
ANALYSiS OF REACl fVE SCHEDULING PROBLEMS

IN VIANUFACTURING SYSTEMS

A THESIS
SUBMm EO TO THE DEPARTMENT OF INDUSTRIAL ENGINEERING

AND THc INSTITUTE OF ENGINEERING AND SCIENCES

OF BILKE^T UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By

Mfurat Bayiz

JMly, 1997

ANALYSIS OF REACTIVE SCHEDULING PROBLEMS
IN MANUFACTURING SYSTEMS

A THESIS

SUBMITTED TO THE DEPARTMENT OF INDUSTRIAL ENGINEERING

AND THE INSTITUTE OF ENGINEERING AND SCIENCES

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

'Ja·' :cu::; :■ ÂTrSiÿ/an·^^/ ^
Murat Bayız

July, 1997

457-ί
,Ê .3 9

Ô C 3 8 2

11

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Ihsan Sabuncuoglu(Principal Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Cemal Dinçer

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

/\/ COrd i /r?

Assoc. Prof. Nur Evin Ozdemirel

Approved for the Institute of Engineering and Sciences:

Prof. Mehmet Ba^
Director of Institute of Engine^ihg and Sciences

ABSTRACT

ANALYSIS OF REACTIVE SCHEDULING PROBLEMS IN
MANUFACTURING SYSTEMS

Murat Bayız
M.S. in Industrial Engineering

Supervisor: Assoc. Prof. Ihsan Sabuncuoğlu
July, 1997

In this study we develop a new scheduling algorithm for the job shop problem.
The proposed algorithm is a heuristic method based on the filtered beam search.
After extensive analyses on the evaluation functions and search parameters of the
beam search, we measure the performance of the algorithm in terms of quality of
solutions and CPU times for both the makespan and mean tardiness criteria.

In the second half of the research, we study the reactive scheduling problem.
Specifically, we analyze several reactive methods such as no response, periodic
response and continuous response under various experimental conditions. The
beam search based partial scheduling is also studied in this thesis. The method
is analyzed for both deterministic and stochastic environments under several job
shop configurations.

Key words: Reactive Scheduling, Beam Search, Job Shop Scheduling

IV

ÖZET

ü r e t i m s i s t e m l e r i n d e k i t e p k i s e l ç i z e l g e l e m e

PROBLEMLERİNİN ANALİZİ

Murat Bayız
Endüstri Mühendisliği Bölümü Yüksek Lisans

Tez Yöneticisi: Doç. İhsan Sabuncuoğlu
Temmuz, 1997

Bu çalışmada atelye tipi üretim sistemleri için yeni bir çizelgeleme algoritması
geliştirilmiştir. Bu algoritma süzülmüş ışın taramasına dayalı sezgisel bir
yöntemdir. Değerlendirme işlevleri ve tarama parametreleri üzerine yapılan kapsamlı
çözümlemelerden sonra, algoritmanın çözüm kalitesi ve zamanı açılarından başarımı
“tüm bitirim süresi” ve “ortalama gecikme” ölçütlerinde ölçülmüştür.

Bu çalışmanın ikinci bölümünde tepkisel çizelgeleme problemi incelenmiştir.
Özellikle tepki olmayan, dönemsel tepki ve sürekli tepki gibi yöntemler değişik deney
koşulları altında çözümlenmiştir. Bu tezde ışın taramasına dayali kısmi çizelgeleme
yöntemi de araştırılmıştır. Bu yöntem gerekirci ve rassal ortamlarda değişik atelye
tipi üretim biçimlerinde çözümlenmiştir.

Anahtar sözcükler: Tepkisel çizelgeleme. Işın taraması, Atelye tipi üretim sistemi
çizelgelemesi

VI

To my parents

ACKNOWLEDGEMENT

I would like to express my gratitude to Assoc. Prof. İhsan Sabuncuoğlu due to
his supervision, suggestions, and understanding throughout the development of his
thesis.

I am also indebted to Cemal Dinçer and Nur Evin Ozdemirel for showing keen
interest to the subject matter and accepting to read and review this thesis.

I cannot fully express my gratitude, love and thanks to Şelale Tüzel for her
morale support and encouragement.

I would also like to thank to Alev Kaya, Souheyl Touhami, Fatma Gzara, Feryal
Erhun, Hülya Emir, Serkan Özkan, Kemal Kılıç for their help during the preparation
of this thesis.

My special thanks also go to my parents, brothers, sisters in law and dear

nephews Yağız Efe and Mertcan for their morale support throughout my studies.

And, finally I would like to thank to all my graduate friends for their friendship.

Vll

Contents

1 INTRODUCTION 1

2 LITERATURE REVIEW 4

2.1 Observations... 14

2.2 Open Research Points and Motivation 17

3 BEAM SEARCH 19

3.1 Introduction... 19

3.2 Problem D efin ition ..21

3.3 Beam Search ... 22

3.3.1 The Proposed Beam Search Based Algorithm 23

3.4 Makespan case .. 32

3.4.1 Computational r e s u lt s ..37

3.5 Mean tardiness case ... 41

3.5.1 Computational R esu lts... 46

3.6 Conclusion..48

viii

CONTENTS IX

4 REACTIVE SCHEDULING 50

4.1 Introduction 50

4.2 The Proposed S t u d y .. 52

4.2.1 Scheduling Methods ... 52

4.2.2 Job Shop Environment 53

4.2.3 Machine Breakdowns... 55

4.2.4 Frequency of Scheduling 56

4.3 Computational Results 58

4.3.1 Deterministic Environment 58

4.3.2 Stochastic Environment 62

4.3.3 Partial Scheduling 71

4.3.4 Partial Scheduling in Deterministic Environment.......................83

4.4 Conclusion 89

5 CONCLUSION 92

A Beam Search 102

B Reactive Scheduling 106

List of Figures

3.1 Representation of beam search t r e e .. 24

3.2 Beam search tree for the numerical e x a m p le .. 29

3.3 Schedules generated by the beam search algorithm.....................................32

3.4 Percent deviation from optimal solution vs filterwidth.............................. 35

3.5 CPU time vs filterw id th ..38

3.6 Mean tardiness vs filterwidth analysis... 43

3.7 Mean tardiness vs filterwidth analysis... 44

4.1 Interactions between scheduling frequency and mean tardiness 70

4.2 CPU time vs scheduling frequency..71

4.3 Interactions between scheduling frequency and makespan values . . . 72

4.4 Mean tardiness L· CPU time as a function of partial schedule lengths
(Uniform C a s e) .. 76

4.5 Mean tardiness & CPU time as a function of partial schedule lengths
(Nonuniform C a s e) ..77

4.6 Changes in mean tardiness as a function partial schedule length in

uniform and nonuniform environm ents.. 79

X

4.7 Interactions between makespan L· CPU time and partial schedule
length (Uniform C a s e) ... 80

4.8 Interactions between makespan & CPU time and partial schedule
length (Nonuniform C a s e) ...81

4.9 Mean Tardiness vs partial schedule length in 90% and 80% efl&ciency
levels, Uniform C a s e .. 83

4.10 Makespan vs partial schedule length in 90% and 80% efficiency levels,
Uniform C a s e ... 84

4.11 Interactions between mean tardiness & CPU time and partial schedule
length in deterministic environment.. 87

4.12 Interactions between makespan & CPU time and partial schedule
length in deterministic environment.. 88

LIST OF FIGURES xi

List of Tables

2.1 Classification of the papers.. 16

3.1 Job inform ation..27

3.2 Descriptions of priority rules used in makespan analysis 33

3.3 Searching Methods used in the Makespan C ase.......................................34

3.4 Results of test problems for the Makespan Analysis 40

3.5 Comparison of scheduling a lgorithm s... 41

3.6 Description of priority used in tardiness analysis....................................42

3.7 Search methods used in the first part of the experim en ts................... 45

3.8 Search methods used in the second part of the experiments 46

3.9 Results of test problems for the Mean Tardiness A nalysis................... 47

4.1 Sizes of the shop a n a ly zed .. 54

4.2 Performances of algorithms in deterministic environment. 59

4.3 Performances of algorithms in deterministic environment. 62

4.4 Performances of algorithms in stochastic environment 65

Xll

4.5 Performances of algorithms in stochastic environment................................66

4.6 Performances of algorithms in stochastic environm ent............................... 67

4.7 Performances of algorithms in stochastic environment................................68

A .l Percent deviation from optimal solution vs filterwidth.............................. 103

A.2 Mean tardiness vs filterwidth analysis.. 104

A. 3 Mean tardiness vs filterwidth analysis.. 105

B . l Interactions between mean tardiness and scheduling frequency 107

B.2 Interactions between mean tardiness and scheduling frequency 107

B.3 Interactions between CPU time and scheduling frequency....................... 108

B.4 Interactions between makespan and scheduling frequency...................... 109

B.5 Interactions between makespan and scheduling frequency109

B.6 Interactions between mean tardiness & CPU time and partial schedule
le n g t h .. 110

B.7 Intei’cictions between mean tardiness & CPU time and partial schedule
le n g t h .. 110

B.8 Interactions between mean tardiness & CPU time and partial schedule
le n g t h .. I l l

B.9 Interactions between mean tardiness &: CPU time and partial schedule

le n g t h .. I l l

B.IO Interactions between makespan L· CPU time and partial schedule lengthll2

B .ll Interactions between makespan & CPU time and partial schedule length 112

LIST OF TABLES xiii

B.12 Interactions between makespan & CPU time and partial schedule length 113

B.13 Interactions between makespan & CPU time and partial schedule
le n g t h .. 113

B.14 Mean tardiness vs partial schedule length in 90% and 80% efficiency
levels (Uniform c a s e) .. 114

B.15 Makespan vs partial schedule length in 90% and 80% efficiency levels
(Uniform case) .. 114

B.16 Interactions between mean tardiness L· CPU time and partial schedule
length in deterministic environment..115

B.17 Interactions between mean tardiness & CPU time and partial schedule
length in deterministic environment..115

B.18 Interactions between mean tardiness & CPU time and partial schedule
length in deterministic environment..116

B.19 Interactions between mean tardiness & CPU time and partial schedule
length in deterministic environment..116

B.20 Interactions between makespan & CPU time and partial schedule
length in deterministic environment..117

B.21 Interactions between makespan &; CPU time and partial schedule
length in deterministic environment..117

B.22 Interactions between makespan &; CPU time and partial schedule
length in deterministic environment..118

B.23 Interactions between makespan L· CPU time and partial schedule

length in deterministic environment..118

LIST OF TABLES xiv

Chapter 1

INTRODUCTION

Scheduling is an important part of production system planning. Because, the
schedule serves as an overall plan on which many other shop activities are based.
In addition, scheduling serves as a mechanism which improves the performance
of the manufacturing facility. By properly planning the timing of shop floor
activities, performance criteria such as makespan, flow time or mean tardiness can
be optimized.

The majority of the published literature on the scheduling problem deals with
the task of schedule generation. But, scheduling should be undertaken in two stages:

predictive and then reactive. In the first stage a schedule is generated and reactive
control is api^lied on the schedule in the second stage to deal with the unexpected
events occurring in the system. Even though reactive control is viewed to be very
important for successful implementation of a scheduling system, it has not been
extensively studied in the literature.

In the first chapter of this thesis, a review of the related research is provided.

At the end of the chapter, the papers are classified according to their problem

environments, schedule generation methods and reactive control implementations.
As a result of the literature review we determine the open research points in the
literature which draws the outline of the subsequent studies throughout the thesis.

CHAPTER 1. INTRODUCTION

To achieve the goal of coordinated planning of system activities in real life, a
schedule is prepared in the first stage of the shop floor planning. For that reason,
we first develop a schedule generation method in this thesis. Since the job shop
system represents a general production setting, it is considered as the scheduling
environment in this study. The proposed schedule generation method for the job
shop problem bases on the filtered beam search which is an heuristic adaptation of
the branch and bound algorithm. In the beam search, as different from branch and
bound algorithm, at any level only promising nodes are kept for further branching
and the remaining nodes are pruned off permanently.

Even though the beam search has been used to solve a wide variety of
optimization problems, its performance is not generally known for the scheduling
problems. Because in the existing research work, it is primarily applied to the FMS
scheduling problems and compared with some dispatching rules. Hence, its relative

performance with respect to the known optimum solution and other new heuristics
are not known. Besides, it has not been thoroughly studied as a problem solving
strategy with several evaluation functions and search parameters.

In the third chapter of the thesis, we attempt to achieve some of these objectives.
First of all, we investigate the effectiveness of various rules as local and global

evaluation functions of the beam search applications for both the makespan and
the mean tardiness criteria. The previous research indicates that the values of
filter and beam width effect the performance of the algorithm. Hence, we also
examine the performance of the beam search for various values of filter and beam
width and determine their proper values. Furthermore, we test two well known
schedule generation schemes (active and nondelay schedule generation schemes) in
conjunction to beam search applications to the job shop problems. Finally, after
determining proper setting of evaluation functions and parameters for the selected

problem environment, we measure the performance of the beam search with respect

to optimum solutions and compare it with other well known algorithms for the
makespan objective function. This chapter extends the related literature as being
the first extensive study of the beam search method in the job shop problem.

The major drawback of precomputed schedule is that, after they are released

for execution, due to the random nature of shop floor conditions, the performance
of the schedule degrade. Thus, it is desirable to response the unexpected changes
to improve the performance of the schedule. The nature of response depends on
the way that schedules are generated or scheduling decisions are made. There are
mainly two types of schedule generation methods (off-line and on-line scheduling)
and their way of responding to unexpected events are different. In this study, we
analyze reactive scheduling policies of these scheduling techniques in a stochastic
environment. In order to perform the analysis, the heuristic algorithm based on the
filtered beam search and priority dispatching rules are used as the off-line and on-line
schedule generation methods and compared under various experimental conditions.

There are several factors in the real life manufacturing environment, that affect
the performance of these scheduling methods. Among these factors system size
and load allocation and their effects on the relative performance of the scheduling

methods are not throughly analyzed. In the fourth chapter of the thesis, we first
analyze the effects of these factors in the deterministic environment. Then we allow
machine breakdowns in the system and analyze performances of no response and
periodic response reactive scheduling policies. In this analysis, we again examine
the effects of system size and load allocation in the simulation experiments. In the
next part of the thesis, by utilizing the constructive type of the algorithm we propose
a partial scheduling method in the context of periodic response policy. According
to this response policy, instead of generating complete schedules, partial ones are
generated at the beginning of each period. In this part we evaluate the solution
quality and CPU time requirements for various partial schedule lengths again under
the same experimental conditions. Finally, the notion of partial scheduling is used
in the deterministic environment so as to analyze a time based decomposition of the

static job shop scheduling problem. In this chapter, all the analyses are performed
for both the mean tardiness and makespan criteria.

CHAPTER 1. INTRODUCTION 3

The thesis ends with the conclusion chapter in which the results of the analyses
are summarized and open research directions are pointed out.

Chapter 2

LITERATURE REVIEW

The majority of the published literature on the scheduling problem deals with the
task of schedule generation. But as Szelke and Kerr (1994) state scheduling should
be undertaken in two stages: predictive and then reactive. Thus reactive control is
also important for successful implementation of scheduling decisions. However, in
the literature only a few studies have considered reactive scheduling and control as
a part of scheduling problem.

Holloway and Nelson (1974) develop a multi-pass procedure for job shop
scheduling problem. This procedure attempts to minimize the extend of the

precedence violations in the schedule while treating the machine capacities and due

dates as fixed constrains. Their heuristic procedure generates delay schedules by
using expected processing times. But they test performance of the heuristic in static
job shop with random process times. In this study they compare performance of
this multi-pass heuristic with some well known dispatching rules and conclude that

depending on the problem and criterion, relatively high performance may result even
when actual process times are highly variable. In this study, the authors generate

an off-line schedule at the beginning of the scheduling horizon and do not make
any reactive control. In that sense this paper does not tackle reactive scheduling

but, as being the first study which deals with the process time variation in job
shop scheduling problem, it is important in the literature. Later they implement
this procedure in dynamic job shop environment (1977). They generate schedules

CHAPTER 2. LITERATURE REVIEW

periodically by two implementation methods. The first method confines attention to
operations that are available and does not permit enforced idle time in the schedule.
The second one is more involved and integrated the scheduling of old jobs and
the jobs arrive after review times. The principle conclusion of this research is
that periodic generation of schedules, implemented by using second method, merits
consideration as an effective scheduling procedure in dynamic job shop environment.

Yamamoto and Nof (1985) study schedule revisions under unexpected ma
chine breakdowns in static environment. They propose a three-phase schedul-
ing/rescheduling scheme; (1) Planning Phase: part-mix assignments are made,
initial schedule and machine loading table are generated. (2) Control Phase:
Processes are controlled according to machine loading order instructions. (3)
Rescheduling Phase: Rescheduling, revising loading table and resorting to control
phase functions are performed. They use a scheduling algorithm which is based on

branch and bound and generates active schedules. The same scheduling algorithm is
used in the rescheduling phase as in the planning phase. In their proposed method,
rescheduling phase is called whenever a machine breakdown occurs. The experiments
show that scheduling/rescheduling method outperforms the other two alternatives,
and its performance is even better in relatively more complex environments.
Therefore, the authors point out that the schedule must be revised at some points
in time when the current progress of the system deviates from the schedule over
a specified limit. But as they state, determination of this limit and frequency of
scheduling is important research issues that needs further investigation.

Farn and Muhlemann (1979) study the performance of some heuristics in both
static and then dynamic single machine scheduling problem with sequence dependent
changeover times. They come up with the observations that the heuristic for the
static problem is not necessarily the best heuristic in the dynamic situation. They

periodically generate new schedules in dynamic environment. They also observe

that the performance of heuristics deteriorates as the length of scheduling period

increases. Later Muhlemann, et al. (1982) investigate the dynamic and uncertainty
aspects of job shop problem. Process time variation and machine breakdown are
considered as causes of uncertainty in the problem. They propose periodic scheduling
scheme to deal with dynamically arriving jobs. At each scheduling point, a static

CHAPTER 2. LITERATURE REVIEW

schedule for the available jobs is generated by a dispatching rule. They examine
the performance of the shop with respect to various measures of performance,
using several dispatch rules under a range of different frequencies of scheduling.
The performance of the rules are evaluated for four different scheduling conditions
resulted of low and high combinations of uncertainty and workload levels. As
anticipated, performance generally deteriorates when scheduling period increases,
because frequent revision of schedules make the schedule more up-to-date and the
schedule follows the system dynamics at right times. The authors also observe
that the performance of the rules worsens as the level of uncertainty and the
work load level increases. The experiments show that SPT rule is the best in the
overall performance when rescheduling period is less frequent but for more frequent
rescheduling truncated SPT and a composite dispatch rule is found superior.

Ovacik and Uzsoy (1994) study rolling horizon heuristics to minimize maximum
lateness on a single machine in the presence of sequence dependent set-up times.
They investigate this simple problem because it occurs as a subproblem of more
complex job shop scheduling problems. The proposed rolling horizon procedures
(RHP) address the dynamic scheduling problem by solving a series of smaller
subproblems optimally by means of branch and bound method. The size and
the number of the subproblems is determined by algorithm parameters, such as

maximum size of the subproblems and forecast window length. At each decision
point, a subproblem is solved which yields decisions for a certain time period in the
future. Only the decisions related to the current decision point are implemented and
then they are revised at the next decision point. To evaluate the performance of
RHP, they use two different dispatching rules, EDD and EDD combined with local
search, as benchmarks. With the appropriate parameter settings, RHP outperforms

the dispatch rules. They also point out that the parameters used in the procedure

can be appropriately set so that solution quality and CPU times would be traded
off according to the application at hand.

Church and Uzsoy (1992) investigate the problem of rescheduling of single
machine production system with dynamic job arrivals. In the first part of the

paper, the performance of periodic procedure is evaluated both analytically and

computationally. Their analytical results formalize the worst case behavior of

periodic rescheduling policies. In periodic rescheduling, schedules are generated at
regular intervals and implemented on a rolling horizon basis. At each rescheduling
point, static schedules are generated for available jobs by using the EDD rule.
Experiments show that in general the performance of periodic rescheduling policies

deteriorates as the rescheduling period length increases. But when system utilization

is either very low or very high, or due dates are very tight, the length of the
scheduling period does not effect the solution quality. Based on the insight obtained
through this analysis, in the second part of the paper the author's propose an
event driven scheduling procedure to improve the performance without excessive
rescheduling. In this procedure, in addition to periodic rescheduling, arrival of
a job with a tight due date also causes a need for rescheduling of the system.

Their experiments show that the benefits of extra scheduling diminishes rapidly,
demonstrating that a well designed event-driven scheduling policy can achieve
excellent performance with less computational burden.

Kiran et al. (1991) study a feed-back based heuristic for scheduling
manufacturing systems to evaluate tardiness related performance measure. Their
proposed heuristic, given an initial schedule, assigns a priority index to each job
based on the weighted sum of previous priority index and tardiness status of jobs.
Then it generates a new schedule according to the current priority index until

finding a schedule with an acceptable performance. In the first part of the paper,
they compare the performance of the algorithm with many dispatching rules in a

static job shop environment and conclude that their heuristic outperforms the other
rules. In the second part they work on the dynamic job shop problem where a
new schedule is generated every morning with the daily list of new and existing
jobs. After some pilot experiments, they decide to compare performance of their

heuristic with COVERT rule for again some tardiness related performance measures.

In general, their experiments show that the feed-back heuristic performs well for a
variety of tardiness related criteria and the computational burden of the algorithm
is reasonable.

CHAPTER 2. LITERATURE REVIEW 7

Bean et al. (1991) consider the rescheduling of the shop with multiple resources

when unexpected events prevent the use of a preplanned schedule. The scheduling

strategy discussed in this paper assumes that a preschedule has been constructed

and this preschedule is followed until a disruption occurs. Then they reschedule to
match up with the preschedule at some point in the future. In order to match up,
they first resequence all jobs on the disrupted machine. If resequencing results
excessive tardiness costs, then the procedure proceeds to the multimachine lot
assignment rule to redistribute lot-to-machine assignments. This match up approach
is compared with the following preplanned schedule without rescheduling, several
dynamic dispatching rules and total reschedule approach which does not seek to
match up with the preschedule. The results of test problems indicate that the
proposed approach is more advantageous.

This match-up approach is applied to a modified flow shop by Akturk and
Gorgulu (1993). The approach is also based on revising the preschedule after a
machine breakdown occurs in the system. A new schedule is generated so that
the state of the system match up the preschedule some time after disruption. In
order to do that they propose a reactive hierarchical scheduling strategy which first
selects a match-up point for each machine, then reschedules the specified set of jobs.
They decompose the rescheduling problem into three parts that are the scheduling
of down machine, scheduling of machines in the upward direction of the down

machine and scheduling of the ones in the downward direction of down machine,
according to the sequence of machines in the modified flow line. If the resulting
schedule is not feasible, then the match-up point is changed to enlarge the set of
jobs that are rescheduled. The proposed approach is compared with several match
up cilternatives, the static pushback strategy and complete rescheduling rules under
different experimental settings. Experimental studies show that the the proposed

approach is superior in terms of schedule quality and stability as well as computation
time.

CHAPTER 2. LITERATURE REVIEW 8

Nof and Grant (1991) develop an adapt!ve/predictive scheduling and control
system that includes five main functions: scheduler, monitor, comparator, resolver

and recovery adopter. Two sets of experiments are performed to analyze

the feasibility and effectiveness of the system. In the first experiment set, a

manufacturing cell with three machines is considered and the source of disruption

is model as process time variation. The system is monitored at the time of order

completions. If the observed performance deviates form the specified tolerance fence

CHAPTER 2. LITERATURE REVIEW

(10% of expected value of measure) then time shifting of the current schedule is
applied and if the deviation is beyond 20% then adaptation by resequencing of
uncompleted orders is applied. The experiments show that the proposed system
is feasible as well as renders better production control than no recovery policy. In
the second set of experiments, a similar environment is simulated but in this case
machine breakdown and unexpected job arrival is taken as the source of disruption.
Periodic monitoring is performed and in response to such disruptions, rerouting
to alternative machine, order splitting and rescheduling recovery procedures is
activated. In the experiments only one of type of recovery procedure is applied in
order to observe its separate effects. After analyzing the second set of experiments,
the authors conclude that resequencing procedure gives better performance than
the other recovery policies. Also they mention that even a relatively weak recovery
procedure yields better performance than no recoveiy at all.

Simulation based approaches are also widely used in complex scheduling
problems. By means of simulation models, various options for control action
available at each state are simulated and best option is chosen for execution. For
example, Matsuura et al. (1993) investigate the problem of selection between
sequencing and dispatching as a scheduling approach in job shop environment
involving machine breakdowns, specification changes and rush jobs. In the
sequencing approach, an initial schedule (sequence) is generated by branch and
bound for the initial set of jobs and the resulting sequence is maintained regardless
of the unexpected events occurring in the system. Schedules are generated by
either FCFS or SPT rules in dispatching approach. In the first part of paper,
the problem of which approach is more efficient under various manufacturing
environments is studied. Series of simulation experiments was conducted to
determine how sequencing and dispatching approaches affect the performance
measure of manufacturing environment. The simulation results show that while the
manufacturing situation remains similar to the original one, it is better to use the
sequencing approach. However, if departure from the original situation is significant,

it would be better to use the dispatching approach. In the second part of the paper,

they propose a new approach that switches from sequencing to dispatching when the

first unexpected event occurs to make the best use of sequencing and dispatching

CHAPTER 2. LITERATURE REVIEW 10

approaches. Experiments show that this combined method outperforms other two
approaches.

In another study, Kim and Kim (1994) investigate a simulation based real time
scheduling methodology for a flexible manufacturing system. In the methodology
there are two major components, a simulation module and a real time control system.
The simulation module evaluates various dispatch rules and select the best one for
a given criterion. The real time control system periodically monitors the shop floor
and checks the system performance. If at the beginning of a period, the difference
between the actual performance and value estimated by simulation exceeds a given
limit (performance limit) due to accumulation of minor system disturbances, then
simulation module is called. A new simulation is performed with the remaining
operations and a new rule is selected for this period. In addition to periodic
monitoring, the rule selection is also done when there is a major system disturbances.
In this study, major disturbances include urgent job arrival and major machine
breakdowns, whereas tool breakage and small machine breakdowns are considered
as minor disturbances. The authors perform experiments for different levels of
monitoring periods and performance limits. The experiments show that better
results can be obtained by the scheduling module with the moderate monitoring
period the performance limit. They also conclude that, the proposed approach has
a relatively short response time for the simulation mechanism to be used in real time
scheduling.

Sabuncuoglu and Karabük (1997) study the scheduling rescheduling problem
in a static FMS environment. The authors propose several reactive scheduling
policies in response to machine breakdowns and processing time variations. Both
off-line and on-line scheduling algorithms are analyzed under various experimental
conditions like routing and sequence flexibility, queue capacity and efficiency level.

The relationship between scheduling frequency and the other operating conditions

are extensively investigated. The performance of the system is measured for mean

tardiness and makespan criteria. Their experimental results indicate that it is not

always beneficial to reschedule the operations in response to every unexpected event
and the periodic response with an appropriate period length is also sufficient to cope

with the interruptions. Besides, the authors recommend that scheduling frequency

CHAPTER 2. LITERATURE REVIEW 11

has significant interactions with routing and sequence flexibility, and the effects of
scheduling frequency increases as the level of flexibility reduces. Finally, they state
that machine breakdowns have more negative impact on the system performance
than processing time variation.

In another simulation based study Kutanoglu and Sabuncuoglu (1994) investi
gate the performance of four reactive scheduling policies under machine breakdowns.
Four studied policies are all rerouting, arrival rerouting, queue rerouting and no
rerouting. These policies are tested under various experimental conditions on a
dynamic job shop system. Existence of material handling system (MHS) is also
considered in the experiments. The weighted tardiness measure is used as the
performance criteria. The results show that if the MHS is ignored then the all
rerouting scheduling policy is preferred as a reactive policy. If there exists MHS
in the model, all rerouting policy is suggested. The author mentions that the
performance of reactive scheduling policies depends on utilization and capacity of
machines and MHS, duration and frequency of the unexpected events but not on
the due date tightness and the system efficiency levels. It is also mentioned that no
reaction is not seen as an appropriate strategy for reactive scheduling.

Wu and Wysk (1988, 1989) propose a multi-pass scheduling algorithm that utilize
simulation to make better scheduling decision for an FMS. They assume that the
short term planning module provide the perfect information about the events of the
next scheduling period and objectives for which the alternatives are compared. In
their study, alternatives are the priority dispatching rules that can be applied in the
scheduling of the jobs. The multipass scheduling system simulates each rule by using
the current shop status information. By this way, one simulation run is conducted
for a short time period, called simulation window. The rule which yield the best

performance measure is then selected and implemented during this period. At the

end of the period, the procedure is repeated. The main idea behind this application

is that combining different dispatching rules in a dynamic and multipass manner
creates a better result than applying a single rule alone for the entire horizon. The
experimental results show that if the scheduling period (or simulation window) is

accurately determined according to the environmental conditions and objectives then

this logic is very useful. Therefore, they indicate that the length of the scheduling

CHAPTER 2. LITERATURE REVIEW 12

interval is a significant factor for the performance of multipass scheduling algorithm.

According to Wu and Wysk (1989), if the window is too short, the statistics
collected will not give a reasonable measure of the system performance. But if
the window is too long, the simulated system performance may be less sensitive to
switching between dispatching rules at right time and the scheduling mechanism will
only provide average and aggregate performance measures in each period, which may
loose the advantages of the multi-pass scheduling. Wu and Wysk (1988) combine the
simulation mechanism with a knowledge based system. By this way, a manufacturing
control system is developed that learns from its historical performance and makes
own scheduling and control decisions by simulating the alternating combinations of
priority dispatching rules. In this case, the rules that will be evaluated are selected
from a larger set of rules by the short term planning module by considering the
system conditions using knowledge base. In these studies, changing the scheduling

decisions are not in response to the stochastic disruptions, but since they consider
the system status and update the current schedule, they are included in the reactive
scheduling literature.

Recently Kutanoglu and Sabuncuoglu (1995) also propose an iterative simulation-
based scheduling mechanism in dynamic job shop environment. By using this

scheduling mechanism some part of the scheduling decisions are made at decision
points while the remaining decisions are left to be determined according to the
dynamic changes in the system. The authors test effectiveness of the proposed
method by using multi-pass rule selection algorithm and lead time iteration
algorithm in both deterministic and stochastic environments. In the stochastic
environment, machine breakdown and processing time variation are considered
as disruptions to the system. In the experiments, they analyze the interactions
between the forecasting horizon, scheduling period, look-ahead window, and the
unexpected events such as machine breakdowns and processing time variations. The
experimental results indicate that the iterative improvement procedures improve
the performances of the priority dispatching rules significantly at the expense of
some computational time. Also, the determination of the look ahead window is an

important factor for the multi-pass rule selection algorithm, while lead time iteration

algorithm is relatively robust to the lengths of forecasting horizon and scheduling

CHAPTER 2. LITERATURE REVIEW 13

periods.

Jain L· Foley (1987) investigate the effects of the machine breakdowns in a
flexible manufacturing environment. In this study, it is assumed that there is a
base schedule at the beginning and the objective is to follow the planned schedule
as closely as possible. The unexpected event considered is machine breakdown and

two on-line reactive scheduling policies are compared: (1) rerouting the jobs from
broken machines to alternative machines and (2) holding the interrupted jobs with
high priority until interruption is removed. The experiments conducted on different
levels of machine breakdown and utilization. The results show that rerouting always
outperform the policy of holding jobs.

Bengu (1994) also proposes a simulation based scheduler that uses the up to
date information about the current status of the system and aims to improve the
performance of a rule (АТС) with the simulation under dynamic and stochastic
production environment. In this study, a typical electronics assembly facility
(flowline) which is manufacturing electronic products is simulated with machine
breakdowns. The aim of the use of the simulation scheduler in such an environment
is to select the best look-ahead parameter value for the АТС rule with iterating the
simulations. The experiments show that the value for the look-ahead parameter in

АТС affects the performance of the rule, and simulation based scheduler is a very
effective way of finding a good value for this parameter.

Reactive scheduling is also attracting the increased interest of researchers in
developing available knowledge based and artificial intelligence (AI) techniques in
real time shop floor control applications. For example, Dutta(1990) develop a
knowledge based (KB) methodology to perform real time production control in FMS

environments. His proposed mechanism monitors the environment for disruptions
and takes corrective actions. He considers machine failures, dynamic introduction

of new jobs and dynamic increases in job priority as shop floor disruptions. For

a initially generated schedule which is assumed to initially acceptable values for
several objectives and the control mechanism aims to maintain these objectives in
the presence of disruptions and as corrective actions, the jobs effected by disruptions,

are either rerouted, if they have alternative machines, or preempted according to

CHAPTER 2. LITERATURE REVIEW 14

the priorities and and system conditions. Experimental results show that the KB
mechanism with such corrective actions renders effective and robust production
control.There are also studies which deal with AI based scheduling and control
methods. Among them, ISIS developed by Fox and Smith (1984) and OPIS proposed
by Smith et al. (1990) are the most known applications of AI in reactive scheduling
problems.

Many other research on KB reactive scheduling is summarized in Szelke and Kerr
(1994) review paper. In this study, the authors first introduce the problem through
a summary of definitions, then provide an overview of research results in the domain
of KB reactive scheduling problem and some reported industrial applications. Also
they highlight some major areas for further research.

2.1 Observations

Various types of problems are analyzed in the reactive scheduling literature.
The problems differ from each other according to shop environment, job arrival
information, schedule generation method, etc. In order to analyze the papers in
a more organized manner, we develop a classification scheme and represent the
problems by records with seven attributes (see Table 2.1). We use three main
divisions [environment, schedule generation and implementation of reactive policies)
which define the characteristics of the problems. In the environment division we have
shop floor type, job arrival information and source of stochasticity attributes. In job
arrival attribute, semi dynamic refers the dynamic scheduling problem with a priori
known ready times. Under schedule generation division, we specify the method
to generate schedules and the objective function of the problem. In the Table 1,

there are abbreviations in method attributes. These are the name of the scheduling

methods given by authors in the papers. Unless any name is stated we give the
general approach for the method. Finally, in the implementation section, we define
when and how the reactive scheduling policies are employed. In when attribute, we
specify the times at which system revision decisions are held. Under this heading,

event driven means that rescheduling is triggered in response to an unexpected event

CHAPTER 2. LITERATURE REVIEW 15

that alters the current system status. In periodic policy rescheduling is performed
at the beginning of the periods and in performance based policy rescheduling is
performed if the performance of the system considerably deviates from the a priori
found performance. In how attribute, the type of corrective action is given. Here,
full new schedule means that all the available operations are rescheduled according
to current system status. Partial means that only a part of the current schedule
is updated. Job selection refers to the local scheduling decisions like priority
dispatching rules.

From the literature review, we can make following observations for the static
problems;

• Differences in the performance of fixed sequencing (no action) policy of the
off-line scheduling method and dispatching rules decrease as the number of machine
breakdowns increases (Yamamoto and Nof, 1985, Sabuncuoglu and Karabuk 1997).
Dispatching rules perform even better than fixed sequencing in some cases (Matsuura

et ah, 1993)

• Relative performance of event driven scheduling/rescheduling method and
dispatching rule seems to decrease as the number of machine breakdowns increases,
without strong evidence (Yamamoto and Nof, 1985).

• Scheduling/rescheduling methods produce better performance than fixed
scheduling or dispatching methods (Yamamoto and Nof, 1985, Bean et al, 1991).

• There is not significant difference between responding only major events (event

driven) and responding major disruption plus periodic response (event driven L·
periodic) (Kim and Kim, 1994).

For the dynamic problems, we observe the following;

• Off-line schedule generation algorithms perform better than dispatching rules
(Ovacik and Uzsoy, 1994, Kiran el at., 1991).

• Marginal improvement in the system performance is insignificant after a certain

number of rescheduling (Church and Uzsoy, 1992).

CHAPTER 2. LITERATURE REVIEW 16

Table 2.1: Classification of the papers
-------------------------------------- E N V I R O N M E N T --------------------------------------- ---------5 T ; - Î Ï E T 5 Ü L E r - G E N E R À T I ô N ---------- -------------- I M P L E M E N T A T I O N --------------

A u t h o r S h o p F l o o r J o b
A r r i v a l

S t o c h a s t i c i t y M e t h o d O b j e c t i v e
F u n c t i o n

W h e n H o w

Y a m a m o t o &
N o f 1 9 8 5

J o b S h o p S t a t i c M a c h i n e
B r e a k d o w n

B r a n c h a n d
B o u n d

M a k e s p a n E v e n t D r i v e n
(M B)

F u l l N e w
S c h e d u l e

C h u r c h & U z -
s o y 1 9 9 2

S i n g l e M a c h i n e D y n a m i c N o E D D L m a x P e r i o d i c S i

E v e n t D r i v e n
(u r g e n t j o b s)

F u l l N e w
S c h e d u l e

H o l l o w a y &

N e l s o n 1 9 7 4
J o b S h o p S t a t i c P r o c e s s T i m e

V a r i a t i o n
H S P T a r d i n e s s R e l .

P e r f o r m , M .
N o I n i t i a l F u ll

S c h e d u l e
H o l l o w a y
N e l s o n 1 9 7 7

J o b S h o p D y n a m i c P r o c e s s T i m e
V a r i a t i o n

H S P T a r d i n e s s R e l .
P e r f o r m . M

. P e r i o d i c F u l l N e w
S c h e d u l e

O v a c i k «Si U z -
s o y 1 9 9 4

S i n g l e M a c h i n e D y n a m i c N o A l g o r i t h m
b a s e d o n B«S£B

L m a x A f t e r S c h e d u l
i n g A j o b s

P a r t i a l

K i r a n ,
A l p t e k i n «Si K a
p l a n 1 9 9 1

F M S S t a t i c -
D y n a m i c

N o M u l t i p a s s
H e u r i s t i c
(F H)

T a r d i n e s s R e l .
P e r f o r m . M .

N o n e - P e r i o d i c F u l l N e w
S c h e d u l e

K i m «Si K i m
1 9 9 4

F M S S e m i -
D y n a m i c

M a c h i n e B r e a k .
U r g e n t J o b

D i s p a t c h
R u l e s

m e a n F T «Sí T
C o m b i n a t i o n

P e r i o d i c S i

E v e n t D r i v e n
F u l l N e w
S c h e d u l e

M a t s u u r a ,
T s u b o n e «Si
K a n e z a s h i 1 9 9 3

J o b S h o p S e m i -
D y n a m i c

M a c h . B r e a k . ,
S p e c i f .
C h a n g e , R u s h
J o b s

B«SiB, F C F S ,
S P T

M a k e s p a n A f t e r f i r s t
d i s r u p t i o n

F u l l S i J o b
S e l e c t i o n

M u h l e m a n ,
L o c k e t «Si F a r n ,
1 9 8 2

J o b S h o p D y n a m i c M a c h i n e
B r e a k . , P r o c e s s
T i m e V a r i a t i o n

D i s p a t c h
R u l e s

F T , M T , P L ,
C M T

P e r i o d i c F u l l N e w
S c h e d u l e

F a r n «Si M u h l e
m a n 1 9 7 9

S i n g l e M a c h i n e D y n a m i c N o D R S i H e u r i s
t i c s b a s e d o n
T S P

C h a n g e o v e r
T i m e

P e r i o d i c F u l l N e w
S c h e d u l e

B e a n e t al ,
1 9 9 1

M u l t i p l e
R e s o u r c e

S t a t i c M a c h . B r e a k . ,
U n a v a i l . T o o l

M U S A W e i g h t e d T o t a l
T a r d .

E v e n t D r i v e n R e p a i r

A k t u r k «Si
G o r g u l u 1 9 9 3

M o d i f i e d f l o w
l i n e

S t a t i c M a c h i n e B r e a k . R H S A E a r l i n e s s a n d
T a r d i n e s s

E v e n t D r i v e n R e p a i r

N o f «Si G r a n t
1 9 9 1

S m a l l C e l l S t a t i c M a c h i n e B r e a k .
S i U n e x p e c t e d
o r d e r a r r i v a l

S e v e r a l P e r f o r m a n c e
B a s e d ,
P e r i o d i c

F u l l n e w
s c h , , r i g h t
s h i f t ,
r e r o u t i n g t o
a l t e r , m a c

S a b u n c u o g l u «Si
K a r a b ü k 1 9 9 7

F M S S t a t i c M a c h i n e B r e a k .
S i P r o c e s s t i m e
v a r i a t i o n

B e a m s e a r c h
a n d d i s p a t c h
r u l e

M e a n t a r d i n e s s
a n d m a k e s p a n

P e r i o d i c F u l l n e w
s c h e d u l e

K u t a n o g l u a n d
S a b u n c u o g l u ,
1 9 9 4

J o b S h o p D y n a m i c M a c h i n e
B r e a k d o w n

A l l r e r o u t e ,
a r
r i v a l r e r o u t e ,
q u e u e r e r o u t e ,
n o r e r o u t e

M e a n W e i g h t e d
T a r d i n e s s

E v e n t D r i v e n D i s p a t c h i n g
r u l e

K u t a n o g l u a n d
S a b u n c u o g l u ,
1 9 9 5

J o b S h o p D y n a m i c M a c h i n e
B r e a k
d o w n , P r o c e s s
t i m e V a r .

I t e r a t i v e
S i m u l a t i o n

M e a n W e i g h t e d
T a r d i n e s s

P e r i o d i c D i s p a t c h
r u l e
s e l e c t i o n

W u a n d W y s k ,
1 9 8 8

F M S D y n a m i c N o D i s p a t c h i n g
R u l e s

M e a n T a r d i
n e s s , M e a n
F l o w T i m e

P e r i o d i c P a r t i a l S i m
u l a t i o n
w i n d o w

W u a n d W y s k ,
1 9 8 9

F M S D y n a m i c N o D i s p a t c h i n g
R u l e s

M e a n T a r d i
n e s s , M e a n
F l o w T i m e

P e r i o d i c P a r t i a l o f
S i m u l a t i o n
W i n d o w

J a i n a n d F o l e y ,
1 9 8 7

F M S S t a t i c M a c h i n e
B r e a k d o w n

M e a n
T a r d i n e s s

E v e n t D r i v e n R e r o u t i n g

B e n g u , 1 9 9 4 F l o w l i n e D y n a m i c M a c h i n e
B r e a k d o w n

А Т С M e a n W e i g h t e d
T a r d i n e s s

N o J o b
S e l e c t i o n

D u t t a , 1 9 9 0 F M S S t a t i c M a c h i n e
B r e a k d o w n ,
N e w J o b s ,
C h a n g e in J o b
P r i o r i t y

K n o w l e d g e
B a s e d

M e a n C o m p l e
t i o n T i m e ,
M e a n M a c h i n e
U t i l i z a t i o n

E v e n t D r i v e n R e r o u t i n g ,
P r e e m p t i o n ,
e t c .

CHAPTER 2. LITERATURE REVIEW 17

• Heuristic which produced the best performance for the static case is no longer
the best for the dynamic case (Muhleman and Farn, 1979).

• When congestion is low, performance of all dispatching rules are quite similar.

• Under a particular rescheduling period and level of congestion, performance of
the rules slightly gets worse as the level of uncertainty increases.

• Under a particular rescheduling period and level of uncertainty, performance
of the rules improves as the level of congestion is reduced.

• The heuristics become more sensitive to changes in the rescheduling period as
the level of uncertainty increases (Muhleman et al, 1982).

2.2 Open Research Points and Motivation

In the scheduling literature, most of the studies deal with the schedule generation
techniques. The revision of schedules in response to unexpected changes takes
recently the attention of the researches. However, many of the system features
are not considered in the literature. For instance, we do not know how the reactive
scheduling methods (no response, periodic response, responding every event and
on-line scheduling) are affected by the variability in machine loads and the system
complexity in both static and dynamic environments. System complexity can be
defined by the of number of jobs, number of machines or existence of bottleneck
work center. Moreover, in static environment, in periodic response policy instead of
generating complete schedules at each rescheduling point, partial scheduling can be
employed to save CPU time.

The effects of system complexity and type of load allocation on the performances

of reactive scheduling policies are not studied in the dynamic environment, either.

Also, we do not know how the reactive scheduling performances are affected by the
system stochasticity level (machine breakdown rate, process time variation level,
etc.). Furthermore, in the existing studies, job based information is not used. For
example, the effects of arrival rate of jobs and job based definitions of scheduling

CHAPTER 2. LITERATURE REVIEW 18

period (for instance, % new arrival/available jobs, number of new arrivals) are not
evaluated. Besides, due date changes of a job are not considered as a disruption to
the system. Finally, we do not know whether all the conclusions drawn from the
static case are also valid for the dynamic case.

In this thesis, we concentrate our attention to the static job shop scheduling
problem. As the open research points indicate that there is not a comprehensive
study that analyze the effects of system complexity and load allocation of machines
on the reactive scheduling policies. Therefore in the subsequent chapters we are
aiming to develop reactive scheduling policies and test their performances under
various system complexity and load allocation levels. By performing this analysis,
we would extend the related literature in that area.

Chapter 3

BEAM SEARCH

3.1 Introduction

Beam search is a heuristic method for solving optimization problems. It is an
adaptation of branch and bound method in which only some nodes are evaluated. In
this search method, at any level only promising nodes are kept for further branching
and remaining nodes are pruned off permanently. Since a large part of the search
tree is pruned off aggressively to obtain a solution, its running time is polynomial
in the size of the problems.

This search technique was first used in artificial intelligence for the speech
recognition problem (Lowerre, 1976). There have been a number of applications
reported in the literature since then. Fox (1983) uses beam search for solving
complex scheduling problems by a system called ISIS. Later, Ow and Morton (1988)

study the effects of using different evaluation functions to guide the search and

compare the performance of beam search with other heuristics for the single machine

early/tardy problem and the flow shop problem. They also propose a variation of
this technique called filtered beam search and find optimal settings of the search
parameters.

In another study, Chang et al. (1989) use beam search as a part of their FMS

19

CHAPTER 3. BEAM SEARCH 20

scheduling algorithm called bottleneck-based beam search (BBBS). Results indicate
that BBBS outperforms widely used dispatching rules for the makespan criterion.
Another beam search application to FMSs is reported by De and Lee (1990) who

show that the solution quality of filtered beam search algorithm is better than dept-
first type search heuristics in terms of the average maximum lateness and average
flowtime measures. The authors also show that beam search is better than breadth
first type heuristic in terms of number of nodes created during the search. In
another study, Hatzikonstantis and Besant (1992) propose a heuristic called A*
for the job shop problem with the makespan criterion. A* algorithm is very similar
to the beam search method. The only difference is that A* algorithm is a best-
first search based heuristic and aims to find minimum-cost paths in search trees.
Their computational tests indicate that this heuristic search algorithm performs
better than dispatching rules. Finally, Sabuncuoglu and Karabük (1996) propose
a filtered beam search algorithm for more complex FMS environment in which
AG Vs are explicitly modeled in addition to the routing and sequence flexibilities.
Their computational experiments show that the beam search performs better than
the machine and AGV scheduling rules under all experimental conditions for the
makespan, mean flow time and mean tardiness criteria. Their results also indicate
that the beam search based scheduling algorithm exploits flexibilities inherent in
FMS more effectively than other methods. An overview of the beam search and its
applications to optimization problems can be found in Morton and Pentico (1993).

Even though beam search has been used to solve a wide variety of optimization
problems, its performance is not generally known for scheduling problems. Because,
in the existing research work, beam search is primarily applied to the FMS
scheduling problem with additional considerations on MHS finite buffer capacities
and flexibilities and compared with only some dispatching rules. Hence, its relative
performances with respect to the known optimum solution and other recently
developed heuristics are not known. Besides, it has not been thoroughly studied as

a problem solving strategy with certain evaluation functions and search parameters.

This chapter attempts to achieve some of these objectives. First of all, we

measure the performance of beam search (with respect to optimum solutions)
and compare it with other well known algorithms. In addition, we investigate

CHAPTERS. BEAM SEARCH 21

the effectiveness of various rules as local and global functions of the beam search
applications. The previous research indicates that the values of filter and beam width
affect the performance of the beam search. Hence, we also examine the performance
of beam search for various values of filter and beam width and find their proper
values for the selected problem environments. Furthermore, we test two well known
schedule generation schemes (active and nondelay schedule generation schemes) in
conjunction to beam search applications to the job shop problems.

The rest of the chapter is organized as follows. The next section gives definitions
of the job shop problem. Then a beam search based algorithm is developed for
the problem. This is followed by a discussion on test problems and computational
experience with the proposed algorithm. The analysis ends with concluding remarks
for this scheduling method.

3.2 Problem Definition

The job shop problem is to determine the start and completion time of operations of
a set of jobs on a set of machines, subject to the constraints that each machines can
handle at most one job at a time (capacity constraints) and each job has a specified
processing order through the machines (precedence constraints). Explaining the
problem more specifically, there are a finite set J of jobs and a finite set M of
machines. For each job j € J, a permutation (cr^,..., <t;̂) of the machines (where

m — \M\) represents the processing order of job j through the machines. Thus,
j must be processed first on aj, then on etc. Also, for each job j and the
machine i, there is a nonnegative integer pji, the processing time of job j on
machine i. Since, this problem is NP-Hard (Garey and Johnson, 1979) and very
difficult to solve, early studies on this problem directed at development of effective

priority dispatching rules. But later, due to the general deficiencies exhibited by

priority dispatching rules, researchers concentrate on more complex techniques.

Tabu search (Glover, 1989, 1990), large step optimization (Martin et al, 1989)
simulated annealing (Matsua et al, 1988; Aarts et al 1991) and genetic algorithms
(Nakano and Yarnada, 1991) are the examples of the formalized applications of such

CHAPTERS. BEAM SEARCH 22

scheduling techniques to the job shop problem. A comprehensive bibliography of
these studies for the job shop problem is given by Jain and Meeran (1997). In this
chapter, we measure the performance of beam search for the makespan and mean
tardiness criteria. Makespan, Стах is the duration in which all operations for all
jobs are completed. Tardiness is the positive difference between completion time and
due date of a job. The objective is to determine starting times for each operation in
order to minimize the makespan and mean tardiness while satisfying all the capacity
and precedence constraints:

^m ax ~ ^^^^i,Cmax) — ^^^^feasibleschedulesi^^^^i^Ci'j : Vi £ T).

T — (^i/\J\^‘)TT'in'jgiisibleschedulesi^2i^J ^ i)) ·

where Ci and di are the completion time and due date of job i, respectively.

3.3 Beam Search

Beam Search is like breadth-first search since it progresses level by level without
backtracking. But unlike breadth-first search, beam search only moves downward
from the best fS promising nodes (instead of all nodes) at each level and ¡5 is called
beam width. The other nodes are simply ignored. In order to select the best ^ nodes,
promise of each node is determined. This value can be determined in various ways.

One way is to employ an evaluation function which estimates the minimum total
costs of the best solution that can be obtained from the partial schedule represented
by the node. Such an evaluation function may require as little effort as computing
some priority rating or as much as completing the partial schedule by some method.
The former method is called one-step priority evaluation function, and the latter
case is called total cost evaluation function. The one-step priority evaluation function
has a local view, whereas, total cost evaluation employs a projecting mechanism to
estimate costs from the current partial solution. Therefore, evaluation is based on

a global view of the solution. Unfortunately, there is a trade-off between these two

approaches: one-step (local) evaluation is quick but may discard good solutions. On

the other hand, more thorough evaluation by the global function is more accurate

CHAPTERS. BEAM SEARCH 23

but computationally more expensive.

A filtering mechanism is also proj^osed in the literature to reduce the
computational burden of beam search. During filtering some nodes are discarded
permanently based on their local evaluation function values. Only the remaining
nodes are subject to global evaluation. The number of nodes retained for the further

evaluation is called filter width (ct). The roles of evaluation functions and meaning
of search parameters are depicted in Figure 3.1.

After filtering, based on the outcome of the global evaluation, one node (beam
node) is selected among the descendants of each node. Since we have beam width
number of nodes in the former level while keeping one descendant, we again have

beam width number of nodes in the next level and therefore the search progresses
through fi parallel beams. Different nodes at the same level represent different
partial schedules. If the local evaluation is a function of the partial schedule (as in
the case of the lower bound based local evaluation function to minimize makespan),
values of the local evaluation function obtained for expanding one node cannot be
compared legitimately with the values of the local evaluation functions obtained for
expanding another node at the same level. Therefore, nodes in each parallel beams
are evaluated separately and only one node is selected for each beam.

3.3.1 The Proposed Beam Search Based Algorithm

In an algorithm like beam search, there are two key components: (1) search tree
representation and (2) application of a search methodology. As mentioned earlier,
in the search tree, each node corresponds to a partial schedule. A line between

two nodes represents a decision to add a job to an existing partial schedule.
Consequently, leaf nodes at the end of the tree corresponds to complete schedules.
Baker (1974) describes two search tree generation procedures (active and nondelay)
schedules for the job shop systems. In the proposed algorithm, these procedures are

used to generate branches from a given node.

Second issue in beam search is the determination of search methodology. In the

CHAPTERS. BEAM SEARCH 24

Rool

Level 1

Level 2

Level 3

Level 4

O

Beam Nodes

Nodes selected for global evaluation

Figure 3.1: Representation of beam search tree

proposed algorithm, the filtered beam search method is used to perform search in
the tree. Quality of filtered beam search depends on the quality of local and global
evaluation functions as well as beam and filter width parameters. Therefore, a
thorough analysis must be carried out to determine the nature of these functions and
parameters. In this study, local evaluation is performed by using simple dispatching
rules. Global evaluation of a node is determined as the estimation of upper bound
value for the solutions that can be generated if that node is added to the partial

schedule. In the proposed algorithm, this is performed by generating a complete
schedule from a given partial schedule by some dispatching rules and reading the
value of objective function. Priority rule in local evaluation function and dispatching
rule in global evaluation function are not necessarily the same. In this study, we

test several rules for this purpose.

In the proposed algorithm, all the nodes at level 1 are globally evaluated to

determine best ¡3 number of promising nodes. The selected nodes become the first

nodes of the ^ number of parallel beams. In the subsequent levels, descendants of

CHAPTERS. BEAM SEARCH 25

the beam nodes are first locally evaluated to find a number of promising nodes and
then these nodes are further globally evaluated to select the next beam node. If the
number of nodes expanded in the first level is less than specified beam width, then
all the nodes are expanded until the number of nodes is greater than beam width
in the next level.

To be more specific, procedural form of the beam search based algorithm is given
as follows:

Procedure (BEAM-SEARCH)

In the filtered beam search algorithm, we use active or nondelay schedule generation
methods developed by Baker (1974, pp 189) in order to generate search tree. At
each level of the methods, operations that have already been assigned starting times
make up a partial schedule. Given a partial schedule for any job shop problem, a
set of schedulable operations can be constructed. Let

PSt = a partial schedule containing t scheduled operations
St = the set of schedulable operations at stage t, corresponding to a given PSt
(jt — the earliest time at which operation j € St could be started
(f>t = the earliest time at which operation j € St could be completed.

Active schedule generation subroutine (ACTIVE)
Step 1 Determine <f)* = minj^St{(l>j} .̂nd the machine 7n* on which (f)* could be

realized
Step 2 For each operation j G St that requires machine m* and for which aj <

</>*, generate a new node which corresponds to the partial schedule in
which operation j is added to PSt and started at time aj.

Nondelay schedule generation subroutine (NONDELAY)
Step 1 Determine a* = 7ninj^St{^j} ^nd the machine m* on which cr* could be

realized

Step 2 For each operation j € St that requires machine m* and for which aj =

(7*, generate a new node which corresponds to the partial schedule in

which operation j is added to PSt and started at time aj.

CHAPTERS. BEAM SEARCH 26

We now give the steps of our beam search based algorithm.

Beam Search

Step 0 (Node generation). Generate nodes from the parent node by using the
procedure ACTIVE (or NONDELAY) with PSt as the null partial schedule.

Step 1 (Checking the number of nodes). If the total number of nodes generated
is less than beamwidth, then move down to one more level, generate new nodes from
each node by using the procedure ACTIVE (or NONDELAY) with PSt as the partial
schedule represented by the node, and go to Step 1. Else, go to Step 2.

Step 2 (Computing global evaluation functions). Compute the global
evaluation function values for all the nodes and select the best beamwidth (b)
number of nodes (initial beam nodes).

For each initial beam node

Step 3 (Determining beam nodes). While the number of levels is less than the
number of operations (denoted as n).

Step 3.1 (Node generation). In the next level, generate new nodes from the
beam node according to the procedure ACTIVE (or NONDELAY) with PSt as
the partial schedule represented by the beam node. Let k is the number of nodes
generated.

Step 3.2 (Computing local evaluation functions). Compute local evaluation
function values for each node.

Step 3.3 (Filtering). Choose the best f number of nodes according to local

evaluation function values (/ is filterwidth and f = min{k., f)) .

Step 3.4 (Computing global evaluation functions). Compute global
evaluation values of each f number of selected nodes.

Step 3.5 (Selecting the beam nodes). Select the node with the lowest global

evaluation value (i.e., beam node). For the partial schedule represented by the beam

CHAPTERS. BEAM SEARCH 27

node update the data set as follows:
(a) Remove operation j from St
(b) Form ,Si+i by adding the direct successor of operation j to St
(c) Increment t by one

Step 4 (Selecting the solution schedule). Among the beamwidth number of
schedules, select the one with the best objective function value.

N um eric E xam ple

Consider the following job shop system with two machines and four jobs and each
job has two operations. The processing times and routing information of the jobs is
given in Table 3.1 below.

Table 3.1: Job information
Operation 1 Operation 2

JOB Processing Time Machine Processing Time Machine
1 13 1 53 2
2 54 1 42 2
3 1 2 9 1
4 78 1 50 2

In the problem makespan is the performance measure. The filtered beam search
with beamwidth and filterwidth of 2 is applied to this problem. Nondelay branching
scheme is used to generate search tree. The “most work remaining” (MWR) priority
index is taken as the local evaluation function and the MWR dispatching rule is used

as the global evaluation function.

The beam search tree of the problem is shown in Figure 3.2 in which GF and LF
refer to global and local evaluation function values, respectively. The shaded nodes
are the beam nodes and the nodes with crosses are the ones that are pruned off as a
result of the global or local evaluation. The labels under the nodes give job number

and operation number.

In the algorithm, the first stage, from of Steps 0 to 2, is to determine the initial

beam nodes. As seen from Figure 3.2, in Step 0, we generate three nodes (i.e., J l-O l,

J2-02 and .14-04) from the root by using the procedure NONDELAY. In Step 1, since

CHAPTERS. BEAM SEARCH 28

number of nodes generated (3 in this case) is greater the beam size of 2, we directly
go to Step 2 in which their global evaluation function values (makespan measure
of the complete schedule generated by the MWR rule from the partial schedule
represented by the node) are computed and the best two nodes are selected on the
basis of their global evaluation values. These nodes are J l-O l L· J4-01. If the
number of nodes were smaller than the beam size, we would continue to expand
until the number of nodes are greater than the beam size at the next level.

After determining the initial beam nodes, Step 3 of the algorithm is executed to
schedule all the remaining operations. Since, Step 3 can be performed for each beam

node independently, we only demonstrate the procedure of the proposed algorithm
for the left beam.

Step 3 is implemented from level 2 to the end of search three. At each level we
generate the new nodes, perform filtering, compute the global evaluation functions
and finally select the node which corresponds to the operation added to the current

partial schedule. After level 1, the partial schedule represented on the left beam is
as follows:

PSi = { (Jl, 01, 0, 1) } where the array refers to (Job no. Operation no, starting
time, machine number).

At level 2

Step 3.1 only one node (J3-01) is generated according to the procedure
NONDELAY. Hence k = l.

Step 3.2 local evaluation function value of the node is calculated to be 10.
Note that in the example we use the MWR priority index as local
evaluation function.

Step 3.3 / ' is computed as 1 (/ ' = m m(A;,/) = m m (l,2) = 1) and the node
(i.e., J l-O l) is the only alternative for global evaluation.

Step 3.4 global evaluation function value of this node is 187.

Step 3.5 again this node is the only alternative to be the beam node (which
corresponds to the operation to be added to the partial schedule)

and then the current partial schedule becomes.

CHAPTERS. BEAM SEARCH 29

O

Level 0

Level 1

Level 2

Level 3

o
J1-02

GF:187 [:) GF:196

J2-01 J3-02

o

o
J2-02

O
J 3 -0 2

MAKESPAN ; 187

O

J 2 -0 2

MAKESPAN : 223

L e v e l 4

Level 5

Level 7

Level 8

Figure 3.2; Beam search tree for the numerical example

CHAPTERS. BEAM SEARCH 30

PS2 = { (Jl, 01, 0, 1), (J3, 01, 0, 2) }

At level 3.

Step 3.1 three nodes are generated (J2-01, J3-02, J4-01) from the beam
node according to the procedure NONDELAY. Hence k is 3

Step 3.2 the local evaluation function values are calculated for each node as
displayed by their LF values in Figure 3.2.

Step 3.3 Since / ' is 2 (m m (3,2)). Two nodes (J2-01 and J4-01) are selected
according to their local evaluation function values. Hence, the node
J3-02 is elimiiicited because of the lowest local function values.

Step 3.4 the selected two nodes are globally evaluated. These are displayed
as GF values in Figure 3.2.

Step 3.5 the node (J4-01) with the lowest global evaluation value is selected
as the beam node and the operation represented by this node is
now added to the current partial schedule. Therefore the partial
schedule becomes;

PS3 = { (Jl, 01, 0, 1), (J4, 01, 13, 1), (J3, 01, 0, 2) }

Since there is only one node generated, the execution of steps as level 4 is the same
as the ones at level 2. Hence it will not be repeated here. Instead we give the
resulted partial schedule at level 4.

PS4 = { (Jl, 01, 0, 1), (J4, 01, 13, 1), (.J3, 01, 0, 2), (Jl, 02, 13, 2) }

At level 5,

Step 3.1 two nodes (J2-01, J3-02) are generated according to the procedure

NONDELAY. Hence k=2.

Step 3.2 local evaluation function values are calculated as 96 and 9 for J2-01
and J3-02, respectively.

Step 3.3 since filterwidth is 2, both of them are further evaluated.

Step 3.4 global evaluation function values are calculated as 187 and 196.

CHAPTERS. BEAM SEARCH 31

Step 3.5 the node (J2-01) with the lowest global evaluation function value
is selected as the beam node and the operation represented by this
node is now added to the current partial schedule as follows:

PS, = { (Jl, 01, 0, 1), (J4, 01, 13, 1), (J2, 02, 91, 1), (J3, 01, 0, 2), (Jl, 02, 13,

2) }

In levels 6, 7 and 8 since agaiia only one node is generated, the steps at these
levels are the same as those of level 2. After assigning all the operations, we obtain
a complete schedule and the Gantt chart of this resulting schedule is displayed in

the Figure 3.3a.

The same procedure is executed for the right beam and the Gantt chart of the
resulting schedule is displayed in Figure 3.3b. Note that at the end of the algorithm,
we have two complete schedules. In Step 4, we compute makespan of both schedules
and select the one with the minimum value. It turns out that, in Figure 3.2, the
beam on the left hand side gives the better schedule.

The complexity of the beam search is 0{n^), where n is the number of operations
to be scheduled in the job shop problem. The search tree generated by the algorithm
has n levels, and at each level only beamwidth (b) number of nodes are kept for

further expansions. Hence, the number of subproblems considered in the search is
equal to bn. At any level, filterwidth (/) number of nodes are selected by a local
evaluation function among the nodes generated from a beam node. For the job
shop problem, number of nodes expanded from a root node is much less than total
number of operations (n). Hence, the number of local evaluation operations in the

search tree is less than bn̂ .

At any branch, only filterwidth number of nodes are selected for global evaluation.
Therefore, the number of global evaluation is at most equal to fbn. For a global
evaluation operation, at each level at most n number of nodes are locally evaluated
and one node is selected for further expansion. These selected nodes are expanded

further down to at most n levels. Hence, for one global evaluation function requires

at most number of local evaluation operations. Since there are fbn global

evaluation, this part of the search requires at most fbn^ number of local evaluations.

CHAPTERS, BEAM SEARCH 32

M /C l

M /C 2

I 13 66 91 141 145 154

(a) Schedule generated on the left beam
187 Time

M /C l

M /C 2

J4-01 Jl-01 J2-01 J3-02

J3-01 J4-02 Jl-02 J2-02

78 128 145 154 181 223 Time

(b) Schedule generated on the right beam

Figure 3.3: Schedules generated by the beam search algorithm

In summary, + fbn^ number of local evaluation operations have to be
performed. In the proposed version of the beam search, local evaluation is taken
as computation of a priority index. This makes the total computation work is
proportional to n .̂ Therefore, the proposed algorithm has O(n^) complexity.

3.4 Makespan case

The performance of the scheduling algorithm is first measured for the makespan
criterion. Effects of different local and global functions and various beam L· filter
width levels are also evaluated in the experiments. Since the optimal results of some
test problems are known in the literature for the makespan criterion, the performance

of the algorithm is tested in terms of the percent deviation from optimality. Some

of these problems are given in Applegate and Cook (1990). These problem are

CHAPTER 3. BEAM SEARCH 33

generated according to format described in the previous section. Each of the test
problems used in this study has 10 machines and 10 jobs. The problems ABZ5 and
ABZ6 are from Adams et al. (1988); the problems LA16 through LA20 are from
Lawrence (1984); the problems ORB3, ORB4 and ORBS stated again in Applegate
and Cook (1990).

Since the proposed algorithm is a heuristic, it is also compared with well known
dispatching rules, such as MWR, MTWK & LPT. These rules are implemented via
the nondelay scheduling scheme proposed by Baker (1984).

Before the analyses, we have tested performances of MWR, LPT, MTWK, SPT
dispatching rules and note that MWR outperforms the others. Therefore MWR is
used as the nondelay dispatching rule in the global evaluation function to complete
the partial schedule from the nodes. For the local evaluation function, however, both
MWR and a lower bound proposed by Baker (1974) are considered in the algorithm.
The complete definition of these rules and the lower bound are given in Table 3.2
where St is the set of unscheduled operations at level t; aj is the earliest time at
which operation j could be started; R j is the unscheduled processing for the job
corresponding to operation j; fk is the latest completion of an operation on machine
k; Mk is the unscheduled processing that will require machine k.

Table 3.2: Descriptions of priority rules used in makespan analysis
Rule Description
MWR (Most Work Remaining)
MTWK (Most Total Work) MWRij = E7=iPio
LPT (Longest Processing Time) LPTij = pij
LB (Lower Bound) LBij = max{maxjç.sXaj + Rj),maxi<k<m{fk + Mk))

In addition, two different schedule generation (or search tree representation)
schemes are tested in this study. As discussed in Baker (1974), the search trees
are expanded by either the active or nondelay schedule generation procedures. In

an active schedule, no operation is started earlier without delaying some other

operations whereas in a nondelay schedule, no machine remains idle when there
exist a schedulable operation. A combination of two evaluation functions and two
schedule generation schemes results in four versions of the proposed beam search

algorithm (see Table 3.3).

CHAPTER 3. BEAM SEARCH 34

Table 3.3: Searching Methods used in the Makespan Case
Search Tree
Representation Local Evaluation Rule Global Evaluation Function
Active MWR Nondelay schedule generation using MWR
Non delay MWR Nondelay schedule generation using MWR
Active LB Nondelay schedule generation using MWR
Nondelay LB Nondelay schedule generation using MWR

The results of the experiments are depicted in Figure 3.4 for different beam and
filter width values. The vertical axis shows the average (over 10 problems) deviation
from optimality. Each curve represents the results of a particular beam width (i.e.,
BSl, BS2, etc). The horizontal axis measures filter width. The horizontal lines in
the graphs are the performances of the nondelay MWR dispatching heuristic.

In general, the performance of the algorithm changes for different search tree
representation schemes, local evaluation functions and beam and filter width values
(Figure 3.4). Therefore, each of these factors is tested separately in order to use
the best version of filtered beam search method in the later stages of the research.
In the L-shaped graphs, one can observe some erratic behaviors. These behaviors
are mainly due to the imperfectness of the local and global evaluation functions.
In general, local evaluations are cheaper but also less accurate. Thus, too small
filter width makes it more likely that errors in the local estimate prevents good
nodes from being passed to global evaluation. Therefore, if we increase the filter
width, more nodes enter the second stage, and nodes erroneously valued by the
local estimate will have a second chance. If the global estimate happens to be more
accurate, then the node will be saved as appropriate in the second stage. However,

both estimates could be imperfect. Hence, the larger filter width in this case forces
a poor node, according to the local evaluation function, to pass to the second stage
of the evaluation. The global method may then erroneously save these bad nodes.
When this happens, the performance of the search may deteriorates as the filter
width increases while keeping the beam width constant. Since either estimate is not
very accurate the above behavior is observed.

We also note that, if there are fewer nodes expanded than the size of beam width

at the level 1, all the nodes are further expanded in the next level until the number

CHAPTERS. BEAM SEARCH 35

(a) Active Branching
Local Evaiuation: MWR
Global: Nondelay Dispatch (MWR)

(b) Nondelay Branching
Local Evaluation: MWR
Global: Nondelay Dispatch (MWR)

(c) Active Branching
Locai Evaluation: LB
Global: Nondelay Dispatch (MWR)

(d) Nondelay Branching
Local Evaluation: MWR
Global: Nondelay Dispatch (MWR)

Figure 3.4: Percent deviation from optimal solution vs filterwidth

CHAPTERS. BEAM SEARCH 36

of nodes are greater than the beam width. Then all the nodes are globally evaluated
to select beam nodes. If we increase the beam width, we may have more such nodes
to evaluate by the global function. Similarly, if the global estimate is imperfect,
global function may then mistakenly select inferior nodes as the beam nodes. In

this case, the performance of the search heuristics may deteriorate as the beam
width increases if filter width is kept constant. We observe such a behavior in
the nondelay schedule generation scheme. But the amount of deterioration on the
schedule is negligible.

Active vs nondelay Schedules

In the analysis, both active and nondelay branching methods are used to generate
search trees. Our computational experiments indicate that overall performance of
the nondelay branching scheme is better than the active branching approach for
small filter widths. However, as the filter width increases beyond a certain limit,
the active scheme starts performing slightly better than the nondelay scheme. We
also observe that the best result found by the active scheme is worse than the one
found by the nondelay scheme. Even though this finding may seem to be counter
intuitive, it is consistent with the generally held view that the nondelay scheduling
scheme produces better results than the active scheduling scheme when used with
dispatching rules for the makespan criterion (Baker, 1974).

Local evaluation functions

We measure the performance of two local evaluation functions: the lower bound
discussed in Baker (1974) and the MWR rule. A lower bound value of a partial
schedule is computed as the maximum of a job based bound value and machine
based bound value. The job based bound value is equal to MW R plus earliest

possible start time (Table 3.2). This is generally greater than a machine based
value. Since evaluation function based on the lower bound resembles the MWR

rule, and the results of MWR and lower bound are not expected to differ too much.

However, as depicted in Figure 3.4, the MWR local function yields better results

than the lower bound estimate. The details of these results are given in Table A .l

in Appendix A.

CHAPTERS. BEAM SEARCH 37

Filter and beam width

In the classical job shop problem, there is not much flexibility as in the case of
FMS. Hence, relatively fewer number of nodes are expanded from the root node
in the search tree and all such nodes are locally evaluated for large Alter widths.
Consequently, the performance of the algorithm does not change significantly as the
filter width increases beyond a certain limit. From our experiments, it appears that
the smallest value of the filter width that gives reasonably good performances for a
given beam width is approximately five. Our experiments also show that increasing
the beam width improves the solution quality. This is because we continuously
expand levels of the tree until we have more number of nodes than the beam size.
As a result, for large beam sizes, we have larger pool of nodes to evaluate and hence
better solution possibilities. But one should also take into account computation
time requirements. As seen from Figure 3.5, the higher the beam width, the higher
the CPU time needed to execute the algorithm. It seems that the best beam size
is five when considering both the CPU times and the quality of solutions. These
parameter settings are used in the latter stages of experiments.

3.4.1 Computational results

In order to measure the makespan performance of beam search algorithm in the
job shop environment, we used well known benchmark problems reported in the
literature. These are: 40 problems generated by Lawrence (1984), 2 problems used
by Adams et al. (1988), and 5 problems mentioned in Applegate and Cook (1990).
The famous FTIO problem is also included in the experiments. Both the proposed
algorithm and the rules are run on Sparc Station Classic with one 60 MHz micro
SPARC 8-CPU and 1 GB memory. The codes are written in the programming

language C.

The computational results are given in Table 3.4. Each cell in that table
represents the average deviation from optimality and the computation times in
CPU seconds for the corresponding problem instance. Since solution times of the
dispatching rules are very small (e.g. less than 10“ ̂ seconds), the CPU times of the

CHAPTERS. BEAM SEARCH 38

-B S 1
-B S2
-B S3
-B S4
-B S5
-B S6
-B S7
-B S8

(a) CPU time vs Filterwidth for Makespan Objective

-BS1
-B S2
-B S3
-B S4
-B S5
-B S6
-B S7
-B S8

(b) CPU time vs Fiiterwidth for Average Tardiness Objective

Figure 3.5: CPU time vs filterwidth

CHAPTERS. BEAM SEARCH 39

rules are not included in this table.

As expected, the performance of the algorithm in terms of the average percent
deviation from optimality is much better than the rules. The average deviation of
the algorithm is % 4.26 for all the test problems, while it is 16, 29, and 13 percents
for SPT, LWK, MWK, respectively. These rules solve only three problem instances
to optimality, but the proposed algorithm solves 16 out of 48 instances, including
the most difficult problems FTIO, LA36,...,LA40. For the instances which we do not
know optimal solutions, the percent deviations from optimality cannot be calculated
and thus these cell are shown as

Even though beam search is a branch and bound based algorithm, the CPU times
is not very high. It appears that the number of jobs (rather than machines) is the
most determining factor for its computational time requirement.

We also note that the performance of the algorithm changes for different problem
types. It seems that the algorithm performs very well if the number of jobs is greater
than the number of machines which we call rectangular instances. It also appears
that the square type instances (number of machines equals to number of jobs) are
hard instances for the beam search algorithm.

We also compare the beam search algorithm with other heuristic methods whose
performances are reported for some selected problems. In a recent study, Aarts et al.

(1994) propose multi-start iterative improvement (MSII), threshold accepting (TA),
simulated annealing (SA) and genetic local search (GLS) algorithms for job shop
problems. The authors use two neighborhood structures (1 & 2) in their algorithms.
They apply these solution methods to 43 problem instances, among which 40 of them
are also common in our test set. The resulting performances of their algorithms and

our beam search based algorithm (referred to as BS) are given in Table 3.5.

In terms of average % deviation from optimality, the solution quality of BS is only
better than the multi-start iterative improvement methods (MSIIl, MSII2) and close
to threshold accepting method (TAl). In terms of the maximum % deviation and
number of optimally solved instances, the performance of the beam search based

algorithm is still better than MSIIl, MSII2 and TAl and competes with the well

CHAPTERS. BEAM SEARCH 40

Table 3.̂ :: Results of test prob^ ems for the Makespan Analysis
Algorithm b=5, f=5 SPT LPT MWR

Problem | Optimum Solution 1 % Dev. | CPU Solution 1 %Dev. Solution 1 % Dev. Solution 1 %Dev.
10*5

LAOl 666 666 0 2.5 751 12.8 933 40.01 735 10.4
LA02 655 704 7.48 2.9 821 25.3 830 26.7 817 24.7
LAOS ^ 597 650 8.88 3 672 12.6 822 37.7 696 16.6
LA04 590 620 5.09 2.8 711 20.5 833 41.2 758 28.5
LAOS 593 593 0 3.2 610 2.9 766 29.2 593 0

Averages 4.29 14.82 34.98 16.04
15*5

LA06 926 926 0 13.6 1200 29.6 1067 15.2 926 0
LA07 890 890 0 12.2 1034 16.2 1136 27.6 970 9
LAOS 863 863 0 14.7 942 9.2 1176 36.3 957 10.9
LA09 951 951 0 12.1 1045 9.9 1334 40.3 1015 6.7
LAIO 958 958 0 14.2 1049 9.5 1312 37 966 0.8

Averages 0 14.88 31.28 5.48
20*5

LAll 1222 1222 0 45.4 1473 20.5 1525 24.8 1268 3.8
LAI 2 1039 1039 0 39.8 1203 15.8 1305 25.6 1137 9.4
LA13 1150 1150 0 44.9 1275 10.9 1354 17.7 1166 1.4
LA14 1292 1292 0 43.3 1427 10.4 1725 33.5 1292 0
LA15 1207 1207 0 41.6 1339 10.9 1648 36.5 1343 11.3

Averages 0 13.7 27.62 5.18
10*10

LA16 945 988 4.55 10.7 1156 22.3 1347 42.5 1054 11.5
LA17 784 827 5.49 9.6 924 17.9 1203 53.4 846 7.9
LAIS 848 881 3.89 10.2 981 15.7 1154 36.1 970 14.4
LA19 842 882 4.75 8 940 11.6 986 17.1 1013 20.3
LA20 902 948 5.1 8.8 1000 10.9 1232 36.6 964 6.9
FTIO 930 1016 9.2 74 1074 15.5 1324 42.4 1108 19.1
ABZ5 1234 1288 4.4 10.8 1352 9.6 1735 40.6 1369 10.9
ABZ6 943 980 3.9 14.6 1097 16.3 1110 17 987 4.7
ORBl 1059 1174 10.85 14.5 1478 39.6 1398 32 1359 28.3
ORB2 888 926 4.27 10.9 1175 32.3 1170 31.8 1047 17.9
ORBS 1005 1087 7.54 12.9 1179 17.3 1389 38.2 1247 24
ORB4 1005 1036 3.09 11.9 1236 23 1432 42.5 1172 16.6
ORB5 887 968 9.13 11.2 1152 29.9 1175 32.5 1173 32.2

Averages 5.86 20.14 35.58 16.53
15*10

LA21 1040-1053+ 1154 ♦ 44 1324 ♦ 1518 ♦ 1264 *
LA22 927 985 6.26 44.3 1180 27.3 1589 71.4 1079 16.4
LA23 1032 1051 1.84 39.8 1162 12.6 1374 33.1 1185 14.8
LA24 935 992 6.1 39.3 1203 28.7 1214 29.8 1101 17.8
LA25 977 1073 9.83 43.1 1449 48.3 1487 52.2 1166 19.3

Averages 6.01 29.23 46.63 17.08
20*10

LA26 1218 1269 4.19 136.1 1498 23 1606 31.9 1435 17.8
LA27 1235-1269+ 1361 ♦ 129.8 1784 >1« 1728 * 1442 sK

LA28 1216 1373 12.91 137.2 1610 32.4 1750 43.9 1487 22.3
LA29 1120-1195+ 1252 ♦ 140.7 1556 * 1665 * 1337 *
LA30 1355 1435 5.9 144.6 1792 32.3 2067 52.5 1534 13.2

Averages 7.67 29.23 42.77 17.77
30*10

LA31 1784 1784 0 810.3 1951 9.4 2322 30.2 1931 8.2
LA32 1850 1850 0 806 2165 17 2341 26.5 1875 1.4
LA33 1719 1719 0 818.9 1901 10.6 2125 23.6 1875 9.1
LA34 1721 1780 3.42 823.5 2070 20.3 2223 29.2 1935 12.4
LA35 1888 1888 0 684.2 2118 12.2 2316 22.7 2118 12.2

Averages 0.68 13.89 26.43 8.66
’-f ’ refers to the problems that we do not know their optimal makespan values

CHAPTERS. BEAM SEARCH 41

Table 1.4: (Cont’d) Results of test problems for the Makespan Analysis
Algorithm b=5, f=5 | SFT | LPT | MWR

Problem | Optimum Solution | % Dev. | CPU Solution | %Dev. Solution | % Dev. Solution | %Dev.
1 5 * 1 5

LA36 1268 1401 10.47 98.7 1681 32.6 1908 50.5 1521 20
LA37 1397 1503 7.59 99.2 1693 21.2 1884 34.9 1643 17.6
LA38 1171-1184 1297 93.7 1509 1686 1477
LA39 1233 1369 11.03 95.8 1447 17.4 1894 53.6 1443 17
LA40 1222 1347 10.23 100 1495 22.3 1661 35.9 1475 20.7

Averages 9.83 23.36 43.72 18.82
Average of Means 4.26 15.99 28.62 12.16

known searching schemes (simulating annealing and genetic local search methods)

Bear in mind that BS is a constructive algorithm whereas others are iterative
procedures whose computation times can be indeed very long. In Aarts et al. (1994)
the average of running times reported for each problem are much larger than the
CPU time requirements of BS. Even for small sized problems, the differences between
CPU times are significant, (i.e., the beam search method is approximately 10 and 6
times faster than the other methods for 10 jobs 10 machines and 15 jobs 15 machines
problems, respectively).

Table 3.5: Com]parison of schec uling algorithms
MSIIl MSII2 TAl SAl SA2 GLSl GLS2 BS

Avr. % Dev. 11.73 8.96 3.73 1.52 1.51 2.22 1.92 4.47
Max. % Dev. 32.61 27.36 12.98 10.13 9.45 15.20 12.50 11.79
^ of optimum 4 7 15 19 18 16 16 16

3.5 Mean tardiness case

The performance of the beam search based algorithm is also measured in terms

of the mean tardiness. Again, we first examine evaluation functions and find
proper settings of the beam search parameters. Since optimum solutions of the
job shop problems are not generally known in the tardiness case, we only compare
the performance of the algorithm with dispatching rules.

During computational experiments, we use the modified version of the problem

data used in the makespan case. Specifically, we append the due date information to

the data sets using the TWK due date assignment method (Baker, 1984). Based on

CHAPTERS. BEAM SEARCH 42

pilot runs, the proportionality constant (tardiness factor) of TWK is set to 1.5 for
the tight due date case (corresponds to 50 percent tardy jobs) and 2 for the loose
due date case (corresponds to 6 percent tardy jobs). These two tardiness levels
are very close to each other because the due dates are assigned in proportional to
total processing time, instead of average processing time. We also know that in low
utilization rates (such as the casein our model with 62% utilization), the closeness of
tardiness factors is expected as indicated by Baker (1984, pp.l099). In this analysis
we use the tardiness factor of 1.5 to determine the due dates of the jobs.

After determining the due date settings for the jobs, the performances of nondelay
dispatching rules are measured in 10 test problems to find the appropriate local and
global functions for the beam search algorithm. Five rules (SPT, EDD, LWR, MDD
and MODD) are used in the experiments (see Table 3.6 for the complete description).
Results indicate that the solution quality of EDD, MDD and SPT are comparable
with each other and they are all better than the other rules with the average
tardiness values of 517.9, 540.3 and 485.6, respectively. Similar to the makespan
case, we determine most suitable branching scheme, evaluation functions and search
parameters. Our computational experiments are carried out in two stages: we first
investigate the branching scheme and then local evaluation functions and search
parameters. Descriptions of these search methods are given in Table 3.7.

Table 3.6: Description of priority used in tardiness analysis
RULE DESCRIPTION
SPT
(Shortest Processing Time) SPTij = pij
LWK
(Least Work Remaining)
EDD
(Earliest Due Date EDDij = duedatci
MOD
(Modified Operational Due Date) MODDij = {duedateil'£'^^iPiq)Y;,l^iPig
MD
(Modified Due Date) MDDij = max{duedatei,t + YJ^ljPij)

CHAPTER 3. BEAM SEARCH 43

(a) Active Branching
Local: SPT

GlobaIrNondelay Dispatch(SPT)

(b) Nondelay Branching
Local: SPT

Global:Nondelay Dispatch(SPT)

(c) Active Branching
Local: EDO

Global:Nondelay Dispatch(EDD)

(d) Nondelay Branching
Local: EDO

Global:Nondelay Dispatch(EDD)

Figure 3.6: Mean tardiness vs filterwidth analysis

CHAPTER 3. BEAM SEARCH 44

(a) Active Branching
Local: MOD
GlobaliNondelay Dispatch(MDD)

(b) Active Branching
Local: MOD
GlobahNondelay Dispatch(SPT)

(c) Active Branching
Local: EDO
GlobaliNondelay Dispatch(SPT)

(d) Active Branching
Local: MOD
Global:Nondelay Dispatch(SPT)

Figure 3.7: Mean tardiness vs filterwidth analysis

CHAPTER 3. BEAM SEARCH 45

Active vs nondelay schedules

The results indicate that the performance of nondelay schedules is better than
the active schedules for only small filter widths (Figure 3.6). However, after the
filter width value of 3, the performance of the active generation method becomes
better than the nondelay method (see Table A.2 in Appendix for the details of
the experiments). This behavior is observed due to the fact that the number of
active schedules generated by the beam search algorithm is greater than the number
of nondelay schedules and hence, there is more chance to obtain better results by
searching active schedules. For that reason, in contrast to the makespan case, the
active scheduling scheme is used in later stages of this research.

Table 3.7: Search methods used in the first part of the experiments
Search Tree
Representation Local Evaluation Rule Global Evaluation Function
Active SPT Nondelay SPT Dispatch Heuristic
Non del ay SPT Nondelay SPT Dispatch Heuristic
Active EDD Nondelay EDD Dispatch Heuristic
Nondelay EDD Nondelay EDD Dispatch Heuristic
Active MDD Nondelay MDD Dispatch Heuristic

Local and global evaluation functions

In the experiments, as a part of the active schedule generation scheme, MODD,
SPT and EDD rules are used in both local and global evaluation functions. Results
shows that SPT is better than the other rules. This result is consistent with results
of the earlier studies reported by Kiran and Smith (1984) that SPT is one of the
best priority rules in terms of all due date related measures.

However, due date based rules were expected to perform well for the mean
tardiness criterion. Hence, the second set of experiments is carried out with EDD,
MDD and MODD as the local evaluation functions. Due to better performance
of the beam search with evaluation functions of SPT rule in the previous analysis,
global estimation is again performed by this rule (see Table 3.8). The experimental

results indicate that the due date based rules perform better than SPT (Figure 3.7).

As given in Table A.3, due date based rules find promising nodes easily for small

CHAPTERS. BEAM SEARCH 46

filter widths. For that reason, their performances are considerably better than SPT.
However, for the large beam and filter widths, they only perform slightly better than
SPT. Overall, MODD displays the best performance, and hence is selected as the
local evaluation function.

Filter and beam widths

As previously discussed in the makespan case, only a few nodes are expanded
from a beam node in the job shop problem. Hence, increasing filter width does
not improve the solution quality. It seems that the appropriate value is 5 (see also
Figure 3.6 & 3.7). For the beam width parameter, the test results show that the
beam width of 5 is also a proper value for the tardiness case when considering the
CPU times and the quality of solutions (Figure 3.5). As a result, we decide to use
active schedule generation method with local evaluation function of the MODD rule
and global evaluation function of the SPT rule.

Table 3.8: Search methods used in the second part of the experiments
Search Tree
Representation Local Evaluation Rule Global Evaluation Function
Active MDD Nondelay SPT Dispatch Heuristic
Active EDD Nondelay SPT Dispatch Heuristic
Active MODD Nondelay SPT Dispatch Heuristic

3.5.1 Computational Results

After determining the proper evaluation functions and parameter settings, the
resulting beam search algorithm is applied to the 48 test problems described earlier
in the paper. The detailed results of the algorithm and five dispatching rules are
given in Table 3.9. Since we do not know optimal solutions in the tardiness case,

we only compare the algorithm with the rules. Note that the percent deviations of

dispatching rules from the solution of the proposed algorithm are also reported in
that table.

The results indicate that, the proposed algorithm outperforms the rules for all
problem instances. Among the dispatching rules, there is not a clear winner in

CHAPTERS. BEAM SEARCH 47

Table 3.9: Results of test problems for the Mean Tardiness Analysis
Algor. b=5, f=5 EDO LWR MOD MODD SPT EDO LWR MOD MODD SPT

Prob. Sol. 1 c p D Sol. Sol. Sol. Sol. Sol. %Dev. %Dev. %Dev. %Dev. %Dev.
10*5

LAOl 97.0 3.4 118.2 118.2 118.2 147.9 135.6 21.8 21.8 21.8 52.4 39.7
LA02 62.5 3.9 103.9 105.8 107.5 132.4 89.0 66.2 69.2 72.0 111.8 42.4
LAOS 70.0 3.4 98.7 97.0 97.0 132.4 85.9 41.0 38.5 38.5 89.1 22.7
LA04 86.8 8.7 133.3 133.8 135.8 151.4 130.8 53.5 54.1 56.4 74.4 50.7
LAOS 95.8 3.6 106.9 112.2 106.1 144.5 118.0 11.60 17.1 10.7 50.8 23.1

Averages 38.9 40.2 39.9 75.7 35.7
15*5

LA06 207.8 12.9 233.7 227.2 217.9 350.5 255.6 12.4 9.3 4.8 68.6 23.0
LA07 195.6 15.7 238.9 241.0 238.5 297.6 214.5 22.1 23.2 21.9 52.1 9.6
LAOS 197.3 13.8 220.3 240.3 240.3 310.8 242.9 11.6 21.7 21.7 57.5 23.1
LA09 227.0 14.5 284.0 265.0 232.2 341.3 284.6 25.1 16.7 2.1 50.3 25.4
LAIO 218.2 13.1 237.9 228.8 225.2 374.2 251.1 8.9 4.8 3.1 71.4 15.0

Averages 16.0 15.2 10.7 60.0 19.2
20*5

LAll 343.7 36.2 365.5 353.6 341.0 564.4 389.8 6.3 2.8 -0.7 64.2 13.4
LA12 302.3 38.5 305.7 286.7 295.7 466.3 334.3 1.1 5.1 -2.1 54.2 10.6
LA13 329.8 39.3 352.9 335.7 340.5 515.1 371.0 7.0 1.8 3.2 56.1 12.5
LA14 398.6 38.5 403.3 370.4 377.5 566.0 411.0 1.1 -7.1 -5.3 41.9 3.1
LAI 5 386.1 37.2 396.6 419.7 412.9 566.6 429.1 2.7 8.7 6.9 46.7 11.1

Averages 3.6 0.2 0.4 52.7 10.2
10*10

LA16 25.5 13.3 64.0 73.0 64.0 30.5 48.4 150.9 186.2 150.9 19.6 89.8
LAI 7 20.5 13.2 39.3 80.4 39.0 76.1 54.0 91.7 292.2 91.7 271.2 163.4
LAIS 6.6 13.0 50.3 55.0 44.2 47.0 18.2 662.1 733.3 569.7 612.1 175.7
LA19 11.3 12.4 27.2 39.8 34.7 50.9 51.7 140.7 252.2 207.1 350.4 357.5
LA20 9.5 12.6 40.0 74.0 40.0 28.1 38.2 321.0 678.9 321.0 195.7 302.1
FTIO 56.7 14.2 106.0 117.0 106.0 148.0 95.5 86.9 106.3 86.9 161.0 68.4
ABZ5 18.4 13.5 57.2 171.6 57.2 31.9 41.5 210.9 832.6 210.8 73.3 125.5
ABZ6 0.0 12.3 11.0 17.9 11.0 10.2 4.7 ♦ ♦ ♦ ★ *
ORBl 113.2 15.6 194.7 157.1 205.4 199.8 241.0 72.0 38.8 81.4 76.5 112.9
ORB2 23.2 13.7 76.0 61.1 80.5 77.8 50.1 227.6 163.3 246.9 235.3 115.9
ORB3 105.8 15.5 135.1 156.3 136.2 298.9 184.6 27.7 47.7 2S.7 182.5 74.5
ORB4 39.6 14.9 74.2 175.9 91.7 155.6 91.3 87.4 344.2 131.6 292.9 130.5
ORB5 40.3 13.6 78.7 97.4 78.7 96.5 87.5 95.3 141.7 95.3 139.4 117.1

Averages 181.2 318.1 185.2 217.5 152.8
15*10

LA21 90.8 55.4 150.0 175.1 156.7 207.5 175.7 65.0 92.6 72.4 128.3 93.3
LA22 114.5 54.7 241.5 235.2 210.7 225.6 172.3 111.0 105.5 84.1 97.1 50.5
LA23 96.2 52.7 130.3 159.9 147.9 177.4 143.1 35.4 66.0 53.6 84.3 48.7
LA24 95.6 53.9 129.8 131.1 121.7 173.0 131.0 35.8 37.2 27.3 80.9 37.0
LA25 106.7 53.6 176.9 151.7 163.2 187.5 162.9 65.8 42.1 52.9 75.6 52.6

Averages 62.6 68.7 58.0 93.3 56.4
20*10

LA26 225.6 156.0 345.0 241.1 288.3 344.4 250.1 52.9 6.9 27.8 52.6 10.8
LA27 226.3 148.4 303.8 292.4 286.1 358.0 271.3 34.3 29.2 26.4 58.2 18.9
LA2S 212.4 155.9 301.4 330.8 227.3 410.2 342.3 41.9 55.7 30.5 93.1 61.1
LA29 216.1 150.7 270.2 276.2 266.9 443.4 269.9 25.0 27.8 23.5 105.1 24.9
LA30 233.8 155.2 396.2 372.9 382.9 425.4 337.6 69.4 59.5 63.7 81.9 44.4

Averages 44.7 35.8 34.4 78.2 32.2
30*10

LA31 348.3 915.4 566.6 566.4 564.2 783.3 625.9 62.7 62.6 61.9 124.8 79.7
LA32 364.8 942.3 565.8 563.8 571.4 813.5 652.9 55.1 54.5 56.6 123.0 78.9
LA33 378.1 940.1 565.4 501.3 584.9 755.2 540.0 49.5 32.6 54.7 99.7 42.8
LA34 333.3 900.7 582.4 549.4 537.2 776.4 591.9 74.7 64.8 61.1 132.9 77.5
LA35 335.3 866.5 605.6 567.1 587.2 815.1 603.4 80.6 69.1 75.1 143.0 79.9

Averages 64.5 56.7 61.9 124.7 71.8

CHAPTER 3. BEAM SEARCH 48

Table 1.9: (Cont’d) Results of test problems for the Mean Tardiness Analysis.
MODD SPTAlgor. b=5, f=5 EDD LWR MOD MODD SPT EDD

%Dev.
LWR
%Dev.

MDD
~%DiProb. Sol. CPU Sol. Sol. Sol. Sol. Sol.

15*15
LA36 33.53 123.03 113.93 115.20 113.9 142.2 140.7 239.7 243.5 239.7 324.1 319.7
LA37 26.8 125.4 48.0 109.4 54.1 172.1 118.6 79.3 308.2 101.9 542.2 342.8
LA38 27.1 126.3 128.6 136.6 130.0 87.4 53.1 374.2 403.5 379.1 222.1 95.8
LA39 24.5 121.9 87.3 114.3 87.3 93.3 76.1 256.0 366.0 256.0 280.4 210.3
LA40 43.6 125.5 92.1 123.2 106.4 126.2 88.9 110.9 182.1 143.8 188.9 103.6

__________ Averages 212.0 300.7 224.1
%Dev. : Percent deviation from algorithm’s solution

311.6 214.7
Sol. : Solution

the experiments. Their relative performances vary for different problem types (i.e.,
square or rectairgular). We also note that the mean tardiness values are low for
the square type instances (i.e., number of jobs equals to number of machines). For
that reason, differences due to small numbers results in high percent deviation of
the rules for these problem instances.

3.6 Conclusion

In this chapter, we used the beam search to solve the classic job shop scheduling
problem for the makespan and mean tardiness criteria. We also examined active
and nondelay schedule generation schemes, different priority rules for both local and

global evaluation functions and various values of beam and filter width parameters.
According to our computational experience, we identified the proper settings of
these parameters which can also used in future applications of this method. Our
computational experiments also indicate that beam search is very good heuristic for
the job shop problems.

As compared to other algorithms, the speed and the performance of a beam search

based algorithm are manipulated by changing search parameters and evaluation
functions. In addition, with beam search, it is also quite possible to generate partial

schedules, since as the schedules are built progressively from the first operation to

the last one in a forward direction. This is an important property of this search
technique, because in a stochastic and dynamic environment where unexpected
events can easily upset schedules, this feature of the beam search can be well utilized

to generate partial schedules in a rolling horizon scheme. We should also note that.

CHAPTER 3. BEAM SEARCH 49

coding of the algorithm is very simple and hence can be applied by practitioners.

One drawback of the beam search algorithm is imperfect assessing of the promise
of nodes. As a result of this, the nodes that can lead to good solutions, are sometimes
erroneously discarded. For the makespan problems, however, strong lower bounds
are available in the literature. Hence, these lower bounds can be used as a part

of evaluation functions to improve the performance of the proposed beam search
algorithm in future studies.

Chapter 4

REACTIVE SCHEDULING

4.1 Introduction

Scheduling is an integral part of production systems planning for two important
reasons. First, the schedule serves as an overall plan on which many other shop
floor activities are based. Second, scheduling serves as a mechanism which optimize
performance of the manufacturing facility. By properly planning the timing of shop-
floor activities, performance criteria such as makespan, flow time, or mean tardiness
can be optimized.

To achieve the goal of coordinated planning of system activities in real life a
schedule is prepared in advance. However, a major drawback of precomputed
schedules is that, after they are released for execution, the performance of the
schedule degrades due to the random nature of shop floor conditions. Thus, it

is desirable to respond to the unexpected changes to improve the performance of
the schedule. The nature of response depends on the way schedules are generated
or scheduling decisions are made.

There are mainly two types of schedule generation methods stated in the

literature: off-line scheduling in which all available jobs are scheduled all at once

for the entire horizon and on-line scheduling in which scheduling decisions are made

50

CHAPTER 4. REACTIVE SCHEDULING 51

one at a time and when it is needed according to the changing system conditions.
According to the on-line scheduling approach, the schedule is not determined all
at once, but is constructed over time. Thus, by its nature, any disruption can
automatically be handled as these local scheduling decisions are made. In the off

line approach, a priori generated predictive schedules should be revised because they
are generally invalidated as a result of occurrences of stochastic disturbances in the
system. The revisions can be done in various forms ranging from a repairment of the
current schedule to generation of a new complete schedule for the remaining time
period.

Among on-line scheduling methods, priority dispatching constitutes an important
class. Therefore, in this study we use this scheme to generate on-line schedules.
Generally speaking, schedules are easily generated by using priority rules, but
solution quality is sacrificed due to the myopic nature of these decisions. A filtered
beam search algorithm developed in the previous chapter is used as the off-line
scheduling method. This method searches greater space and yields better solutions
at a cost of computation time if the scheduling environment is static. However, the
real life is dynamic and stochastic in nature. Hence, it is not clear if one dominates
the other in actual shop floor conditions.

The performances of these two schedule generation schemes depend on the shop
floor conditions. There are various factors affecting the system conditions and
consequently characteristic of the scheduling problem. For instance, a classification
can be made according to the job arrival information, in which case two types of

scheduling problems are identified in the literature: static problem in which all jobs

are assumed to be available simultaneously, whereas in dynamic problem jobs are
expected to arrive at different random times, i.e., the set of jobs to be scheduled
changes over time.

In addition, size of the system affects solvability of the problem. A shop with

large number of machines and jobs can be viewed as more complex than its smaller

counterpart. The scheduling problems of the complex systems are also expected
to be more difficult in terms of computation times. However, it is not known how
the relative performance of off & on-line methods is affected by the system size.

CHAPTER 4. REACTIVE SCHED ULING 52

In addition, the load allocation in the system can also affect the performance of
scheduling schemes. In real life, processing speed of machines are different and
loads are unevenly allocated to the machines (i.e., there may be bottleneck work
centers in the shop). Intuitively speaking, scheduling of uniformly loaded shops are
expected to yield better results than their nonuniform counterparts. However, how
different these two schedule generation methods perform in such systems is again
an open question. Moreover, random events and interruptions that occur in the
environment add stochasticity to the scheduling problem. Corrective actions need

to be taken to deal with these unexpected changes for off-line scheduling scheme,
thus scheduling problem become more complex in the stochastic environments.

The purpose of this chapter is first to analyze the effects of load allocation
and complexity of system on the relative performances of on-line and off-line
scheduling approaches in deterministic job shop environment. Secondly, frequency of
rescheduling of the off-line method is analyzed in a job shop where random machine
breakdowns are allowed to occur. The effect of machine breakdowns is examined
again for different complexity levels and load allocations. Finally, we analyze partial
scheduling, and its trade off between computational time requirements and solution
V

quality in both deterministic and stochastic systems.

4.2 The Proposed Study

In this section, we first describe on-line and off-line scheduling approaches. Then
we explain the job shop system and the environmental conditions including machine
breakdown model and frequency of rescheduling.

4.2.1 Scheduling Methods

The off-line scheduling method used in this study is a heuristic algorithm which
is based on the filtered beam search. In the previous chapter we have given
a comprehensive analysis for the filtered beam search technique. Based on the

CHAPTER 4. REA CTIVE SCHED ULING 53

previous results, for the mean tardiness criterion, we use active schedule generation
method with local evaluation function of MODD priority rule and and global
evaluation function of the SPT dispatching heuristic. For the makespan criterion,
however, nondelay schedule generation method with local evaluation function of
MWR priority rule and global evaluation function of the MWR dispatching heuristic
are used. Recall that the values of beam and filter width search parameters were
previously determined to be 5 for both performance criteria.

In the previous chapter, we have also evaluated five rules as on-line priority
dispatching rules for the mean tardiness criterion and found that SPT performs
better than the other rules. For the makespan criterion, however, we have noted
that MWR outperforms the other rules. In our study, we use these rules in a classic
nondelay priority rule scheme as stated in Kanet and Zhou (1993). According to this
scheme, dispatching decisions are given, (1) whenever an operation becomes available

for processing at a machine, if the machine is free, then engage the machine with
the operation; otherwise, place the operation in the operation queue of the machine,
and (2) whenever a machine becomes a machine becomes free, choose an operation
from its queue according to the priority rule and engage the machine with the chosen
operation.

4.2.2 Job Shop Environment

A classical job shop system is used in this study. The machines in the shop are
capable of performing several types of operations but process only one at a time.
Here, we assume the static case, in other words the jobs are available for processing
at time zero. Job j consists of qj number of operations (drawn from discrete uniform

distribution between 5 and 15) in series and each operation is assigned to only one

machine so that machines have equal probability to be visited. Number of operations

are drawn from a discrete uniform distribution between 5 and 15. Besides, we have
a priori known processing times, pij, (drawn from a discrete uniform distribution
between 20 and 80) for operation i of job j. In the shop, preemption is not allowed

and set-up times are included in the processing times. Number of machines and jobs

existing in the shop determines the size of the problem. We consider the problem

CHAPTER 4. REACTIVE SCHEDULING 54

with higher number of jobs or machines as more complex than the problem with
smaller size. Since we will analyze the potential effects of problem complexity on
the performance of the algorithms, we use four different sizes of the problem as
described in Table 1.

Table 4.1: Sizes of the shop analyzed
Case Number of jobs Number of Machines

1 9 6
2 18 12
3 12 6
4 24 12

In order to obtain Case 2, the number of machines in Case 1 is increased with
a factor of two. In both of the cases we want to have the same average work load
per machine to preserve the consistency between the problems, because the mean
tardiness and makespan objective criteria are the function of job completion times
which is effected by the work load of the machines. Hence, in the above cases in
which we increase the number of machines, number of jobs is appropriately increased
so as to have equal average loads. We use the following expression to compute the
average load per machine:

Expected work load EjProcess time] * E[Number of Operations] * Number of jobs
machine Number of machines

In the larger shops, the job characteristics should be the same so that expected

number of operations and expected processing time are kept unchanged. As the
number of machines doubled, we increase the number of jobs by a factor of two in
order to have the same average work load per machine.

This system complexity analysis is performed at two levels of job sizes. Cases

3 and 4 are generated (by utilizing the same argument), to observe the effects of

having higher number of jobs in the same system.

The problem instances are generated so as to allocate the same expected work

load to each machine. In other words, work load is uniformly allocated to the

CHAPTER 4. REACTIVE SCHEDULING 55

machines. However, as stated previously, the second purpose of this study is to
examine the effects of nonuniform work load. In order to have nonuniform work
allocation, processing times of the previously generated problems are modified. By
that way, we preserve the consistency between the problems. Keeping the total work
load unchanged, in the shops with six workplaces, processing times of each machine
are multiplied with the coefficient of 0.7, 0.8, 0.9, 1.1, 1.2, 1.3, respectively. In
the shops with 12 machines, processing times on two machines are multiplied with
the coefficients of 0.7, 0.8, etc. By this perturbation, speed of some machines are
decreased to form bottleneck work centers and consequently to unbalance the load
allocation in the system.

4.2.3 Machine Breakdowns

The most important source of randomness that interrupts the system operation in
many manufacturing systems is the machine breakdowns or unscheduled down times.
Therefore, we assume that the machines are subject to random breakdowns in our
study. Busy times approach is used to model machine breakdowns (Law and Kelton,

1991). This method allows the machine to breakdown when it is busy. A random
up time is generated from a busy time distribution and the machine operates until
its total accumulated busy time reaches the end of this up-time. At the time of a
failure, a repair time is generated and the machine is kept down during this period.
After that, an up time will again be generated from the busy time distribution.

In the absence of real data. Law and Kelton recommend that busy time

distribution is most likely to be Gamma Distribution with a shape parameter (o;;,)
of 0.7 and scale parameter (/3b) specified according to the experimental conditions.
They also state that Gamma distribution with a shape parameter (ad) of 1.4 is
appropriate for the distribution of down times. In this proposed method, level of
machine breakdown is measured by efficiency level (e) which gives the long run ratio

of machine busy time to total busy and down time. The relationship among scale

parameters, mean down time and efficiency is also formulated to specify the complete

machine breakdown model. By this way, duration of each breakdown drawn from.

CHAPTER 4. REACTIVE SCHEDULING 56

Gamma{ad — lA,Şd =

and total busy time between two successive failures is drawn from,

Gamma{ab = 0.7, 6̂ — 0.7(1 - e))

Here /Xrf shows the mean duration of breakdown. In our experiments, we use 90%
efficiency with 360 minutes of mean busy time and 40 minutes of mean downtime.

4.2.4 Frequency of Scheduling

In response to machine breakdowns or other interruptions in the system, we can
either take no action and use the fixed sequence through the entire horizon (let
the system recovers from the situation by itself) or reschedule the facility at
every machine breakdown (continuous rescheduling). The former approach has a
disadvantage that breakdowns alter the system status where alternative schedules
might yield better solutions. The disadvantage of the latter approach is that in a
large facility there are many events occur and too frequent schedule revision can
increase the system nervousness. Also, computational requirements of the latter
approach can be quite excessive.

Between these two extremes policies, periodic rescheduling is also studied in this
chapter. In this approach, system is continuously monitored but the necessary
actions are taken periodically by considering the unscheduled operations and the
current system status. First issue in periodic scheduling is to determine an

appropriate period length. Fixed time or variable time interval approaches can be
used for this purpose. In this study, we use variable time interval method. According
to this approach (Sabuncuoglu and Karabük, 1997), the system is monitored at each
time increment. If the cumulative processing time realized on all machines in the
system reaches to a multiple of the specified length of the period, then rescheduling

is triggered at this point. In the fixed time interval method, however, the period

CHAPTER 4. REACTIVE SCHED ULING 57

length is solely determined by the absolute time. The variable time interval approach
has some advantages over the fixed interval approach. First, since we use busy time
method to determine machine breakdowns, probability of breakdowns is the same in
each scheduling period. Also, this method divides the entire scheduling horizon into
equal intervals in terms of processing times so that amount of schedule executed is
the same in each interval. By this way, we can measure the level of responsiveness of
the rescheduling without being affected by the system load or any other scheduling
factor.

The following expression is used to calculate the rescheduling period.

ts = TP/ f
where
tg : amount of processing times between two consecutive rescheduling points.
TP : total processing time of all jobs to be scheduled.
/ : number of rescheduling points in a given scheduling horizon (frequency
of scheduling)

We use ten levels of frequency of scheduling in our experiments. These are 0,
2, 4, 6, 8, 10, 12, 14, 16, 1000. Here, 0 corresponds to no rescheduling (fixed
sequencing) case, in which, a schedule is generated at the beginning of the horizon
and the sequence determined in this preschedule is used through the scheduling
horizon regardless of any future event. If a machine breakdown event occurs, then
the unexecuted operations on this machine are simply right shifted for the duration
of down time. Another extreme level, 1000, represents the continuous rescheduling.
In this case, rescheduling frequency is so high that reschedule is triggered at any
event that alters the system status. Between these two extreme cases, eight levels
of periodic scheduling are analyzed. For instance, level 4 results in the schedule to

be revised approximately four times during the makespan of the schedule. However,

if there is not any machine breakdown during the period, schedule is not revised.
That is, the current schedule is still used up to the next scheduling period.

CHAPTER 4. REACTIVE SCHEDULING 58

4.3 Computational Results

In this section the algorithms (on-line and off-line) are applied to the scheduling
problems of different sizes. For each system size, uniform and nonuniform loading
are also considered. In the experiments, ten randomly generated problems are used
at each system condition. The averages of the results based on ten replications
are presented in the tables. The mean tardiness and makespan criteria are used
to evaluate the performance of the algorithms. In the first part of the section, the
analysis is performed in the deterministic environment, then the effects of machine
breakdowns and frequency of scheduling are examined in the stochastic environment.
Also, the role of partial scheduling is discussed at the end of this section in both
stochastic and deterministic environments

4.3.1 Deterministic Environment

In this first part, we assume that the machines in the system are always available.
Simulation experiments are conducted to examine the effects of system size and load
allocation on the performance of the algorithms in this deterministic environment.
The analysis is performed for both the mean tardiness and makespan criteria as
discussed in the subsequent sections. The results of experiments are presented in
Table 4.2 and Table 4.3 for the mean tardiness and makespan respectively. In these
tables, % Deviation 1 stands for the difference between the beam search algorithm
and the dispatching rule solutions. Likewise, % Deviation 2 is the deviation between

the solutions of each scheduling method in uniform and nonuniform systems. Paired
t-test is used to determine the significance of the differences. In the tables, refers

that respective term is statistically significant with a confidence interval of 95 %.

Mean Tardiness Analysis

Simulation experiments are first performed for the mean tardiness criteria. The

results of the experiments are given in Table 4.2. As seen in the table, all the

differences are statistically significant according to the paired t-test.

CHAPTER 4. REACTIVE SCHEDULING 59

In the mean tardiness case, the first observation is that the beam search method
always performs better than the dispatching rule (SPT) under all the experimental
conditions. This observation confirms the results of the previous chapter.

We also note that in the large systems, mean tardiness values are higher than
the small ones (i.e.. In Table 2, the off-line algorithm yields the mean tardiness of

76.32 and 90.76 for the 9 jobs 6 machines and 18 jobs 12 machines, respectively).
We did not expect this result because we determine the number of jobs so as to
have equal work load per machine. However, we measure that, in the large systems,
utilization of machines is generally lower than the small ones (0.677 for 9 jobs 6
machines shop, 0.629 for 18 jobs 12 machines shop) and consequently in the large
systems, completion times of jobs are slightly longer than those of the small systems.

Table 4.2: Performances of algorithms in deterministic environment.
for mean tardiness for criteria

Algorithm Dispatch % Deviation 1 Absolute Dif.
9 jobs 6 machines

uniform 76.32 123.70 62.08* 47.38*
nonuniform 127.55 187.68 47.15* 60.13*

% Deviation2 67.13* 51.72*
18 jobs 12 machines

uniform 90.76 132..58 46.09* 41.83*
nonuniform 119.38 166.93 39.83* 47.55*

% Deviation2 31.53* 25.91*
12 jobs 6 machines

uniform 171.32 231.37 35.05* 60.05*
nonuniform 220.38 291.68 32.35* 71.29*

% Deviation2 28.64* 26.07*
24 jobs 12 machines

uniform 212.61 279.29 31.36* 66.68*
nonuniform 245.35 317.78 29.52* 72.43*

% Deviation2 15.40* 13.78*

Additionally we observe that, the difference between the performances of the

beam search algorithm and the dispatching rule varies for different sizes of the
shops. It seems that the system complexity does not considerably affect the relative

performance of on and off line schedule generation methods. Because as the number

of machines increases, (9 jobs 6 machine vs 18 jobs 12 machines) we do not observe a

regular trend in terms of increases or decreases in the absolute differences. However,

CHAPTER 4. REA CTIVE SCHED ULING 60

percent deviations decrease as the system size gets larger, since the large scale of
mean tardiness values result small percent deviations.

In contrast, as the number of jobs in the system increases, (9 jobs 6 machines
vs 12 jobs 6 machines) we observe an increasing trend in the absolute differences.
In other words the proposed algorithm performs better than the dispatching rule in
the crowded systems. This is due to the fact that in the system with more jobs,
there are larger number of alternative schedules to search through by the off-line
algorithm.

Another important observatioir is that in the system with nonuniform load
allocation, the mean tardiness value is higher than the uniform case. This
observation makes sense, because in nonuniform facilities, there are bottleneck
machines that delay the completion time of the jobs. Moreover, the performance of
the algorithm is effected more severely than the dispatching rule in the nonuniform
environment (Table 2. % Deviation2 values). The degradation is less significant in
larger shops (67.13% for 9 jobs 6 machines, 15.40% 24 jobs 12 machines).

In addition, the absolute difference between the algorithm and the rule gets
larger for all the shop size combinations in the nonuniformly loaded shops. In the
pilot runs we noticed that, if the variability of processing times is high, then the
off-line algorithm performs better than the dispatching rules. In order to obtain
an unbalanced system, we change (increase or decrease) the processing times by
multiplying certain coefficients, and consequently increase the variability in the
processing times. Based on the observation, it is expected that in the nonuniform
shop floor conditions the proposed algorithm performs relatively better than the

rules.

We also measure the CPU time requirements of the algorithms. As expected, the
on-line algorithm (i.e., dispatching rule) is very fast, because it generates schedules
by only evaluating the priority function values of operations. For instance, CPU
times are on the average 10~ ̂ seconds for 9 jobs 6 machines system and 6 * 10“ ̂

seconds for 24 jobs 12 machines system. As these numbers show from the smallest to

largest system, the CPU time requirements only change with a factor of 6. On the

other hand, the CPU time requirements of the off-line algorithm, vary significantly

CHAPTER 4. REACTIVE SCHED ULING 61

according to the system size. Average CPU times are 12.2, 31.5, 98.7, 260.6 sec. for
9 jobs 6 machines, 12 jobs 6 machines, 18 jobs 12 machines, 24 jobs 12 machines,
respectively. According to these statistics, we can state that as the number of jobs
is increased with a factor of 4/3, required CPU times increases approximately 2.5
times. This observation is consistent with the O(n^) complexity of the beam search
algorithm. As seen from the results, the CPU time requirements of off and on
line algorithms are not comparable (6 * 10“ ̂ seconds for dispatching rule and 260.6
seconds for the beam search method). However, percent difference between the
solutions of algorithms is 31.36% (see Table 4.2) in the largest system.

Makespan Analysis

The same experiments are also performed for the makespan criteria and the results
of this experiment are given in Table 4.3. As seen in the table, all the difference
terms are statistically significant with the 95 % confidence interval, according to the
paired t-test.

The results of the makespan case are very similar to the those of the mean
tardiness. However, in the mean tardiness case we have observed that performance
of the algorithm is affected more than the dispatching rule in the nonuniform
environment whereas in the makespan case we note that the deterioration of the
solutions due to nonuniform load allocation is almost equal for both the algorithm

and the dispatching rule (see % Deviation 2 values in Table 4.3). Moreover in the
mean tcirdiness case we have also observed that the absolute difference between the
solutions of the algorithm and the rule gets larger in the nonuniformly loaded shops
for all the shop size combinations. In the makespan case this observation is also valid
for three shop size combinations, but in the system with 12 jobs and 6 machines

the absolute differences between the solutions of scheduling methods in uniform and
nonuniform environments is almost same (see Absolute Difference values in Table

4.3). This is simply due to the randomness involved in the problem instances.

In the makespan case the percent differences between the algorithm and the

dispatching rule solutions are small (% Deviationl in Table 4.3) compared to the

percentages in the mean tardiness case (% Deviation2 in Table 4.2). Because the

characteristic of the makespan measure is different from the mean tardiness measure.

CHAPTER 4. REACTIVE SCHED ULING 62

It is based on the completion time of only one job and completion time of the other
jobs are not taken into account. In the job shop problem without any flexibility, there
are limited number of nondelay schedules. Thus, schedule of the job that gives the
maximum completion time does not too much vary among the alternative schedules,
and hence the algorithm and the dispatching rule produce similar schedules with
close makespan values. Consequently the differences between the algorithm and
dispatching rule solutions are not too large. In addition, the scale of the makespan
values are considerably higher than the scale of the mean tardiness values and even
larger absolute differences give low percent differences for the makespan case.

Table 4.3: Performances of
for

algorithms in deterministic environment.
makespan criteria

Algorithm Dispatch % Deviation 1 Absolute Dif.
9 jobs 6 machines

uniform 1048.2 1109.2 5.82* 61.00*
nonuniform 1203.5 1284.6 6.74* 81.10*

% Deviation2 14.82* 15.81*
18 jobs 12 machines

uniform 1114.3 1171.8 5.16* 57.50*
nonuniform 1225.7 1310.7 6.93* 85.00*

% Deviation2 10.00* 11.85*
12 jobs 6 machines

uniform 1237.9 1315.4 6.26* 77.50*
nonuniform 1361.8 1438.7 5.65* 76.90*

% Deviation2 10.01* 9.37*
24 jobs 12 machines

uniform 1437.4 1514.2 5.34* 76.80*
nonuniform 1590.2 1679.3 5.60* 89.10*

% Deviation2 10.63* 10.90*

4.3.2 Stochastic Environment

In this section, we now assume that the machines are subject to random breakdowns.

The breakdowns occur according to the busy time approach as described in the
previous section. In the simulation experiments for the machine breakdowns, we
use 90% efflciency with 360 time unit of mean busy time and 40 time units of mean

downtime. In the subsequent analysis, we first employ no response policy for off-line

CHAPTER 4. REACTIVE SCHED ULING 63

scheduling method, and study the effects of machine breakdowns on the relative

performance of off-line and on-line algorithms for various system complexity and
uniformity combinations. Then we use the periodic response policy and measure the
effects of frequency of rescheduling extensively.

No response Policy

In this section we analyze the deterioration on the solution quality of the algorithms
due to machine breakdowns. Recall that the on-line algorithms takes machine
breakdowns into account while constructing the schedules. In this section we use
no response option for the off-line algorithm. As mentioned before, in this response
policy, a schedule is generated at the beginning and the sequence determined in
this schedule is used through out the scheduling horizon regardless of any future
event. In the experiments we again use various problem sizes for uniformly and
uniformly loaded systems. The performance of the schedules are measured for both
the mean tardiness and makespan criteria as discussed in the subsequent sections.
Paired t-test is used to determine the significance of the differences. In the tables
(Tables 4.4 through 4.7), refers that respective term is statistically significant
with a confidence interval of 95 %.

Mean Tardiness Analysis

The results of the simulation experiments (the mean tardiness values of off and
on-line algorithms for both deterministic and stochastic environments) are given in
Table 4.4. In this table, % Deviation 1 differences between solutions with respect
to deterministic and stochastic environments. Similarly, % Deviation 2 corresponds
to the deviation between the algorithm and the dispatching rule solutions. As seen
from the table, all the difference terms are statistically significant according the

paired t-test.

The most important observation is that performance of the on-line scheduling
algorithm degrades less than that of the off-line algorithm in the stochastic
environment (% Deviation 2 values are smaller for dispatching rules in all the
problem sets). The same observation was also made in Yamamoto and Nof (1985)

CHAPTER 4. REACTIVE SCHED CLING 64

and Sabuncuoglu and Karabuk (1997). In the above studies, the authors pointed
out that as the number of disruptions increases, the performance of the algorithm
with the fixed sequencing method and the on-line method in the form of dispatching
rule get closer to each other.

The number of breakdowns in the shop with 12 machines is approximately two
times larger than the one with 6 machines (there are on the average 7.2, 16, 10 and
18.9 machine breakdowns in the shops with 9 jobs 6 machines, 18 jobs 12 machines,
12 jobs 6 machines and 24 jobs and 12 machines, respectively). In a system with
more breakdowns, the solution quality of the algorithm is expected to deteriorate
more significantly. However, note that absolute differences between deterministic
and stochastic cases slightly increase in the larger shops. This is mainly due to
the slack in the schedules. In the systems with 12 machines, there are 2 times
more slacks than the shop with 6 machines. Therefore, amount of deterioration is
approximately the same in the both systems (42.58 for 9 jobs 6 machines, 48.19 for
18 jobs 12 machines).

However, we observe that, as there are more jobs in the system, absolute
differences between the solution of scheduling methods in the deterministic and
stochastic systems become more significant (42.58 for 9 jobs 6 machines, 71.20 for 12
jobs 6 machines). Because, as the number of jobs increases, the system become more
crowded and the average utilization of the machines gets higher (0.677 for 9 jobs,
0.728 for 12 jobs). Thus, machine breakdowns negatively affect the performance of
schedules considerably in larger systems. When we compare the percent differences
between deterministic and stochastic cases, we observe that differences get smaller
as the system size gets larger. Because, the scale of the mean tardiness is large
for more complex systems, and even larger absolute differences yield low percent
differences.

In the nonuniform systems, we also notice the performance changes in the

stochastic environment in comparison to the deterministic environment. As given
in Table 4.5, the same pattern is observed as in the uniform systems. The absolute
differences between deterministic and stochastic cases are close to each other in
both small and large systems. However, as the number of jobs increases, the system

CHAPTER 4. REACTIVE SCHED ULING 65

Table 4.4: Performances of algorithms in stochastic environment
for mean tardiness criteria (Uniform Case)
Deterministic Stochastic % Deviationl Absolute Dif.

9 jobs 6 machines
Algorithm 76.32 118.90 55.79* 42.58*
Dispatch 123.70 157.22 27.10* 33.52*

% Deviation2 62.08* 32.23*
18 jobs ;.2 machines

Algorithm 90.76 138.94 52.10* 48.19*
Dispatch 132.58 168.12 26.80* 35.54*

% Devicition2 46.09* 21.00*
12 jobs 6 machines

Algorithm 171.32 242.52 41.56* 71.20*
Dispatch 231.37 280.14 21.08* 48.78*

% Deviation2 35.05* 15.51*
24 jobs ;.2 machines

Algorithm 212.61 286.78 34.89* 74.17*
Dispatch 279.29 335.35 20.07* 56.07*

% Deviation2 31.36* 16.94*

performance is affected by the machine breakdowns more significantly like in the
uniform cases.

However, we note that performances of the schedules are not affected as much
as in the uniformly loaded systems. Because, in the nonuniform systems, the
utilization of the machines are low due to the reason of bottleneck machines extend
the scheduling horizon. In other words, there is excessive slack in the system,
and machines breakdowns are absorbed by this slack and consequently they do
not seriously degrade the scheduleing performance.

Makespan Analysis

We perform the same simulation experiments also for the makespan criteria.

The results are given in Table 4.6 and Table 4.7 for uniform and nonuniform
environments, respectively. As seen in the table, the difference between the off
line and on-line algorithms in the stochastic environment for the 12 jobs 6 machines
and 24 jobs and 12 machines systems are not statistically significant. This result

of the test confirms our observations in the mean tardiness analysis. Recall that.

CHAPTER 4. REACTIVE SCHED ULING 66

Table 4.5: Performances of algorithms in stochastic environment,
for mean tardiness criteria (Nonuniform Case).

Deterministic Stochastic % Deviation 1 Absolute Dif.
9 jobs 6 machines

Algorithm 127.55 169.97 33.26* 42.42*
Dispatch 187.68 221.29 17.91* 33.61*

% Deviation2 47.15* 30.20*
18 jobs ;.2 machines

Algorithm 119.38 172.08 44.15* 52.70*
Dispatch 166.93 204.20 22.33* 37.27*

% Deviation2 39.83* 18.66*
12 jobs 6 machines

Algorithm 220.38 288.26 30.80* 67.88*
Dispatch 291.68 339.30 16.33* 47.63*

% Deviation2 .32.35* 17.71*
24 jobs :.2 machines

Algorithm 245.35 312.98 27.57* 67.64*
Dispatch 317.78 370.53 16.60* 52.75*

% Deviation2 29.52* 18.39*

the performance of the off-line algorithm worsens more than the on-line algorithm
in the stochastic environment and the deterioration is even more significant in the
systems with more jobs. Except for these two terms, the rest of the difference terms
are statistically significant according to paired T test.

In the makespan case, the patterns of the results are very similar to the mean
tardiness case. There is only one erratic result in this analysis. According to the
results of the mean tardiness case, we are expecting that the deterioration on the

solutions, due to machine breakdown, in the nonuniform environment is less than
that of the uniform environment. However, in the makespan case, we note that the

solution of algorithm, for the system with 9 jobs and 6 machines, deteriorates more
in the nonuniform environment. Other than this result, all the observations and
discussions made in the mean tardiness are also valid for the makespan case.

CHAPTER 4. REACTIVE SCHEDULING 67

Table 4.6: Performances of algorithms in stochastic environment
for makespcin criteria (Uniform Case)

Deterministic Stochastic % Deviationl Absolute Dif.
9 jobs 6 machines

Algorithm 1048.2 1119.2 6.77* 71.00*
Dispatch 1109.2 1180.7 6.45* 71.50*

% Deviation2 5.82* 5.49*
18 jobs !.2 machines

Algorithm 1114.3 1218.8 8.84* 104.50*
Dispatch 1171.8 1253.9 7.01* 82.10*

% Deviation2 5.16* 3.39*
12 jobs 6 machines

Algorithm 1237.9 1372.3 10.86* 134.40*
Dispatch 1315.4 1400.5 6.47* 85.10*

% Deviation2 6.26* 2.05
24 jobs :.2 machines

Algorithm 1437.4 1562.8 8.72* 125.40*
Dispatch 1514.2 1611.1 6.4* 96.90*

% Deviation2 5.34* 3.09

Periodic Response Policy

The on-line scheduling algorithm in the form of a dispatching policy takes machine
breakdowns into consideration as they occur. However, the system should be
revised for the off-line algorithm in order to recover from the negative effects
of the interruptions. In the periodic response policy, these revisions are made
periodically and all the unexecuted operations are rescheduled at the beginning
of the next period. In our simulation experiments, we examine various levels
of scheduling frequency (i.e., scheduling period) for different problem sizes for
uniformly and nonuniformly loaded systems using the mean tardiness and the
makespan performance measures as discussed in the following sections.

Mean Tardiness Analysis

The simulation experiments are first performed for the mean tardiness criterion

and the results of the experiments for the uniformly loaded environment are given

in Figures 4.1a & 4.1b (numerical results are also given Tables B .l in the appendix).

CHAPTER 4. REACTIVE SCHED ULING 68

Table 4.7: Performances of algorithms in stochastic environment,
for makespan criteria (Nonuniform Case).
Deterministic Stochastic % Deviationl Absolute Dif.

9 jobs 6 machines
Algorithm 1203.5 1292.4 7.39* 88.90*
Dispatch 1284.6 1350.4 5.12* 65.80*

% Deviation2 6.74* 4.49*
18 jobs ;.2 machines

Algorithm 1225.7 1317.3 7.47* 91.60*
Dispatch 1310.7 1374.3 4.85* 63.60*

% Deviation2 6.93* 4.33*
12 jobs 6 machines

Algorithm 1361.8 1472.1 8.10* 110.30*
Dispatch 1438.7 1521.7 5.77* 83.00*

% Deviatioii2 5.65* 3.37*
24 jobs :.2 machines

Algorithm 1590.2 1714.2 7.80* 124.00*
Dispatch 1679.3 1740.4 3.64* 61.10*

% Deviation2 5.60* 1.53

The graphs in the Figure display the behavior of the mean tardiness as a function
of scheduling frequency.

The first observation drawn from the results is that, the performance of the off
line algorithm improves as the frequency of scheduling increases. However, as seen
from Figure 4.1b, the levels of improvement are not always large. Because, the static
job shop system used in this study does not have any routing or sequence flexibilities,
and consequently the set of active schedules is not very large. In such a system, the
beam search based algorithm produces very similar sequences at each rescheduling
point and the performance of the algorithm does not improve considerably. Even

at some frequency levels, the mean tardiness value is slightly worse than that of

less frequent. We observe such behavior due to the randomness involved in the test
problems. Therefore, the solution quality is not guaranteed to be always better for

the higher Vcilues of scheduling frequency.

In addition, as depicted in Figure 4.1b, the segmented line for the small system
is flatter than the larger system. Because in large systems, we have more number of

CHAPTER 4. REACTIVE SCHED ULING 69

breakdowns in the scheduling horizon and in the rescheduling periods. Therefore,
in these more disrupted systems, rescheduling helps more to recover from these
unexpected events. This observation is less clear in Figure 4.1a, but still the level
of improvement is slightly better for the large system (12.7 % for 9 jobs 6 machines
case, 15.8 for 18 jobs 12 machines case).

The effects of rescheduling is more erratic in the nonuniform systems The results
are displayed in Figures 4.1c & 4.Id (the numerical results are also given in Table
B.2 in the appendix). The unexpected ups and downs of mean tardiness values
in these systems may be the result of high level of variability in processing times.
As we compare the graphs in Figure 4.1, we see that the effect of rescheduling is
less significant in nonuniformly loaded systems. Because, as mentioned before, the
excessive amount of slack in nonuniform environment absorbs the negative effects of
machine breakdowns. Therefore, the effect of machine breakdowns is less disruptive
in such systems.

In addition, as seen in Figure 4.1a & 4.1b for the low scheduling frequency levels,
the improvement in solutions is clearer. However, after a certain point, increasing
frequency does not significantly improve the solution quality. On the other hand,
as seen from Figure 4.2, the CPU time requirements get considerably larger as the
frequency of scheduling increases (CPU times values are also given in Table B.3 in the
appendix). Frequent rescheduling also increases the system nervousness. Thus, after
trading off the CPU time and improvement gained, we propose not to reschedule
the system too frequently.

Makespan Analysis

The same set of simulation experiments are also performed for the makespan

criterion. The changes of the makespan as a function of scheduling frequency for
the uniformly loaded environment are depicted in Figure 4.3a & 4.3b and (the results

are also given in Table B.4 in the appendix). As seen in the figures, the makespan
do not significantly improves as the scheduling frequency increases. Because, the

number of alternative schedules generated by nondelay scheme are not too high for

the job shop problem analyzed in this study. Thus at each scheduling point, very

similar schedules are determined with close makespan measures.

CHAPTER 4. REACTIVE SCHEDULING 70

a) Scheduling Frequency vs Mean Tardiness
Uniform Case

b) Scheduling Frequency vs Mean Tardiness
Uniform Case

c) Scheduling Frequency vs Mean Tardiness
Nonuniform Case

d) Scheduling Frequency vs Mean Tardiness
Nonuniform Case

Figure 4.1: Interactions between scheduling frequency and mean tardiness

CHAPTER 4. REACTIVE SCHED ULING 71

Figure 4.2: CPU time vs scheduling frequency

In the makespan case, except for the insignificant improvement of objective
function in response to scheduling frequency, other observations are consistent with
the mean tardiness analysis. Here we again observe that the changes in makespan
values for small systems are relatively less than those of large systems and the effects
of rescheduling is also more erratic in the nonuniform system (Figure 4.3c & 4.3d).

4.3.3 Partial Scheduling

Beam search is a constructive type heuristic algorithm. Operations are scheduled

sequentially in forward direction by using the ideas of branch and bound method.
This feature of beam search algorithms allows us to generate partial schedules. We
define partial schedule as the one that does not schedule all the available operations

but rather a subset of schedulable operations in the system.

CHAPTER 4. REACTIVE SCHEDULING 72

a) Scheduling Frequency vs Makespan
Uniform Case

b) Scheduling Frequency vs Makespan
Uniform Case

c) Scheduling Frequency vs Makespan
Nonuniform Case

d) Scheduling Frequency vs Makespan
Nonuniform Case

Figure 4.3: Interactions between scheduling frequency and makespan values

CHAPTER 4. REACTIVE SCHEDULING 73

The length of the partial schedule is important, since it affects the solution quality
and CPU time requirements. This length can be measured by either in terms of clock
time or number of operations. But we prefer the latter approach in our study in
order to be consistent with the definition of the period length. According to the
number of operations approach, a partial schedule of half length means that half of
the operations are scheduled at a time.

Previously, we have not encountered any study on the partial scheduling in the job
shojD scheduling literature. In our study, we implement the partial scheduling as a
part of the periodic response policy, which is discussed in the previous section. Before
the implementation of the partial scheduling, we determine the partial schedule
length. At this stage, scheduling frequency should be taken into account, because
the partial schedule length should at least be enough to cover the period length
(i.e., total processing time of the scheduled operations should at least be equal
to the period length). This partial scheduling with the periodic response system
is implemented as a rolling horizon control scheme. At each scheduling point, a
partial schedule with certain length is generated and used until the next decision
point at which a new partial schedule is again generated according to current system
status. During a period, if all the scheduled operations are executed and the next
scheduling point is not reached (i.e., the length of the schedule is not enough to cover
the period), the scheduling scheme is triggered to generate a new partial schedule
at this point in time. The resulting partial scheduling with in the periodic response
policy will be simply called as partial scheduling for the rest of the thesis.

To perform the simulation experiments, we created the same system conditions
(system size and uniform vs nonuniform) used before in the periodic response
policy. In addition, we analyze the effects of partial scheduling for two levels of
scheduling frequency. We choose one level for low frequency (4) and one level for
high frequency (14). Recall that for the high frequency level, the period lengths are

shorter than those of low frequency. Therefore, we can test more partial schedule

length alternatives for the scheduling frequency level of 14 than the level 4. Because
at the scheduling frequency of level 14, even short partial schedule lengths will be
enough to cover the periods. Therefore, we use 1/10, 1/8, 1/6, 1/4, 1/2, 1 as the
partial schedule lengths for the scheduling frequency level of 14. Since the period

CHAPTER 4. REACTIVE SCHED ULING 74

lengths cire long at the scheduling frequency of level 4 we only use 1/3, 1/2, 1 partial
schedule lengths for that level. Here, 1/3 means that at each scheduling point, 1/3
of the total number of operations are scheduled and needless to say, 1 refers to
generating complete schedules.

Mean Tardiness Analysis

The effects of partial scheduling are first measured for the mean tardiness
performance criterion. The results of the analysis for the uniform case is shown
in Figure 4.4 (the results are also tabulated in Table B.6 and Table B.7 in the
appendix). These graphs show the changes in mean tardiness and CPU times as the
function of partial schedule length for both the low and high frequency levels.

The first observation from these graphs is that as the length of partial schedule
increases the quality of the schedules improves regardless of scheduling frequency.
Because in the short lengths myopic decisions are taken by the partial schedules and
this negatively affects the quality of schedules. Besides, during the implementation of
partial schedules, additional idle times need to be inserted in the schedules. Because,
we generate the partial schedules by using a subset of all operations. These scheduled
operations may not be homogeneously assigned to the machines, for instance there
may be 10 operations allocated on one machine whereas only 5 operations allocated
on the other. During the implementation of a partial schedule, if a machine does not
have any more operations to schedule, we should insert an idle time until the next
scheduling point. This inserted idle time worsens the performance of the partial
scheduling method especially for small scheduling lengths.

From the results, we also note that the mean tardiness does not linearly change
with the partial schedule length. We have analyzed the effects of partial scheduling
for two scheduling levels. However, the behavior of the mean tardiness is more
informative at the scheduling frequency level of 14 (see Figure 4.c). Because at this

level, we have evaluated more partial schedule length alternatives. From Figure 4.4c,

it can be noted that for short partial lengths (i.e., the lengths of 1/10 and 1/8), the

amount of deterioration in the schedule quality is negligible. Because the number of
operations in the partial schedules are close to each other for the lengths of 1/10 and
1/8. Thus, the proposed partial scheduling system produce similar schedules with

CHAPTER 4. REACTIVE SCHEDULING 75

comparable performances. However, as the partial schedule length increases (i.e.,
the lengths of 1/6 and 1/4), there are significant improvements in the mean tardiness
values. The reason for that is the reduction of inserted idle times due to the increase
in partial schedule length. Finally, we observe that marginal improvement in the
mean tardiness become smaller for long partial schedule lengths (i.e., the lengths of
1/2 and 1). Because for the long partial schedule lengths, we have small amount
of inserted idle times which slightly worsens the performance of the schedules. In
summary, we can conclude that mean tardiness change significantly for moderate
level of partial schedule lengths whereas changes are insignificant for short and very
large partial schedule lengths.

In addition, we note that the system complexity does not effect the performance
of the partial scheduling. We arrive at this conclusion because the mean tardiness
lines are almost parallel for small and large systems as seen in Figure 4.4a & 4.4c.

As for the CPU times, we observe that the CPU times increases as the partial

schedule lengths increases (see Figure 4.4b and 4.4d). This is expected because we
eliminate extra work to generate complete schedules at every scheduling period. In
these graphs, CPU times for small systems are seen as if the changes are insignificant,
however this is not the case. This is simply due to the high scale of the time axis.

The patterns of segmented lines (Figure 4.4b & 4.4d) for the CPU times are

consistent with the mean tardiness. For instance, the changes in the CPU times is
also negligible for the small partial schedule lengths. Similar to the mean tardiness
values, we observe significant increases in the CPU times for the moderate lengths
of partial schedules. Finally, marginal increases in the CPU times are again small
for the long partial schedules. Because in the beam search algorithms, generating
the first half of the search tree requires more computation time than the generating
the other half of the tree since global evaluations takes less time at the higher levels

of the search.

CHAPTER 4. REACTIVE SCHED ULING 76

a) Frequency level of 4
Mean tardiness vs partial schedule length

b) Frequency level of 4
CPU time vs partial schedule length

5 0 0 .0 0

Î
 4 0 0 .0 0

&

3 0 0 .0 0 - -

— ♦ — 12*6
— ■— 24*12

0 .2 0 0 .4 0 0 .6 0 0 .8 0

Partial Schedule Length

c) Frequency level of 14
Mean tardiness vs partial schedule length

d) Frequency level of 14
CPU time vs partial schedule length

Figure 4.4: Mean tardiness k CPU time as a function of partial schedule lengths
(Uniform Case)

CHAPTER 4. REACTIVE SCHED ULING 77

a) Frequency level of 4
Mean tardiness vs partial schedule length

D) hrequency level or 4
CPU time vs partial schedule length

c) Frequency level of 14
Mean tardiness vs partial schedule length

d) Frequency level of 14
CPU time vs partial schedule length

Figure 4.5: Mean tardiness L· CPU time as a function of partial schedule lengths
(Nonuniform Case)

CHAPTER 4. REACTIVE SCHED ULING 78

By applying partial scheduling, the solution quality is sacrificed on the average
% 10.6 and % 11.2 for 12 jobs 6 machines system and 24 jobs 12 machines system,
respectively. However, we gain from the CPU times on the average % 35.2 and %
31.3 for small and large systems, respectively at the frequency levels of 4 and 14.
In terms of percent difference, the gain of CPU times seems to be more significant
than the degradation of solution quality. Here, user of the scheduling system should
trade off the looses and gains to determine the most suitable policy for the current
status.

The same analysis is performed in the nonuniformly loaded systems. The results
of the analysis are depicted in Figure 4.5 (the numerical results are also given in
Table B.8 &: Table B.9 in the appendix). We compare the graphs in Figure 4.4 and
4.5, and note that the behavior of the segmented lines is very similar. Moreover, in
order to compare the changes in the mean tardiness in the uniform and nonuniform
cases, we plot the results of both cases in the same graph (Figure 4.6). As seen in
the figure, the pattern of the segmented lines are the same in the both cases except
that the mean tardiness values are larger in the nonuniformly loaded systems. As a
result, we say that the effects of partial scheduling are the same in both uniformly
and nonuniformly loaded systems.

Makespan Analysis

The effects of partial scheduling are also analyzed for the makespan performance
measure. The simulation experiments are conducted under the experimental
conditions specified earlier. The results (both the makespan and CPU times) of
the analysis are shown in Figure 4.7 & 4.8 for both uniformly and nonuniformly
loaded systems (the results are also tabulated in Table B.IO through B.13 in the
appendix).

Our first observation is that as compared to the tardiness case, the deterioration

in makespan is not significant for the small length of the partial schedule. Because,

makespan performance measure is not considerably affected by the length of the

partial schedule. Since, the additional inserted idle time due to partial scheduling
has less probability to delay the completion time of the job that determines the
makespan of the schedule. Another reason for this behavior can be the small amount

GH AFTER 4. REA CTIVE SCHED VEIN G 79

a) Mean tardiness vs partial schedule length
Sytem size of 12 jobs and 6 machines

b) Mean Tardiness vs partial schedule length
System size of 24 jobs and 12 machines

Figure 4.6: Changes in mean tardiness as a function partial schedule length in
uniform and nonuniform environments

of inserted idle time resulted by the nondelay schedule generation scheme. Because,
this scheme tries to first assign the operation with the minimum starting time.
Therefore, the distribution of operations among the machines are homogeneous in
the partial schedules, which reduces the extra need for the idle times. In addition,
the scale of the makespan axis is too large so that changes in this value does not
seem to be clear.

In the makespan case, other observations (related to the effects of the system size
and load allocation of the system), and the discussions (for the improvement in the
objective function as a result of the increase of the partial schedule length, and for
the CPU times) are the same as the mean tardiness case.

In the partial scheduling there are two major parameters (partial schedule length

and scheduling frequency) that affects the solution quality. Since partial scheduling

lengths are determined considering the scheduling frequency, these parameters are
not independent. In the simulation experiments, the effects of partial schedule

CHAPTER 4. REACTIVE SCHEDULING 80

a) Frequency level of 4
Makespan vs partial schedule length

b) Frequency level of 4
CPU time vs partial schedule length

c) Frequency level of 14
Makespan vs partial schedule length

d) Frequency level of 14
CPU time vs partial schedule length

Figure 4.7: Interactions between makespan & CPU time and partial schedule length
(Uniform Case)

CHAPTER 4. REACTIVE SCHED ULING 81

a) Frequency level of 4
Makespan vs partial schedule length

b) Frequency level of 4
CPU time vs partial schedule length

c) Frequency level of 14
Makespan vs partial schedule length

d) Frequency level of 14
CPU time vs partial schedule length

Figure 4.8: Interactions between makespan & CPU time and partial schedule length
(Nonuniform Case)

CHAPTER 4. REACTIVE SCHED ULING 82

lengths on the solution quality are analyzed for fixed scheduling frequencies. As for
investigating the effects of scheduling frequency for the same partial schedule length,
we compared the solutions the partial schedule length of 1/2 at the scheduling
frequency levels of 4 and 14. The results show that the solution quality at level
14 is always better that the that of at level 4 for each problem. This observation
confirms our finding in periodic response that as the scheduling frequency increases,
the solution quality get better.

So far we perform the simulation experiments for machine breakdowns of 90%
efficiency level (with 360 time units mean uptime and 40 time units mean down
time). We now investigate the effects of machine breakdown level on the solution
quality of partial scheduling. For this purpose simulation experiments are repeated
for 80% efficiency level (with 320 time units mean uptime and 40 time units mean
down time) for both the mean tardiness and makespan criteria. The results of the
partial scheduling at 90% and 80% efficiency levels are displayed together in Figure
4.9 and 4.10 for the mean tardiness and makespan, respectively (numerical results
are also given in B14 and B15 in the appendix). The results indicate that solution
quality is worse in the 80% efficiency level. Because at this level the system is
subject to more machine breakdowns. However note that, solution pattern of partial
schedule as a function of partial schedule length does not differ significantly. Since,
the extra amount of idle time inserted in the schedule (due to partial scheduling) is
not affected by the duration of machine breakdowns.

In summary, in the partial scheduling we observe that performance of the schedule

worsens as the length of the partial schedule decreases. The deterioration in mean
tardiness measure is more significant than the makespan. However, we also observe
that, CPU times reduces as the length of partial schedule decreases for the mean
tardiness and makespan performance measures. According to the experimental

results, percent gain from CPU times is more than the percent loss from objective

function for both criteria.

CHAPTER 4. REACTIVE SCHEDULING 83

a) Frequency level of 14, 12 jobs & 6 machines
Mean tardiness vs partial schedule length

d) Frequency level of 14, 24 jobs & 12 machines
Mean Tardiness vs partial schedule length

Figure 4.9: Mean Tardiness vs partial schedule length in 90% and 80% eflBciency
levels, Uniform Case

4.3.4 Partial Scheduling in Deterministic Environment

In the previous section, partial scheduling was analyzed as a part of the periodic
rescheduling policy in the stochastic environments in which machine breakdowns
were allowed to occur. Recall that in the stochastic environments, the schedule
may need to be revised due to interruptions. There is no such requirement in the
deterministic case. Hence, the implementation of partial schedule in a deterministic
environment is nothing but a time-based decomposition of the entire problem into
smaller problems.

As for decomposition methods in the scheduling literature there are a number
of decomposition procedures for the single machine problem (Sidney, 1975; Potts

and Van Wassenhove, 1982). Besides, Lagrangian relaxation techniques (Luh et

al, 1990; Hoitom et al, 1993), as a part of integer programming approaches, are
also used to evaluate different decomposition methods in order to form job level
or operation level subproblems. Other decomposition methods available in the
scheduling literature are the rolling horizon methods (Morton, 1981; Ovacik and

CHAPTER 4. REACTIVE SCHEDULING 84

1750.00

1700.00 --

1650.00

1600.00

1550.00

1500.00 --

1450.00

1400.00

1350.00

1300.00

— ♦ — 24*12(90%)
— ■ — 24*12(80%)

0.00 0.20 0.40 0.60 0.80
Partial Schedule Length

1.00

a) Frequency level of 14,12 Jobs & 6 machines
Makespan vs partial sche(dule length

b) Frequency level of 14, 24 jobs & 12 machines
Makespan vs partial schedule length

Figure 4.10: Makespan vs partial schedule length in 90% and 80% efficiency levels,
Uniform Case

Uzsoy, 1994), the bottleneck dynamic approach (Morton and Pentico, 1993) and the
graph decomposition technique (Wu et al, 1997). In addition, in this section we
use the partial scheduling as a way of decomposing the static job shop scheduling
problem.

In the deterministic environment, the frequency of scheduling should not have
any effect on the performance of the partial scheduling method. Because in the
periodic response policy implementation, rescheduling decision is not held at the
next scheduling point unless there is a machine breakdown during the current period.
In the deterministic environment, since we do not have any machine breakdown,
rescheduling decision is only made after executing all the scheduled operations in

the partial schedule. Therefore, partial schedule of certain length should give the

same performance measure regardless of the scheduling frequency levels.

The previous experimental conditions are used in the analysis, except that the
environment is deterministic (as explained in the section 4.3.1). Again, at the
scheduling frequency levels of 4 and 14, the effects of various partial schedule lengths

CHAPTER 4. REACTIVE SCHED ULING 85

are examined for the small and large shops in the both uniformly and nonuniformly
loaded systems. Again the makesi^an and mean tardiness criteria are used as the
performcince measures.

Mean Tardiness Analysis

The effects of partial scheduling in deterministic environment with the above
conditions are first tested for the mean tardiness performance measure. The changes

in mean tardiness and CPU times as the function of partial schedule length are shown
in Figure 4.11 (the numerical results are also given in Table B.17 and Table B.19 in
in the appendix for both uniformly and nonuniformly loaded systems).

The experimental results confirm our expectation that the scheduling frequency
does not affect the results (see Table B.16 and B.17). The partial schedule lengths
of 1/2 and 1 give the same results for both scheduling frequency levels of 4 and 14.
For that reason graphs are given for only the frequency level of 14 are the results of
the other scheduling frequency level are given in the appendix.

The first observation from the experiments is that as the length of partial schedule
increases, the solution of the schedule improves. This is expected, and the myopic
decisions and the need for the extra amount of inserted idle time in the schedules
are again the reasons of this pattern.

In addition, the behavior of the segmented lines for the mean tardiness graphs
is very similar to the ones in the pcirtial scheduling section (see Figure 4.5c and
Figure 4.11a). We again observe that the mean tardiness changes significantly for
the moderate level of partial schedule length whereas the changes are insignificant for
the short and very large partial schedule lengths. The explanation given previously
for this type of behavior is also valid in this case.

The simulation experiments are also repeated for the nonuniformly loaded systems

(see Figure 4.11c and 4.lid). Note that, in the nonuniform systems, the marginal
improvement of the mean tardiness values in response to increase in the length of

the partial schedule, is less than its uniform counterpart (compare Figures 4.11a and
4.11c). Because in the nonuniformly loaded systems there is already extra amount

CHAPTER 4. REACTIVE SCHEDULING 86

of slack in the schedule. Consequently the some of inserted idle time due to partial
scheduling may be absorbed by the slack in the schedule and hence deterioration in
the performance of the schedule decreases in the nonuniformly loaded systems.

We also examine the effects of partial scheduling on the CPU time requirements.
The results indicate that the CPU times do not considerably change as a function
of the partial schedule length (see Figure 4.11b and 4.lid). Recall that in the
proposed response system, a new partial schedule is generated after executing all
the operations in the current partial schedule. Therefore, if the length of partial
schedule is 1/4, we repeat this process for 4 times in order to generate 1 complete
schedvde. In this case the amount of work required to generate 1 complete schedule
is proportional to 4 times the work required to generate the partial schedule of
length 1/4 (which is equal to required work for generating the schedule without
decomposition). Therefore, the amount of required work, and consequently the
CPU time remains coirstant regardless of the partial schedule length.

In summary, partial scheduling in deterministic environment is not a recom
mended policy for the mean tardiness criterion. Because the performance of schedule
deteriorates for the small partial schedule lengths without any CPU time saving.

Makespan Analysis

The same analysis is also performed for the makespan performance measure. The
results of the experiments for the scheduling frequency of 14 are shown in Figure
4.12 (the results are also given in Table B.21 and Table B.23 in the appendix for
uniformly and nonuniformly loaded system, respectively). Again, the results of the
analysis is given in the figures at the scheduling frequency of 14. Others are given

in Table B.20 and B.22 in the appendix.

We observe from the graphs that the makespan values does not significantly

improve as a result of the increase in the partial schedule length. This behavior
of the segmented lines is very similar to the ones in the partial scheduling section.

Therefore the explanation previously given for this behavior is also valid in this case.

CHAPTER 4. REACTIVE SCHEDULING 87

a) Frequency level of 14 (Uniform Case)
Mean tardiness vs partial schedule length

b) Frequency level of 14 (Uniform Case)
CPU time vs partial schedule length

c) Frequency level of 14 (Nonuniform Case)
Mean tardiness vs partial schedule length

d) Frequency level of 14 (Nonuniform Case)
CPU time vs partial schedule length

Figure 4.11: Interactions between mean tardiness & CPU time and partial schedule
length in deterministic environment

CHAPTER 4. REACTIVE SCHED ULING 88

a) Frequency level of 14 (Uniform Case)
Makespan vs partial schedule length

b) Frequency level of 14 (Uniform Case)
CPU time vs partial schedule length

0.20 0.40 0.60 0.80
Partial Schedule Length

c) Frequency level of 14 (Nonuniform Case)
Makespan vs partial schedule length

d) Frequency level of 14 (Nonunlform Case)
CPU time vs partial schedule length

Figure 4.12: Interactions between makespan L· CPU time and partial schedule length
in deterministic environment

CHAPTER 4. REACTIVE SCHEDULING 89

In addition, we note that the CPU time behavior is the same as in the case of
the mean tardiness. Hence, the discussion given in the mean tardiness analysis can
also be given here.

The results of the analysis for the nonuniformly loaded systems seem to be very
similar to the their uniform counterparts (compare Figure 4.12a and 4.12c). But, in
the nonuniformly loaded systems, the marginal improvement in makespan values due
to increase in the partial schedule length is slightly less than that of the uniformly
loaded systems (see in Table B.21 and B.23 in the appendix). The same observation
was also made in the mean tardiness analysis and the explanation given for this
behavior in the mean tardiness analysis is also valid in this case.

4.4 Conclusion

In this chapter of the thesis we analyze the effects of shop floor configurations
(system size and load allocation) on the performances of off-line and on-line
scheduling methods. In the study a filtered beam search based algorithm and priority
dispatching rule are used as off-line and on-line schedule generation methods. The
performance of the system is evaluated for both the mean tardiness and makespan
criteria.

The performance of the scheduling methods are analyzed first in the deterministic
environment and we observe the following,
• System size does not affect the relative performance of the algorithms.
• The relative performance of the off-line algorithm gets better than the on-line
algorithm in the crowded systems.

• In the nonuniformly loaded systems, the performance of both algorithms

deteriorate, however deterioration in the performance of the on-line algorithm is

less than the that of the off-line algorithm.
• The patterns of the all results are very similar for both the makespan and the

mean tardiness objective functions.

In the next part of the chapter, we assume that the machines in the system are

CHAPTER 4. REA CTIVE SCHED ULING 90

subject to random breakdowns. The on-line algorithm handles machine breakdowns
while constructing the schedule. For the off-line algorithm we first analyze the no
response policy in order to cope with the randomness. The results of this analysis
is summarized as follows,
• The performcince of the on-line algorithm is affected by the machine breakdowns
less than performance of the off-line algorithm.
• System size again does not affect the amount of deterioration in solution of the
scheduling algorithms.
• As only the number of jobs increased in the system, the machine breakdowns affect
the performance of the scheduling algorithms more seriously.
• In the nonuniformly loaded systems the performance of the schedules does not
decline as much as in the uniformly loaded systems.

In the second stage of the stochastic environment section, we examine the the
effects of periodic response policy for the off-line scheduling algorithm. The results
of the experiments are given as follows,
• The performance of the algorithm improves as the level scheduling frequency
increases.
• The marginal improvement become smaller for the high scheduling frequency
levels.
• Rescheduling gives relatively better results in the large systems.
• Effects of rescheduling is less significant in the nonuniformly loaded systems.

In the next section of the chapter, consequences of partial scheduling is examined
by utilizing the constructive type of the algorithm. According to experimental
results, we observe the following,
• (for the mean tardiness criterion) As the length of the partial schedule decreases,
the performance of the schedules deteriorates due to extra amount of inserted idle

time and myopic decisions.

• (for the makespan criterion) The amount of deterioration is less significant due to

the nature of this objective function and the nondelay schedule generation scheme.
• (for both criteria) The CPU times get smaller as the length of partial schedule

decrease, since the extra work to generate complete schedule is eliminated.
• (for both criteria) The effects of partial scheduling is the same in uniformly and

CHAPTER 4. REACTIVE SCHED ULING 91

nonuniformly loaded systems.

Finally the notion of partial scheduling is used in the deterministic job shop
problem in order to analyze the time based decomposition of this scheduling problem.
The experiments show that,
• The patterns in the changes of the objective functions are the same as the ones in
the partial scheduling analysis.

• The CPU times remain unchanged as the length of the partial schedules increases.

Chapter 5

CONCLUSION

This thesis consists of three parts. In the first part, we reviewed the reactive schedul
ing literature and classified the studies according to their problem environments,
schedule generation methods and reactive scheduling implementations. In the next
part, we developed a heuristic schedule generation algorithm based on the beam
search technique and in the final part reactive scheduling policies are analyzed for
various system size and load allocations. Detailed discussions of results of each study
were presented in the conclusion sections of each chapters. Here, we summarize these
findings in a comprehensive manner and outline further research directions.

At the first stage of the thesis, we used the beam search to solve the classic
job shop scheduling problem for the makespan and mean tardiness criteria. We
examined active and nondelay schedule generation schemes, different priority rules
for both local and global evaluation functions, and various values of beam and
filter width parameters. According to our computational results, we identified the

proper settings of these parameters which were used in later parts of the thesis. Our

computational experiments also indicated that beam search is a very good heuristic

for the job shop problems.

In third chapter of the thesis we analyzed the effects of shop floor configurations
(system size and load allocation) on the relative performances of off-line and on

line scheduling methods. In this study the filtered beam search based algorithm

92

CHAPTER 5. CONCLUSION 93

and priority dispatching rule were used as off-line and on-line schedule generation
methods. The performance of the system was evaluated for both the mean tardiness
and makespan criteria.

The performance of the scheduling methods were first analyzed in the
deterministic environment. We observed that system size did not affect the relative
performance of the algorithms. In addition, in the nonuniformly loaded systems,
the performance of the both methods deteriorated but we noted that deterioration
of the dispatching rule’s performance was less than the that of the algorithm.

In the next part of the chapter, we assume that the machines in the system
were subject to random breakdowns. We first analyzed the no response policy for
the off-line algorithm. The results of this analysis showed that the performance of
the on-line method was affected less than performance of the off-line method. We
again observed that the system size did not affect the amount of deterioration in
solution of the scheduling methods. Besides, we noted that in the nonuniformly

loaded systems the performance of the schedules does not decline as much as in the
uniformly loaded systems.

In the second part of the stochastic environment section, we examined the effects
of periodic response policy of the off-line scheduling algorithm. The results of
the experiments showed that the performance of the algorithm improves as the

scheduling frequency increases, but the marginal improvement became smaller for
high scheduling frequencies. Here, rescheduling yielded relatively better results
in the large systems. We also noticed that the effects of rescheduling were less
significant in the nonuniformly loaded systems.

The performance of partial scheduling was examined by utilizing the beam search
based constructive type algorithm. In the experiments various levels of partial

schedule lengths were analyzed. The results indicated that as the length of the

partial schedule decreases, the performance of the schedules deteriorates due to extra

amount of inserted idle time and myopic decisions for the mean tardiness objective

function. For the makespan case the amount of deterioration was less significant
due to the nature of this objective function and the nondelay schedule generation
scheme. We also noted that the CPU times became smaller as the length of partial

CHAPTERS. CONCLUSION 94

schedule decreased for both criteria. In addition, we observed that the effects of
partial scheduling were the same regardless of the system size as well as the load
allocations.

F'inally, we used the partial scheduling in the deterministic job shop problem in
order to aiicilyze the time based decomposition of the job shop scheduling problem.
Our simulation experiments showed that the patterns of changes in the objective
functions were the same as the ones in the partial scheduling analysis discussed
previously. In this section, we also noted the CPU times was not improved for the
small partial schedule lengths. In conclusion, we can infer that decomposing the
static job shop scheduling problem using partial scheduling concept would not help
system controllers in the static environment. However, this decomposition scheme
may work very well in the dynamic environment which require a further research.

From these conclusions, we suggest the following future research topics:

• One drawback of the beam search algorithm is imperfect assessment of the
promise of nodes. As a result of this, the nodes that can lead to good solutions,
are sometimes erroneously discarded. For the makespan problems, however,
strong lower bounds are available in the literature. Hence, these lower bounds
can be used as local evaluation function to improve the performance of the
proposed beam search algorithm in future studies.

• Recall that in the global evaluation we estimate promise of a node by

computing objective function of the complete schedule generated from the
partial schedule represented by the node. In the beam search algorithm we
used dispatching rules in the global evaluation function. Other methods that
produce more accurate estimation can be used to improve the quality of the

global evaluation function. In this context, instead of dispatching rules, a

filtered beam search with simple evaluation functions and small filter and

beam width parameters can be used to asses the promises of the nodes.

• In the analysis of reactive scheduling policies we use only machine breakdowns
as disruption to the system. The events like, process time variation, arrival of
urgent job, due date change can also be analyzed in this context. Moreover

CHAPTER 5. CONCLUSION 95

the effects of different duration of mean machine up and down times for the
same efficiency level can also be analyzed in the simulation experiments.

• In this study we use the static job shop problem. The same analysis can
be performed for the dynamic environment. This way we may be able to
understand whether all the conclusion made in this thesis for the static
scheduling problem are also valid in the dynamic environment.

• Partial scheduling (in both deterministic and stochastic system) does not
have outstcinding performance in the static scheduling problems. However,
we strongly believe that implementation of partial scheduling in the dynamic
environment would be more beneficial for the system operations.

Bibliography

[1] Aarts, E.H.L., Van Laarhoven, P.J.M., Ulder, N.L.J., “Local search based
algorithms for job shop scheduling” ,Working Paper, 1991, Department of
Mathematics and Computer Science, Eindhoven University of Technology,
Eindhoven, The Netherlands.

[2] Aarts, E.H.L., Van Laarhoven, P.J.M., Lenstra, J.K., Ulder, N.L.J., ” A
computational Study of Local Search Algorithms for Job Shop Scheduling” ,
ORSA Journal on Computing, 1994, Vol 6, No 2.

[3] Adams, J., Balas, E., Zawack, D., ’’ The Shifting Bottleneck Procedure for Job
Shop Scheduling” , Management Science, 1988, Vol 34, 391-401.

[4] Akturk, S., Gorgulu, E., ’’Reactive Scheduling Under a Machine Breakdown” ,
Technical Report IEOR-9316, 1993, Bilkent University, Department of
Industrial Engineering.

[5] Applegate, D., Cook, W., ” A Computational Study of Job-Shop Scheduling” ,

Technical Report CMU-CS-90-145, Carnegie Mellon University, School of
Computer Science, 1990.

[6] Baker, K.R., Introduction to Sequencing and Scheduling, Wiley, New York,
1974.

[7] Baker, K.R., ’’ Sequencing Rules and Due-Date Assignments in Job Shop” ,

Management Science, 1984, Vol 30, No 9, 1093-1104.

[8] Banks, J. Carson, J.S., “Discrete-Event System Simulation”, Prentice Hall Inc,

1984.

96

BIBLIOGRAPHY 97

[9] Bean, J., Birge, J.R., Mittenthal, J., Noon, C.E., ’’ Matchup Scheduling with
Multiple Resources, Release Dates and Disruptions” , Operations Research,
1991, Vol 39, No 3, 470-483.

[10] Bengu, G., “A Simulation-based Scheduler for Flexible Flowlines” , Interna

tional Journal of Production Research”, 1994, Vol 32, No 2, pp 321-344.

[11] Chang, Y., Matsuo, H., Sullivan, R.S., ” A Bottleneck-based Beam Search for
.Job Scheduling in a Flexible Manufacturing System” , International Journal of
Production Research, 1989, Vol 27, No 11, 1949-1961.

[12] Church, L.K., Uzsoy, R., ’’ Analysis of Periodic and Event Driven Rescheduling
Policies in Dynamic Shops” , International Journal of Computer Integrated
Manufacturing, 1992, Vol 5, No 3, 153-163.

[13] De, S., Lee, A., ’’ Flexible Manufacturing System (FMS) Scheduling Using
Filtered Beam Search” , Journal of Intelligent Manufacturing, 1990, Vol 1, 165-

183.

[14] Dutta, A., ’’ Reacting to Scheduling Exceptions in FMS Environments” , HE
Transactions, 1990, Vol 22, No 4, 300-314.

[15] Earn, C.K., Muhleman, A.P., ’’ The Dynamic Aspects of a Production
Scheduling” , International Journal of Production Research, 1979, Vol 17, No

15.

[16] Fox, M.S., ’’ Constraint Directed Search: A Case Study of Job Shop Scheduling” ,
Ph.D Thesis, Carnegie Mellon University, 1983.

[17] Fox, M.S., Smith, S.F., ’’ ISIS - A Knowledge Based System for Factory
Scheduling” , Expert Systems, 1984, Vol 1, 25-49.

[18] Garey, M.R., Johnson, D.S., Computers abd Intertracability: A Guide to the
Theory of NP-Completeness, W. H. Freeman, San Francisco, California, 1979.

[19] Glover, F., “Tabu Search, Part-I” , ORSA Journal on Computing, 1989, Vol 1,

No 3, 190-206.

BIBLIOGRAPHY 98

[20] Glover, F., “Tabu Search, Part II” , ORSA Journal on Computing, 1990, Vol 2,
No 1, 4-32.

[21] Hatzikonstantis, L., Besant, C.B., ’’ Job-Shop Scheduling Using Certain
Heuristic Search Algorithm” , International Journal of Advance Manufacturing
Technology, 1992, Vol 7, 251-261.

[22] Ploitom, D.J., Luh, P.B., Pattipati, K.R., “A Practical Approach to Job Shop
Scheduling Problems” , IEEE Transactions on Robotics and Automation, 1993,
No 9, pp 1-13.

[23] Holloway, C.A., Nelson, R.T., ’’ Job Shop Scheduling with Due Dates and
Variable Processing Times” , Management Science, 1974, Vol 20, No 9.

[24] Jain, S., Foley W.J., “Real time control of manufacturing systems with
redundancy” . Computer and Engineering, 1987, No 2.

[25] Jain, A.S., Meeran, S., The Job Shop Problem: Past, Present and Future,

Department of Applied Physics and Electronic and Mechanical Engineering,
University of Dundee, UK, 1996.

[26] Kanet, J.J., Zhou, Z., “A Decision Theory Approach to Priority Dispatching
for Job Shop Scheduling” , Production and Operations Management, 1993, No
2, Vol 1, pp 2-14.

[27] Kim, M.H., Kim, Y., ’’ Simulation Based Real Time Scheduling in a Flexible
Manufacturing Systems” , Journal of Manufacturing Systems, 1994, Vol 13, No
2, 85-93

[28] Kiran, A.S., Smith, M., ’’ Simulation Studies in Job Shop Scheduling-I, A
Survey” , Computer and Industrial Engineering”, 1984, Vol 8, No 2, 87-93.

[29] Kiran, A.S., Alptekin, S., Kaplan A.C., ’’Tardiness Heuristic for Scheduling
Flexible Manufacturing Systems” , Production Planning and Control, 1991, Vol

2, No 3, 228-241.

[30] Kutanoglu, E., Sabuncuoglu, L, ’’Experimental Investigation of Scheduling
Rules in a Dynamic Job Shop with Weighted Tardiness Costs” , Third Industrial
Engineering Research Conference, 1994, 308-312.

BIBLIOGRAPHY 99

[31] Kutanoglu, E., “Job Shop Scheduling Under Dynamic and Stochastic Manu
facturing Environment” , Master Thesis, 1995, Bilkent University, Department
of Industrial Engineering.

[32] Lawrence, S., "Resource Constrained Project Scheduling: An experimental
Investigation of Heuristic Scheduling Techniques” , GSIA, Carnegie Mellon
University, 1984.

[33] Law, A.M., Kelton, W.D., Simulation Modeling and Analysis, 1991, McGraw-
Hill.

[34] Lowerre, B.T., The HARPY speech recognition system. PH.D. thesis, Carnegie-
Mellon University, U.S.A., 1976.

[35] Luh, P.B., Hoitomt, D.J., Max, E., Pattipati, K.R., “Schedule Generation and
Reconfiguration for Parallel Machines” , IEEE Transactions on Robotics and
Automation, 1990, No 6, pp 687-696.

[36] Martin, 0 ., Otto, S.W., and Felten, E.W., “Large-step Markov Chains for
Traveling Salesman Problem” , Complex Systems, 1989, Vol 5, 299-326.

[37] Matsua, H., Suh, C.J., and Sullivan, R.S., “A controlled search simulated
annealing method for the general job shop scheduling problem” . Working paper,
1988, 03-04-88, Graduate School of Business, The University of Texas at Austin,
Texas, USA.

[38] Matsuura, H., Tsubone, H., Kanezashi, M., "Sequencing, Dispatching, and
Switching in a Dynamic Manufacturing Environment” , International Journal
of Production Research, 1993, Vol 31, No 7, 1671-1688.

[39] Morton, T.E., Pentico, D.W., Heuristic Scheduling Systems, John Wiley L·
Sons, New York, 1993.

[40] Muhleman, A.P., Lockett, A.G., Earn, C.K., "JobShop Scheduling Heuristics
and Frequency of Scheduling” , International Journal of Production Research,
1982, Vol 20, No 2, 227-241.

BIBLIOGRAPHY 100

[41] Nakano, R., Yamada, T., “Conventional genetic algorithm for job shop
problems” , , Proceedings of the ^th International Conference on the Genetic
Algorithms and Their Applications, 1991, San Diego, California, USA, 474-479.

[42] Nelson, R.T., Holloway, C.A., Wong, R.M., "Centralized Scheduling and
Priority Implementation Heuristics for a Dynamic Job Shop Model” , AIIE
Transactions, 1977, Vol 9, No 1.

[43] Nof, S.Y., Grant, F.H., "Adaptive/Predictive Scheduling: Review and a
General Framework” , Production Planning and Control, 1991, Vol 2, No 4,
298-312.

[44] Ovacik, I.M., Uzsoy, R., "Exploiting Shop Floor Status Information to Schedule
Complex .Job Shops” , Journal of Manufacturing Systems, Vol 13, No 2.

[45] Ovacik, I.M., Uzsoy, R., "Rolling Horizon Algorithms for a Single Machine
Dynamic Scheduling Problem with Sequence Dependent Setup Times” ,
International Journal of Production Research, 1994, Vol 32, No 6, 1243-1263.

[46] Ow, P.S., Morton, T.E., "Filtered Beam Search in Scheduling” , International
Journal of Production Research, 1988, Vol 26, No 1, 35-62.

[47] Potts, C.N., Van Was.senhove, L.N., “A Decomposition Algorithm for the Single
Machine Total Tardiness Problem” , Operations Research Letters, 1982, Vol 1,

No 5, pp 177-181.

[48] Sabuncuoglu, I., Karabük, S., "A Beam Search Algorithm and Evaluation
of Scheduling Approaches for FMSs” , Accepted for publication in HE
Transactions, 1997.

[49] Sabuncuoglu, I., Karabük, S., “Analysis of Scheduling Rescheduling Problems

in a Stochastic Manufacturing Environment” , Technical Report IEOR-9704,

1997, Bilkent University, Department of Industrial Engineering.

[50] Sidney, J.B., “Decomposition Algorithms for Single Machine Sequencing with

Precedence Relations and Deferral Costs” , Operations Research, 1975, Vol 23,

No 2, pp 283-298.

BIBLIOGRAPHY 101

[51] Smith, S.F., Ow, P.S., Potvin, J.Y., Muscettola, N., Matthys, D., ” An
Integrated Framework for Generating and Revising Factory Schedules” , Journal
of Operational Research Society, 1990, Vol 41, No 6, 539-552.

[52] Szelke, E., Kerr, R.M., ’’ Knowledge-based Reactive Scheduling” , Production
Planning and Control, 1994, Vol 5, no 2, 124-145.

[53] Wu, S.D., Wysk, R.A., “Multipass Expert Control System - A Con-
trol/Scheduling Structure for Flexible Manufacturing Cells” , Journal of
Manufacturing Systems”, 1988, Vol 7, No 2, p 107-120.

[54] Wu, S.D., Wysk, R.A., “An Application of Discrete-event Simulation to On-line
Control and Scheduling in Flexible Manufacturing” , International Journal of
Production Research, 1989, Vol 27, No 9, 1603-1623.

[55] Wu, S.D., Storer, R.H., Byeon, E.S., “Decomposition Heuristics for Robust
Job Shop Scheduling” , IEEE Transactions on Robotics and Automation, 1997,
Under Review.

Yamamoto, M., Nof, S.Y., ’’ Scheduling in the Manufacturing Operating System
Environment” , International Journal of Production Research, 1985, Vol 23, No
4, 705-722.

Appendix A

Beam Search

102

APPENDIX A. BEAM SEARCH 103

Table A .l: Percent deviation from optimal solution vs filterwidth
f b:l b:2 b:3 b:4 b:5 b:6 b:7 b:8 Dispatch

Active Branching, Local: MWR, Global: MWR Dispatching Rule
1 23.45 21.38 20.28 19.95 19.73 19.73 18.59 18.56 14.34
2 8.36 7.09 7.29 6.68 5.58 5.41 6.67 6.20 14.34
3 7.29 6.84 6.52 6.51 6.05 6.05 6.16 6.16 14.34
4 7.28 6.83 6.21 6.07 5.61 5.61 5.72 5.62 14.34
5 6.97 6..53 6.21 6.07 5.47 5.47 5.57 5.57 14.34
6 6.74 6.29 5.97 5.83 5.37 5.37 5.48 5.48 14.34
7 6.74 6.29 5.97 5.83 5.37 5.37 5.48 5.48 14.34
8 6.74 6.29 5.97 5.83 5.37 5.37 5.48 5.48 14.34

^ondelay Branching, Local: MWR, Global: MWR Dispatching Rule
1 12.47 12.47 12.12 11.59 11.32 10.85 9.99 9.99 14.34
2 8.02 7.78 7.41 7.20 6.42 6.15 6.16 6.13 14.34
3 6.86 6.46 6.32 6.15 5.43 5.43 5.88 5.78 14.34
4 6.85 6.45 6.31 6.19 5.48 5.48 5.93 5.82 14.34
5 6.61 6.30 6.21 5.87 4.86 4.86 5.31 5.22 14.34
6 6.61 6.31 6.21 6.13 5.13 5.13 5.58 5.29 14.34
7 6.61 6.31 6.21 6.13 5.13 5.13 5.58 5.29 14.34
8 6.61 6.31 6.21 6.13 5.13 5.13 5.58 5.29 14.34

Active Branching, Local: LB, Global: MWR Dispatching Rule
1 34.16 32.43 31.25 30.68 30.33 30.17 28.28 28.28 14.34
2 13.56 12.12 11.06 10.57 9.69 8.87 9.49 9.49 14.34
3 7.77 7..38 6.85 6.84 6.24 6.24 6.39 6.39 14..34
4 7.28 6.83 6.21 6.07 5.72 5.72 5.72 5.72 14.34
5 6.98 6.53 6.21 6.07 5.57 5.72 5.72 5.72 14.34
6 6.74 6.28 5.97 5.83 5.48 5.48 5.48 5.48 14.34
7 6.74 6.28 5.97 5.83 5.48 5.48 5.48 5.48 14.34
8 6.74 6.28 5.97 5.83 5.48 5.48 5.48 5.48 14.34

Nondelay Branching, Local: LB, Global: MWR Dispatching Rule
1 13.55 13.55 12.91 12.38 12.09 11.63 10.84 10.84 14.34
2 8.41 8.16 7.82 7.29 6.43 6.16 6.16 6.16 14.34
3 6.86 6.46 6.33 6.15 5.44 5.44 5.88 5.77 14.34
4 6.85 6.45 6.31 6.19 5.48 5.48 5.93 5.82 14.34
5 6.60 6.29 6.21 5.87 4.86 4.86 5.31 5.23 14.34
6 6.61 6.31 6.21 6.14 5.13 5.13 5.58 5.49 14.34
7 6.61 6.31 6.21 6.14 5.13 5.13 5.58 5.49 14.34
8 6.61 6.31 6.21 6.14 5.13 5.13 5.58 5.49 14.34

APPENDIX A. BEAM SEARCH 104

Table A .2: Mean tardiness vs filterwidth analysis

f b:l b:2 b:3 b:4 b:5 b:6 b:7 b:8 Dispatch
Active Branching, Local: !SPT, Global: SPT Dispatching Rule

1 1641.7 1585.7 1485.6 1415.2 1300.9 1300.6 1266.4 1254.2 485.6
2 636.1 486.7 403.7 352.2 349.4 335.7 317.1 317.1 485.6
3 398.3 326.0 264.0 212.1 212.1 212.1 201.0 201.0 485.6
4 295.1 263.2 213.9 200.2 200.2 200.2 198.5 198.5 485.6
5 268.5 265.5 216.2 202.2 202.2 202.2 200.5 200.5 485.6
6 268.5 265.5 216.2 202.2 202.2 202.2 200.5 200.5 485.6
7 268.5 265.5 216.2 202.2 202.2 202.2 200.5 200.5 485.6
8 268.5 265.5 216.2 202.2 202.2 202.2 200.5 200.5 485.6

Active Branching, Local: !5PT, Global: SPT Dispatching Rule
1 450.7 434.3 402.9 371.8 369.4 369.4 364.4 364.4 485.6
2 323.6 307.0 303.7 274.6 277.4 271.1 270.9 252.5 485.6
3 316.9 293.5 267.1 232.9 241.0 241.0 228.3 228.3 485.6
4 287.0 270.4 244.0 232.6 240.7 240.7 228.0 228.0 485.6
5 287.0 274.7 248.3 236.9 245.0 240.7 2.32.3 232.3 485.6
6 287.0 274.7 248.3 236.9 245.0 240.7 232.3 232.3 485.6
7 287.0 274.7 248.3 236.9 245.0 240.7 232.3 232.3 485.6
8 287.0 274.7 248.3 236.9 245.0 240.7 232.3 232.3 485.6

Active Branching, Local: EDD, Global: EDD Dispatching Rule
1 1300.9 1214.5 1181.9 1175.1 1139.4 1104.4 1124.2 1100.0 485.6
2 .3.33.5 311.2 .309.9 266.3 249.3 249.3 249.3 248.9 485.6
3 258.4 250.5 240.0 237.5 237.5 226.9 220.2 216.2 485.6
4 2.56.8 240.3 2.39.6 220.6 220.6 218.3 217.0 216.2 485.6
5 2.56.8 240.3 2.39.6 220.6 220.6 218.3 217.0 216.2 485.6
6 256.8 240.3 239.6 220.6 220.6 216.6 216.6 216.6 485.6
7 256.8 240.3 239.6 220.6 220.6 216.6 216.6 216.6 485.6
8 256.8 240.3 239.6 220.6 220.6 216.6 216.6 216.6 485.6

Nondelay Branching, Local: EDD, Global: EDD Dispatching Rule
1 475.3 475.3 414.8 388.4 376.7 374.9 360.0 360.0 485.6
2 366.4 316.4 291.1 276.1 268.0 254.4 211.6 211.6 485.6
3 342.7 293.9 280.3 268.2 258.7 247.9 202.6 202.6 485.6
4 324.7 275.7 267.1 256.9 247.4 223.0 200.3 200.3 485.6
5 312.3 271.2 262.6 252.4 247.4 223.0 200.3 200.3 485.6
6 312.3 271.2 262.6 252.4 247.4 232.3 209.3 209.6 485.6
7 312.3 271.2 262.6 252.4 247.4 232.3 209.3 209.6 485.6
8 312.3 271.2 262.6 252.4 247.4 232.3 209.3 209.6 485.6

APPENDIX A. BEAM SEARCH 105

Table A.3: Mean tardiness vs filterwidth analysis

f b:l b:2 b:3 b:4 b:5 b:6 b:7 b:8 Dispatch
Active Branching, Local: MDD, Global: MDD Dispatching Rule

1 1221.3 1182.0 1155.0 1129.6 1117.6 1101.9 1133.8 1116.2 485.6
2 365.8 .333.9 319.4 285.3 274.4 273.2 266.9 265.7 485.6
3 294.1 286.0 250.4 262.6 248.3 217.5 189.1 189.1 485.6
4 274.0 269.9 265.6 243.2 241.5 224.1 202.7 202.7 485.6
5 274.0 270.4 262.0 243.2 241.5 224.1 202.7 202.7 485.6
6 274.0 270.4 262.0 243.2 241.5 227.8 206.4 206.4 485.6
7 274.0 270.4 266.1 243.2 241.5 227.8 206.4 206.4 485.6
8 274.0 270.4 266.1 243.2 241.5 227.8 206.4 206.4 485.6

Active Branching, Local: MDD, Global: SPT Dispatching Rule
1 1267.3 1224.9 1141.9 1103.0 1103.0 1085.4 1129.6 1110.2 485.6
2 577.4 455.8 351.3 317.6 296.5 276.0 281.2 281.2 485.6
3 242.7 233.4 222.5 192.6 192.6 186.1 185.9 183.8 485.6
4 233.7 230.7 219.8 198.2 198.2 191.7 188.3 188.3 485.6
5 233.7 230.7 219.8 198.2 198.2 191.7 188.3 188.3 485.6
6 2.33.7 230.7 219.8 198.2 198.2 191.7 188.3 188.3 485.6
7 233.7 230.7 219.8 198.2 198.2 191.7 188.3 188.3 485.6
8 233.7 230.7 219.8 198.2 198.2 191.7 188.3 188.3 485.6

Active Branching, Local: EDD, Global: SPT Dispatching Rule
1 1282.9 1256.6 1166.6 1134.4 1131.7 1095.3 1086.7 1075.7 485.6
2 569.4 450.1 340.9 313.5 291.8 276.0 276.5 276.5 485.5
3 242.7 232.7 221.8 192.6 192.6 186.1 185.9 183.8 485.6
4 232.9 229.9 219.0 198.2 198.2 191.7 188.3 188.3 485.6
5 232.9 229.9 219.0 198.2 198.2 191.7 188.3 188.3 485.6
6 2.32.9 229.9 219.0 198.2 198.2 191.7 188.3 188.3 485.6
7 232.9 229.9 219.0 198.2 198.2 191.7 188.3 188.3 485.6
8 232.9 229.9 219.0 198.2 198.2 191.7 188.3 188.3 485.6

Active Branching, Local: MOD, Global: SPT Dispatching Rule
1 1053.5 995.6 989.7 989.7 989.7 989.7 994.8 986.7 485.6
2 376.0 326.0 304.1 269.6 264.4 259.2 259.2 259.2 485.6
3 281.1 267.4 220.7 192.0 192.0 186.8 179.0 179.0 485.7
4 269.4 246.6 199.9 196.9 196.9 191.7 186.9 186.9 485.7
5 269.4 252.7 206.0 194.9 194.9 189.7 184.9 184.9 485.7
6 269.4 252.7 206.0 194.9 194.9 189.7 184.9 184.9 485.7
7 269.4 252.7 206.0 194.9 194.9 189.7 184.9 184.9 485.7
8 269.4 252.7 206.0 194.9 194.9 189.7 184.9 184.9 485.7

Appendix B

Reactive Scheduling

106

APPENDIX B. REACTIVE SCHEDULING 107

Table B .l: Interactions between mean tardiness and scheduling frequency
Uniform Case

jobs * machines
Frequency 9*6 12*6 18*12 24*12

0 118.9 242.5 138.9 285.7
2 119.8 242.0 134.1 280.6
4 117.1 242.1 130.9 273.1
6 113.3 237.7 130.4 271.7
8 109.7 236.7 126.5 273.1
10 107.7 234.9 125.4 269.9
12 107.9 233.7 126.7 269.1
14 108.7 232.5 124.7 267.3
16 107.0 233.4 123.7 267.9

1000 105.5 230.1 119.9 263.5

Table B.2: Interactions between mean tardiness and scheduling frequency
Nonuniform Case

jobs * machines
Frequency 9*6 12*6 18*12 24*12

0 169.9 288.3 172.1 312.9
2 164.1 283.3 163.2 306.8
4 166.1 282.8 161.2 308.8
6 160.2 282.7 159.9 301.1
8 161.9 281.1 156.5 300.4
10 158.6 281.5 154.6 299.4
12 160.9 278.8 153.5 302.9
14 158.4 277.4 154.8 299.2
16 158.5 275.2 155.2 300.7

1000 155.9 274.3 154.0 298.5

APPENDIX B. REACTIVE SCHEDULING 108

Table B.3: Interactions between CPU time and scheduling frequency
jobs * machines

Frequency 9*6 12*6 18*12 24*12
0 14.8 42.9 116.2 368.2
2 19.0 51.3 137.9 412.7
4 27.8 74.2 200.9 590.8
6 30.2 96.9 255.2 639.3
8 34.4 103.4 319.6 661.3
10 38.2 105.0 364.0 681.2
12 37.7 115.2 394.9 730.8
14 37.9 116.1 403.1 788.1
16 39.3 120.5 416.4 797.9

1000 46.8 156.6 572.3 820.9

APPENDIX B. REACTIVE SCHEDULING 109

Table B.4; Interactions between makespan and scheduling frequency

jobs * machines
Frequency 9*6 12*6 18*12 24*12

0 1119.2 1372.3 1218.8 1562.8
2 1117.2 1358.9 1213.9 1561.5
4 1117.0 1.347.5 1214.6 1545.3
6 1113.0 1347.7 1214.3 1547.5
8 1111.0 1341.2 1216.0 1540.7
10 1108..5 1345.0 1212.7 1538.3
12 1109.5 1346.9 1206.2 1532.0
14 1108.1 1.344.1 1208.0 L534.0
16 1108.6 1.341.5 1203.2 1529.4

1000 1108.0 1340.2 1200.4 1526.7

Table B.5: Interactions between makespan and scheduling frequency
Nonuniform Case

jobs * machines
Frequency 9*6 12*6 18*12 24*12

0 1292.4 1472.1 1317.3 1714.2
2 1291.2 1470.9 1317.6 1705.6
4 1284.9 1478.7 1323.9 1707.3
6 1279.2 1465.6 1319.8 1712.6
8 1280.6 1467.5 1.324.1 1702.9
10 1284.3 1470.2 1320.6 1695.9
12 1283.4 1467.6 1322.2 1698.8
14 1280.5 1472.9 1317.7 1690.0
16 1278.8 1471.5 1315.7 1692.6

1000 1279.4 1456.8 1311.2 1686.2

APPENDIX B. REACTIVE SCHEDULING no

Table B.6: Interactions between mean tardiness L· CPU time and partial schedule
length

Frequency level of 4 (Uniform Case)
Mean Tardiness CPU Time

Partial Length 12*6 24*12 12*6 24*12
1/3 262.66 295.25 52.56 411.63
1/2 252.58 288.80 64.95 512.08
1 242.08 273.12 74.23 590.76

Table B.7; Interactions between mean tardiness & CPU time and partial schedule
length

Frequency level of 14 (Uniform Case)
Mean Tardiness CPU Time

Partial Length 12*6 24*12 12*6 24*12
1/10 262.20 306.24 69.35 624.67
1/8 260.81 307.63 74.94 646.82
1/6 256.12 298.43 79.91 689.55
1/4 250.93 290.31 90.80 765.49
1/2 244.30 282.05 107.26 776.96
1 232.49 267.33 116.14 788.08

APPENDIX B. REA CTIVE SCHED ULING 111

Table B.8: Interactions between mean tardiness L· CPU time and partial schedule
length

Frequency level of 4 (Nonuniform Case)
Mean Tardiness CPU Time

Partial Length 12*6 24*12 12*6 24*12
1/3 271.52 324.23 50.61 409.97
1/2 266.13 320.63 62.01 502.50

1 250.16 302.65 70.73 576.41

Table B.9: Interactions between mean tardiness & CPU time and partial schedule
length

Frequency level of 14 (Nonuniform Case)
Mean Tardiness CPU Time

Partial Length 12*6 24*12 12*6 24*12
1/10 280.59 332.13 67.09 513.83
1/8 278.08 330.76 68.71 561.35
1/6 272.39 325.26 72.24 673.50
1/4 263.32 320.91 81.04 800.12
1/2 249.19 302..50 96.88 872.32
1 243.65 290.19 113.70 890.03

APPENDIX B. REACTIVE SCHEDULING 112

Table B.IO: Interactions between makespan & CPU time and partial schedule length
Frequency level of 4 (Uniform Case)

Makespan CPU Time
Partial Length 12*6 24*12 12*6 24*12

1/3 1369.6 1551.6 43.83 372.39
1/2 1349.2 1547.0 54.89 469.25

1 1347.5 1545.3 66.23 562.24

Table B .ri: Interactions between makespan & CPU time and partial schedule length
Frequency level of 14 (Uniform Case)

Makespan CPU Time
Partial Length 12*6 24*12 12*6 24*12

1/10 1358.5 1558.2 57.04 511.67
1/8 1355.9 1557.8 65.90 519.67
1/6 1350.5 1550.3 70.43 537.68
1/4 1347.1 1548.9 76.83 628.40
1/2 1344.3 1547.0 94.01 767.41

1 1344.1 1545.3 106.76 837.42

APPENDIX B. REACTIVE SCHEDULING 113

Table B.12: Interactions between makespan & CPU time and partial schedule length
Frequency level of 4 (Nonuniform Case)

Makespan CPU Time
Partial Length 12*6 24*12 12*6 24*12

1/3 1484.5 1689.5 50.61 409.97
1/2 1482.5 1673.8 62.01 502.50
1 1478.7 1707.3 70.73 576.41

Table B.13: Interactions between makespan & CPU time and partial schedule length
Frequency level of 14 (Nonuniform Case)

Makespan CPU Time
Partial Length 12*6 24*12 12*6 24*12

1/10 1477.7 1702.3 67.09 513.83
1/8 1475.0 1698.0 68.71 561.35
1/6 1467.3 1696.6 72.24 673.50
1/4 1467.8 1693.7 81.04 800.12
1/2 1470.4 1690.8 96.88 872.32

1 1472.9 1690.0 890.03

APPENDIX B. REACTIVE SCHEDULING 114

Table B.14: Mean tardiness vs partial schedule length in 90% and 80% efficiency
levels (Uniform case)

Partial Length 12*6(90%) 12*6(80%) 24*12(90%) 24*12(80%)
1/10 262.2 340.26 306.24 407.93
1/8 260.81 336.53 307.63 405.32
1/6 256.12 332.22 298.43 403.70
1/4 250.93 330.54 290.31 387.11
1/2 244.30 324.91 282.05 374..34

1 232.49 .322.27 267.33 363.97

Table B.15: Makespan vs partial schedule length in 90% and 80% efficiency levels
(Uniform case)

Partial Length 12*6(90%) 12*6(80%) 24*12(90%) 24*12(80%)
1/10 1358.5 1506.9 1545.2 1712.0
1/8 1355.9 1500.4 1544.8 1710.7
1/6 1350.5 1494.1 1541.3 1708.0
1/4 1347.1 1495.6 1540.9 1707.7
1/2 1344.3 1493.7 1537.2 1706.8

1 1344.1 1485.2 1534.0 1689.9

APPENDIX B. REACTIVE SCHEDULING 115

Table B.16: Interactions between mean tardiness L· CPU time and partial schedule
length in deterministic environment

Frequency level of 4 (Uniform Case)
Mean Tardiness CPU Time

Partial Length 12*6 24*12 12*6 24*12
1/3 185.83 229.46 44.28 345.60
1/2 184.25 224.94 43.56 341.98

1 171.35 212.61 42.61 341.10

Table B.17: Interactions between mean tardiness & CPU time and partial schedule
length in deterministic environment

Frequency level of 14 (Uniform Case)
Mean Tardiness CPU Time

Partial Length 12*6 24*12 12*6 24*12
1/10 197.26 238.13 48.23 349.55
1/8 191.59 234.36 46.71 346.71
1/6 189.06 232.49 45.61 344.43
1/4 188.26 229.46 44.83 343.73
1/2 185.83 224.94 43.67 341.73
1 171.35 212.61 42.65 339.25

APPENDIX B. REACTIVE SCHEDULING 116

Table B.18: Interactions between mean tardiness & CPU time and partial schedule
length in deterministic environment

Frequency level of 4 (Nonuniform Case)
Mean Tardiness CPU Time

Partial Length 12*6 24*12 12*6 24*12
1/3 206.13 259.20 39.82 322.66
1/2 200.22 251.37 39.61 319.42
1 191.9.5 240.89 38.94 318.48

Table B.19: Interactions between mean tardiness & CPU time and partial schedule
length in deterministic environment

Frequency level of 14 (Nonuniform Case)
Mean Tardiness CPU Time

Partial Length 12*6 24*12 12*6 24*12
1/10 218.17 261.74 43.65 324.90
1/8 216.45 261.29 41.91 323.23
1/6 209.92 260.08 41.42 324.00
1/4 204.18 257.25 40.17 320.93
1/2 200.22 251.37 39.58 318.37
1 191.95 240.89 39.39 318.89

APPENDIX B. REACTIVE SCHEDULING 117

Table B.20: Interactions between makespan & CPU time and partial schedule length
in deterministic environment

Frequency level of 4 (Uniform Case)
Makespan CPU Time

Partial Length 12*6 24*12 12*6 24*12
1/3 1245.0 1443.1 38.63 312.07
1/2 1243.1 1441.9 38.57 310.85
1 1237.9 1437.4 37.95 311.32

Table B.21: Interactions between makespan Sz CPU time and partial schedule length
in deterministic environment

Frequency level of 14 (Uniform Case)
Makespan CPU Time

Partial Length 12*6 24*12 12*6 24*12
1/10 1250.4 1442.1 .39.88 309.39
1/8 1248.0 1439.4 40.56 306.46
1/6 1250.2 1442.4 40.57 307.87
1/4 12.50.5 1442.6 39.21 307.19
1/2 1243.1 1441.9 38.54 308.49
1 1237.9 1437.4 37.78 308.6

APPENDIX B. REACTIVE SCHEDULING 118

Table B.22: Interactions between makespan L· CPU time and partial schedule length
in deterministic environment

Frequency level of 4 (Nonuniform Case)
Makespan CPU Time

Partial Length 12*6 24*12 12*6 24*12
1/3 1363.0 1590.2 38.38 298.68
1/2 1362.4 1590.8 38.35 303.19
1 1361.8 1590.2 37.36 302.41

Table B.23: Interactions between makespan & CPU time and partial schedule length
in deterministic environment

Frequency level of 14 (Nonuniform Case)
Makespan CPU Time

Partial Length 12*6 24*12 12*6 24*12
1/10 1366.1 1587.1 41.32 .302.41
1/8 1365.1 1590.8 40.06 304.29
1/6 1362.4 1590.8 39.52 303.66
1/4 1363.6 1592.2 38.74 307.87
1/2 1362.4 1590.8 38.23 303.73
1 1361.8 1590.2 37.43 303.54

