
'Ш ш^-шт >мі̂ ііа ѵтмі. Mmiám
U%5'è'«

>і*іѵ·.*, w w ¿ «V * A i ^ «! «̂**‘ *■. С «кл-л,' 'i*»¿ 4 ч м ^· ч#·

Î'Ü'SÏ f ’ï» ** ^ ·· ·

IMAGE-SPACE DECOMPOSITION ALGORITHMS
FOR SORT-FIRST PARALLEL VOLLAIE RENDERING

OF UNSTRUCTURED GRIDS

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER ENGINEERING

AND INFORMATION SCIENCE

AND THE INSTITUTE OF ENGINEERING AND SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF
MASTER OF SCIENCE

By
HiileyinlvuR

^A.uRustAl997

GàR
-166

•<88
ІЭЗЯ-

b Í, H 8 3 8

I certify that I have read this thesis and that in my opin­
ion it is fully adequate, in scope and in quality, as a thesis
for the degree of Master of Science.

Assoc. Prof. Cevdet/Aykanat(Principal Advisor

I certify that I have read this thesis and that in my opin­
ion it is fully adequate, in scope and in quality, as a thesis
for the degree of Master of Science.

.-Vsst. Prof. Tuğrul Dayar

I certify that I have read this thesis and that in my opin­
ion it is fully adequate, in scope and in quality, as a thesis
for the degree of Master of Science.

L
-----̂ . ..Cl.............

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet Baray, Director of Instituiréis Engineering and Science

ABSTRACT

IMAGE-SPACE DECOMPOSITION ALGORITHMS FOR
SORT-FIRST PARALLEL VOLUME RENDERING OF

UNSTRUCTURED GRIDS

Hüseyin Kutluca
M. S. in Computer Engineering and Information Science

Supervisor: Assoc. Prof. Cevdet Aykanat
August, 1997

In this thesis, image-space decomposition algorithms are proposed and utilized
for parallel implementation of a direct volume rendering algorithm. Screen space
bounding bo.x: of a primitive is used to approximate the co\'erage of the primitive
on the screen. Number of bounding boxes in a region is used as a workload of the
region. Exact model is proposed as a new workload array scheme to lind exact
number of bounding boxes in a rectangular region in 0{ I) time, (.'hains-on-chains
partitioning algorithms are exploited for load balancing in some of the proposed
decomposition schemes. Summed area table scheme is utilized to achieve more
efficient optimal jagged decomposition and iterative rectilinear decomposition al­
gorithms. These two 2D decomposition algorithms are utilized for image-space
decomposition using the exact model. .Also, new algorithms that use inverse area
heuristic are implemented for image-space decomposition. Orthogonal recursive
bisection algorithm with medians of medians scheme is applied on regular mesh
and cjuadtree superimposed on the screen. Hilbert space filling curve is also ex­
ploited for image-spcice decomposition. 12 image-space decomposition algorithms
are experimentally evaluated on a common framework with respect to the load
balance perfbrmcince, the number of shared primitives, and execution time of the
decomposition algorithms.

Key words: parallel computer graphics application, volume rendering, sort-hrst
rendering, image-space parallel volume rendering, image-spcice decomposition,
load balancing.

Ill

ÖZET

DÜZENSİZ IZGARALARIN ÖNCE-SIRALA ALGORİTMASI
KULLANARAK PARALEL HAGİM GÖRÜNTÜLENMESİ
İÇİN EKRAN UZAYI BÖLÜMLEME ALGORİTMALARI

Hüseyin Kutluca
Bilgisayar ve Enformatik Mühendisliği Bölümü Yüksek Lisans

Tez Yöneticisi: Assoc. Prof. Cevdet Aykanat
Ağustos, 1997

Bu tezde görüntü uzayı bölümleme algoritmaları önerilmiş ve bu algoritmalar­
dan paralel doğrudan hacim görüntüleme algoritması için yararlanılmıştır. Hacim
elemanlarının kapsama kutluları onların ekrandaki kapladığı alanı N aklaşık olarak
belirlemek için kullanılır. Bir l^ölgedeki kapsama kutusu sayısı o bölgenin iş yükü
olarak kullanılmıştır. Kesin model adında yeni l:>ir iş \’ükü yöntemi önerilmiştir.
Bu yöntem dikdörtkensel I)ir bölgedeki kapsama kutusu sayısını 0(1) zamanında
bulmak için kullanılır. Zincir üzerinde zincir parçalama algoritmasından önerilen
bazı bölümleme algoritmalarının yük denkliği için \'ararlanılmıştır. Toplanmış
alan tablosu yönteminden daha etkin eniyi kesikli (jagged) l)ölümleme ve yineli
doğrusal bölümleme algoritmaları için yararlanılmıştır. Bu iki 2-boyutlu
lıölümleme algoritmasından kesin model yöntemi kullanarak görüntü uzayı
bölümlemesi için yararlanılmıştır. Aynı zamanda, ters alan .sezgisel algoritması
kulanan yeni ekran-uzayı bölümleme ¿ılgoritmaları önerilmiştir.
Ortancanm-ortancası yöntemini kullanan dikey özyineli bölme algoritması ekran
üzerine yerleştirilmiş düzenli ızgara ve dörtlü ağaca uygulanmıştır. Hilbert uzay
doldurma eğriside görüntü uzayı bölümleme için kullanılmıştır. 12 görüntü uzayı
algoritması deneysel olarak aynı ortamda yük denkliği, paylaşılan hacim eleman­
ları sayısı ve algoritmaların çalışma zamanı açısından irdelenmiştir.

Anahtar kelimeler, paralel bilgisayar grafiği uygulamaları, hacim görüntüleme,
önce-sırala türü görüntüleme, görüntü uzayı paralel hacim görüntüleme, görüntü
uzayı bölümleme, yük denkliği.

IV

To ту family

Acknowledgm ent

I would like to express my gratitude to Assoc. Prof. Cevdet Aykanat for his
supervision, guidance, suggestions and invaluable encouragement throughout the
development of this thesis. I would like to thank th committee members Asst.
Prof. Tuğrul Dayar and .Asst. Prof. Uğur Güdükbay for reading the thesis and
their comments. I would like to thank my colleague Dr. Tahsin Kurç for his
technical support, guidance and cooperation in this study.

I would like to thank my family for their moral support. I would like to thank
my friends Ozan Ozhan, Halil Kolsuz. İçtem Özkaya, Buket Oğuz. Esra Taner.
Vedat Adermer and ali others for their friendship and moral support.

C ontents

1 INTRODUCTION 1

2 PREVIOUS WORK AND MOTIVATIONS 8
2.1 Previous Work 8
2.2 Motivations 12

3 RAY-CASTING BASED DVR OF UNSTRUCTURED GRIDS 14
3.1 .Sequential .-Ugorithm: A Scanline Z-buffer L3ased Algorithm 16
3.2 Parallel Algorithm IS
3.3 Workload .Model 19
3.1 Image-Space Decomposition Algorithms... 20
3.0 .A. Taxonomy of the Decomposition .Algorithms............................... 21

4 DECOMPOSITION USING CCP ALGORITHMS 23
1.1 Chains-On-Chains Partitioning Problem 23

4.1.1 Dynamic-Programming .Approach.. 25
4.1.2 Probe-Based Approach... 26

4.2 Decomposition of 2D Domains... 27
4.2.1 Rectilinear Decomposition.. 27
4.2.2 .Jagged Decomposition 30

4.3 (Jonclusion.. 31

5 IMAGE-SPACE DECOMPOSITION ALGORITHMS 33
5.1 Creating the Workload A rrays... 33

5.1.1 ID A rrays.............................. 33
5.1.2 2D A rray s.. 34

5.2 Decomposing the S c re e n .. 38

Vll

CONTENTS V IH

5.2.1 ID Decomposition Algorithms... 38
5.2.2 2D Decomposition Algorithms... 40

6 PRIMITIVE REDISTRIBUTION ALGORITHMS 54
6.1 Rectangle Intersection Based Algorithm... 55
6.2 Inverse Mapping Based A lgorithm s... 55
6.3 2D Mesh Ba.sed A lgorithm ... 57

7 EXPERIMENTAL RESULTS 59

8 CONCLUSIONS 77

A EXPERIMENTING WITH THE COMMUNICATION PERFOR­
MANCE OF PARSYTEC CC SYSTEM 80

A.l Parsytec CC System 81
A. 1.1 Hardware 81
.\.1.2 Softw are................................. 82

.A.2 Basic Communication O perations... 84
.A..2.1 Ping-Pong.. 81
A. 2.2 C ollect.. 87
A.2.3 Distributed Global Sum (DCS) 90

A.3 Conclusion ... 93

List of Figures

3.1 Type.s of grids encountered in volume rendering............
3.2 The taxonomy of image-space decomposition algorithms.

4.1 Decomposition schemes : (a) rectilinear decomposition, (b) jagged
decomposition.

5.1
5.2

5.3
5.4
5.5

5.6
5.7

5.8

5.9

Algorithm to update ID arrays using bounding boxes.....................
Arrays used for the exact model: a) STARTXY b) ENDXY
c) ENDX d) EN D Y ...
Exact Model for calculating number of primitives in a region . . .
.Algorithm to update horizontal and vertical workload arrays. . . .
Traversing of the 2D mesh with Hilbert curve and mapping of the
mesh cells locations into ID array indices.
Child Ordering of Costzones Scheme..
(a) Lic[uid oxygen post image, (b) delta wing image, (c) l)lunt fin
image, and (d) 64x64 coarse mesh superimposed on the screen.
Decomposition Algorithms: (a) HHD and OHD algorithms (b) RD
algorithm (c) H.JD, O.ID-I and O.JD-E algorithms (d) M.-VHD and
ORB-ID algorithms..
Decomposition Algorithms: (a) ORBMM-M algorithm (b)
ORBMM-Q algorithm (c) HCD algorithm (d) GPD algorithm. . .

6.1 The algorithm to classify the primitives at redistribution step of
HHD, OHD, HJD, O.JD, RD, ORB-ID, and MAHD algorithms.

6.2 Row-major order numbering of regions in (a) horizontal decompo­
sition (b) jagged decomposition for 16 processors.

15
21

28

34

37
38
13

48
49

51

5;i

00

56

IX

LIST OF FIGURES

6.3 Classification of primitives in horizontal decomposition scheme us­
ing inverse mapping array... .57

6.4 Classification of primitives in jagged decomposition using inverse
mapping arrays.. 58

6.5 The algorithm to classify primitives in HCD, ORBMM-Q,
ORBMM-M, and GPD algorithms. 58

7.1 The abbreviations used for the decomposition algorithms............... 60
7.2 Effect of mesh resolution on the load balancing performance. . . . 68
7.3 Load balance performance of algorithms on different number of

processors... 69
7.4 Percent increase in the number of primitives after redistribution

for different mesh resolutions on 16 processors.................................. 70
7.5 Percent increase in the number of primitives after redistribution

for different number of processors... 71
7.6 Execution times of the decomposition algorithms varying the mesh

resolution on 16 processors. 72
7.7 Execution times of the decomposition algorithms on different num­

ber of proce.ssors............................ 73
7.8 Speedup for parallel rendering phase when only the number of

triangles is used to approximate the workload in a reg io n 74
7.9 Speedup for parallel rendering phase when spans and pixels are

incorporated into the workload m etric.. 75
7.10 Speedup for overall parallel algorithm (including decomposition

and redistribution times) when spans and pi.xels are incorporated

into the workload m e tr ic .. 76

A.l The logical topology of our Parsytec CC sy s te m 83
A.2 Blocking Ping-Pong Program 85
A.3 Non-blocking Ping-Pong P rogram ... 85
A.4 Collect operation on star topology... 88
A.5 Collect operation on ring topology... 89
A.6 Collect operation on hypercube topo logy 90
A.7 DCS on hypercube .. 92

LIST OF FIGURES XI

A.8 Distributed Global Sum on a) 4, b) 8 and c) 16 processors 95

List of Tables

7.1 Percent load imbalance (L) and percent increase (I) in the number
of primitives for different number of processors. 68

7.2 Dissection of e.xecution times (in seconds) of the decomposition
algorithms for different number of processors.................................. 70

7.3 Dissection of decomposition times (in milliseconds) of the decom­
position algorithms ORBMM-Q and O.JD-E varying the mesh res­
olution and number of processors.. 72

7.-1 Redistribution times of different approaches varying the mesh res­
olution when P - 16 and varying the number of processors when
mesh resolution is 512x.512. 73

A.l Timings tor Ping-Pong programs
A.2 Collect operation Timings
A.3 Timings For Fold and Distributed Global Sum Operations

86
91
94

■xn

1. IN TR O D U C TIO N

Rendering in computer graphics can be described as the process of generating
a 2-dimensional (2D) representation of a data set defined in 3-dimensional (3D)
space. Input to this process is a set of primitives defined in a 3D coordinate
system, usually called world coordinate system, and a viewing position and ori­
entation also defined in the same world coordinate system. The ^■iewing position
and orientation define the location and orientation of the image-plane, which rep­
resents the computer screen. The output of the rendering process is a 2D picture
of the data set on the computer screen.

One popular application area of computer graphics rendering the ray-casting
based direct volume rendering (ray-casting DVR) [24. 29] of scalar data in 3D,
unstructured grids. In many fields of science and engineering, computer simula­
tions provide a cheap and controlled way of investigating physical phenomena.
The output of these simulations is usually a large amount of numerical values.
Large quantity of data makes it very difficult for the scientist and researcher to
e.xtract useful information from the data to derive some conclusions. Therefore,
visualizing large quantities of numerical data as an image provides an indispens­
able tool for researchers. In many engineering simulations, data sets consist of
numerical values which are obtained at points (sample points), with 3D coordi­
nates, distributed in a. volume that represents tlie physical eiitil}' or the physical
environment. The sample points constitute a volumetric grid superimposed on

the volume. Sample points are connected to some other nearby sample points
to form cells. In unstructured grids, sample points in the volume data are dis­
tributed irregularly over 3D space and there may be voids in the. volumetric grid.
Spacing between sample points is variable and there exists no constraint on the

CHAPTER 1. INTRODUCTION

cell shapes. Common cell shapes are tetrahedra and he.x:ahedra shapes. Unstruc­
tured grids are common in engineering simulations such as computational fluid
dynamics (CFD). Unstructured grids are also called cell odented grids. Tliey are
represented as a list of cells with pointers to sample points that form the respec­
tive cells. Due to cell oriented nature and irregular distribution of sample points,
the connectivity information between cells are provided explicitly if it e.xists. In
some applications, simulations do not reciuire a connectivity information. In such
cases, the connectivity between cells may not be provided at all. Because of these
properties of unstructured grids, algorithms for rendering such grids consume a
lot of computer time (usually from tens of seconds to tens or hundreds of minutes).
In addition, huge amount of data obtained in scientific and engineering applica­
tions, like CFD, recpiires large memory space. Thus, rendering of unstructured
grids is a good candidate for parallelization on distributed-memory multicom­
puters. Furthermore, many engineering simulations are carried out on parallel
machines. Rendering the results on these machines saves the time to transfer
vast amounts of data from parallel machines to sequential graphics workstations
over possibly slow communication links.

Efficient parallelization of rendering algorithms on distributed-memoiy multi­

computers necessitates decomposition cincl distribution of data and computations
among processors of the machine. There ¿ire various classifications for parallelism
in computer graphics rendering [10, 12, .34, 48]. Molnar et al. [34] classify and
evaluate parallel rendering approaches for polygon rendering. In polx'gon render­
ing, the rendering process is a pipeline of operations applied to primitives in the
scene. This pipeline is called renclenng pipeline and has two major steps called
geometry processing and rasterization. Molnar et al. [34] provides a. classifica­
tion of parallelism, based on the point of data redistribution step in the rendering
pipeline, as sort-ñrst (before geometry processing), sort-middle (between geome­
try processing and rasterization), and sort-hist (after geometry processing).

Most of the previous work on parallel rendering of unstructured grids evolved
on shared-memory multicomputers [6, 8, 31, 49]. Ma [32] presents a sort-last
parallel algorithm for distributed-memory multicomputers. In this work, we take
a different approach and investigate sort-ñrst parallelism for volume rendering
of unstructured grids. This type of parallelism was not previously utilized in

CHAPTER 1. INTRODUCTION

volume rendering of unstructured grids on distributed-rnemor}· multicornputers.
In sort-first parallel rendering, each processor is initially assigned a subset of
primitives in the scene. .\ pre-transformation step is applied on the primitives
in each processor to find their positions on the screen. This pre-transformation
step typically produces screen-space bounding bo.xes of the primitives. .Screen is
decomposed into regions and each processor is assigned one or multiple regions of
the screen to perform rendering operations. In this thesis, a region is referred to
as a subset of pixels on the screen. This subset of pixels may form connected or
disconnected regions on the screen. The primitives are then redistributed among
the processors using the screen-space bounding boxes so that each processor has
the primitives intersecting the region assigned to it. .\fter the redistribution
step, each processor performs rendering operations on its region independent of
the other processors. Primitives intersecting more than one region, referred to
here as shared primitives, are replicated in the processors assigned those regions.
Thus, toted number of primitives in the system may increase after redistribution.

In this thesis, we present algorithms to decompose the screen adaptively
among the processors. We experimentally evaluate these heuristics on a common
framework with respect to load hedancing perlormance. the nuinljer ol shared
primitives, and execution time of the decomposition algorithms. In previous
work on parallel polygon rendering [13, 36, 43, 48], the number of primitives in
a region is used to represent the workload associated with that region. That is.
the screen is divided into regions and/or screen regions are assigned to proces­
sors using the primitive distribution on the screen. In these work, screen-space
bounding box of a primitive is used to approximate the coverage of the primi­
tive on the screen. This is done to avoid expensive computations to determine
the exact coverage. In the experimental evaluation of the algorithms, the same
approximations cire used. That is, the number of primitives with bounding box
approximation is taken to be the workload of a region for evaluating load balanc­
ing performance of the algorithms. The second criteria used in the comparisons is
the number of shared primitives after division of the screen. Reducing the num­
ber of shared primitives is desirable since they potentially introduce overheads
and waste system resources [20]. The most obvious is the waste of memory in the

CHAPTER 1. INTRODUCTION

overall machine since such primitives have to be replicated in different proces­
sors. They also introduce redundant computations such as geometry processing
in polygon rendering, intersection tests in ray tracing [20]. etc. E.xecution time
of the decomposition algorithms is another important criteria. long e.vecution
time may take away all the advantages of a particular algorithm.

Operations performed for image-space decomposition are parallelized as much
as possible to reduce the preprocessing overhead. Initially, primitives are divided
evenly among the processors. Each processor creates screen-space bounding boxes
of its local primitives and then creates local workload array using these bounding
boxes. A global sum operation is performed over local workload arrays to find
the global distribution of primitives on the screen. In some of the decomposition
schemes, the partitioning algorithms also run in parallel, whereas in the other
schemes the partitioning algorithms are not parallelized because of either their
sequential nature or their fine granularit\c In the decomposition schemes us­
ing parallel partitioning, region-to-processor assignment array is constructed in a
distributed manner. Hence, these schemes necessitate a final all-to-all lu’oadcast
operation so that each processor gets the all region-to-processor assignments to
classify its local primitives tor parallel primitive redistribution. In the decompo­
sition schemes using .sequential partitioning algorithm, the partitioning algorithm
is redundantly and concurrently executed in each processor to a\‘oid the global
communication.

Ill this work, we propose a taxonomy for image-sitace decomposition algo­
rithms. This taxonomy is based on the decomposition strategy and workload
arrays used in the decomposition. We first cUissify the algorithms based on the
dimension of the decomposition of the screen, which is a 2D space. ID decom­
position algorithms divide the screen in one dimension by utilizing the workload
distribution with respect to only one dimension. 2D decomposition algorithms
divide the screen in two dimensions by utilizing the workload distribution with
respect to both dimensions of the screen.

Decomposition algorithms are further classified based on the workload arrays
used in the decomposition step. Algorithms in the first group utilize ID workload
arrays, while the algorithms in the second group use 2D workload arrays. In the
first group, ID workload arrays are used to find the distribution of workload in

CHAPTER 1. INTRODUCTION

each of the dimensions of the screen. In the second group, a 2D coarse mesh is
superimposed on the screen and distribution of workload over this mesh is used
to di\'ide the screen. We introduce two models, referred to here as inver.^e avea
heuristic (lAH) model and exact model, to create workload arrays and ciuery
the workload in a region. In the lAH model, an estimate of the workload in a
region can be found, whereas in exact model, exact workload in a region can be
found. IAIÍ model allows rectangular or non-rectangular regions as well as regions
consisting of non-acljacent cells when 2D arrays are used. Howe\'er, exact model
can only be used for rectangular regions consisting of adjacent mesh cells. Our
formulation of lAH model needs only one 2D workload array, but exact model
recpiires four 2D workload arrays.

Among the workload arrays described above, the exact model is a new model.
It is proposed to find the exact number of bounding boxes in a rectangular I'egion
in (9(1) time.

In this work, chains-on-chains partitioning (CGP) problem is investigated and
exploited for optinicil ID decomposition of image space. Optimal load balancing
in ID decomposition schemes can be directly modeled as the COP prol)lem. We
have also investigated the usage of CCP algorithm in load balancing of two dif­
ferent 2D decomposition scheme. The first algorithm finds an optimal jagged
decomposition. The second one is an iterative heuristic for rectilinear decom­
position. Summed area table (SAT) is a well known data structure, especially
in computer graphics area, to query the total value of a rectangular region in
(9(1) time. We exploit S.AT for more efficient optimal jagged decomposition and
iterative rectilinear decomposition algorithms. An optimal jagged decomposition
algorithm that uses efficient probe-based CCP algorithm is proposed.

For the implementation of optimal jagged decomposition (OJD-E) and iter­
ative rectilinear decomposition (RD) for inuige space decomposition, the exact
model is used for a workload array. Here, the exact model takes the role of S.A.T
for a workload array of general type. The scime jagged decomposition algorithm
is implemented with workload array that is generated using 1АЫ. Note that this
scheme does not give optimal solution for rectangle distribution.

There are also some spatial decomposition algorithms implemented for im­
age spcice decomposition. Orthogonal recursive bisection (ORB) algorithm with

CHAPTER 1. INTRODUCTION

lAH as a workload array was presented by Mueller [36] for adaptive image-space
decomposition (referred as a MAHD in their work). In this work, two new algo­
rithms are implemented to alleviate load imbalance problem due to the straight
division line in ORB. One scheme is orthogonal recursive bisection with rnedians-
of-medians on cartesian mesh (ORBMM-M) [41]. This scheme also divides the
median division line to achieve better load balance. In the second scheme, a
quadtree is superimposed on the mesh to reduce the errors due to lAPI, and then
this quadtree is decomposed using orthogonal recursive l:)isection witli niedians-
of-medians (ORBMM-Q) [26. 41, 45]. Another image-space decomposition algo­
rithm implemented in this work uses a class of space filling curve, hilbert curve,
for decomposition of image space (HCD). In this scheme, the 2D coarse mesh is
traversed with a space filling curve. Then, the mesh cells tire assigned to proces­
sors such that each proces.sor gets the cells that are consecutive in this traversal.
Image-space decomposition algorithms proposed in [27] are also presented and
experimentally evaluated for the sake of completeness of comparison. The first
algorithm, decomposes the image space in one dimension with recursive bisection
heuristic using ID workload arrays (HPID). The .second one is a heuristic ver­
sion of the jcigged decomposition algorithm (H.ID) that uses ID workload arrays.
Similarly, the ORB decomposition scheme is also implemented using ID work­
load arrays (ORB-ID). Finally image-space decomposition is modeled as a graph
partitioning problem [26] and state-of-the-art graph partitioning tool MeTiS is
used for partitioning the generated graph (GPD).

The algorithms proposed and presented in this work are utilized for par­
allel implementation of a volume rendering algorithm for visualizing unstruc­
tured grids. The sequential volume rendering cilgorithm is based on ChailingerG
work [6, 8]. This algorithm is a polygon rendering based algorithm. It requires
volume elements composed of polygons and utilizes a scanline z-buffer approach
for rendering. VVe discuss the application of the decomposition algorithms for
this volume rendering algorithm. We present experimental speedup figures for
rendering of benchmark volume data sets on a Parsytec CC ̂ system. We observe
that only the number of primitives in a region does not provide a good approxi­
mation to actual computational load. The number of spans and pixels generated

 ̂Parsytec CC is a registered trademark of PARSYTEC GmbH

CHAPTER 1. INTRODUCTION

during the rendei’ing of primitives were incorporated into the algorithms to ap­
proximate workload better. It has been experimentally observed that speedup
\'alues are almost doubled using these additional factors.

In the parallel algorithm, after the screen is decomposed into regions, the
local primitives are redistributed according to region-to-processor cissignment.
Each processor needs to classify its local primitives. For decompositions that
generates rectangular regions, rectangle intersection bcised algorithm is used for
classification. For decompositions that genercvte non-rectangular regions, mesh
based algorithm is used. In this thesis, a new classification scheme is proposed
for horizontal, rectilinear and jagged decomposition schemes. The proposed al­
gorithms exploit the structured decomposition of the screen with these schemes
and clcx.ssify the primitives. For horizontal decomposition, it uses inverse mapping
function that inversely maps the scanlines to processors. This inverse mapping
array is used for classification. Rectilinear and jagged decomposition exploits
the same idea many times. This classification scheme is more efficient than both
of other schemes as it is less dependent to the numl)er of processors and mesh
resolution.

The organization of this thesis is as follows: Chapter 2 presents previous
work on parallel volume rendering of unstructured grids and on sort-first paral­
lelism in computer graphics rendering, and motivations of this work. Chapter 3
presents the seciuential and parallel algorithm for ray-casting-based DVR of un­
structured grids. Workload model and ta.xonomy for image-space decomposition
are also presented in Chapter 3. CCP, iterative rectilinear decomposition and
optimal jagged decomposition algorithms are discussed in Chapter 4. Chapter
5 describes the creation of workload arrays and presents image-space decompo­
sition algorithms. Primitive classification algorithms for redistribution are given
in Chapter 6. Chapter 7 presents the experimental results. Chapter 8 evaluates
the contribution of the thesis. Appendix A presents the experimentation with
the communication performance of the Parsytec CC system.

2. PREV IO U S W ORK A ND M OTIVATIONS

This chapter summarizes previous work on parallel volume rendering of unstruc­
tured grids and on sort-first parallelism in computer graphics rendering and our
motivations.

2.1 Previous Work

Mueiler [36] presents a sort-first parallel poh'gon rendering algorithm for interac­
tive applications. Static and adaptive division of the screen is e.xamined for load
lialancing. In static decomposition scheme, the screen is decomposed into rect­
angular regions which are assigned to processors in a round-robin fashion using
a scattered assignment for load balancing. In this assignment strategy, adjacent
regions are assigned to, different processors such that processor i is assigned re­
gions i, i -f P . i -b 'IP. and so on. Here, P denotes the number of processor in
the multicomputer. In adaptive decomposition scheme, the screen is decomposed
adaptively using the distribution of triangles on the screen until the number of
regions is ecpial to the number of processors. In order to find the distribution
of triangles on the screen, a. coarse mesh is superimposed on the screen. The
number of primitives, which cover the mesh cell, is counted for each mesh cell.
,A.n cimount inversely proportional to the number of cells a. primitive covers is
added to corresponding mesh cell count to avoid errors caused by counting large
primitives multiple times. A single processor collects counts from each proces­
sor and forms a summed-area table [11], which has the same resolution as the
fine mesh. This processor divides the screen recursively in alternate directions
at each step using the summed-area table. The summed-area table allows binary
search to determine the division line. The screen decomposition information is

8

CHAPTER 2. PREVIOUS WORK AND MOTIVATIONS

broadcast to each processor so that primitives are re-distributed according to new
decomposition. Adaptive decomposition exploits frame-to-frame coherence exist­
ing in interactive applications. Current frames distribution is used to perform
decomposition for the next frame. Static and adapti\'e decomposition schemes
are evaluated experimentally using a simulator with respect to \'arious factors
such as number of regions, mesh resolution, effect of the number of processors.

Challinger [6, 7, 8] presents parallel algorithms for BBN TC2000‘ multicom­
puter. which is a distributed shared memory system. In the former work of
Challinger [6]. two algorithms are presented. In the single-phase algorithm,
each scanline on the screen is considered as a task. Dynamic task allocation
on a demand-driven basis is performed to assign scanlines to processors. In this
scheme, each processor gets a scanline to render when it becomes idle. .After
receiving a scanline, each processor ci'eates local x-buckets using the active cells
at the current scanline. Each processor, then, creates an intersection list at the
current pixel using the local .x-bucket. The intersection list is then processed to
perform composition. In the two-phase algorithm, the sampling and composition
steps are separated as two phases. Scanlines on the screen are scaltererl to proces­
sors in a round-rol)in fashion staticall}·. In the sampling phase, processors sweej)
through scanlines assigned to them and create intersection lists for each pi.xel on
each scanline assigned to them. These intersection lists are stored in the local
memories. In composition step, each of these intersection lists are processed to
perform composition of sample values for the corresponding pixel. In two-phase
algorithm, since intersection lists are saved, when a new transfer function is used
to generate colors, only composition phase is executed. The main disadvantage
of scanline based task generation is the low scalability. The scalability of these
two algorithms [6] is limited by the number of scanlines on the screen. In the
latter work of Challinger [7, S], image-space is divided into square tiles which are
considered as tasks assigned to processors dynamically. Image tiles are sorted
according to the number of cells (primitives) associated to them, and they are
assigned to processors in this sorted order to achieve better load balancing.

Williams [49] presents algorithms for parallel volume rendering on Silicon

^BBN TC2000 is a trademark of BBN Advanced Computers, Inc

CHAPTER 2. PREVIOUS WORK AND MOTIVATIONS 10

Graphics Power Series (SGIPS)^. The target machine is a shared-memory mul­
ticomputer with computer graphics enhancement through the use of graphics
proressors. The processors in SGIPS do not contain local memories and access
to shared memory is over a bus. The serial algorithms for direct volume ren­
dering are based on object-space methods (such as projection and splatting).
The cells are view sorted for proper composition by the view sort technique
developed by Williams [49, 50]. The sorting technique, called meshed polyhe-
dra visibility ordering (MPVO) algorithm, topologically sorts an acyclic directed
graph generated from connectivity relation between cells. The topological sort is
done by using either breadth-first search (BPS) or depth-first search (DPS) tech­
niques on directed graph. Parallelization of the algorithms invoU’es two stages:
(1) parallelization of generating directed graph used by the MPVO algorithm and
(2) parallelization of topological view sort of the graph and rendering of the view
sorted cells. Stage (1) is parallelized by assigning a cell (volume primitive) to
each processor to process. Each processor keeps local data structures (queues)
to store the 'tsource cell" used in the view sorting phase. These data structures
are then merged and stored in the global memory. Diiferent parallel algorithms
are presented in stage (2) for couve.x and non-convex grirls. Two schemes are
presented for convex grids. In the first scheme, each processor takes a source cell
from globcil queue and splats it onto the screen. Since BPS on the graph pro­
duces cells that are spatially not overlapping, splatting of the cells can be done
in parallel. Then, each processor finds the children of the source cell it splats
and puts them into a local queue. When all source cells in the global queue are
processed, local queues are merged into global queue. In the second scheme, two
global queues are used. A single processor selected as host processor performs
BPS on the graph using source cells in the first global queue. This processor
finds the children of all source cells in the first global cpieue and stores them in
the second global queue, while other processors splat the cells in the first global
queue. After all cells in the first global queue are processed and host processor
finishes constructing the first quetie, pointers to global queues are exchanged. If
host processor finishes its work before others, it also helps splatting of the cells
in the first queue. The MPVO algorithm for non-convex grids requires DPS of

'Silicon Graphics Power Series is a trade mark of Silicon Graphics Inc.

CHAPTER 2. PREVIOUS WORK AND MOTIVATIONS 11

the graph. Host processor performs DFS on the graph and the other processors
perform the splatting of the cells. Two queues are used for this purpose. While
host processor updates first cpieue. cells in the second queue are processed. .Since
cells need to be processed in the order the}·' are output from the DFS routine,
only limited amount of work can be parallelized such as transformation of cells
and partitioning of cells for projection.

Lucas [31] describes a volume rendering algorithm for shared-memory mul­
ticomputers. The algorithm consists of two steps. In the first step, viewing
transformations and lighting calculations are done. These calculations are per­
formed on partitions of the volume data set. The data set is partitioned into
rectangular regions. Unstructured data sets are partitioned by dividing the data
recursively. Details of how to perform the decomposition are not given in the
paper. The second step of the algorithm is the rendering of the volume parti­
tions. In this step, screen is divided into non-overlapping rectangular regions and
processors render one or more screen regions. Each screen region is processed in
three steps; checking each volume partition if it falls into corresponding screen
region, then checking each primiti\’e in the partition for cpiick rejection of totally
clipped primitives, and clipping and scan-converting primiti\'es that intersect the
screen region. The effect of the number of screen regions and the number of vol­
ume partitions to the algorithm performance is examined to obtain an optimum
division of the screen and volume data set. It is unclear from the paper how
screen regions are assigned to processors for achieving even load distrilxition.

iVIa [32] presents a sort-last parallel algorithm lor distributed memory multi-
computers. The multicomputer used in Ma’s work is an Intel Paragon'^ with 128
processors. In Ma’s algorithm, the volume delta is divided into P subvolumes.
where P is the number of processors. The volume is considered as a graph and
partitioned into subvolumes of equal number of volume cells (e.g.. tetrahedrals)
using Chaco graph partitioning tool [19]. The rciy-casting volume rendering al­
gorithm of Garrity [1-1] is used to render subvolumes in each processor. The
subvolumes may have local exterior faces due to partitioning and it is possible
that rays will exit from these faces and re-enter the volume from such faces,
creating ray segments. Composition operations on color and opacity values are

^Intel Paragon is a trademark of Intel Corporation

CHAPTER 2. PREVIOUS WORK AND MOTIVATIONS 12

associative, but not commutative. Thus, each processor inserts ray-segments
(in sorted order) to linked lists. The partial images in each processor are com­
posited to generate the final rendered image. In image-composition, screen is
divided evenly into horizontal bands. Each processor is assigned a band to per­
form image-composition. The linked lists in each processor are packed and sent
to respective processors for composition. Each processor unpacks the received
lists and sorts them. Then, these .sorted lists cire merged for the final image.
Ma. overlaps sending of ray segments with rendering computations to reduce the
overhead of communication.

2.2 M otivations

Most of the previous work on parallel rendering of unstructured grids were done
on shared-memory multicomputers [6, 8, 31,49]. The algorithms developed in [49]
can be considered as fine-grain algorithms and e.xploit the use of shared memory
in the system. Load balancing is done dynamically by assigning a cell to the idle
[)rocessor for rendering. Such an a.ssignrnent scheme will introduce substantial
communication overhead due to fine granularity of the assignments. In addition,
parallel algorithms developed for sorting the cells recpiire a global knowledge of
the database. Therefore, these algorithms are not very suitable for distributed-
memory multicomputers.

In [6. 8. 31], screen is decomposed into equal size regions and load balancing is
achieved by dynamic allocation of regions to processors on a demand-driven ba­
sis [6, 8] or by scattered assignment [6]. Scattered assignment has the advantage
that assignment of screen regions to processors is known a priory and static irre­
spective of the data. However, since scattered assignment assigns adjacent regions
to different processors, it loses the coherency in image-space and increases the
duplication of polygons in the overall system. In addition, since decomposition is
done irrespective of input data, it is still possible that some regions of the screen
is heavily loaded and some processors may perform substantially more work than
others. In demand-driven approaches, regions are assigned to processors when
they become idle. Demand-driven assignment may incur substantial communi­
cation overhead in distributed-mernory multicomputers. First of all, since region

CHAPTER. 2. PREVIOUS WORK AND MOTIVATIONS 13

assignments are not known a prioiy, each assignment should be broadcast to all
processors so that necessary polygon data is transmitted to the corresponding
processor. In addition, since many processors will inject polygons ro the network
for different processors or for the same processor many times it is \-ery likely that
dynamic scheme will introduce high network congestion. .Another disadvantage
of the dynamic allocation is that adjacent regions may be assigned to different
processors, which results in loss of coherency and increase in the number of prim­
itives replicated. So, adaptive decomposition of the screen is a good alternative
to these non-adaptive decomposition schemes.

Ma [32] u,ses sort-last parallelism. The volume is partitioned using a graph
partitioning tool into sul^volumes of equal number of elements, rnfortunately.
the sequential rendering algorithm employed in the implementations is very slow.
Thus, it hides many overheads of the parallel implementation. For example,
image-composition operations take seconds even on large number of processors.
In addition, composition time does not decrease linearly with increasing number
of processors. This is basically due to sorting required on ray-segrnents for correct
composition of colors and opacities. Moreover, even when viewing parameters
are fixed (to visualize volume under different transfer functions), inter-processor
communication is still needed for image-composition.

In this work, we take a different approach and investigate sort-first parallelism
for volume rendering of unstructured grids. This type of parallelism was not pre­
viously utilized in volume rendering of unstructured grids on distributed-memory
multicomputers.

3. RAY-CASTING BASED D V R OF

U N STR U C TU R ED GRIDS

Figure 3.1, based on the illustration by Yagel [51]. illustrates types of grids
that are commonly encountered in volume rendering. The common character­
istic of the structured grids is that sample points are distributed regularly in
3-dirnensional space. The distance between sample points may be constant or
\'ariable. Although this type oi distribution is olivious in cartesian, regular, and
recfi7i«e«r grids, this situcition is not so obvious in curvilinear gyids. In curvilinear
grids, sample points are distributed in such a way that the grid hts onto a curva­
ture in space. Hence, there e.xists a regularity in the distribution of sample points
and this type of grids are also categorized as structured grids. The cell shapes
in structured grids are hexahedral cells formed l̂ y eight sample points. These
type of grids are also called aiTay oriented grids since these grids are usually
represented as a 3-dimensional array, for which there exists a one-to-one corre­
spondence between array entries and sample points. Due to arra\· oriented nature
of structured grids, the connectivity relation between cells are provided implicitly.
In unstructured grids, on the other hand, sample points in the volume data are
distributed irregularly over three dimensional space and there may be voids in
the volumetric grid. The spacing between sample points is variable. There exists
no constraint on the cell shapes. Common cell shapes are tetrahedra and hexa-
hedra shapes. Unstructured grids are common in engineering simulations such as
computational fluid dynamics (CFD), finite volume analysis (FV.-\.) simulations,
and finite element methods (FEM). In addition, curvilinear grid types are also
common in CFD. Unstructured grids are also called cell oriented grids. They are
represented as a list of cells with pointers to sample points that form the respec­
tive cells. Due to cell oriented nature and irregular distribution of sample points,

14

CHAPTER 3. RAY-CASTING BASED DVR OF UNSTRUCTURED GRIDSlb

Structured Grids

Cartesian

Unstructured Grids

Regular

Regular Rectilinear Curvilinear

Hybrid

Figure 3.1. Types oí grids encountered in volume rendering.

the connectivit}'· information between cells ¿ire provided e.xplicitlv if it e.xists. In
some applications, simulations do not require a connectivity information. In such
cases, the connectivity between cells may not be pro\’ided at all. rnstructured
grids can further be divided into three subtypes ¿is regular, in which cell shapes
are consistent and usually tetrahedral cells with at most two cells sharing a face,
irregular, in which there is not consistency in cell shapes and a face may be shared
by more than two cells, and hybrid, which is the combination of structured and
unstructured grids.

In ray-casting DVR [29. 30, 47], a ray is cast from each pi.xel location and is
traversed throughout the volume. In this work, the term direct volume rendering
(DVR) refers to the process of visualizing the volume data without generating an
intermediate geometrical representation such as isosurfaces [24]. The color value
of the pixel is calculated by finding contributions of the cells intersected by the
ray at the sample points on the ray and integrating these contributions along
the ray. The scalar values, computed as contributions of the cells, at the sample
points on the ray are converted into color and opacity values using a transfer
function. The color and opacity values are then composited in a pre-determined
sorted order (either back-to-front or front-to-back) [29, 30] to find the color of the
associated pixel on the screen. The composition operation is associative but not

commutative. The traversal of ray through the volume and calculating the color
of the pixel introduces two problems referred to here as point location and view
sort problems. Efficient solution of these problems is crucial to the performance
of the underlying algorithm. Determining the volume element that contains the
sample point on the ray in the re-sampling phase is called point location problem.
For unstructured grids, it involves finding the intersection of the ray with the cell.
Sorting sample points on the ray or finding the intersections in a sorted order is
defined as view sort problem. Solving point location and view sort problems is
difficult in unstructured grids because data points (original sample points), hence
volume elements, are distributed irregularly over 3D space. .A. naive algorithm
may need to search all cells to find an intersection, thus requiring very large
e.xecution times for large data sets. In addition, sorting sample points on a
ray takes a lot of time, if not handled efficiently, because many cells may be
intersected by the ray. Therefore, the performance of the underlying algorithm
closely depends on how efficiently it resolves these problems. In the next section,
a. scanline z-buffer based algorithm, which utilizes image and volume coherency
to resolve these problems efficiently, is presented.

CHAPTER 3. RAY-CASTING BASED DVR OF UNSTRUCTURED GRIDS16

3.1 Sequential Algorithm: A Scanline Z-bufFer Based

A lgorithm

The sequential rendering algorithm chosen for DVR is based on the algorithm
developed by Challinger [7, 8]. This algorithm adopts the basic ideas in standard
polygon rendering algorithms. As a result, the algorithm requires that volumetric
data set is composed of cells with planar faces. However, this algorithm does not
require a connectivity information between cells, and provides a general algorithm
to handle volume grids. In this work, it is assumed that volumetric data set is
composed of tetrahedral cells. If a data set contains volume elements that are not
tetrahedral, these elements can be converted into tetrahedral cells by subdividing
them [14, 44]. A tetrahedral cell has four points and each face of the tetrahedral
cell is a triangle, thus easily meeting the requirement of cells with planar faces.
Since the algorithm operates on the polygons, the tetrahedral data set is further
converted into a set of distinct triangles. Only triangle information are stored in

CHAPTER 3. RAY-CASTING BASED DVR OF UNSTRUCTURED GRIDS17

the data hies.
The algorithm processes consecutive scanliiies of the screen from top to bot­

tom, and processes the consecutive pixels of a scanline from left to right. Basic-
steps of the algorithm is given below:

1. Read volume data. In our case, the algorithm reads triangles representing
faces of tetrahedrals from the data hies.

2. Transform the triangles into screen coordinates by multiplying each vertex
by a 4x4 transformation matrix. Perform y-hucket sort on the triangles.
The y-hucket is a ID array of pointers that point to triangles of the input
database. Each entry of the y-bucket corresponds to a scanline on the
screen and a linked list of pointers is stored at each entry. The pointer
to the triangle is inserted at the entry which corresponds to the lowest
numbered scanline that intersects the triangle.

3. Update active polygon and active edge lists for each new scanline, start­
ing from the lowest scanline and continuing in increasing scanline number.
The active polygon list stores the triangles that are starting and continuing
at the current scanliiie. Before processing the current scanline, the corre­
sponding entry of the y-bucket is inspected for new triangles. If there are
new triangles, they are inserted into active polygon list. .A.t the end of pro­
cessing the scanline, triangles that end at the current scanline are deleted
from the active polygon list. The active edge list stores the triangle edges
that are intersected by the current scanline. Eldges of triangle in the active
polygon list are tested for the intersection. Note that if a triangle is al­
ready in the active polygon list, then a pciir of its edges is in the active edge
list. For such triangles, new edge intersections cire calculated incrementally
using the edge information in the active edge list.

4. For each active edge pair for the current scanline, generate a span, clip the
span to the region boundaries, and insert it in x-hucket. The x-hucket is ID
array of pointers. Each entry corresponds to a pixel location on the current
scanline and stores a linked list of spans starting at that pi.xel location.

5. Update z-list for each new pixel on the current scanline. The z-list is a linked

CHAPTER 3. RAY-CASTING BASED DVR OF UNSTRUCTURED GRIDS18

list and each entry of the z-list stores the z-intersection of the triangle with
the ray shot from the pixel location, span information, a pointer to the
triangle, and a flag to indicate whether the triangle is an exterior or an
interior face. Note that two consecutive triangles, if at least one of them
is an interior triangle, make up the corresponding tetrahedral cell in the
volume. Hence, during the composition step, two consecutive triangles can
be used for the determination of the sampling points on the ray. The z-
intersections are calculated by processing the spans stored in the x-ljucket.
The z-intersections are updated incrementally by rasterizing spans. Each
z-intersection is inserted into the z-list in such a way that the list remains
sorted in increasing z-intersection values. The z-list can also be considered
as an active span list because only the span information for the spans that
are cictive at the current pixel location is inserted into the list. Note that
as long as no new spans are inserted, there is no need to sort the list again
for the next pi.xel.

6. Composite the scimple values for the current pi.xel location using z-list or­
dering. Repeat steps 3-6 until all scaiilines and pi.xels are processed.

The algorithm exploits image-space coherency for efficiency. The calculations of
intersections of polygons with the scanline, insertion and deletion operations on
the active polygon list are done incrementally. This type of coherency is referred
to here as inter-scanline coherency. For each pixel on the current scanline, the
intersection of the ray shot from the pixel and spans that cover that pixel are
determined and put into the z-list, which is a sorted linked list, in the order
of increasing z-intersection values. The z-intersection calculations, sorting of z-
intersection values, insertion to and deletion from z-list are done incrementalljc
This type of coherency is referred to here as intra-scanline coherency.

3.2 Parallel A lgorithm

Parallel algorithm is a sort-first parallel rendering algorithm. This algorithm

consists of the following basic steps:

1. Read volume data. Initially, each processor receives V/P triangles. Here,
V is the total number of triangles and P is the number of processors.

2. Divide the screen into regions. The screen is partitioned into P subregions
using the distribution of workload on the screen. The decomposition is
performed using one of the image-space decomposition algorirhms presented
in Section 5.2. .After regions are created, each processor is assigned a screen
region. The local triangles in each processor are re-distributed according
to new screen regions and processor-region assignments. Each processor
e.Kchanges triangle information to receive triangles intersecting the region
it is assigned. It sends the triangle information Ixflonging to other regions
to respective processors.

3. Perform steps 2-6 of the sequential algorithm on the local screen region.

3.3 W orkload M odel

CHAPTER 3. RAY-CASTING BASED DVR OF UNSTRUCTURED GRIDS19

The screen is divided into regions using one of the image-space decomposition
algorithms described in the Section 5.2. Determining the actual computational
workload in a region is crucial to achieve even distribution of computatiomd loa.d
among processors. .As stated in the earlier sections, number of [¡rimitives are
used to approximate the workload in a region in previous work on polygon ren­
dering [13, 36, 43, 48]. We use the same approximations in the experimental
compa.rison of the image-space decomposition algorithms. However, in the se-
c[uential and parallel algorithms given in sections 3.1 and 3.2. there are three
parameters that affect the computational load in a screen region. First one is
the number of triangles (primitives), because the total workload due to trans­
formation of triangles, insertion operations into y-bucket and insertions into and
deletions from active polygon list are proportional to the number of triangles in
a region. The .second parameter is the number of scanlines each triangle extends.
This parameter represents the computational workload associated with the con­
struction of edge intersections (hence, corresponding spans), clipping of spans
to region boundaries, and insertion of the spans into x-bucket list. The total

number of pixels generated by rasterization of these spans is the third parameter
affecting the computational load in a region. Each pixel generated adds compu­
tations required for sorting, insertions to and deletions from z-list. interpolation
and composition operations. The operations on each parameter takes different

amount of time. Therefore, the workload (WL) in a region Ccui be approximated
using Eq. (1).

I'f L = (iNx bNg T cA p (1)

here Nt , Ns ·, and Np represent the number of triangles, spans (number of scan­
lines triangles extend), and pixels (generated by rasterizing the triangle), respec-
tivel.y, to be proces.sed in a region. The values a, 6, c represent the relative com­
putational costs of operations associated with triangles, spans, and pixels, respec­
tively. Finding exact number of pixels and spans generated in a region due to a
triangle requires rasterization of the triangle. In order to avoid this overhead, the
bounding box approximation is used for pixels and spans. That is. a triangle with
a bounding box with corner points {xrnin.,yrnin) and {xmax. ymax) is assumed
to generate ymax — ymin + 1 spans and {ymax — ymin -t-1) x [xmax — xmin -f-1)

CHAPTER 3. RAY-CASTING BASED DVR OF UNSTRUCTURED GRIDS20

In the discussions of the image-space decomposition algorithms, we assume
that the workload of a region is the number of primitives (based on the Ijounding
box approximation) in that region. Incorporating the pixels and spans (Eq. 1)
to these algorithms is accomplished by treating each span and pixel covered l:>y
the bounding box of the triangle as bounding boxes with computational loads
of h and c, respectively. That is, for a triangle whose bounding I)ox has corner
points {xmin., ymin) and {xmax, ymax), there is one triangle with computational
load of a, there are ymax — ymin -|- 1 triangles, whose height is one pixel and
width is xmax — xrnin -f- 1. each with computational loa,d of h. and there are
{ymax — ymin -b I) x {xmax — xmin -|-1) triangles, whose height and width are
one pixel, each with a computational locid of c.

3.4 Im age-Space D ecom position A lgorithm s

In this work, we propose algorithms that divide the screen adaptively using the
workload distribution on the screen. The algorithms discussed in this thesis have

the following basic steps:

1. Create screen space bounding boxes of the primitives (triangles). Initially,
each processor receives VjP primitives. Here, V is the total number ol

CHAPTER 3. RAY-CASTING BASED DVR OE UNSTRUCTURED GRIDS21

IMAGE-SPACE DECOMPOSITION ALGORITHMS

ID Decomposition

1D Arravs

Exact Model
(HHD. OHD)

1D Array.s 2D Arrays

^ \

Exact Model
(ORB-ID. HJD)

Inverse Area Heuristic 1
Model (

(MAHD.HCD. GPD. OJD-I.
(ORBMM-M,ORBMM-(^i

(RD. OJD-E)

Figure 3.2. The taxonomy of image-space decomposition algorithms.

primitives and P is the number of processors. After receiving tlie primitives,
each processor creates screen space bounding boxes of the local primitives.

2. Create the workload arra.ys using the distribution of primitives on the
screen.

3. Decompose the screen into F regions using the workload arrays. Each
processor is assigned a single region after decomposition.

4. Redistribute the local primitives according to screen regions and processor-
region assignments. In order to carry out redistribution step, each processor
should know about the region assignments to other processors. For this rea­
son, each processor receives screen decomposition information from other
procès,sors if such information is distributed among proces.sors during de­
composition.

Each of the steps 2-4 are described in the following sections.

3.5 A Taxonomy of the D ecom position A lgorithm s

In this section, we propose a taxonomy for the decomposition algorithms pro­
posed and presented in this thesis. This taxonomy is based on the decomposition
strategy and workload arrays used in the decomposition.

CHAPTER 3. RAY-CASTING BASED DVR OF UNSTRUCTURED GRIDS22

We first classify algorithms based on the decomposition of the screen, which
is a 2D space. There are basically two ways to decompose the screen. ID decom­
position algorithms di\dde in only one dimension of the screen. These algorithms
utilize the workload distribution with respect to only one dimension. 2D decom­
position algorithms, on the other hand, utilize the workload distribution with
respect to both dimensions of the screen. They divide the screen in two dimen­
sions.

We can further classily the algorithms based on the workload arrays used in
the decomposition step. The term arrays will also be used to refer to workload
arrays. .Algorithms in the first group utilize ID workload arrays, while the al­
gorithms in the second group use 2D workload arrays. In the first group, ID
workload arrays are used to find the distribution of workload in each of the di­
mensions of the screen. In the second group, a 2D coarse mesh is superimposed
on the screen and distribution of workload over this mesh is used to divide the
screen.

We introduce two models, referred to here as inverse area heuristic (lAH)
model and exact model, to create workload arrays and query the workload in a
region. In the LAH model, an estimate of the workload in a region can be found,
whereas in the exact model, excict workload in a region can be found. lAH model
allows rectangular or non-rectangular regions as well as regions consisting of non-
adjacent cells when 2D workload arrays are used. However, exact model can only
be used for rectangular regions consisting of adjacent mesh cells. Our formulation
of LAH model needs only one 2D workload array, but exact model requires four

2D workload cirrays.
The chissification of the algorithms presented in this work is illustrated in

Fig. 3.2. Abbrevicitions of the names of the algorithms are given in the parenthe­
ses, please refer to Section 5.2 for full names of the algorithms.

4. DECOM POSITION USING ССР

ALGORITHM S

In this chapter, chains-ori-chains partitioning problem (CCP) is discussed. Op­
timal load balancing problem in the decomposition of ID workload arrays can
be modeled as CCP. Hence, CCP algorithms can be exploited for optimal de­
composition of ID domains. Beside, 2D decomposition schemes that utilize CCP
algorithm are described. .An iterative heuristic for rectilinear decomposition and
an optimal jcigged decomposition are discussed. This chapter presents decompo­
sition algorithms for general workload arrtu’s. Adaptation (jf these algorithms to
image-space decomposition will l:ie discussed.

4.1 Chains-On-Chains Partitioning Problem

Chains-on-chains partitioning problem is defined as follows; We are given a chain
of work pieces called modules .4i. A2. . . /l,v and wish to partition the chain into
P subchains, each subchain consisting of consecutive modules. The cost func­
tion is defined as the cost of subchain Cost function must be
non-iiegative and monotonically non-decreasing. The chain of modules can be
partitioned optimally in polynomial time with an objective function that mini­
mizes the cost of maximall}· loaded subchain. The subchain with maximum load
is called the bottleneck subchaiii and the load of this subchain is called bottleneck

value of the partition.
CCP problem arises in many parallel and pipelined computing applications.

Such applications include image processing, signal processing, finite elements,
linear algebra and sparse matrix computations. Their common characteristics are
that, the divisible part of the domain is represented as a workload modules and

23

CHAPTER 4. DECOMPOSITION USING CCP ALGORITHMS 24

dividing the domain to subdomains with contiguity constraint is necessary for the
efficiency of the parallel program. In some applications, like image processing or
finite elements applications, the modules need the \'alue of its neighbor modules.
Therefore, for efficient parallelization it is necessary to put contiguous modules to
the same processor. Moreover, for the applications in linear algebra and computer
graphics the non-contiguity results in inefficient computation power and more
volume of communication. The load bahince among the parts is necessary, as the
parallel execution time is determined by the bottleneck processor.

Bokhari first studied the chain structured computations [3] and proposed
polynomial time algorithm with complexity 0{N'^P) [4] for optimal partitioning.
Then several algorithms have been proposed with better complexities. A dynamic
programming (DP) based approach with a complexity of 0(N~P) was proposed
by .A.nily and Federgruen [1], and Hansen a,nd Lih [18] independently. Later, Choi
and Narahari [9], and Olstad and Mamie [39], independently improved the DP-
based approach to complexities of 0{NP) and 0{{N — P)P) respectively. Ic|bal
and Bokhari [22], and Nicol and OTiallaron [38] proposed (9(.\'P log A’) time
algorithms. These algorithm are based on a. function called probe. The probe
function accepts a candidate value and determines if a [lartition exists with a
bottleneck value less than the given candidate value. The partitioning strategy
is based on repetitively calling the probe function for Ccindidate values and find­
ing an optimal solution. The complexity of this algorithm is better than the
0{NP) complexity of DP-based approaches if P -- /Y/(log.V)". This strategy is
more useful when there are many modules comparing to the number of partitions
(processors). Iqbal [21] also give a probe-ba,sed approximation algorithm with a
comple.xity of 0{NP\og{Wtot/^))· where Wtot is the total workload and e is the
desired precision.This algorithm becomes an exact algorithm for integer-valued
workload arrays with e = 1.

The cost function for a subchain may change according to the application.
However, all must satisfy the non-negative and monotonically non-decreasing
behavior. Moreover, for the algorithms given in next sections, it is assumed that
the cost function Wij is calculated in 0(1) time. If the cost of each module is
independent, which is generally the case, then each module /!,■ is associated with
a weight tUi and cost of subchain /1,·... Aj is defined as the sum ol the weights

CHAPTER 4. DECOMPOSITION USING CCP ALGORITHMS 25

Wi + lOi+i . . . + iVj. Then, the cost of Wij can be calculated in 0(1) time, with
1'1'Ti — if the cost of all prefix subchains are priori known. The Wi^k foi‘
1 < /; < N can be calculated as a preprocessing by performing a prefix-sum
operation over the workload array of modules. Olstad and Manne [39] also
expand the requirement to include some more cases. In their definition, it is
desired that, cost of single module is calculated in 0(1) time and if Wij is given,
then the cost of a subchain by incrementing or decrementing the i or j by one
should be calculated in 0(1) time. Note that probe-based solutions are not work
for this this definition.

4.1.1 D ynam ic-Program m ing Approach

Dynamic programming based approaches exploit the optLnal substructure of CCP
problem. Let Si j represent the bottleneck value of an optimal ¿-way partitioning
of subchain A;, Ai+i - .-Aj. then. .S'f .y is the bottleneck value of desired parti­
tion. .After this definition, the CCP problem can be formulated by the following
recursion:

. (max(,S'f “ ‘, И/ +1,,■)) (1)

VVe start with к — 2 where Sl^ is equal to Wij, and the iterations finish at
к - P. Similarly, for each k, г starts from к and goes up to N. The bcxsic
dynamic programming approach leads to an algorithm with complexity 0{N^P).

Choi and Narahari [9] exploit the special structure of CCP and reduce the
complexity of the DP algorithm to 0{NP). Olstad and Manne [39] also exploit
the same structure and propose an 0((7Y — P)P) algorithm.

Here, we are going to explain the solution of Choi and Narahari [9]. The
main contribution of Choi and Narahari [9] is to determine all values of for
к < i < N by searching only 0{N) values in OiN) time. This is possible, because
if the minimum value of occurs at index ji, the minimum value of ¿ can
not occur at an index j less than ji. We start j from ji for the next iteration.
Therefore, the complexity of the algorithm is 0{NP). Olstad and Manne [39] also
show that at each iteration of k, we do not need the values S ^ ^ for 1 < m < ¿ — i
and N - p + k < m < N . This comes from the fact that, in optimal solution
each part contains at least one module {N > P). Therefore, they reduce the

CHAPTER 4. DECOMPOSITION USING CCP ALGORITHMS 26

complexity to 0((N — P)P)·

4.1.2 Probe-Based Approach

The probe-based approach is different from DP, it searches for candidate bot­
tleneck values and reaches an optimal solution. It uses a function, called probe,
which takes a bottleneck value W and determines whether a partition exists with
bottleneck value W . where W < W . The probe function loads consecutive pro­
cessors with consecutive subchains in a greedy manner such that each processor
is loaded as much as possible without e.xceeding VV. That is. probe function finds
the largest index such that < W . Similarly, it finds the largest index ¿2

such that kPi,(2 ^ This process continues until either all modules are
assigned, or some modules remain after loading P parts. In the former case, we
Sciy that a partition with a bottleneck value no more than IF exists. In the latter
case, we know that no partition exists with a bottleneck rvalue less than or equal
to IF. It is clear that this greedy approach will find a solution with bottleneck
value no greater than II il there is any. The probe function takes 0(N) time
with linear search and 0 (P lo g .\) with l)inary search. The binary search version
needs a prefix summed workload array. Each i < s < P can be found in
O(logtV) time with binary .search, resulting in O(PlogiV) total complexity.

The solution of Nicol and O’Hallaron [38] searches 4iV candidate bottleneck
values for an optimal solution with a total complexity OfiVP log(P)). Later.
Nicoi [37] improved the algorithm by searching for 0(Plog(iY)) candidates and
reduced the complexity to 0{N -I {P log N)'^) where the 0{N) complexity comes
from the cost of performing an initial prefix sum on workload array. The algo­
rithm uses a binary search and finds the greatest index ¿1 such that the call of
probe with IFi_q returns false. Here, we can argue that, either IFi,,,+i is the bot­
tleneck value of an optimal solution, which means that processor 1 is bottleneck
processor, or IFi.,·, is the cost of processor 1 at optimal solution. .At this time
we cannot know which is true. So. we save the IFi,,-,4.i as C\, and starting from
¿1 A 1 perform the same operation to find ¿2 and C2. This operation is repeated
P times and the minimum of the C/s 1 < i < P, is the bottleneck value. Once
the bottleneck value is found the division points for subchains can be found using
the greedy approach of probe function.

Despite the theoretical 0{P log N) probe calls, we observe that the number of
probe calls can be reduced in practice. We know that the probe function works
in a greedy iTianner, and if it returns false for a candidate bottleneck value L it
will return false for every value smaller than L. Similarly, if it returns true for
a candidate bottleneck value U it will return true for every value greater than
U. In this work, we dynamically reduce the interval [L. U\ during searching for
candidate bottleneck values and calling the probe function only for a candidate
bottlenecks value in reduced interval [Z,t/]. The initial bottleneck value range
[L. U\ can be set to [0, Wtot]· This initial range can also be reduced such that L is
set to max(WTi/-P, Wmax) and U is set to ma.x(WtotjPР'-Отах)·, where w„-̂ ax is
the ma.ximum cost among modules. E.xperimental results show that dynamically
reducing the interval with a good initial bound reduces the number of probe calls
substantially.

4.2 D ecom position of 2D Dom ains

Decomposition algorithms presented in this section decompose a 2D domain into
P rectanguhu· region. The CCP algorithms are effectively e.xploited for (inding
optimal jagged decomposition. Rectilinear decomposition algorithm finds subop-
tinicil solution with an iterative heuristic that utilizes the idea of CCP. The 2D
domain is represented as a workload array of size M x N. The workload of a cell
Cij is wij and total workload of the domciin is Wiot- The processors are designed
as a p X q processor mesh, where p x q = P. The p and q values are chosen
such that the resulting processor mesh is as close as to square. Decomposition
of the domain is performed such that the cost of maximally loaded processor is
minimized. Processor with maximum workload is called bottleneck processor and
workload of that processor is called the bottleneck value.

CHAPTER 4. DECOMPOSITION USING CCP ALGORITHMS 27

4.2.1 R ectilinear D ecom position

Rectilinear decomposition, divides the rows of workload array into p interval ot
different sizes and columns into q interval. Grigni and Manne [17] proved that
finding the optimal rectilinear decomposition is NP-cornplete. Nicol [37] proposed
an iterative heuristic to find a well balanced rectilinear decomposition. The same

CHAPTER 4. DECOMPOSITION USING CCP ALGORITHMS 28

(a)
(b)

Figure 4.1. Decomposition schemes : (a) rectilinear decomposition, (b) jagged
decomposition.

algorithm is also proposed by Manne and Sprevik [.33]. The iterative cdgorithm
is based on finding an optimal solution in one dimension given a fixed partition
in alternate dimension. The next iteration uses the solution just found in one
dimension as a fixed partition and finds optimal solution in the other dimension.
This operation is repeated, each time fixing the partition in alternate dimensions.
The decomposition problem in one dimension is the adaptation of the CCP. It is
proven that the iterations converge very fast to a local optimum solution [37].

Nicol defines the optimal conditional partitioning (OCP) as an optimal par­
titioning in one dimension while fixing in the other. .-Viter defining OCP. the
rectilinear decomposition problem becomes iteratively applying it to alternate
dimensions. OCP algorithm utilizes CCP algorithms. In OCP p{q) chains are
partitioned concurrently at the same indices to minimize the cost of bottleneck
subchain in all chains. Here, the chains are the strips found at previous OCP.
The complexity of the rectilinear decomposition algorithm will be the number of
iterations times the complexity of the OCP.

The DP-based OCP [17] is as follows: The first step of the algorithm is to
collapse the p row strip into p chains. After this collapsing, we have p chains of
length N for a workload array of size M x N. The algorithm is to apply DP-based
chain partitioning solution. This time, the cost VK,y is replaced with the cost

1 < A :< p

CHAPTER 4. DECOMPOSITION USING CCP ALGORITHMS 29

where is the total cost of subchain A i .. . Aj at chain/strip. The
values can be calculated in 0{p) time. Therefore the comple.xity of OCP is
0 { M N + pqiN — q)) where 0{MN) cost comes from the collapsing operation.

The probe-based OCP [37] makes minor modihcations to the probe function.
The modified probe function, referred to here as probe-conditional, takes the
candidate bottleneck value W and determines whether a partition exists for each
chain with a bottleneck value W < IT, with a constraint that all chains are
partitioned at the same indices. We find the largest index such that <
IT for all k. Then, we take the smallest jk as li. Next, starting from the /i -f 1.
we find the largest index jk such that Wi ĵ^̂ k A W + ITi,/j for all k. We take the
smallest j/; as l-i- This process continues similarly and it returns true if it achieves
to load all processors with a load no greater than IT. Thus, the complexity of
the probe-conditional is Oipq log N). The searching strategy is similar to the ID
version. We find the largest index ij such that calling probe-conditional with

returns false for all k, i < k < p. Then, we find the minimum
of IT,jj+Uj,A.· (for all k = l . . .p) such that probe-conditional returns true for
lT,;_,4-i,,j + i,r·· The number of probe calls is 0{pq log M). Therefore, the cost of
optimal conditional partitioning is 0 {M N + pqlogN log M) [37]. The 0{ MN)
cost is the cost of collapsing the p strip into p chains.

Note that for both probe-based and DP-based OCP. the dominating cost is
the cost of collapsing p strips into p chain. This collapsing rec[uires 0{MA·) time.
Marine and Sprevik [33] propose a scheme to decrease the 0(.V/.V) cost to 0{pM)
by utilizing prefix sum over rows and columns. This requires 2 arrays each of size
M X N. One array store the prefix sum of each columns and the other array prefix
sum of each row. This two arrays are used to collapse the strips to chains. For
row strip [i,j], load of each module of the chain is calculated by ITiy^ — ITi(,_t),/;,
for k < I A N, where kFij.r· represents the value at column-wise prefix summed
array place at index [i,j]. The collapsing of each strip takes 0{N) time resulting
0{pN) time to collapse p strip.

In this work, we propose a much more efficient scheme which avoids the col­
lapsing operation before each OCP operation. The proposed scheme requires
a single 2D array of size M x N. It exploits the idea of summed area table
(SAT) [11]. SAT is used to c^uery the workload of any rectangular region in 0(1)

CHAPTER 4. DECOMPOSITION USING CCP ALGORITHMS 30

time. SAT is created by performing a 2D prefix sum over the workload array.
2D prefix sum is done by performing a ID prefix sum on each individual row
followed by a ID prefix sum on each column of workload array. Once SAT is
created as a preprocessing step, collapsing the strips before each OOP is not nec­
essary any more. This improvement reduces the complexity of DP-based OOP to
0(pq(N — q)) and probe-based OOP to 0(p<7 log Ai log iV).

Nicol [37] proved that the iterative rectilinear algorithm converges. Suppose
that we have already found a row partition with a cost at iteration k,
Then, after fixing that, we perform OOP on columns and get a column partition
C'lc+i with a cost HA+i· Then we fix the column partition Ck+i and perform OCP
on rows. Surely, we will at least get the same column partition C^+i with a cost
Wk- This proves that the cost function is non-increasing. Nicol states that the
iterative refinement algorithm converges in 0{U{N + M)) iterations, where U
is the number of unique bottleneck constraints. However, he also states that, in
practice it converges in far fewer iterations, perhaps in 0(niax{A\ A/}) iterations.

4.2.2 Jagged D ecom position

If we relax the decomposition in one dimension, we get jagged decomposition
(also known as Semi generalized block partitioning). Here, rows (columns) are
partitioned intop(<j') strips and each strip is independently partitioned in alternate
dimension. Here, we explain the case, where rows are partitioned into p strip and
each row strip is partitioned into q column strip independently.

Manne and Sprevik [33] proposed an algorithm to find optimal jagged decom­
position of a workload array. Their algorithm is based on ID CCP and it tries to
minimize the cost of maximally loaded processor by finding the division lines for
strips and the division of individual strips in alternate dimension. They perform
a p-way chain partitioning on rows. The cost of any subchain in p-way parti­
tion, here a subchain is a row strip, is found by cipplying a q-\va,y partitioning on
columns of that strip and taking the cost of partition as the cost of the subchain.

Manne and Sprevik [33] used DP-based CCP. The first algorithm they propose
performs the q way partition on columns in 0{q{N — q){ri — Vj)) time where ri,
Tj are the row indices. The complexity of this algorithm is 0{p{M —p){N -b {N —
g))) = 0{pqM{M - p){N - q)) for optimal jagged decomposition.

CHAPTER 4. DECOMPOSITION USING CCP ALGORITHMS 31

In the second algorithm, they improve the complexity by a factor of M. They
achieve this by collapsing the row strips. In DP-based CCP algorithm queried
subchains differ by only one module from the previous queried subchain. .Suppose
that, we have already have collapsed arra.y of strip /у], during chain [)artition-
ing on rows, we will next need the collapsed array of either [?·,■, /у+х] or /у].
Both strips can be calculated in 0{N) time using the previous collapsed array
of [/’м'/у]. Thus each column partition requires 0(.A -r (/(A" — q)] time. There­
fore, the complexitj'^ of jagged decomposition becomes 0{pq{iM — p){N — q)). We
note that, SAT scheme mentioned earlier can cilso be used for DP-based jagged
decomposition algorithm instead of collapsing the rows at each step.

In this work, we have implemented the probe-based jagged decomposition
algorithm. .A straightforward implementation leads to an Oiiplog M)^){M^ +
{q\og N)^)) time algorithm. The improvement by collapsing the rows cannot
be applied to probe-based approach, as probe-based approach does not have
coherency between successive steps. We utilize the S.AT scheme to achieve the
complexity 0 (M N + iplog M)'-{q\og N)'^).

4.3 Conclusion

We have presented iterative heuristic algorithms for rectilinear decomposition.
These algorithms was proposed by Nicol [37] and Marine and Sorevik [33]. We
present that the use of S.AT scheme decrease the complexity of both DP-based and
probe-based iterative algorithms. In the SAT scheme, we perform the 0 { MN)
work only once as a precomputation and avoid the collapsing operation at each
iteration.

We have presented the optimal jagged decomposition algorithm propo.sed by
.Manne and Sprevik [33]. They have implemented the DP-based solution and
decrease the complexity of initial algorithm by collapsing the rows. We present
a probe-based algorithm. We show that the complexity of probe-based solution
is better than the DP-based solution, only if SAT idea is utilized.

Manne and Sprevik [33] showed optimal jagged decomposition achieves very
good load balance. They compare the load balance performance of optimal jagged
decomposition with orthogonal recursive bisection, rectilinear decomposition and

CHAPTER 4. DECOMPOSITION USING CCP ALGORITHMS 32

jagged decomposition based on a heuristic. They state that, optimal jagged
decomposition gives good load balance, but it is too time consuming. In our
work, we see that probe-based solution with SAT works faster than I3P-based
algorithm. We believe that, good load-balance performance and decent run-time
performance makes the jagged decomposition attractive for many applications
including computer graphics and linear algebra.

5. IM AGE-SPACE DECOM POSITION

ALGORITHM S

5.1 Creating the Workload Arrays

This section describes how the workload arrays are created. Each processor
creates local workload arrays using local primitives. Then, a global sum operation
is pertormed on local arrays ot each processor so that each processor receives the
global workload arrays.

5.1.1 ID Arrays

ID arrays are used to find the distribution of primiti\'es o\‘er one dimension of
the screen region. In this .section, we present ID arrays for y-dimension of the
screen region. ID arrays used for x-dirnension of the region are duals of these
arrays.

There are two ID arra.ys used to find the distribution of primitives in y-
dirnension. The first array is the y-dimension local primitive start (YPS/) array
of size N. where N is the resolution of the screen in y-dimension. The second
array is the y-dimension local primitive end (YPE;) arra\· of size N. Each entry
of these arra.ys corresponds a scanline in the region. Each processor updates these
arrays using the local primitives via the algorithm given in Fig. 5.1.

After all local bounding boxes are processed, YP.S;[y] gives the number of
local primitives that start at scanline j. Similarly, YPS/[y] gives the number of
local primitives that end at scanline j. A global sum operation is performed
on these two arrays so that each processor receives the global arrays YPS^ and

33

CHAPTER 5. IMAGE-SPACE DECOMPOSITION ALGORITHMS 34

for each local bounding box (bbox) k do
ymin - hbox[k].ymiri; ymax — bbox[k].yrnax·,
YPS/[?/mi7?.] = YPSi[;i//?7fn] + 1:
YPE;[;;/??i(ta·] = YPE/[;i/-ma,i·] + 1;

endfor

Figure 5.1. Algorithm to update ID arrays using bounding boxes.

YPE^, containing the information for all primitives in the scene. Then, prefix-
sum operation is performed on each global array to obtain prefix-summed arrays,
YTSp and Y'̂ PEp. The value YPSp[j/'] gives the number of primitives that start
before scanline j , including the scanline j. YPEp[j], on the other hand, gives
the number of primitives that end before scanline j , including that scanline. The
number of primitives (workload. WL) in a region bounded by scanlines i and
j (> i) is given by the following equation:

W L [i , j] = rP,S'p[j] - YPEp[i . - 1]. (I)

This equation gives the exact number of primitives in a horizontal region bounded

by [ij]·

5.1.2 2D Arrays

In algorithms using 2D arrays, a 2D coa.rse mesh is superimposed on the screen.
The mesh cell weights cire updated using the distribution of primitives over this
coarse mesh. Bounding boxes are projected onto this mesh.

5.1.2.1 Inverse Area Heuristic (lAH) Model

In this scheme, bounding boxes of the local primitives are tallied to mesh cells
after the mesh is superimposed on the screen. Some primitives may intersect
multiple cells. In order to decrease the errors due to counting such primitives
many times, Mueller [36] uses a simple heuristic, referred to here as inverse area
heuristic. Each primitive increments the weight of each cell it intersects by a
value inversely proportional to the number of cells the primitive intersects. In
this heuristic, if we assume that there are no shared primitives between screen

CHAPTER 5. IMAGE-SPACE DECOMPOSITION ALGORITHMS 35

regions, the sum of the weights of individual cells forming a region gives a value
linearly proportional to the exact number of primitives in that region. However,
shared primitives still cause errors when calculating the number of primitives in a
region. The contribution of a shared primitive between regions is divided among
those regions. Thus, the computed workload of a region is less than the actual
value. However, it can Ido expected that such errors are less than counting such
primitives multiple times while adding cell weights. Mueller points out tlmt this
heuristic gives better results.

Some of the decomposition algorithms presented in this thesis need to cjuery
workload of a rectangular region. In order to query the workload in 0(1) time
workload array is converted into a SAT by performing a 2D pveñx sum over the 2D
workload array. The 2D prefix sum is done by performing a ID prefix sum on each
individual row of the mesh followed by a ID prefix sum on each individual column.
After the 2D prefix sum operation, SAT[.r,y] gives the workload of the region
bounded by corner points (1,1) and The workload of a rectangular region,
whose corner points are {xniin.yrnin) and {xrnaxxijmax). can be computed using
the following expression:

WL[{xmin, ymin), {xmax, ymax)] = S A T [X ma X, y rn a .r]

— S AT[xrnax,ymin — 1]

— SA T[xm in— l.ymin]

+ S AT'[xmin — i.yinin — 1]. (2)

5.1.2.2 Exact Model

The inverse area heuristic gives an estimated number of primitives in a region
since shared primitives cause errors. In this work, we propose a new method to
find the exact number of bounding boxes in a rectangular region efficiently. Our
method uses four 2D arrays.

There are several ways of arranging the four 2D arrays to query the exact
nurnl)er of bounding boxes. We present a scheme that requires the minimum
number of operations. The first array, which is called STARTXY, is filled by
projecting the lower left corners of bounding boxes and incrementing the value of
the cell. This lower left corner may be thought as a starting point of the bounding

CHAPTER 5. IMAGE-SPACE DECOMPOSITION ALGORITHMS 36

box as it is the closest corner to the (1,1) point of the screen. After projecting the
starting points of bounding boxes, a 2D prefix sum is performed over this arra.y.
After this prefix sum operation. ST.ARTXY[,r.//] givois the number of l)ouuding
boxes intersecting a region bounded by (1,1) cvncl (x,y) (Fig. o.2(aj). In other
words, it finds the number of bounding boxes that start (or whose lower left
corner reside) in that region. Similarly, the second array, ENDXY. is filled by
projecting the upper right corner (also called end point) of bounding boxes. This
operation is followed b\· a 2D prefix sum on the array. i\s seen in Fig. o.2(b),
ENDXY[.r, j/] gives the number of bounding boxes whose upper left points are
in the region bounded by (1,1) and (.r,;y). The third array. EXDX. is filled by
rasterizing the left side of bounding boxes. The bounding box [(.s.r. .sy), (e.r, e.y)]
contributes to the cells {ex,k). sy < k < ey. After we fill the array, we perform
a row-wise prefix sum on each row. The value ENDX[.7u;i/] gives the number of
bounding boxes, whose left side intersects the line [(!,//). (•iy ,'/)] (Fig.5.2(c)). The
fourth array. ENDY is similar to the ENDX array. It is filled l)v rasterizing the
upper side of the bounding boxes. This side is ecpiivalent to the indices (k. ty).
sx < k < ey. The rasterization operation is followed by column-wise prefix sum
on each individual column of the arra.y. As seen in Fig. 5.2(d). EXDY[.r,/y] gives
the number of bounding boxes whose upper sides intersect the line [(,r, 1), (.r, ,y)].

After defining the arrays, .ST.ARTXY, ENDXY, ENDX. and ENDY, we can
calculate the exact number of primitives {WL) in a region bounded by
[{.imim, ymin): {xrnax, ymax)] as follows:

W L = ST ART X Y [xrnax, ymax]

—EA^DXY[xmin — Tymax — 1]

—E N DXY’[xmax — i ,ymin — 1]

—ENDX[xmin — i,ymux]

—ENDY[xmax, ymin — 1]

+ENDXY[xmin — I,ymin — 1]

(3)

As seen in Ec[.(3), this scheme reciuires only 4 subtractions and 1 addition
operation to query the number of bounding boxes in a rectangular region.

CHAPTER 5. IMAGE-SPACE DECOMPOSITION ALGORITHMS 37

(x .y)

(C)

Figure 5.2. Arrays used for the exact model: a) STARTXY b) EiN’DXY c) ENDX
d) ENDY

The correctness of the scheme can easily be verified. We wish to find the
exact number of bounding boxes in a region bounded by {xmin, yrnin) and
[xmaxyymux) as given in Fig.5.3. Each letter {A — P) represents the bound­
ing boxes of the same type. We wish to calculate the number of bounding
boxes A through I. The value of STARTXY[x?na.'c, ymax] gives the sum of
the number of bounding boxes A through P. The ENDXY[.Tmi?i — I, ymax — 1]
gives the number of bounding boxes J ,K ,L and ENDXY[;cma.T — l .ymin — 1]
gives the number of L, M, N type bounding boxes. As we subtract L twice
we add it with ENDXY[a;min — l,ym m — 1]. Note that we can not omit the
bounding boxes of type 0 and P using arrays STARTXY or ENDXY. There­
fore, we use ENDX[mmx — I, ymax] to subtract the P type bounding boxes and
ENDY[xmaa;, ?/mm — 1] for 0 type.

CHAPTER 5. IMAGE-SPACE DECOMPOSITION ALGORITHMS 38

(l . l)

L
1

M 1----- 1------ N

Figure 5.3. Exact Model tor calculating number of primitives in a region

5.2 D ecom posing the Screen

in this section, we describe decomposition algorithms to divide the screen using
the primitive distribution.

5.2.1 ID D ecom position A lgorithm s

The schemes discussed in this section divide the screen into P horizontal strips.
The screen is divided into horizontal strips to preserve the intra-scanline co­
herency of the rendering algorithm. Each strip consists of consecutive scanlines
to preserve the inter-scanline coherency up to some extend and to decrease num­
ber of shared primitives by keeping the number of the region boundaries for each
processor.

5.2.1.1 Heuristic Horizontal Decomposition (HHD)

HHD scheme is a ID decomposition scheme using ID arrays with exact model [27].
An example decomposition of the screen by HHD algorithm on 16 processors is

given in Fig. 5.8(a).
The screen is decomposed into regions recursively. In this way, a full binary

CHAPTER 5. IMAGE-SPACE DECOMPOSITION ALGORITHMS 39

tree, whose root being the whole screen, is conceptually generated. At each
decomposition level k (k = 1..... , lo(j2 P)·, a region bounded by scanlines i and j is
divided into two regions [i.m] and [?n + l,j] . The division line m that separates
two regions is determined, by checking all possible lines, such that the following
expression is minimized.

max{WL[i, ?77.], WL[m + 1.;]) — (4)

In this expression, function max{a,b) returns the maximum of a and h. The
value WL[i,m] gives the workload in the region bounded by scanlines i and
77?.. In our case, workload is equal to the number of primitives in that region.
Similarly, WL[rn + 1, j] gives the workload of the region bounded by scanlines
/77. + 1 and j. The minus term V/2^ represents the average load at decomposition
level k. Here, V is the original number of primitives in the scene. Note that
ideal load balance is achieved when each processor is assigned V/P primitives. In
this respect, the minus term also represents the perfect load balance condition at
each decomposition level. Ilie expression given al)ove also tries to decrease the
number of shared primitives since the term rncix{WL[i. /7?]. H'Z[77? + i.j]) will be
ecjual to V/'N' when there are no shared primitives. If there are multiple division
lines that minimize Eq. (4), we can choose the division line such that

WL[i,rn] + WL[rn-{-l,j] (5)

is minimized. In this way, we choose the division line that results in minimum
number of shared primitives.

5.2.1.2 Optimal Horizontal Decomposition (OHD)

In the previous section, a heuristic scheme is presented to divide the screen hor­
izontally. In this section, we give an algorithm that divides the screen into P
horizontal strips optimally utilizing CCP. This algorithm is a ID decomposition
algorithm using ID arrays with exact model. An example decomposition of the
screen by OHD algorithm on 16 processors is given in Fig. 5.8(a).

In this work, we have implemented the probe-based CCP explained in Sec­
tion 4.1.2 for decomposition of image-space, since it runs faster. We use the
arrays YPSp and YPEp to calculate the cost function kYj, which is the number
of primitives in the region bounded by scanlines i and j, using Eq. (1).

CHAPTER 5. IMAGE-SPACE DECOMPOSITION ALGORITHMS 40

5.2.2 2D D ecom position A lgorithm s

In the ID decomposition algorithms, the atomic tirsk is defined to be a scanline,
i.e., scanlines are not divided. Due to this restriction, the scalability of ID de­
composition is limited by the number of sctmlines. In addition, the workload at
each region is determined by the workload at each scanline. Hence, if there are
large differences in the workloads of scanlines. the load imbalance between regions
may still be large. The limitations of the ID decomposition can be eliminated to
some extent by using workload distribution with respect to both dimensions of
the screen. The schemes to implement this idea are given in the next sections.

5.2.2.1 Rectilinear Decomposition (RD)

This scheme is a 2D decomposition algorithm using 2D arrays with exact model.
This scheme divides the x-dimension into p strips and y-dimension into q strips,
where pq = P. We use an iterative algorithm for rectilinear decomposition, which
utilizes the chain partitioning. .An example decomposition of the screen by RD
algorithm using a 64x64 workload array on 16 processors is gix’eii Fig. 5.8(b).

In this work, we implemented the probe-l:»ased iterative algorithms exi)lained
in Section 4.2.1. We use the exact model to c[uery the number of primitives in
a region in 0(1) time. The exact model performs the role of .S.\T and performs
each iteration (OCP) in 0((pf/logiV/)'·^) time.

5.2.2.2 Jagged Decomposition (JD)

In this section, we present different jagged decomposition algorithms. In jagged
decomposition algorithms, processors are organized into a 2D p x q inesli. thus
forming q clusters of p processors in each cluster. In these schemes, the x-
dimension/y-dimension of the image space is partitioned into p strips in one
dimension and each strip is independently partitioned into q strips in alternate
dimension. Flere, p represent the number of strips in the main axis of the division,
which can be either x- or y-dimension. q represents the number of strips in the

alternate dimension.

Heuristic Jagged Decomposition (HJD)

CHAPTER 5. IMAGE-SPACE DECOMPOSITION ALGORITHMS 41

This algorithm is a 2D decomposition algorithm using ID arrays with exact
model [27]. In this scheme, image plane is divided into p horizontal strips as in
the HHD scheme. After the decomposition of image plane into p horizontal strips,
the workload distribution in x-dimension in each region is calculated using ID
arrays for each region. Then, each region is divided independenth' into q vertical
strips of consecutive vertical lines in x-dimension. An example decomposition of
the screen by HJD algorithm on 16 processors is given Fig. 5.8(c).

In this scheme, alter p horizontal partitions are found, each proces.sor treats
each horizontal strips as a new image plane rotated 90 degrees. Hence, the nurnl^er
of scanlines in each new image plane is equal to the number of vertical scanlines
in x-dimension of the global image plane. Each processor uses the bounding
boxes of local primitives to find the workload distribution in each horizontal
strip. If a bounding box spans two or more horizontal strips, it is divided into
segments and workload distribution of each strip is updated according to the
corresponding segment. After this step, a global sum operation is performed to
obtain the global workload distribution in x-dimension in each strip. .Afterwards,
ecich processor finds vertical decomposition in the horizontal strip of the cluster
that the processor belongs to.

In order to redistribute primitives, processors need the vertical division infor­
mation in other clusters so that they can find the rectangular region the bounding
box of a local primitive intersects. At the last step, a global expand operation,
on the vertical divisions in each cluster, is performed so thcit each processor has
the information about vertical divisions in other clusters.

Optimal Jagged Decomposition (OJD)

The algorithm presented in the previous section is a heuristic. In this section,
we present algorithms to find optimal jagged decomposition of the screen for a
workload array. The algorithms presented in this section are 2D decomposition
algorithms using 2D arrays with inverse area heuristic or exact model. An ex­
ample decomposition of the screen by OJD algorithms using a 64x64 workload
array on 16 processors is given Fig. 5.8(c).

CHAPTER 5. IMAGE-SPACE DECOMPOSITION ALGORITHMS 42

In this work, we use the probe-based optimal jagged partitiouing algorithm
described in Section 4.2.2. We propose algorithms to partition 2D arrays with
inverse area heuristic and e.xact model. The algorithm, which is liased on in­
verse area heuristic model, hnds an optimal jagged decomposition of 2D work­
load array. However, since inverse area heuristic model is used, this algorithm
creates a suboptimal solution for actual primitive distribution. We call this algo­
rithm optimal jagged decomposition with respect to inverse area heuristic model
(OJD-I). The optimal algorithm uses the exact model with 4 2D arrays described
in Section -5.1.2.2. This algorithm generates an optimal partitions for given p and
cj values and main axis of the division in terms of actual distribution of primitives
based on bounding box approximation. We call this algorithm optimal jagged
decomposition with respect to exact model (O.JD-E). Here, exact model performs
the role of SAT.

5.2.2.3 Orthogonal Recursive Bisection (ORB)

In this section, we present algorithms l)ased on the orthogonal recursi\-e bisection
paradigm. These algorithms di\dde a region into two sul>regions uf ecpial work­
load. Then, they recursively iterate on each of the subregions until the number
of regions is ecpral to the number of processors.

Mesh-based Adaptive Hierarchical Decomposition Scheme (MAHD)

This scheme is based on the work of Mueller [36]. M.AHD is a 2D decompo­
sition algorithm using 2D arrays with inverse area heuristic model. Mueller uses
S.AP to c|uery the number of primitives in a region. An example decomposition ol
the screen by MAHD algorithm using a 64x64 workload array on 16 processors

is given Fig. 5.8(d).
.At each decomposition step, longer dimension of the intermediate region is

divided. Dividing the longer dimension aims at reducing the perimeter ot the
final regions as an attempt to reduce the number of shared primitives crossing
the region boundaries. In this scheme, resulting regions are rectangular and each

region consists of adjacent cells.
After log^P steps, each processor is assigned a unique rectangular region ol

CHAPTER 5. IMAGE-SPACE DECOMPOSITION ALGORITHMS 43

for each local bounding box (bbox) k do
xmin = bbox[k].xmin·, xmax = bbox[k].xmax\
ymin = bbox[k].tjmin\ymax = bbox[k\.ymax\
YPSí[;í/mг7г] = YPS;[j//7?,in] + 1;
YPE/[y?naa'] = YPE;[yma.r] + 1;
XPS/[.Tm«n] = XPS/[a;rrifn] + 1;
XPE([.T?7?.rt.r] = XPEvfri’ma.r] + 1;

endfor

Figure 5.4. Algorithm to update horizontal and vertical workload arrays.

the screen. A global concatenate operation is performed on these rectangular
region information so that each processor receives the region information to be
used in the redistribution step.

O rthogonal Recursive Bisection with ID Arrays (O R B -lD)

This scheme is a 2D decomposition algorithm using ID arrays with exact
model [27]. In this scheme [2, 20, 46]. at each decomposition step i Ip = 1__ _ lu(j>P)·
the region assigned to a group of processors is divided into two new regions either
vertically or horizontally. An example decomposition of the screen by ORB-ID
algorithm on 16 processors is given Fig. 5.8(d).

In this scheme, primitive distribution over two dimensions of the screen is
needed to divide the screen horizontally or vertically. This scheme uses ID arrays
for each dimension of the screen. That is, in addition to YPS/ and \ PE; arrays tor
y-dirnension, each processor allocates XPS; and XPE; arrays for x-dimension of
the screen. Initially, each processor is assigned the whole screen as its local image
region. Each processor, then, updates its local copy of the YPS;, XPS;, YPE;,
and XPE; arrays using the local bounding boxes by the algorithm in Fig. 5.4.

The workload distributions in two dimensions are obtained by performing
global prefix-sum operations on these arrays to obtain (X/Y)PSp and (X/Y)PEp
arrays for each dimension of the screen. Then, each processor divides its local
image region into two regions either horizontally or vertically. The division that
achieves better load balance is chosen. Note that for the group of processors

CHAPTER 5. IMAGE-SPACE DECOMPOSITION ALGORITHMS 44

thcit are assigned the same image region, the division will be the same. .A.fter the
division, half of the processors are assigned one of the regions, and the other half
of the processors are assigned the other region. Following the region assignment,
bounding bo.xes crossing the boundary between two regions and intersecting the
other region are exchanged between neighbor processors assigned to the other
region. Neighborhood between processors can be defined according to various
criteria such as interconnection topology of the architecture, labeling of the pro­
cessors etc. In this work, we chose hypercube labeling for neighborhood definition
since it is very simple. Processor k sends the local bounding boxes belonging to
other region to the processor whose processor id is k ib (2*'“ '*) at decomposi­
tion step i. After this exchange operation, each processor has bounding boxes
that project onto its new local image region and the decomposition operation is
repeated for new image region.

In order to decompose the new region, we need to update (X/YjPS^ and
(X/Y)PE/ arra.ys for each dimension of the new region. We update these arrays
incrementally using bounding boxes exchanged l)etween processors. Each pro­
cessor decremomts the appropriate positions in (X/Y')PS/ and (X/Y)PEi arrays
for bounding boxes sent to the other processor and increments the appropriate
locations in (X/Y)PS/ and (X/Y)PE/ arrays using received bounding boxes.

After log-iP steps, each processor is assigned a unique rectangular region of
the screen. A glol^al expand operation is performed on these rectangular region
information so that each processor receives the region information to be used in
redistribution step.

Oi'thogonal Recursive Bisection with Medians-of-Medians (ORBMM)

In this scheme, the screen is divided using orthogonal recursive bisection with
medians-of-medians (ORBMM) [41, 45]. Medians-ot-medians scheme is used to
decrease the load imbalance at each recursive decomposition step by relaxing the

division line.
We apply ORBMM on a Cartesian mesh (ORBMM-M) and a quadtree

(ORBMM-Q). Example decompositions of the screen by ORBMM-M and
ORBMM-Q algorithms using a 64x64 workload array on 16 processors are given

CHAPTER 5. IMAGE-SPACE DECOMPOSITION ALGORITHMS 45

in Fig. 5.9(a) and Fig. 5.9(b), respectively. Both algorithms are 2D decom­
position algorithms using 2D arrays with inverse area heuristic model. In the
cpiadtree based algorithm, we generate a quadtree from the mesh superimposed
on the screen. Each leaf node of the tree is referred to here as qmidnode. The
quadtree is generated in such a way that each quadnode has approximately the
same workload. The screen is decomposed at the quadnode boundaries.

In this work, we use two different approaches to generate the quadnodes. The
hrst one work in top-down while second work in bottom-up. The first scheme
uses a 2D segment tree [42] to generate the quadtree. The 2D segment tree data
structure has hierarchical and recursive structure. The root of the tree covers all
screen and at each level a node is divided into four quadrants forming its child
nodes. This division is repeated until the size of a leaf node is equal to one mesh
cell. In our work, segment tree is implemented as an array in which children of
any node are reached with 4 x nodeJndex -j- i for i = 1, ...,4, and nodeJndex of
the root is equal to 0. Each processor creates its own segment tree using local
primitives. .A. bounding box contributes to a tree node if and only if the box
overlaps with the node and no ¿incestor of the node is contained by the bounding
box. Our structure is an augmented data structure such that each non-leaf node
stores the contributions to itself and sum of its children. One bounding box can
be partitioned into at most 0{N) squares for an N x N mesh. In order to reduce
the errors due to counting primitives contributing to multiple nodes, we use a
similar method to lAH scheme. We add a value proportional to the ratio of the
overlapping area of bounding box on the node to the total area of the bounding
l)ox. After all bounding boxes in each processor are inserted into the segment
tree, local segment trees are merged to obtain the global segment tree in each
processor to generate the quadtree.

Quadtree has a similar structure to the segment tree. Each node is also divided
into four cpiadrants, but this time decomposition ends when workload of a node
drops under a specified threshold value. The aim of the quadtree is to divide
the space to rectangular subregions such that each subregion has approximately
the same amount of workload. Quadtree is generated by traversing the segment
tree recursively as follows. When a node in the segment tree has a value under
the specified threshold value or it is a leaf node in the segment tree, then it is

CHAPTER 5. IMAGE-SPACE DECOMPOSITION ALGORITHMS 46

added to quadnode list, otherwise it is decomposed into tour by traversing the
child nodes. When segment tree is traversed completely leaf quadnodes of the
quadtree are inserted into a linked list structure to be used in the decomposition.

The second scheme is a bottom-up approach since it uses a mesh and joins

the mesh cells to form the quadnodes. Mesh cells may be considered as leaf nodes
of the .segment tree. In this scheme, we do not explicitly create a segment tree.
Instead, we think of a virtual segment tree superimposed on the mesh. Each
processor tallies its local primitives and updates the corresponding mesh cells.
Mesh cells are updated using lAH scheme. After tallying operation, local meshes
are merged to obtain the global mesh. Then, the virtual segment tree is tra\'ersed
in a bottom-up fashion and the quadnodes are inserted into a linked list structure.
In this traversal, if the co.st of a node is under a specified threshold value, but.
one of the siblings exceeds the threshold value, we add this node to the quadnode

list. In addition, if four sibling nodes do not individually exceed the threshold
value, but their sum e.xceeds. we add four of them to the quadnode list.

The threshold value is selected empirically as a certain percentage of number
of primitives. Larger threshold values cause poor load balance, whereas smaller
values result in more irregular partitions and more expensive partitioning and

redistribution times.

In ORBMM-M, the mesh cells are inserted into linked list structure in a
similar way as for quadnodes. This scheme may also be thought as a special case
of quadtree scheme, where the threshold value is 0 and each leaf node is inserted
to linked list.

After qiiadnodes have been created, decomposition is performed using

ORBMM. ORBMM splits the space into two regions each of which has approx­

imately the same amount of workload. In ORBMM-Q algorithm, each region is
recursively divided in alternate dimensions. In ORBMM-M scheme, algorithm
recurses on ea.ch region by dividing the longer dimension of the region. The mid­
points of c[uadnodes are used to find the median-line. One problem with this
scheme is how to assign nodes which are intersected by the median-line. Taking

centers of nodes and assigning them according to their centers may cause load
imbalance. The medians-of-medians (MM) scheme [41, 45] is used to alleviate

CHAPTER 5. IMAGE-SPACE DECOMPOSITION ALGORITHMS 47

this problem. The idea in MM is once bisection has been determined, the bor­
der nodes that straddle the median-line are identified and repartitioned. In this
phase, we sort the border nodes along the bisection direction and assign nodes to
the one side until it has half of the total cost. Then, we assign remaining nodes
to the other side.

ORBMM algorithms may generate screen regions that are not rectangular.
However, generated regions are restricted to be composed of adjacent mesh cells.

5.2.2.4 Hilbert Curve Based Decomposition (HCD)

HCD scheme is a 2D decomposition algorithm using 2D arrays with inverse area
heuristic model. In this scheme, the 2D coarse mesh is traversed in a prede­
termined way. Then, the mesh cells are assigned to processors such that each
processor gets the cells that are consecutive in this traversal. .An e.xample de­
composition of the screen by HCD algorithm using a 64x64 workload array on
16 processors is given in Fig. 5.9(c).

The curves, which are used to traverse the 2D mesh, belong to the set of space
filling curves [35. 41]. .Among various space filling curves [35]. Hilbert curve is
widely used in many applications. An e.xample of traversing the 2D mesh with
Hilbert curve is illustrated in Fig. 5.5. The numbers on each cell represents the
order the mesh cells are traversed. The advantage of Hilbert curve over other
space filling curves is that large jumps in the 2D mesh do not occur. Therefore,
we may expect that the perimeter of the resulting regions will be less compared
to the regions obtained by using other curves.

Our approach to traverse the mesh is based on the work of Singh et al. [45]
(referred to as costzones scheme). This approach traverses the 2D segment tree
already superimposed on the space in their work. Here, we superimpose a virtual
2D .segment tree over the screen. The key idea of this approach is to traverse
the child nodes in a predetermined order such that the traversal of leaf nodes
forms space filling curve. As the child nodes of a node are the quadrants of a
region represented by that node, we have four possible starting point and two
possible directions (clockwise or counter-clockwise) for each starting point. An
appropriate choice of four out of the eight ordering is needed. The ordering of
the children of a cell C depends on the ordering of C ’s parent’s children and the

CHAPTER 5. IMAGE-SPACE DECOMPOSITION ALGORITHMS 48

5 6 9 10

4 1 8 11

3 1 13 12

0
1 14

15

Figure 5.5. Traversing of the 2D mesh with Hilbert curve and mapping of the
mesh cells locations into ID array indices.

position of C in this ordering (Fig. 5.6). In this approach the cells are cissigned to
the processors during this virtual 2D segment tree traversal. In HCD, resulting
regions may be non-rectangular. However, they still consist of adjacent cells on

the mesh.

5.2.2.5 Graph Partitioning Based Decomposition (GPD)

This scheme is a 2D decomposition algorithm using 2D arrays with inverse area
heuristic model. An example decomposition of the screen by GPD algorithm
using a 64x64 workload array on 16 processors is given in Fig. 5.9(d).

This algorithm models the image-space decomposition as a graph partitioning
problem [27]. Each cell in the mesh is assumed to be connected to its north,
south, west and east neighbors. The vertices of the graph are the mesh cells and
conceptual connections between mesh cells form the edges of the graph. The
weight of a cell represents the number of primitives intersecting this cell. The
weight of the edge between two cells represents the number of primitives crossing
the boundary between these two cells. The objective in graph partitioning is to
minimize the outsize among the parts while maintaining the balance among the
part sizes. Here, outsize refers to the weighted summation of cut edges which

connect more than one part. The size of a part refers to the weighted summation
of the vertices in that part. In our case, balanced partitioning corresponds to
maintaining computational load balance during rendering. Minimizing outsize

CHAPTER 5. IMAGE-SPACE DECOMPOSITION ALGORITHMS 49

(1)

Figure 5.6. Child Ordering of Costzones Scheme.

corresponds to minimizing the number of shared primitives. A state-of-the-art
graph partitioning tool, MeTiS [23], is used in this work.

In GPD scheme, each processor tallies local primitives and updates corre­
sponding cell and edge weights. Cell weights are updated using lAI-I scheme.
Edge weight update scheme will be described in the next paragraphs. Each local
graph is globally merged to obtain the global graph representing the distribution
of till primitives in the scene. The mesh representation of the graph is converted
into the representation used by MeTiS. In the original mesh representation, cell
and edge weights are real numbers. These values are converted into integers since
MeTiS operates on integer vertex and edge weights.

MeTiS uses multilevel partitioning approach consisting of three phases: coars­
ening, initial partitioning, and refinement. In the coarsening phase, the graph is
coarsened down level-by-level to decrease the number of vertices l)y combining
vertices to form new vertices. The coarsest graph is partitioned in the initial
partitioning phase and this partitioning is refined in the refinement phase.

In the coarsening phase, various matching schemes can be used in MeTiS to
combine appropriate vertices. Heavy edge matching scheme is used lor coarsening
in this work. In the heavy edge matching scheme, at each level of coarsening,
an unmatched vertex is combined with another unmatched neighbor vertex such
that the weight on the edge between two vertices is maximum. When two vertices
are matched and combined to form a new vertex, which is used in the next level

CHAPTER 5. IMAGE-SPACE DECOMPOSITION ALGORITHMS 50

of coarsening, the weight of the new vertex is the sum of the weights of the cells
forming this new vertex. The weight of the edge between two vertices on the
same level is ec[ual to the sum of weights of the edges between \’ertices forming
these two new vertices. Since edge weights are directly added, the weight of the
edge between two mesh cells should be updated appropriately during the tallying
phase to reflect the number of shared primitives between vertices in the coarse
graph. In order to decrease errors caused by primitives shared between more than
two cells, we adopt the following scheme to update edge weights. First, we classify
shared primitives into three categories: vertical primitives, horizontal primitives,
and general primitives. Vertical primitives are the ones that intersect only the
cells in a single column. Similarly, horizontal primitives intersect only the cells
in a single row. General primitives intersect cells in different rows and columns.
The weight of the edge between two cells is incremented by a value proportional
to the number of vertical or horizontcil primitives intersecting those two cells. On
the other hand, the weight of the edge between two cells is incremented l)v a
value inversely proportional to the number cells a primitive intersects for general
primitives. In this way, we try to minimize the errors incurred on the edge weight
between two vertices formed by cells in neighboring rows or columns.

The graph partitioning approach decomposes the screen in the most general
way. Unlike previous partitioning algorithms, noncontiguous sets of cells may be
assigned to a processor. In addition, generated regions may be non-rectangular

CHAPTER 5. IMAGE-SPACE DECOMPOSITION ALGORITHMS 51

(a) (b)

I ·I ·i:s :8 8 8 :::::s 8 » s :u ::s ::
I ·------- -—I · · · · · · · · · · · · · · · · ·

I · · · · · · · · · · · · · · · · ·___________ _________
i ? i5 5 5 5 ! 5 ! ! ! ! 5 ? ? i5 ^ 8 : : B 8 8 8 S 8 8 a 8 l____________-----------------------a::»»» aaa

(c) (cl)
Figure 5.7. (a) Liquid oxygen post image, (b) delta wing image, (c) blunt fin
image, and (d) 64x64 coarse mesh superimposed on the screen.

CHAPTER 5. IMAGE-SPACE DECOMPOSITION ALGORITHMS 52

>" T'< 'o-1-'5 v»C2·<̂'·=?KsV■=' —

(a) (b)

V'W ^ "

-'■>' ! V ', ' '' V ̂ '''">' ■ ' ■
MEsIf V'v’ < sV> 'Ns

(c) (cl)

Figure 5.8. Decomposition Algorithms: (a) HHD and OHD algorithms (b) RD
algorithm (c) H.JD, O.JD-I and O.JD-E algorithms (cl) MAHD and ORB-lD al­
gorithms.

CHAPTER. 5. IMAGE-SPACE DECOMPOSITION ALGORITHMS 53

(a) (b)

(c) (̂ 1)

Figure 5.9. Decomposition Algorithms: (a) ORBMM-M algorithm (b)
ORBMM-Q algorithm (c) BCD algorithm (d) GPD algorithm.

6. PR IM ITIV E R E D IST R IB U T IO N

ALGORITHM S

After decomposition of the screen, each processor needs the primitives overlap­
ping the region it is assigned in order to perform the local rendering calculations.
Thus, local primitives in each processors should be redistributed according to the
region-to-processor assignment. Assignment of regions to processors constitute
the one-to-one mapping problem. In this work, assignment of regions to proces­
sors is done using simple schemes. In orthogonal recursive bisection algorithms
(MAHD, ORB-lD, ORBMM-M, ORBMM-Q) and HHD algorithm, when a region
is decomposed into two regions, lower half of the processors in processor num­
bering are assigned bottom/left region, whereas processors in the upper half are
assigned top/right region. In OHD, O.JD-E, O.JD-I, and RD algorithms, regions
are assigned to processors in row-major or column-major ordering (Fig. 6.2). In
HCD algorithm, region-to-processor assignment is done using the traversal of the
mesh. The ¿th region in the traversal is assigned to ith processor of the machine.
In GPD algorithm, we use the partitioning vector returned from MeTiS. A re­
gion in part i is assigned to processor i. More complicated and better one-to-one
mapping algorithms can be found in [5].

Each processor classifies the local primitives according to the regions they
overlap. According to the classification, each primitive is stored in the respective
send buffer of that region. If a primitive overlaps multiple regions, the primitive
is stored in the send buffers of those regions. These buffers are exchanged to com­
plete redistribution of the primitives. In this work, we propose several algorithms

for classifying primitives in the redistribution step.

54

CHAPTER 6. PRIMITIVE REDISTRIBUTION ALGORITHMS 55

for each bounding box (bbox) k do
for each processor p do

if {bbox[k] intersects with region[l])
Store the primitive k into the send buffer of processor /

endfor
endfor

Figure 6.1. The algorithm to classify the primitives at redistribution step of
HHD, OHD, H.JD, O.JD, RD, ORB-ID, and MAHD algorithms.

6.1 R ectangle Intersection Based A lgorithm

The decomposition schemes HHD, OHD, H.JD, O.JD, RD. ORB-ID, and MAHD
divide the screen into rectangular regions. The algorithm to classify the local
primitives in these schemes is given in Fig. 6.1. Since the regions are rectangular,
the bounding box structure is used to represent regions for each processor. The
variable region[l] denotes the region assigned to processor /.

In this scheme, each local bounding box is tested for intersection with each
of the regions. If a bounding box intersects a region, corresponding primitive is
inserted into the send buffer of processor /.

6.2 Inverse M apping Based A lgorithm s

VVe propose more efficient algorithms for horizontal, rectilinear, and jagged de­
compositions. The proposed algorithms exploit the regularity of decomposition
in horizontal, rectilinear and jagged decompositions. All of these decomposition

schemes have a common characteristic: the screen is divided in one of the main
axes either in y-dimension or in x-dimension. Division on the main axis cre­
ates horizontal or vertical strips. VVe can consider the horizontal strips cis rows
and vertical strips as columns. These rows or columns are then divided in the

alternate axis. Thus, it is possible to give numbers to the resulting regions in
row-major (if the screen is first divided in y-dimension) or column-major (if the
screen is first divided in x-dimension) order. The rectangular region, whose one
of the corner points is (1,1) (i.e., lower left corner of the screen), is numbered

CHAPTER 6. PRIMITIVE REDISTRIBUTION ALGORITHMS 56

(U)

(a)

13 14 15 16

9 10 11 12

5 6 7 8

I 2 3 4

(M)

(b)

Figure 6.2. Row-major order numbering of regions in (a) horizontal decomposi­
tion (b) jagged decomposition for 16 processors.

as 1. Then, numbering of the regions continues in row-major or column-major
order. An example numbering of regions is given for a horizontal and a jagged
decomposition in Fig. 6.2.

After the screen is divided, we create an array, called region-processor assign­
ment {RPA) arrays, of size P. This array stores the assignment of regions to
processors. If a rectangular region i is assigned to processor /, number / is stored
into the index i of RPA.

In ID decomposition schemes, we use an array, called inverse mapping {IM)
array, of size N, where N is the resolution of screen in y-dimension. This array
represents the assignment of scanlines to processors. That is, if a horizontal strip
is assigned a number k in row-major ordering, then indices of I M corresponding
to the scanlines in that region are filled with the number k. After I M is filled
in this way, primitives are classified with the algorithm given in Fig. 6.3. This
algorithm first finds the regions n and m, which include the scanlines correspond­
ing to the end points ymin and ymax of the bounding box, respectively. Then,
because of the regularity of horizontal decomposition and row-major ordering, it
is enough to insert the primitive associated with the bounding box into the send
buffer of processors, which are assigned regions from n to m, including n and m.
The classification algorithm given in Fig. 6.3 is expected to be faster than the
scheme in Fig. 6.1, because only simple array lookups are necessary to classify

CHAPTER 6. PRIMITIVE REDISTRIBUTION ALGORITHMS 57

for each bounding box (bbox) k do
ymin — bbox[k].ymin
ymax = bbox[k].ymax
for j = IM[ymin] to IM[ymax] do

Store the primitive k into the send buffer of processor RPA[j]
endfor

endfor

Figure 6.3. Classification of primitives in horizontal decomposition scheme using
inverse mapping array.

the primitives. If a primitive intersects only one region, only two array lookups
are enough to classify the primitive independent of the number of processors.

For rectilinear decomposition scheme, two I M arrays are necessary, one for
horizontal strips and one for the vertical strips. The jagged decomposition re­
quires [p + 1) I M arrays if there are p horizontal strips (assuming that screen
is first divided in y-dimension, similar is true if screen is first divided in .x-
dirnension). One array (/M°) is needed for p horizontal strips and p arrays
{ I M \ j — l,...,p) are needed for the partitions in each strip. First, each hor­
izontal strip is given a number in row-major ordering and 7A/° is filled with
numbers to refiect this row-major ordering of strips. The strip, whose lower left
corner is (1,1) is given the number 1. Then, the array /iVP for the horizontal strip
j is filled with the numbers of the rectangular regions in that strip using the num­
bering of the regions in row-major ordering in the jagged partition (Fig. 6.2(b)).
The algorithm to classify the primitives in jagged partition is given in Fig. 6.4.

6.3 2D M esh Based A lgorithm

Resulting regions in HCD, ORBMM-Q, ORBMM-M, and GPD algorithms may
be non-rectangular regions. Furthermore, regions may consist of disconnected
mesh cells in GPD algorithm. Therefore, the intersection test of the bounding
box with the screen regions to classify the primitives will be more complicated
for these algorithms. Instead, a different classification scheme is used in these
decomposition algorithms. After the decomposition of the screen, each mesh cell

CHAPTER 6. PRIMITIVE REDISTRIB UTION ALGORITHMS 58

for each bounding box [bbox) k do
ymin = bbox[k].ymin
ymax — bbox[k].ymax
xmin = bbox[k].xmin
xmax = bbox[k].xmax
for i = nVP[y min] to IM^lymax] do

for j = IM'[xmin] to IM^lxmax] do
Store the primitive k into the send buffer of processor RPA[j]

Figure 6.4. Classification of primitives in jagged decomposition using inverse
mapping arrays.

for each bounding box [bbox] k do
for each mesh cell c the bbox[k] covers do

/ = mark of the cell c
if {stoved[l\ < k) then

stored[l\ = k
Store the primitive k into the send buffer of processor /

eiidfor
endfor

Figure 6.5. The algorithm to classify primitives in HGD, ORBMM-Q,
ORBMM-M, and GPD algorithms.

is marked with the processor number whose screen region covers this particular
cell. Note that each cell will be marked with a unique processor number. At the
redistribution step, primitives are tallied to mesh cells as in the decomposition
step. During tallying of a primitive, the primitive is stored into the respective send
buffers according to the marks of the cells the primitive covers. The algorithm to
classify the primitives is given in Fig. 6.5. The stored array (of size P) is used in
the algorithm to prevent storing a primitive into the same send buffer multiple
times. Initially, each entry of the array is set to —1.

7. EXPERIM ENTAL RESULTS

The algorithms presented in this thesis are implemented on a Parsytec’s CC-24
system, installed in our department. Embedded Parix (EPX) [40] and PVM 3.3 [15,
16] libraries were used for message passing. Embedded Parix is the native mes­
sage passing library of Parsytec. For the sake of portability, we implement the
algorithms using PVM, but e.xperimental results show that the programs with
PVM run 10 to 25 percent slower than the EPX version. The experimental re­
sults presented in this paper are the results of the EPX version. The algorithms
are implemented using the C language.

Experiments are done using three data sets called blunt fin. delta wing and
liquid oxygen post data set. These data sets are used by many researchers in
the volume rendering field. They are structured curvilinear data sets. These
data sets are converted first into tetrahedrals [14, 44], by dividing each cell into
five tetrahedrals, then into a set of distinct triangles. Each triangle in the data
set represents a face of a tetrahedral. The blunt fin contains 381548 triangles,
delta wing contains 2032084 triangles and liquid oxygen post contains 1040588
triangles after conversion. All results presented in this section are the averages
of results for three data sets obtained for six diiferent viewing locations for each
data set for the screen resolution of 512 x 512.

In the first part, we use the number of primitives in each processor to measure
percent load imbalance and to measure percent increase in the total number of

primitives after decomposition. The percent load imbalance values are calculated
as 100* (Max — Average)/Average. Here, Max is the maximum of the number of
primitives in each processor after decomposition. Average is the average number
of primitives and is calculated by dividing the number of primitives in the scene
before redistribution by the number of processors. The execution times of the

59

CHAPTER 7. EXPERIMENTAL RESULTS 60

GPD : Graph Partitioning Based Decomposition
HCD : Hilbert Curve based Decomposition
HHD : Heuristic Horizontal Decomposition
OHD : Optimal Horizontal Decomposition
RD : Rectilinear Decomposition
HJD : Heuristic Jagged Decomposition
OJD-I : Optimal Jagged Decomposition using Inverse area heuristic for workload array,
OJD-E : Optimal Jagged Decomposition using Exact model for workload array,
MAHD : Mesh based Adaptive Hierarchical Decomposition,
ORB-ID : Orthogonal Recursive Bisection with ID arrays
ORBMM-Q : Orthogonal Recursive Bisection with Medians of Medians on Quadtree
ORBMM-M : Orthogonal Recursive Bisection with Medians of Medians on Cartesian Mesh

Figure 7.1. The abbreviations used for the decomposition algorithms.

algorithms are also a comparison metric. The execution time of each algorithm
is the sum of the time for pre-transformation step, execution time of the divi­
sion and redistribution time. The execution times are given for 2, 4, 8 and 16
processors. We also take 32, 64 and 128 processor results for percent load imbal­
ance and percent increase metrics. The abbreviations used for the decomposition
algorithms are displayed in Figure 7.1.

In ORBMM-Q, threshold value is taken as 1/20000 of total number of prim­
itives. In the GPD scheme, heavy edge matching is used as the matching algo­
rithm, the number of vertices the graph should be coarsened down in the coars­
ening phase is taken as 100; Boundary Kernighan-Lin scheme is selected as the
refinement algorithm. These algorithms and values were chosen based on the
observations in [23] and our tests.

As explained, jagged decomposition algorithms, H.JD. O.JD-I, OJD-E, and
RD are found to yield better results if p and q are chosen such that the resulting
proce.ssor mesh is as close to square as possible. In the OJD-E scheme, we perform
the decomposition twice for each main axis of division, when p = q = \ /P ■
li p ^ q, we perform two more decompositions by interchanging the p and q
values for each main axis of division. Hence, our OJD-E scheme performs 2 or
4 decompositions and chooses the one giving the best load balance. In a similar
way, for the RD scheme, we perform two decompositions to choose the values for

p and q when p ^ q.

CHAPTER 7. EXPERIMENTAL RESULTS 61

The algorithms HHD, OHD, HJD and ORB-ID use ID arrays for decompo­
sition. In these algorithms, we use the highest screen resolution. The decompo­
sition algorithms MAHD, HCD, ORBMM, OJD, RD and GPD use 2D cirrays as
a 2D mesh superimposed on the screen for decomposition. The mesh resolution
affects the performance of these algorithms. The experimental results for these
algorithms are taken for coarse mesh resolutions of 32x32, 64x64, 128x128,
256x256, and 512x512.

Figure 7.2 represents the load balancing performance of the algorithms with
varying the mesh resolution on 16 processors. As the schemes H.JD, HHD, OHD
cincl ORB-ID perform decomposition at only the highest resolution, we give their
results only for mesh resolution of 512x512. As seen from Figure 7.2, O.JD-E,
OJD-I, RD and MAHD achieve the best load balancing performance at the maxi­
mum coarse mesh resolution (of 512x512). This is an expected result for O.JD-E,
since it finds an global optimum for jagged decomposition and increasing the
mesh resolution increases the search space. For the algorithms that use inverse
area heuristic, increasing the mesh resolution also increases the search space.
However, in these algorithms, primitives that overlap multiple cells incur errors.
Increasing the mesh resolution is likely to increase such errors due to inverse area
heuristic. Thus, beyond some mesh resolution, these errors may consume the gciin
due to increasing the search space. VVe observe that ORBMM-Q, ORBMM-M,
GPD and HCD sometime achieve their best performances at mesh resolutions less
than 512x512, whereas OJD-I and MAHD achieve their best results always at
512 X 512. Based on these observations, we hypothesize that errors due to inverse
area heuristic have more affect on the algorithms that generate non-rectangular
regions. The ORBMM-Q scheme always gives the best result at a mesh resolu­
tion of 256x256. For the GPD scheme the best mesh resolution increases as the
processor number increases. For P = 2, 4, 8 it gives the best result at mesh
resolution of 128x128, for P=16 and 32 it gives the best result at mesh reso­
lution of 256 X 256 and finally when P is equal to 64 or 128 it gives best load
balance at the highest resolution of 512x512. For HCD, it achieves its best at
128x128 when P = 16, 32, at 256x256 when P = 4 and 8, and at 512x512 when
P = 2, 64, 128. The ORBMM-M scheme achieves its best at mesh resolution of
256x256 when P is 32 and 64, and at 512x512 for the others.

CHAPTER 7. EXPERIMENTAL RESULTS 62

Figure 7.3 and Table 7.1 illustrate the percent load imbalance behavior of
algorithms as the number of processors varies. The load imbalance increases
with increasing number of processors. This is expected since we divide the same
area among more processors (or smaller area for each new division) and the
division is performed at discrete space. Among the algorithms, O.JD-E gives the
best result. The performances of ORB-ID and HJD are comparable with that
of O.JD-E. The common characteristics of these three algorithms are that they
perform the division in two dimension with a straight line and use the exact
number of primitives in a region for decomposition. The ORB-ID divides the
screen recursively. It is likely that the load imbalance at a division step propagates
and increases at further steps. On the other hand, OJD-E finds global optimum
for jagged partition for a given processor number. Therefore, the difference in the
load balance performance between these two algorithms increases with increasing
number of processors. The performances of HHD and OHD are very bad. This is
due to the fact that they try to divide only one dimension and the search space
of the algorithms is very restricted. As the number of processors increases, they
become worse, due to the poor scalability of ID decomposition. Among these
two, OHD overperforms the HHD as expected, since it finds the global optimum
solution. Although RD uses exact number of primitives for decomposition, it
does not give good load imbalance performance. This is due to the fact that the
iterative algorithm generally converges to a local optimum before reaching the
global optimum solution. The resulting partition generally is not good. Nicol [37]
states that starting with many randomly chosen initial partitions and then taking
the one giving the best result increases the performance of RD. Performing many
initial decompositions increases the possibility to reach a global opcimal solution.
The algorithms which utilize the inverse area heuristic are in the middle for
load imbalance performance. For smaller P values, both ORBMM schemes are
better. Among two ORBMM schemes, ORBMM-M is better than ORBMM-Q
when P = 4. But as the number of processors increases, the quadtree based
approach becomes better. This is because of the fact that the errors incurred
due to inverse area heuristic is less with larger quadnodes. As the number of
processors increases, the performance of GPD becomes the best among the ones
utilizing the inverse area heuristic. The GPD scheme divides the screen in a

CHAPTER 7. EXPERIMENTAL RESULTS 63

more general way and the error propagation at successive steps does not exist
for this scheme. The experimental results show that HCD scheme is not suitable
for screen decomposition, as the resulting load imbalance is higher than other
algorithms. Except for the HCD, our schemes using inverse area heuristic achieve
better load balance than MAHD. Although the ORBMM schemes divides the
screen in a similar way to MAHD, the medians-of-medians heuristic decreases
the load imbalance at each decomposition step for ORBMM schemes. Hence, the
error propagation of ORBMM schemes is less than that of MAHD.

Figure 7.4 illustrates the percent increase in the total number of primitives
after redistribution with varying the mesh resolution at P=16. For HCD, as
the mesh resolution increases, the number of shared primitives increases. This is
expected, as the mesh resolution increases, the total perimeter of the resulting
regions generally increases. For the other schemes, we do not obser\’e any regular­
ity between load balance and mesh I'esolution change. We hypothesize that this
can be attributed to the fact that our main concern was the load balance. We
try to reduce the cost of the maximally loaded processor while trying to reduce
the shared primitives implicitly.

Figure 7.5 and Table 7.1 show the percent increase in the number of prim­
itives after redistribution as the number of processors varies. The percent in­
crease in number of primitives also represents the number of shared primitives.
The number of shared primitives increase with increasing number of processors
as expected. The values presented here are for the mesh resolution, at which
the respective algorithm achieves its best load balance. The perimeter of the
resulting partitions affects the percent increase in the number of primitives. The
resulting perimeter of ID partitions, HHD and OHD, are large by their nature.
So, the percent increase is higher. Similarly, the resulting perimeter of HCD
partitions are also high, resulting in more shared primitives. Among the algo­
rithms, only the GPD scheme explicitly tries to decrease the number of shared
primitives. Note that graph decomposition aims to reduce the edge cut (which
represents the shared primitives) while maintaining the balance among the parts.
The algorithms OJD-I, OJD-E, ORBMM-M, ORBMM-Q, MAHD, HJD and RD
implicitly try to reduce the number of shared primitives by reducing the total

CHAPTER 7. EXPERIMENTAL RESULTS 64

perimeter of the resulting partition. ORBMM-Q reduces the perimeter by al­
ternating the division axis for decomposition. MAHD and ORBMM-M perform
the bisection each time along a longer dimension. O.JD-I, O.JD-E, HJD and RD
select the processor mesh as close as to square, so that the total perimeter of
the partition is smaller. Among these algorithms ORB-ID gives the best per­
formance. The performance of RD is comparable to that of ORB-ID. Although
the load imbalance is high with RD, the number of shared primitives is low.
VVe hypothesize that the regular division with RD has effect on this result. The
regions generated with RD has at most four neighbors. However, in the other
schemes the number of neighbors may be higher. More neighbors increase the
possibility that a primitive crosses multiple region. The performance of GPD is
best among the inverse area heuristic based schemes as it reduces the number of
shcired primitives explicitly.

The execution times of algorithms with varying mesh resolution are given
in Fig. 7.6. The e.xecution times increase with increasing mesh resolution as
expected. We observe that the biggest time change in execution time is seen
between mesh resolutions of 256x256 and 512x512. The screen space bounding
boxes of the primitives in our data sets are small. Most of them overlap few mesh
cells, generally one or two cells, for small mesh resolutions. However, at the high­
est mesh resolution of 512x512, most of the primitives overlap multiple cells. We
observe that the algorithms that use mesh structure for redistribution, are more
sensitive to mesh resolution change. This is because of the fact that classifying
primitives in that way is similar to tallying primitives for decomposition.

Figure 7.7 presents the execution times of the algorithms with varying the
number of processors. In this figure, the execution times of GPD,
ORBMM-Q and HCD are given at mesh resolution of 256x256 and others at
512x512. We choose the mesh resolution where an algorithm generally gives the
best load balance. The execution of each algorithm decreases as the number of
processors increases. However, we observe a saturation in the speedup after 8

processors.
Table 7.2 illustrates the dissection of the execution times of the algorithms

for the processor numbers 2, 4, 8 and 16. The bounding box creation time is the

CHAPTER 7. EXPERIMENTAL RESULTS 65

same for all decomposition algorithms on the same number of processors. It is in­
versely proportional to the number of processors as the primitives are distributed
evenly among the processors before the division step. The decomposition and
redistribution times of the algorithms are for the mesh resolution of 512x512.
The decomposition time of the algorithms can also be further divided into four
parts as memory allocation, filling the workload arrays, performing a global sum
over this workload array, and decomposition operation. Table 7.3 illustrates the
dissection of the execution times of the algorithms ORBMM-M and O.JD-E with
varying the mesh resolution and the number of processors for single viewing loca­
tion of delta wing data. The memory allocation part is dependent on the size of
the workload array used in decomposition and it is independent of the number of
processors. HHD and OHD fill two ID arrays and perform global sum on these
arrays. ORB-lD fills four ID arrays and performs global sum. HJD fills p-|-l such
arrays and performs global sum. The algorithms GPD, ORBMM-M, ORBMM-Q,
HCD, OJD-I and M.A.HD (which use inverse area heuristic) tally the primitives
into me,sh of given resolution and then perform the global sum operation over
this 2D array. The algorithms O.JD-E and RD (which utilize the exact model)
need to fill the four 2D array and perform global sum operation over these arrays.
Eilling the workload array(s) depends on the number of primitives that remains
after pre-transformation. Although the primitives are distributed evenly among
the processors, there may be load imbalance after pre-transformation since some
of the primitives are eliminated. These primitives are the ones that no rays shot
for the intersection. The eliminated primitives at pre-transformation depends on
the viewing parameters. However, for the algorithms that use 2D mesh structure,
increasing the mesh resolution increases the tallying time as expected. Among
these algorithms, algorithms utilizing inverse area heuristic spend more time to
fill workload array(s). This is because of the fact that time to tally a primitive is
proportional to the number of cells the primitive overlaps. We observe that the
tallying time (filling workload arrays) is dominant in the overall execution time for
GPD, ORBMM-M, ORBMM-Q, OJD-I, MAHD and HCD. Tallying time takes
less time for the algorithms using exact model. Although these algorithms use
four 2D arrays, the time to tally the primitives is not proportional to the area of
the primitive. In these algorithms, filling STARTXY and ENDXY only requires

CHAPTER 7. EXPERIMENTAL RESULTS 6 6

updates to the single mesh cells. For ENDX and ENDY the mesh tallying time
depends on the height and the width of the bounding box. Concurrent communi­
cation volume overhead due to the global sum operation is directly proportional
to the mesh resolution used. It increases with increasing number of processors
with a factor of (P — 1)/P [28]. The communication time becomes dominant in
division time with increasing number of processors. The global sum operation
takes more time in the algorithms that use exact model, as they have to perform
global sum operation on four workload arrays. We observe that the global sum
operation is dominant for OJD-E and RD. The time for the decomposition op­
eration increases with increasing number of processors as expected, since more
divisions are performed with increasing number of processors. It also increases
with increasing mesh resolution since it increases the search space. Among the
decomposition algorithms, GPD scheme also has an extra overhead of converting
the mesh representation into graph representation of the graph partitioning tool
MeTiS.

The execution time of the redistribution step decreases with increasing num­
ber of processors (Table 7.4(a)). This is expected since less number of primitives
are classified at each processors. This decrease is less for the algorithms ¡VIAHD,
ORB-ID, HHD and HJD, which use intersection test between rectangular screen
region and bounding boxes. This is due to the fact that as the number of proces­
sors increases, the number of intersection tests for a primitive increases propor­
tionally. The redistribution times for algorithms, ORBMM-M, ORBMM-Q, GPD
and HCD, which use mesh based classification, increases with increasing mesh
resolution. The other algorithms are not affected from mesh resolution change
(Table 7.4(b)).

Figures 7.8-7.10 illustrate average speedup values of the parallel rendering
algorithm on Parsytec CC system. Figure 7.8 illustrates speedup for parallel ren­
dering phase when only the number of triangles is used to approximate workload
in a region. In this case, maximum speedup obtained is 5.93 on 16 processors.
Figure 7.9 illustrates speedup for the rendering phase when spans and pixels are
incorporated into the workload metric. In this case, speedup increases to 11.87
on 16 processors, which is more than double the speedup when only the num­
ber of triangles is considered. Figure 7.10 illustrates the speedup values when

CHAPTER 7. EXPERIMENTAL RESULTS 67

execution times of decomposition and redistribution algorithms are included in
the running times. Comparison of Figures 7.9 and 7.10 shows that the proposed
decomposition and redistribution algorithms do not introduce substantial perfor­
mance degradation in the overall parallel algorithm. For example, the maximum
speedup on 16 processors slightly reduces from 11.87 to 10.69.

As seen in Figures 7.10, best speedup values are achieved by the ID hori­
zontal decomposition (HD) algorithms. This is an unexpected result since HD
algorithm is the most restricted algorithm in terms of search space among other
algorithms. However, this algorithm has an advantage over the other algorithms
for the volume rendering algorithm chosen in this work. It only disturbs inter­
scanline coherency. It does not disturb intra-scanline coherency since screen is not
divided vertically. Hence, HD incurs overheads due to inter-scanline coherency in
step 4 of the parallel algorithm. However, 2D decomposition algorithms disturb
both type of coherence, thus incurring more overhead in step 4 of the parallel
algorithm. In addition, bounding box approximation used for spans and pixels is
likely to introduce more errors when screen is divided horizontally and vertically
than it is divided only horizontally. For example, the number of spans in a region
can be calculated more precisely when only horizontal division lines are allowed.
However, when vertical divisions are also allowed, bounding box apiDroximation
for the number of spans in a region introduces errors. In spite of these findings,
2D decomposition algorithms are expected to yield better parallel performance
for larger number of processors due to their better scalability.

The speedup values are not very close to linear. One of the reasons for this
deviation from linear speedup is the bounding box approximation for triangles.
The number of spans and pixels generated due to a triangle are calculated erro­
neously. Thus, the workload in a region calculated using bounding boxes does not
truly reflect the actual workload. The second reason is that determining relative
workloads of a triangle, a span and a pixel (i.e., constants a, b, and c in Eq. (1)) is
not easy. These values should be determined experimentally and the operations
involving triangles, spans and pixels are not separated by solid boundaries. It is
difficult to separate operations exactly related to a triangle, a span, and a pixel

in the implementation.

CHAPTER 7. EXPERIMENTAL RESULTS 6 8

■ OJD-I □ OJD-E [3 ORB-ID ■ GPD □ ORBMM-Q □ ORBMM-M

M MAHD H HCD ^ RD W HJD M OHD M HHD

32 64 128

Mesh Size
256 512

Figure 7.2. Effect of mesh resolution on the load balancing performance.

Table 7.1. Percent load imbalance (L) and percent increase (I) in the number of
primitives for different number of processors.

P 2 4 8 16 32 64 128
L I L I L I L I L I L I L I

Algorithm % % % % % % % % % % % % % %
O J D -I 2 .8 1.8 6 .3 3 .9 14 .0 7 .4 25 13 47 20 78 31 153 48
O J D -E 2 .0 1.2 5 .2 3 .6 9 .5 6 .7 17 12 26 18 42 29 66 4 5 6
O R B -I D 2.0 1.2 5 .0 3 .4 10.1 6 .4 18 11 31 17 53 26 102 40
GPD 2.5 1.5 6 .8 3 .9 14 .0 7.1 26 12 40 19 71 29 119 45
O R B M M -Q 1.9 1.8 5 .3 4 .2 13 .2 8 .5 23 13 44 22 74 33 138 53
O R B M M -M 2.2 2.1 4 .8 3 .8 14 .0 8 .3 26 14 48 23 88 35 149 54
MAHD 3 .4 2.1 6 .4 4 .0 1 4 .7 8 .4 27 14 52 22 92 34 155 52
HCD 5.1 4 .8 11 .3 8 .8 2 1 .7 13.9 38 21 64 31 114 48 2 0 7 70
R D 2.4 1.5 10 .3 3 .6 2 1 .8 6 .8 45 11 66 18 108 26 149 41
HJD 3 .2 2 .0 5 .8 3 .6 12 .9 8 .0 20 12 36 19 61 28 125 44
OHD 3 .2 2 .0 9 .1 6 .2 20.1 13 .9 43 30 94 59 216 104 5 1 6 120
HHD 3 .2 2 .0 9 .6 6 .1 22 .5 13 .8 52 30 108 60 288 122 67 5 245

CHAPTER 7. EXPERIMENTAL RESULTS 69

■ O JD -I □ O JD -E □ O R B -ID ■ GPD □ ORBMM-Q □ ORBMM-M B MAHD m i H C D

^ RD ^ HID ^ O H D ■ H H D

Number of Processors

Number of Processors

Figure 7.3. Load balance performance of algorithms on different number of pro­
cessors.

CHAPTER 7. EXPERIMENTAL RESULTS 70

■ OJD-I □ OJD-E H ORB-ID ■ GPD 03 ORBMM-Q \E ORBMM-M

^ MAHD H HCD ^ RD M HJD M OHD M HPID

30 T

32 64 128

Mesh Size
256 512

Figure 7.4. Percent increase in the number of primitives after redistribution for
different mesh resolutions on 16 processors.

Table 7.2. Dissection of execution times (in seconds) of the decomposition al­
gorithms for different number of processors. Here, BB denotes bounding box
creation time, D denotes decomposition time, and R denotes redistribution time.

P 2 4 8 16

A lg o r ith m
B B D R B B D R B B D R B B D R

O J D -I 1 .7 9 0 .8 8 1.34 0 .6 1.11 0 .4 8 0 .9 7 0 .4 0
O J D -E 1.81 0 .8 8 1 .7 7 0 .6 3 1.8 0 .4 7 1.84 0 .3 9
O R B -I D 0 .4 7 0 .8 8 0 .4 9 0.71 0 .4 2 0 .5 8 0 .3 9 0 .51
G P D 7 .5 0 4 .7 3 5 .5 3 2 .09 5 .0 6 1 .57 4 .7 5 1 .20
O R B M M -Q

2 .1 8
2 .0 6 3 .0 4 1 .63 2 .15 1.43 1 .63 1 .28 1 .25

O R B M M -M 1.74 2 .9 3 1 .19 1.41 2 .03 0 .6 5 1.23 1 .50 0 .3 4 1 .13 1 .1 4
M A H D 1.52 0 .8 8 1 .15 0 .71 0 .9 5 0 .6 0 0 .8 0 0 .5 2
HCD 2 .0 6 2 .9 6 1 .60 2 .05 1.39 1.53 1.22 1 .18
R D 1.56 0 .8 8 1 .59 0 .6 4 1.59 0 .4 8 1 .56 0 .4 0

T Ü D 0 .1 8 0 .9 3 0 .1 4 0.71 0 .1 5 0 .6 0 0 .1 7 0 .5 3
“ OHD 0 .0 5 0 .8 8 0 .0 5 0 .65 0 .05 0 .4 9 0 .0 8 0 .4 3

H H D 0 .0 5 0 .9 3 0 .0 5 0 .7 4 0 .0 6 0 .6 3 0 .0 8 0 .5 9

CHAPTER 7. EXPERIMENTAL RESULTS 71

■ OJD-I □ OJD-E Q ORB-ID ■ GPD □ ORBMM-Q □ ORBMM-M M MAHD

DD HCD ^ RD M HJD ^ OHD ■ HMD

16

Number of Processors

Number Of Processors

Figure 7.5. Percent increase in the number of primitives after redistribution for
different number of processors. Each value in the graph represents the percent
increase for the mesh resolution the algorithm achieves its best load balance.

CHAPTER 7. EXPERIMENTAL RESULTS 72

■ OJD-I □ OJD-E Q1 ORB-ID ■ GPD □ ORBMM-Q IE ORBMM-M

M MAHD H HCD P RD ^ HID M OHD M HHD

3 T

2.5 -

OD
w

E
1.5

0.5

0 -i
32 64 128

Mesh Size
256 512

Figure 7.6. Execution times of the decomposition algorithms varying the mesh
resolution on 16 processors.

Table 7.3. Dissection of decomposition times (in milliseconds) of the decomposi­
tion algorithms ORBMM-Q and OJD-E varying the mesh resolution and number
of processors. Here A denotes allocation time, F denotes workload array fill time,
G denotes global sum time, and D denotes decomposition operation time.

P 4 8 16
A lg o r ith m M esh A F G A F G D A F G D

128 3 163 26 6 5 92 48 10 7 51 90 10
O R B M M -M 256 12 320 57 27 12 183 82 37 20 107 127 52

512 53 1113 210 147 52 675 245 194 57 425 27 8 3 4 0
128 15 85 85 10 20 45 142 42 22 30 242 52

O J P -E 256 52 173 242 18 57 85 3 2 7 92 52 52 412 107
512 198 445 961 35 202 27 0 1062 160 207 170 1125 21 0

CHAPTER 7. EXPERIMENTAL RESULTS 73

■ OJD-I □ OJD-E [1 ORB-ID ■ GPD □ ORBMM-Q EO ORBMM-M

M MAHD H HCD ^ RD W HJD H OHD H HHD

4 8

Number Of Processors
16

Figure 7.7. Execution times of the decomposition algorithms on different number
of processors. The execution times of GPD, ORBMM-Q and HCD are measured
at mesh resolution of 256x256, others at 512x512.

Table 7.4. Redistribution times of different approaches varying the mesh resolu­
tion when P = 16 and varying the number of processors when mesh resolution is
512x512.

Algorithm
Mesh Resolution

64 128 256 512
Inverse Mapping 0.40 0.40 0.40 0.39
Rectangle Intersect. 0.53 0.53 0.53 0.52
Mesh Based 0.47 0.50 0.61 1.14

Number of Processors
2 4 8 16

Inverse Mapping 0.88 0.63 0.47 0.39
Rectangle Intersect. 0.88 0.71 0.60 0.52
Mesh Based 2.93 2.03 1.50 1.14

CHAPTER 7. EXPERIMENTAL RESULTS 74

■ OJD-I □ OJD-E 11 ORB-ID ■ GPD □ ORBMM-Q El ORBMM-M

^ MAHD H HCD ^ RD W HJD M OHD M HHD

4 8

number of processors

16

Figure 7.8. Speedup for parallel rendering phase when only the number of trian­
gles is used to approximate the workload in a region

CHAPTER 7. EXPERIMENTAL RESULTS 75

■ OJD-I □ OJD-E H ORB-ID ■ GPD □ ORBMM-Q Ei ORBMM-M

M MAHD H HCD ^ RD M HJD ^ OHD H HHD

12.00 T

10.00

8.00

J 6.00(Ua.
4.00

2.00

0.00
4 8

number of processors

16

Figure 7.9. Speedup for parallel rendering phase when spans and pixels are
incorporated into the workload metric

CHAPTER 7. EXPERIMENTAL RESULTS 76

■ OJD-I □ OJD-E H ORB-ID ■ GPD □ ORBMM-Q E3 ORBMM-M

M MAHD H HCD ^ RD W HJD M OHD H HHD

4 8

number of processors
16

Figure 7.10. Speedup for overall parallel algorithm (including decomposition and
redistribution times) when spans and pixels are incorporated into the workload
metric

8. CONCLUSIONS

In this thesis, image-space decomposition algorithms are proposed and utilized for
parallel implementation of a direct volume rendering (DVR) algorithm. Screen-
space bounding box of a primitive is used to approximate the coverage of the
primitive on the screen. Number of bounding boxes in a region is used as a
workload of the region.

A taxonomy is proposed for image-space decomposition algorithms described
in the thesis. This taxonomy is based on the decomposition strategy and workload
arrays used in the decomposition. There were three workload-array schemes used
by the decomposition algorithms : ID arrays, inverse area heuristic and exact
model. Among these three exact model is a new scheme proposed to find the
exact number of bounding boxes in a rectangular region in 0(1) time.

Chains-on-chains partitioning (CCP) algorithms are exploited for load balanc­
ing in some of the proposed decomposition schemes. Probe-based CCP algorithms
are used for optimal ID horizontal decomposition and iterative 2D rectilinear de­
composition. A new probe-based optimal 2D jagged decomposition algorithm
is proposed for general workload arrays. Summed-area table(SAT) scheme is ex­
ploited to increase the efficiency of 2D optimal jagged and iterative 2D rectilinear
decompositions of general 2D workload arrays. SAT scheme allows to find the
workload of any rectangular region in 0(1) time, thus avoiding many collapsing
operations in these algorithms. These two decomposition algorithms are success­
fully adopted for image-space decomposition using the exact model (O.JD-E and
RD algorithms).

Also, new algorithms that use lAH are implemented for image-space decompo­
sition. Orthogonal recursive bisection algorithm with medians of medians scheme

77

CHAPTERS. CONCLUSIONS 78

is applied on regular mesh and quadtree superimposed on the screen (ORBMM-
M and ORBMM-Q algorithms). Hilbert space filling curve is also exploited for
image-space decomposition (HCD algorithm).

An efficient inverse-mapping based redistribution algorithms are proposed for
horizontal, rectilinear and jagged decompositions.

VVe experimentally evaluated 12 image-space decomposition algorithms on a
common framework with respect to the load balance performance, the number
of shared primitives, and execution time of the decomposition algorithms. The
experimental results show that

• 2D partitioning gives better load balance performance than ID partitioning
algorithms since search space of 2D partitioning algorithms is larger.

• OJP-E achieves the best load balance, since it uses exact number of bound­
ing boxes for load balance and finds global optimum for jagged decomposi­
tion.

• The perimeter of the resulting partitions and number of neighbor regions
effect the number of shared primitives.

• ORB-ID and RD gives the least number of shared primitives.

• Algorithms that uses ID arrays run faster. Global sum operation becomes
bottleneck for the exact model.

The sequential DVR algorithm is a polygon rendering based algorithm. It
requires volume elements composed of polygons and utilizes a scanline z-buffer
approach for rendering. The volume grids used in the experiments are converted
into a set of distinct triangles for rendering these data sets. First, the number
of primitives in a region is used to represent the work load associated with that
region. We observe that only the number of primitives in a region does not
provide a good approximation to actual computational load. The number of
spans and pixels generated during the rendering of primitives are incorporated
into the algorithms to approximate work load better. Spans and pixels are also
represented as a bounding box for decomposition algorithms. Each pixel and span
has a workload weight relative to the workload of the triangle. The speedup values

CHAPTERS. CONCLUSIONS 79

have almost doubled using these additional factors. Experiments are carried out
using three data sets blunt fin (composed of -381K triangles), delta wing (composed
of 2032k triangles) and liquid oxygen post (composed of 1040K triangles) using
six different viewing positions for each data set. On the average, we can render
the data sets used in the experiments in about 7.63 seconds on 16 processors of
Parsytec CC system with a speedup of 10.69.

A. EXPERIMENTING WITH THE
COMMUNICATION PERFORMANCE OF

PARSYTEC CC SYSTEM

In this work, we have performed series of experiments on the communication
operations of the Parsytec CC parallel system installed in our department. The
results are evaluated and some important properties of Parsytec CC system are
discussed. The algorithms were implemented in the C language and the native
message passing library of CC system called Embedded Parix (EPX) were used.

The notations and terminology used throughout this report are based on the
terminology used in [25] and [40]. The reader is assumed to have some experience
with parallel processing.

We present and experimentally evaluate three basic communication opera­
tions: ping-pong, collect and distributed global-sum operations. The collect op­
eration is implemented for star, ring and hypercube, and distributed global sum
operation for ring and hypercube topologies. In ping-pong operation, the constant
PARTNER is found by XORing node id of related process. For the ring topology
the node is connected to its two neighbors with FORWARD and BACKWARD
links. The node is connected to the node with an id {{myjiodeJd + 1) viod P)
by FORWARD link and to the node with the id {{myJiodeJd — 1) mod P) by
BACKWARD link. For both collect and distributed global sum operations the
data is stored in a buffer called X and the partitions of X is specified by an in­
dex array IX. The buffer segment for node i stored in X is bounded by IX[i] to

IX[i + 1] - 1.
The algorithm complexities are given as the number of communication steps

(startup time) and concurrent volume of communication. The startup time is

80

EXPERIMENTING PARSYTEC CC SYSTEM 81

taken to be the time spent to send zero-byte message to a destination node. It is
denoted as Tg in this work. The concurrent volume of communication is given in
bytes. The next section will give brief information about the architecture of the
Parsytec CC system and its environment for parallel programming. The third
section presents the algorithms and discusses experimental results. In section 4,
we conclude the report.

A .l P arsytec CC System

A. 1.1 Hardware

The Parsytec CC system is a parallel computer manufactured by Parsytec GmbH
in Aachen, Germany. It is based on distributed-memory MIMD architecture. The
nodes are connected with each other via the high speed serial communication link.
The communication network uses router modules that use deadlock free worm-
hole packet routing mechanism.

The Parsytec CC system, installed in our department consists of 24 nodes
each with a 133 MHz PowerPC 604 chip, an LI cache of 2 * 16KB (instruction -|-
data) and a 512 KB L2 cache. Each node contains 1 Gbits/s HS(high speed) link
card connected to PCI bus. The memory controller MPC105 allows PCI bus and
processor to access either to memory or cache. The DMA access also exploits the
existence of data in cache.

Our system has two entry nodes each with 128 MB memory and 2 GB local
disk space and 2 I/O nodes with 128 MB memory and 2 GB local disk space.
Each of the 20 compute nodes has 64 MB memory and 340 MB local disk space
used for page swapping. Communication between nodes is handled by a high
speed network with a peak performance of 40 MB/s. The high speed network
uses 6 routers for establishing communication paths between all nodes. The entry
nodes have an Ethernet adapter for communication with the outside world.

Each router in the system has 8 ports, four of which are used for processor
connection and the other four are used for inter-router connections. Two nodes
connected to the same router communicate directly with each other via the router.
Two processors connected to different routers communicate with each other via

EXPERIMENTING PARSYTEC CC SYSTEM 82

the inter-router connection network. That is, the message from the source pro­
cessor traverses a path from the router of the source processor to the router of
the destination processor through the inter-router connection network. A node
communicates with a node, which is at the same column with the source node but
at a separate router, in the following way: the message exits from source node to
its router, then it goes to a router at the opposite side and then goes to the router
of the destination node. In this type of communication, a message traverses three
routers. The logical topology of our CC system is shown in Figure A.l.

A. 1.2 Software

All nodes of Parsytec CC system run the AIX operating system with EPX, Em­
bedded Parix, on top. ANSI C, F77 and C-1-+ compilers are available. PVM 3.3
can also be used for communication.

EPX provides a set of functions the use the communication network and define
suitable routines managing data operations. A set of processors (a partition) is
assigned to a user to run his/her program. Each processor of the EPX partition
is arranged as a virtual 3D grid. In our system it is arranged as a 6.x4xl grid. So
effectively 2D grid of size 6x4 is used for our system. This grid can be partitioned
to subgrids of less number of processors by the system administrator.

The global information about nodes, consisting of id, location in grid, number
of nodes, the dimensions of the grid, can be accessed with GET_ROOT routine.

In the EPX programming environment, communication between two nodes
is performed via virtual links. A virtual link is a bidirectional synchronizing,
non-buffering, point-to-point communication line between two threads. A set of
virtual links can be combined to build a virtual topology. EPX provides some
well-known virtual topologies like ring, grid, hypercube, star and tree.

EPX has three types of communication for message passing. The first type of
communication is synchronous virtual link-bound communication. The commu­
nication processes are connected via virtual link and synchronize upon commu­
nication. The first process which reaches the point of communication waits the
other one so that the communication takes place. This type of communication is
blocking in that Send() function returns when the last byte of the buffer leaves
the processor and Recv() returns when the last byte of the message enters the

EXPERIMENTING PARSYTEC CC SYSTEM 83

Figure A.l. The logical topology of our Parsytec CC system

receiving buffer. The routines provides by EPX for this type communication are
Send(), Recv(), Select(), SendLink() and RecvLink().

The second type is the synchronous random communication where there is
no need to define the virtual links. This is used for small message sizes. The
routines for this are SendNode() and RecvNode(). This type is also blocking.

The third type is non-blocking link-bound communication. In this type, com­
munication can concurrently continue with computation. A thread is created to
perform communication concurrently. After the thread is created for communica­
tion, program continues from the next line. The library routines AInit(), ASend(),
ARecv(), ASync(), AExit() are used for this type of communication. The routine
AInit() must be called at least once before using this type of communication,
afterwards any number of asynchronous communications can be performed. The
routine ASync() waits for the completion of communication on a link.

EXPERIMENTING PARSYTEC CC SYSTEM 84

The common virtual topologies can be created by calling related routines like
Make2DGrid(), MakeHCube() or MakeRing(). Also AddTop() routine can be
used to create user defined topologies. After creation of a virtual topology, each
node gets a node id for the topology independent of the id given in the partition,
and similarly each link gets a link id.

More information for communication on EPX can be found in its reference
and programmers guides [40].

A .2 Basic Com m unication O perations

A .2.1 P ing-Pong

Ping-pong is a simple, basic communication operation in which two nodes com­
municate with each other to exchange data. We performed several experiments
with simple Ping-Pong programs to analyze the behavior of EPX communication
routines in our Parsytec CC system.

A.2.1.1 Program

The first ping-pong program uses blocking send and receive routines. Node 0
first sends a message to node 1 and then receives a message from that node.
Similarly, node 1 first receives the message node 0 has sent and sends its message
to node 0. The communication is blocking, because program does not continue
until communication is completed. As blocking communication is used, the time
to perform both send and receive operations is exactly twice the time spent for
a one-sided communication between two nodes. A portion of the code for this
program is shown in Figure A.2.

The second ping-pong program uses asynchronous communication, which uti­
lizes non-blocking send routines. Both nodes 0 and 1 initiate asynchronous send
(ASend() routine of EPX) operation followed by a blocking receive operations.
This is asynchronous communication because the program continues working
while send operation is performed in the background. The program waits for
the finish of send operation at a call of ASync() function. The program is shown
in Figure A.3.

EXPERIMENTING PARSYTEC CC SYSTEM 85

if (ringData->id==0)
{

Send(topId, PARTNER,(char *) send_buffer,MESSAGE^IZE);
Recv(topId, PARTNER,(char *) receive_buffer,MESSAGE^IZE);

}
else
{

Recv(topId, PARTNER,(char *) receive_buffer,MESSAGE_SIZE);
Send(topId, PARTNER,(char *) receive_buffer,MESSAGEJSIZE);

}

Figure A.2. Blocking Ping-Pong Program

ASend(topId, PARTNER,(char *) send.buffer,MESSAGE-SIZE.&error);
Recv(topId, PARTNER,(char *) receive_buffer,MESSAGE_SIZE);
ASyncftopId,PARTNER);

Figure A.3. Non-blocking Ping-Pong Program

A.2.1.2 Experimental Results and Discussion

VVe present experimental results for different message sizes which change from
one byte to 4 MB. Six different data set have been used to see the behavior of the
system. All results are shown in Table A.l. Timings in columns 2, 4 and 6 are
the average of 100 iterations of the same ping-pong program, whereas timings in
columns 1, 3 and 5 are taken for one iteration to exclude cache affect.

We used messages of one byte to measure the startup overhead of commu­
nications on Parsytec CC system. The blocking ping-pong operation takes 0.85
msec. So we can say that if communication is performed on virtual topology
links with blocking send receive, the overhead is approximately 0.43 msec per
communication. We performed the same blocking ping-pong operation, but this
time we changed the Send() commands to ASend() commands but put ASync()
commands right after sends. In this version, the communication is also blocking

EXPERIMENTING PARSYTEC CC SYSTEM 86

(1) (2) (3) (4) (5) (6)
Asynchronous Asynchronous

ping-pong, ping-pong,
Blocked blocked Asynchronous Asynchronous secondary secondary

Message ping-pong ping-pong ping-pong ping-pong buffering buffering
Leneth(bvtes) (No- cache) (cache) (No cache) (cache) (No-cache) (cache)

1 0.85 1.18 1.24
IK 3 1.33 3 1.6 5 1.65
4K 6 2.78 5 2.44 6 3.5

64K 13 7.27 11 5.37 15 8.7
128K 26 13.9 18 9.8 26 17.4
256K 51 27 32 19 50 35
512K 100 52.5 66 37 95 70

IM 198 103 130 73 180 140
2M 300 205 195 143 355 280
4M 503 410 340 296 740 545

Table A.l. Timings for Ping-Pong programs

but only we add overhead of asynchronous communication. We measured that
it took 1.14 msec which means 0.57 msec startup time for each communication,
so the extra overhead due to extra operations, like thread creation, is equal to
0.57-0.43 = 0.14 msec. Finally, we performed one byte communication with asyn­
chronous communication and measure 1.18 msec total time, which is higher than

both of previous experiments.
In our experiments with larger message sizes to measure the communication

bandwidth, we observed the importance of cache in communication. Also the
effect of PCI bus congestion during concurrent communication is realized. More­
over, we see that usage of intermediate buffer with asynchronous communication
brings extra overhead. In the next paragraphs these effects will be explained in

more detail.
As it has been explained in Section A.l, Power PC 604 processors access the

memory, L2 cache and PCI bus via a memory controller. We observe that memory
controller directs the memory requests coming from either processor or PCI bus
to L2 cache before main memory. This behavior of nodes makes difference in
communication times according to existence of send or receive buffers in L2 cache.

The column 1 of Table A.l shows the results for blocking ping-pong where the
send and receive buffers are not in cache. Column 2 presents the case when send

EXPERIMENTING PARSYTEC CC SYSTEM 87

and receive buffers are accessed before communication. As we compare columns
1 and 2, we see that the difference until message of 1 MB is nearly double. After
1 MB the difference becomes constant due to size of the L2 cache in nodes. The
same gain with cache can also be seen in columns -3 and 4.

Point to point communication speed of machine can be calculated using col­
umn 2. On the average, we measure 1/(102/2) = 20MB/s speed.

The usage of intermediate buffering in asynchronous communication brings
extra overhead to communication. We can see this affect by comparing columns
3 with 5 and 4 with 6. Columns 5 and 6 are the versions of 3 and 4 respec­
tively when intermediate buffering is used in communication. It is advisable that
if send buffer will not be used immediately after communication, intermediate
buffering mechanism should not be used. This can be achieved by passing 0 to
the buffer .size parameter of AInit() function.

Another observation with non-blocking ping-pong program is that
asynchronous communication mechanism does not overlap the times of two com­
munications at the same node. This is due to the multiplexing of PCI bus between
two communications at the same node. In non-blocking ping-pong, nodes initiate
send and receive operations concurrently. As seen in Table .A..1. exchanging one
MB with non-blocking ping-pong takes 73 msec. This is surely not half of the
time of the blocking ping-pong program. PCI bus congestion causes performance
decrease in performance of several basic communication operations.

A .2.2 C ollect

The collect operation is one of the basic communication operations of parallel
programming. It is also known as single node gather. In collect operation, ini­
tially every node has messages of size M bytes. After the termination of collect
operation, data from all nodes is collected at a single destination processor.

A.2.2.1 Program

The simplest communication pattern for collect operation is on star topology.
Each leaf node sends its message to the root of star and the root simply takes
P-1 messages from leaves. The algorithm is illustrated in Figure A.4.

EXPERIMENTING PARSYTEC CC SYSTEM 88

switch (starData->status) {
case STAR-ROOT:

for (i=l; i<starData->size; i++) {
ARecv (topic!, i,&(buf[(i+l)*BUF.SIZE]) , BUF.SIZE. terror);

}
ASync(topId,-l);
break;

case STAR-LEAVE:
Send(topId,0,buf, SINGLE-BUF-SIZE);
break;

}

Figure A.4. Collect operation on star topology

The communication pattern for ring topology is the inverse of one-to-all per­
sonalized communication. The algorithm for I’ing topolog} ̂is shown in Figure A.5.
At the ith step, the node whose node number is between i -f 1 and P — I sends
its message in forward direction to the next node. The node whose node number
is i + 1 becomes idle after that step. Node 0 collects the received messages and
does not issue any send calls.

In Figure A.6, the collect algorithm for hypercube topology is shown. At the
¿th step of the algorithm a node selects its partner by XORing the fth bit of its
node number. Between two partners the node whose ¿th bit is 1 sends its message
to its partner and becomes idle for the next steps. .A.t the same step, the node
whose fth bit is 0 receives the message. So at each step, the number of active
nodes is halved, meanwhile, the message lengths are doubled.

The concurrent volume of communication for all three topologies is {P — 1)*M.
The startup overhead of ring and star are {P — 1) * Ts whereas it is log(P) * Ts
for hypercube.

A.2.2.2 Experimental Results and Discussion

As seen in Table A.2, the hypercube topology is the best of three for collect
operation. The problem with ring topology is the PCI bus congestion due to
concurrent send and receive operations on the same node. The times of star

EXPERIMENTING PARSYTEC CC SYSTEM 89

my node=ringD at a- > id;
nextnode=(mynode+l)%P;
prevnode=(mynode-l+P)%P;
for(q=0;q<P-l;q++)
{

s=(mynode-q+P)%P;
sptr=IX[s];
r=(prevnode-q+P)%P;
rptr=IX[r];
msgsize=(IX[s+l]-IX[s])*sizeof(DATA.TYPE);
rmsgsize=(IX[r+l]-IX[r])*sizeof(DATA_TYPE);
if (mynode==0)

Recv (topid, BACKWARD, &(X[rptr]),maxmsgsize):
else
if(mynode>q)
{

ASend(topId, FORWARD, (char *) &(X[sptr]),msgsize.ijerror);
if (mynode!=q+l)

Recv (topid, BACKWARD, &(X[rptr]),maxmsgsize):
ASync(topId,FORWARD);

}
}

Figure A.5. Collect operation on ring topology

EXPERIMENTING PARSYTEC CC SYSTEM 90

myend=P;
size=l;
sindex=mynode;
for(q=0;q<dim;q++) {

if (mynode&(l<<q))
rindex=:sindex-size;

else
rindex=sindex+size;

msgsize=(IX[smdex+size]-IX[sindex])*sizeof(DATA_TYPE);
rmsgsize=(IX[rindex+size]-IX[rindex])*sizeof(DATA_TYPE);
sptr=IX[sindex]; rptr=IX[rindex];
if (mynode&(l<<q)){

Send (topId,q, (char *) &(X[sptr]),msgsize);
break;

} else
Recv (topId,q, (char *) &(X[rptr]),rmsgsize);

size*=2;
}

Figure A.6. Collect operation on hypercube topology

topology has small difference from that of hypercube. The difference comes from
the higher startup overhead of star topology. The bus congestion problem does
not occur in collect operation with hypercube or star topology. This is due to
fact that, at any step a node initiates only one type of communication, namely
send or receive.

A .2.3 D istributed Global Sum (D G S)

A .2.3.1 P rogram

Distributed global sum operation is the two phase version of global sum operation.
The global sum operation is one of the basic communication operations used
freciuently in parallel programs. In the global sum operation, every node starts
with a vector of length M and needs to know the vector sum. The simplest way
to do this is to use reduction operation. The communication pattern is the same
as of all-to-all broadcast. But, at each step the local vector and received vector

EXPERIMENTING PARSYTEC CC SYSTEM 91

P

Message
Length
(bytes) Star Ring Hypercube

64 1.25 3 0.88
4K 1.8 4.4 1.5

128K 7.2 9.4 5.6
4 256K 13 14.5 10.4

512K 21 26 20
IM 40 48 39
2M 78 94 77

64 2.9 8.3 1.4
4K 4 11 2.2

128K 10.5 18 7
8 256K 17 24 12.5

512K 30 36 23
IM 48 67 45
2M 91 131 88
64 6.3 18 2

4K 8.7 23 2.9
16 128K 15.5 34 8.2

256K 23 42 14
512K 36.5 54 26

IM 64 81 50
2M 102 152 97

Table A.2. Collect operation Timings

are added and the resulting vector is used as a send vector in the next step. The
concurrent volume of communication in this operation is M loglC) for hypercube
and M{P — 1) for ring topology. The startup overhead for ring is (P — l)Ts
and {\og{P))Ts for hypercube. An alternative to the above algorithm with lower
concurrent volume of communication is to use two phase distributed global sum
operation. The first phase is called fold operation in which every processor starts
with a vector and at the end has a M /P parts of vector whose sum has been
computed. At the second phase, these parts are distributed to every processor
using all-to-all broadcast operation. The concurrent volume of communication
for fold and all-to-all broadcast on both hypercube and ring is M * (P — 1)/P.

Therefore total concurrent volume of communication for distributed global
sum is 2 * M * (P — 1)/P, which is less than both Mlog(P) and M(P-l). A
program for distributed global sum is shown in Figure A.7.

EXPERIMENTING PARSYTEC CC SYSTEM 92

mystart=0; myend=P;
for (q=dim-l;q>=0;q-){

if (mynode & (l<<q)){
sptr=IX[mystart];

msgsize=(IX[(mystart+myend)/2]-IX[mystart])*sizeof(DATA_TYPE);
my s t ar t=(my s t art+myend) / 2;
}
else {

msgsize=(IX[myend]-IX[(mystart+myend)/2])*sizeof(DATA_TYPE);
myend=(mystart+mvend)/2: sptr=IX[myend];

}
ARecv (topId,q, &(RB[0]),maxmsgsize,&error);
Send (topId,q, (char *) &(X[sptr]),msgsize);
ASync(topId,q);
istart=IX[mystart]; iend=IX[myend]; j=0;
for (i=istart;iiiend;i++){

X[i]+=RB[j];j++;
}
size=l; sindex=mynode;
for(q=0;q<dim;q++) {

if (mynode&(l<<q))
rindex=sindex-size;

else
rindex=sindex+size;

msgsize=(IX[sindex+size]-IX[sindex])*sizeof(DATA_TYPE);
rmsgsize=(IX[rindex+size]-IX[rindex]) *sizeof(D ATA.T YP E);
sptr=IX[sindex]; rptr=IX[rindex];
ARecv (topId,q, (char *) &(X[rptr]),rmsgsize,&error);
Send (topId,q, (char *) &(X[sptr]),msgsize);
ASync(topId,q);
if (mynode&(l<<q)) sindex-=size;
size*=2;
}

}

Figure A.7. DGS on hypercube

EXPERIMENTING PARSYTEC CC SYSTEM 93

A.2.3.2 Experimental Results and Discussion

We have implemented the distributed global sum operation for both hypercube
and ring topologies. The results are taken for 4, 8, 16 processors by varying the
vector size. These results are shown in Table A.3 and Figure A.8.

We see in Figure 8-a that for four processors, hypercube gives better results
than ring. This is due to less startup overhead of hypercube topology. How­
ever, as seen in Figure 8-b and Figure 8-c, on 8 and 16 processors for message
lengths greater than 256k, the ring becomes faster. This is due to the problem of
congestion free mapping of hypercube to our system. Because of our router topol­
ogy, it is impossible to map 16 processors congestion free to hypercube topology.
Although it is possible to achieve congestion free communication with current
system for 8 processors, EPX’s mapping function cannot achieve it. In fact, EPX
makes its mapping in a more general way, without regarding any communication
pattern. The difference in total communication time becomes higher as the mes­
sage sizes increase. Note that PCI bus congestion e.xists for both topologies in
DOS. This is because of the fact that at each step every node performs send and
receive operations concurrently.

A .3 Conclusion

We have presented the results of several experiments that measure the key aspects
of inter-processor communication on Parsytec CC system.

First, startup overhead is approximately 0.5 msec. .So, in most cases the num­
ber of communication is also as important as the concurrent volume of commu­
nication. For point to point communication we achieve 20 MB/s speed. Second,
the existence of data in cache has major affect in communication time. Therefore,
parallel programs must be carefully designed to take advantage of cache. For ex­
ample, communication can immediately be initiated after writing or reading the
send buffer. Third, nodes do not entirely overlap the times of two communica­
tions initiated at the same node. This is due to PCI bus congestion at a node.
Sometimes you may get longer time than you expect from your theoretical con­
current volume of communication calculations. Fourth, the use of intermediate
buffering in asynchronous communication brings extra overhead. So if possible.

EXPERIMENTING PARSYTEC CC SYSTEM 94

P

Message
Length
(bytes) Ring-Fold Ring-DGS

Hypercube-
Fold

Hypercube-
DGS

4

64 3.4 7 2.2 4.6
4K 5 9.8 3.4 6.5

128K 18 28 16 25
256K 32 48 30 46
512K 62 92 59 88

IM 122 175 117 172
2M 244 350 235 340

8

64 8 16 3.8 7.6
4K 12 25 5.5 11

128K 27 46 24 38
256K 44 69 43 67
512K 76 115 81 126

IM 150 221 160 246
2M 298 444 320 483

16

64 18 37 5 10
4K 26 50 7 14

128K 43 74 32 54
256K 60 99 58 98
512K 96 150 113 185

IM 165 250 222 360
2M 322 480 426 698

Table A.3. Timings For Fold and Distributed Global Sum Operations

it is advisable not to use intermediate buffers. The fifth and final remark is,
when embedding a well known topology to the Parsytec CC s\-stem one should

be aware of possible link congestion.

EXPERIMENTING PARSYTEC CC SYSTEM 95

(a)

(b)

(c)

Bibliography

[1] s. Anily and A. Federgruen. Structured partitioning problems. Operations
Research^ 13:130-149, 1991.

[2] C. Aykanat, V. İşler, and B. Özgüç. Efficient parallel spatial subdivision
algorithm for object-based parallel ray tracing. Computer-Aided Design,
26(12):883-890, 1994.

[3] S. H. Bokhari. On the mapping problem. IEEE Trans. Computers, 3:207-
214, 1981.

[4] S. H. Bokhari. Partitioning problems in parallel, pipelined, and distributed
computing. IEEE Trans. Computers, 1:48-57, 1988.

[5] T. Bultan and C. Aykanat. A new mapping heuristic based on mean field
annealing. ./. Parallel and Distributed Computing, pages 292-305, 1992.

[6] J. Challinger. Parallel volume rendering for curvilinear volumes. In Proceed­
ings of the Scalable High Performance Computing Conference, pages 14-21.
IEEE Computer Society Press, April 1992.

[7] .J. Challinger. Scalable Parallel Direct Volime Rendering for Nonrectilinear
Computational Grids. PhD thesis. University of California. 1993.

[8] .J. Challinger. Scalable parallel volume raycasting for nonrectilinear compu­
tational grids. In Proceedings of the 1993 Parallel Rendering Symposium,
pages 81-88. IEEE Computer Society Press, October 1993.

[9] H. Choi and B. Narahari. Algorithms for mapping and partitioning chain
structured parallel computations. In Proc. 1991 Int. Conf. on Parallel Pro-
ces.sing, pages I-625-I-628, 1991.

96

BIBLIOGRAPHY 97

[10] T. W. Crockett. Parallel rendering. Technical Report 95-31, Institute for
Computer Applications in Science and Engineering, NASA Langley Research
Center, April 1995.

[11] F. C. Crow. Summed-area tables for texture mapping. Computer Graphics,
18(3);207-212, 1984.

[12] F. C. Crow. Parallelism in rendering algorithms. In Proceedings of Graphics
Interface 88, pages 87-96, 1988.

[13] D. Ellsworth. A multicomputer polygon rendering algorithm for interactive
applications. In Proceedings of the 1993 Parallel Rendering Symposium,
pages 43-48. IEEE Computer Society Press, October 1993.

[14] M. P. Garrity. Raytracing irregular volume data. Computer Graphics,
24(5):35-40, 1990.

[15] A. Geist, A. Beguelin, .J. Dongarra, VV. .Jiang, R. Manchek, and V. Sun-
deram. PVM: Parallel Virtual Machine, .-4 User's Guide and Tutorial for
Networked Parallel Computing. The MIT Press, 1994.

[16] Genias Software GmbH, Germany. PowerPVM/EPX for Parsytec CC sys­
tems: PoxuerPVM/EPX User’s Guide, 1996.

[17] M. Grigni and F. Manne. On the comple.xity of the generalized block dis­
tribution. In Proc. 3rd Int. Workshop on Parallel Algorithms for Irregxdarly
Structured Problems (IRREGULAR’96), pages 319-326. 1996.

[18] P. Hansen and K. VV. Lih. Improved algorithms for partitioning problems
in parallel, pipelined and distributed computing. IEEE Trans. Computers,
6:769-771, june 1992.

[19] B. Hendrickson and R. Leland. The chaco user’s guide (version 1.0). Techni­
cal Report SAND93-2339, Sandia National Labs., Albuquerque, NM, 1993.

V. İşler. Spatial Subdivision for Parallel Ray Casting/Tracmg. PhD thesis,

Bilkent University, February 1995.

BIBLIOGRAPHY 98

[21] M. A. Iqbal. Approximate algorithms for partitioning and assignment prob­
lems. Technical Report 86-40, ICASE, 1986.

[22] M. A. Iqbal and S. H. Bokhari. Efficient algorithms for a class of partitioning
problems. Technical Report 90-49, ICASE, 1990.

[23] G. Karypis and V. Kumar. Metis: Unstructured graph partitioning and
sparse matrix ordering system, version 2.0. Dept, of Computer Science,
University of Minnesota, http://www.cs.umn.edu/~karypis.

[24] A. Kaufman. Volume visualization. In Volume Visualization, pages 1-18.
IEEE Computer Society Press Tutorial, 1990.

[25] V. Kumar, A. Grama, .A. Gupta, and G. Karypis. Introduction to Parallel
Computing, Design and Analysis of Algorithms. The Benjamin/Cummings
Publishing Company, Inc., California, USA, 1994.

[26] T. M. Kurg, H. Kutluca, C. Aykanat, and B. Ozgug. .A comparison of spa­
tial subdivision algorithms for sort-first rendering. In Proceedings of HPCN
Europe 1997, International Conference and Exhibition on High Performance
Computing and Networking, volume 1225 of Lecture Notes in Computer Sci­
ence, pages 137-146, Vienna, Austria, April 1997. Springer-Verlag.

[27] Tahsin M. Kurg. Parallel Rendering on Multicomputers. PhD thesis, Bilkent
University, Department of Computer Engineering and Inf. Sci., 1997.

H. Kutluca, T. M. Kurg, and C. .Aykanat. Experimenting with the communi­
cation performance of parsytec cc system. Technical Report In prepciratioii.
Dept, of Computer Eng. and Information Sci., Bilkent University, 1997.

M. Levoy. Display of surfaces from volume data. IEEE Computer Graphics

and Applications, 8(3):29-37, 1988.

M. Levoy. Efficient ray tracing of volume data. ACM Transactions on

Graphic.s, 9(3):245-261, 1990.

[31] B. Lucas. A scientific visualization renderer. In Proceedings of IEEE Visu­
alization ’92, pages 227-234. IEEE Computer Society Press, October 1992.

http://www.cs.umn.edu/~karypis

BIBLIOGRAPHY 99

[32] К. Ма. Parallel volume ray-casting for unstructured-grid data on
distributed-memory multicomputers. In Proceedings of 1995 Parallel Ren­
dering Symposium, pages 23-30, October 1995.

[33] F. Manne and T. Sprevik. Partitioning an array onto a mesh of processors. In
Proc. 3rd Int. Workshop on Applied Parallel Computing (PARA ’96), pages
467-476, 1996.

[34] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A sorting classification of
parallel rendering. IEEE Computer Graphics and Applications, 14(4);23-32,
.July 1994.

[35] B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz. Analysis of the
clustering properties of hilbert space-filling curve. Technical Report UMCP-
CSD:CS-TR-3611, UMIACS, University of Maryland at College Park, 1996.

[36] C. Mueller. The sort-first rendering architecture for high-performance graph­
ics. In Proceedings of 1995 Symposium on Interactive 3D Graphics, pages
75-84, 1995.

[37] D. M. Nicol. Rectilinear partitioning of irregular data parallel computations.
J. of Parallel and Disributed Computing, 23:119-134, 1994.

[38] D. M. Nicol and D. R. O’Hallaron. Improved algorithms for mapping
pipelined and parallel computations. IEEE Trans. Computers, 40(3):295-
306, 1991.

[39] B. Olstad and F. Manne. Efficient partitioning of sequences. IEEE Trans.
Computers, 11:1322-1326, 1995.

[40] Parsytec GmbH, Germany. Embedded Parix (EPX) ver. 1.9.2 User’s Guide
and Programmers Reference Manual, 1996.

[41] J. R. Pilkington and S. B. Baden. Dynamic partitioning of non-uniform
structured workloads with spacefilling curves. IEEE Transactions on Paral­
lel and Distributed Systems, 7(3):288-299, 1996.

[42] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduc­
tion. Springer-Verlag, 1985.

BIBLIOGRAPHY 1 0 0

[43] D. R. Roble. A load balanced parallel scanline z-buiFer algorithm for the
ipse hypercube. In Proceedings of Pixim’ 88, pages 177-192, Paris, France,
October 1988.

[44] P. Shirley and A. Tuchman. A polygonal approximation to direct scalar
volume rendering. Computer Graphics, 24(5):63-70, 1990.

[45] J. P. Singh, C. Holt, J. L. Hennessy, and A. Gupta. A parallel adaptive fast
multipole method. In Proceedings of Supercomputing 93, pages 54-65, 1993.

[46] E. Tanın, T. M. Kurç, C. Aykanat, and B. Ozgûç. Comparison of two image-
space subdivision algorithms for direct volume rendering on distributed-
memory multicomputers. In Proceedings of the Workshop on Applied Paral­
lel Computing in Physics, Chemistry, and Engineering Science (PARA95),
August 1995, volume 1041 of Lecture Notes in Computer Science, pages 503-
512, Lyngby, Denmark, 1996.

[47] C. Upson and M. Keeler. Vbuffer: Visible volume rendering. Computer

Graphics, 22(4):59-64, 1988.

[48] S. Whitman. Multiprocessor Methods for Computer Graphics Rendering.
.Jones and Bartlett Publishers, 1992.

[49] P. L. Williams. Interactive Direct Volume Rendering of Curvilinear and
Unstructured Data. PhD thesis, University of Illinois at Urbana-Champaign,

1992.

[50] P. L. Williams. Visibility ordering meshed polyhedra. ACM Transactions
on Graphics, 11(2):103-126, 1992.

[51] R. Yagel. Volume viewing: state of the art survey. In Visualization ‘93, Tu­
torial #9, Course Notes: Volume Visualization Algorithms and Applications,
pages 82-102, 1993.

