: Simulated images for non-noised waves. Diffraction rings appear when the sample is 100 µm closer
than the focus distance (left), a small, focused beam when the sample is at the focus (middle), and a widespread
beam when the sample is 100 µm away than the focus distance (right).

We consider focus distances from −250 µm to 250 µm with steps of 50 µm. In Figure 1 we show the simulation
output of three different focus distances with no noise. Moreover, we consider low and high correlation lengths for
the surface roughness with four equally spaced input noise standard deviation from 0 nm to 1000 nm. Simulation
for two different correlation lengths are given in the Figure 2. Finally, since the detection system for the reflected
light is not isolated and bound to environmental noise, we also consider the noise at the output with standard
deviations of {0, 0.01, 0.02, 0.03} µm, an example of which can be found in the Figure 3. All simulation parameters
are given in Table 1.

Figure 2: Simulation of surface roughness. Correlation length is 300 µm (left) and when 5 µm (right).

3. FOCUS DISTANCE CLASSIFICATION

Machine Learning methods have been applied to many areas of physics, including statistical physics, quantum
physics, quantum computing, cosmology, and chemical physics.8 Machine Learning methods are also used for
laser machining to improve its accuracy, speed, and online modeling of laser machining at scale.9 Some scholars
also used deep learning for system monitoring via visual observation of the work-piece during laser processing.10

They have used Convolutional Neural Networks (CNN) to detect single-axis beam translation. CNNs are able
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Figure 3: Simulated images with added output noise. Standard deviation of the Gaussian noise is 100 nm on
the left and 500 nm on the right.

to automatically learn important image features without any human input. Moreover, they can be trained to be
robust to noise.

Although CNNs perform extremely well on image-related classification tasks, they cannot provide an uncer-
tainty measurement for their predictions. As it is important to have such a measure when all possible classes are
not available, we combine CNNs with Gaussian processes (GP), which do provide us with uncertainty measures
in the form of the posterior variance11,12

3.1 CNN and GPs for Image Classification

Our CNN model takes as input an image and classifies its focal distance class. It consists of two convolution
layers with RELU13 activation functions followed by max-pooling layers. Pooling layers reduce dimensions of
data and provide outputs for successive layers through one neuron. More specifically, we used max-pooling to
use the maximum value of each neuron to create a feature map. The architecture of our model is given in Table
2.

We then take the output of the penultimate 256-dimensional output of the CNN and feed it to a GP classifier
that classifies the focus distance while providing a confidence rating of how sure it is about its prediction. Notice
that the CNN model bust be trained first, after which its weights are frozen, its last layer removed, and it is
connected to a GP classifier which is then retrained on the same data as the CNN.

3.2 Data Generation

We generate 100 images per focal distance and input and output noise standard deviations. We generate two
sets of images per the mentioned specs, one for training and validation and the other for testing. Furthermore,
we use a 85%/15% split for training/validation.

3.3 CNN Training

Using a batch size of 16 and SGD with a momentum of 0.93 and a learning rate of 0.001, we train the CNN for
200 epochs, picking the weights from the epoch corresponding to the highest validation accuracy. The model is
trained on a PC running Ubuntu 20.04 LTS with an i7 6800k equipped with 32 GB of RAM and a GTX 1080Ti.

3.4 GP Training

We then take the trained CNN and strip off the output layer so that the CNN outputs a 256-dimensional
vector. This vector is essentially a 256-dimensional encoding of the image. We fit a GP with a zero mean and
SquaredExponential kernel onto the feature vectors of every image in the training set. Technically, the GP is
a multioutput GP with 11 outputs, one for each class. The ith GP’s posterior mean is the probability that the
class of the input image is i, and the posterior variance of the ith GP indicates how unsure the model is about
its prediction. The higher the variance, the less sure the model is.
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Table 2: The architecture of the CNN network used for focus distance classification.

Layer Parameters

Input Size: 1x40x32

Conv
Out channels: 32
Kernel size: (3,3)

Max-pool
Kernel size: (2,2)
Stride: (2,2)

Conv
Out channels: 64
Kernel size: (3,3)

Max-pool
Kernel size: (2,2)
Stride: (2,2)

Flatten Output size: 1x3072
Dropout Probability: 0.5
Dense Output size: 512
Dense Output size: 256
Dense Output size: 11
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Figure 4: Confusion matrix of our CNN+GP model
when tested on the testing data.
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Figure 5: Classification testing accuracy of the
CNN+GP model corresponding to images of each
input-output standard deviation noise pair.

3.5 Results

We test our trained CNN+GP model and present its confusion matrix in Figure 4. Notice that the model
confuses some labels, but only with neighboring labels. For instance, it mistakes −50 µm for −100 µm. Overall,
the model achieves a 86% testing accuracy, which is considerably better than the baseline of 1/11 = 9.1%. We
also present individual testing accuracies corresponding to each input-output noise standard deviation pair, given
in Figure 5. As expected, the higher the noise, the lower the accuracy. It also appears that the output noise has
a larger effect when adjusted for standard deviation, as the going from no output noise to 0.03 std. results in an
8% accuracy drop while going from no input noise to 0.33 std. results in only a 1% accuracy drop.

Lastly, we measure the inference speed of our model to find that the CNN model on its own achieves 1200
Hz on the CPU, while the combined CNN+GP model achieves 430 Hz. Thus, for setups where extreme speed is
needed while uncertainty measures are not, a CNN-only setup would be better suited.
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4. DISCUSSION

We explored the effect of noise in a focus control mechanism for a laser machining system by simulating images
with input and output noise. We then designed and trained a combined CNN and GP model that is able classify
the focus distance of a simulated noisy image and output an uncertainty measure. Therefore, our model is not
only robust to both input and output noise, but it can also determine when the image is too noisy to make
meaningful predictions.

We analyzed the classification accuracy of the trained model when tested on unseen noisy images of increasing
standard deviation and observed that although its performance decreases with increasing noise, it manages to
outperform the baseline by a considerable amount. Lastly, we tested the inference speed of our model and showed
that even on a GPU-less machine it can achieve extremely fast inference speeds.

High output noise caused the reflection of the light from a focused sample to look like it was coming from
a defocused position. This result can easily interfere with the auto-focusing system and cause damage to the
work-piece. There can be possible solutions to this problem: designing a model with higher noise levels or using
a high resolution and low readout noise camera. Nonetheless, the latter would be a defective approach since
instead of increasing the cost of the experimental setup, one can improve the model quickly with little more data.
However, our method offers high accuracy for the given noise levels with the defocus range. Therefore, stating
that there is no need for expensive equipment for these parameters.
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