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ABSTRACT

UNSUPERVISED SEGMENTATION AND ORDERING
OF CERVICAL CELLS

Nermin Samet

M.S. in Computer Engineering

Supervisor: Assoc. Prof. Dr. Selim Aksoy

July, 2014

Cervical cancer is the second most common cause of cancer death among women

worldwide, and it can be prevented if it is detected and treated in the pre-

cancerous stages. Pap smear test is a common, efficient and easy manual screen-

ing examination technique which is used to detect dysplastic changes in cervical

cells. However, manual analyses of thousands of cells in Pap smear test slides by

cyto-technicians is difficult, time consuming and subjective. To overcome these

problems, we aim to automate the screening process and provide an ordered nu-

clei list to help the cyto-experts. Automating the screening procedure has been a

longstanding challenge because of complex cell structures where current methods

in the literature mostly consider the problem as the segmentation of single iso-

lated cells and leave real challenges of Pap smear images such as poor contrast,

inconsistent staining, and unknown number of cells unaddressed.

We propose an unsupervised method to accurately segment the nuclei and

order them according to their abnormality degree in Pap smear images. The

method first uses a multi-scale hierarchical segmentation algorithm for accurate

identification of the nuclei. The Pap smear images captured at high level magni-

fication have more detailed texture but worse contrast. Contrast is an important

property for segmentation and detailed texture is an important property for fea-

ture extraction. Therefore, as a solution to the segmentation problem, we proceed

in two steps. First, we segment the Pap smear images at low (20x) magnification

and eliminate non-nucleus regions based on several features. Then, we switch to

high (40x) magnification and obtain a more detailed segmentation of the remain-

ing nuclei. Following segmentation, we extract features for each resulting nucleus.

Unlike related works that require a learning phase for classification, our method

performs an unsupervised ordering of the nuclei based on features extracted at

40x magnification. We compare different ordering algorithms for ranking the
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nucleus regions according to their abnormality degrees.

We evaluate our segmentation and ordering methods using two data sets.

Our results show that the proposed method provides promising results for both

segmentation and ordering steps.

Keywords: Pap smear test, Pap smear image analysis, Cervical cell segmentation,

Multi-scale segmentation, Ordering, Cell grading.



ÖZET

SERVİKS HÜCRELERİNİN ÖĞRETİCİSİZ OLARAK
BÖLÜTLENMESİ VE SIRALANMASI

Nermin Samet

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Doç. Dr. Selim Aksoy

Temmuz, 2014

Serviks kanseri dünya üzerinde kadınlarda en sık görülen ve kanser ölümlerine

sebep olan ikinci kanser çeşididir. Serviks kanseri prekanseröz aşamalarda erken

teşhis ve tedavi ile önlenebilmektedir. Pap smear testi, serviks hücrelerinde mey-

dana gelen displastik değişiklikleri belirlemek üzere kullanılan yaygın, etkili ve

kullanımı kolay manuel bir tarama yöntemidir. Ancak Pap smear testlerinde bu-

lunan binlerce hücrenin sitologlar tarafından manuel olarak analiz edilmesi zorlu,

zaman alan ve gözlemci öznelliği içeren bir süreçtir. Çalışmamızda, bu sorun-

ların üstesinden gelmek için tarama işlemini otomatikleştirmeyi ve sitologlara

yardımcı olacak hücrelerin sıralanmış listesini sağlamayı amaçladık. Tarama

sürecini otomatikleştirme, karmaşık hücre yapılarından dolayı uzun süreli ve zorlu

bir görev olarak durmaktadır. Literatürdeki mevcut yöntemler çoğunlukla prob-

lemi tekli ve ayrılmış hücre bölütlemesi olarak ele almakta ve Pap smear test

görüntülerinin, zayıf kontrast, tutarsız boyama ve bilinmeyen hücre sayısı gibi

gerçek sorunlarına değinmemektedirler.

Bu tezde, Pap smear görüntülerindeki hücrelerin doğru bir biçimde

bölütlenmesi ve anormallik derecelerine göre sıralanması için öğreticisiz bir

yöntem önerilmektedir. Önerilen yöntem ilk olarak çekirdeklerin doğru bir şekilde

elde edilmesi için çoklu-ölçekli hiyerarşik bölütleme algoritması kullanmaktadır.

Yüksek büyütme değeri ile çekilen Pap smear görüntüleri daha detaylı doku bilgi-

sine ancak daha kötü kontrast değerine sahiptirler. Kontrast bölütleme aşaması

için önemli bir özellik iken, detaylı doku bilgisi öznitelik çıkarma aşaması için

önemli bir özelliktir. Bu nedenle, çalışmamızda bölütleme problemine bir çözüm

olarak, iki aşamada ilerledik. İlk olarak, Pap smear görüntüleri düşük büyütme

(20x) seviyesinde bölütlendi ve çıkarılan çeşitli özniteliklere dayanarak çekirdek

olmayan bölütlenmiş alanlar elendi. Daha sonra, yüksek seviyede (40x) çekilen
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Pap smear görüntülerine geçilerek kalan çekirdeklerin daha detaylı bölütlenmesi

gerçekleştirildi. Bölütleme aşamasının ardından, elde edilen her çekirdek için

öznitelikler çıkarıldı. Literatürdeki sınıflandırma için öğrenme aşaması gerek-

tiren ilgili çalışmalardan farklı olarak, yöntemimiz 40x büyütme oranındaki

görüntülerden çıkarılan özniteliklere dayanarak çekirdeklerin öğreticisiz olarak

sıralamasını gerçekleştirmektedir. Farklı sıralama algoritmaları, elde edilen

çekirdeklerin anormallik derecelerine göre sıralanması üzerinden karşılaştırıldı.

Bölütleme ve sıralama yöntemlerimizi iki veri kümesi kullanarak değerlendirdik.

Sonuçlarımız önerilen yöntemlerin hücrelerin hem bölütlenmesi hem de

sıralanması aşamasında gelecek vaat eden sonuçlar verdiğini gösterdi.

Anahtar sözcükler : Pap smear testi, Pap smear görüntü analizi, Serviks hücre

bölütlemesi, Çoklu-ölçekli bölütleme, Sıralama, Hücre derecelendirmesi.
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Chapter 1

Introduction

Cervical cancer is the second leading cause of cancer mortality among women.

According to World Health Organization (WHO), every year there are around

530.000 new cases worldwide, and 275.000 of them ends up with death [1]. Cervi-

cal cancer usually develops over a long period of time. In this long period which

takes years, some early changes occur in the cervix cells. These precancerous

changes in cervical cells are known as dysplasia and these dysplastic changes in

precancerous cells potentially could develop into cancer. Unfortunately, cervical

cancer is mostly unresponsive to treatments at the late stages. However, it is

preventable by the treatment of precancerous lesions when the early dysplastic

changes occurr in the cervix cells [1].

At this point screening plays an important role in detecting these precancer-

ous cells. Among many screening test, the most common screening procedure is

Pap smear also known as the Pap smear test which is introduced by Papanicolaou

in 1940 [2]. The Pap smear is a test which is used to detect the changes in the

cervix cells that are cancer or potentially lead to cancer. This technique aims

to detect precancerous and cancerous cells by analyzing colored and stained Pap

smear slides. In order to detect abnormal changes in the cervix cells, cytotechni-

cians analyse these Pap smear slides in laboratories using a microscope under the

supervision of a pathologist. They basically examine the cells according to their

shape, color, size, nucleus proportion to cytoplasm and finally categorize the cells
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according to their abnormality degree.

Since cervical cancer mortality rates have decreased over the past decades

with the widespread use of the Pap smear, it is a preferable technique as an effec-

tive, economical and simple method [3]. However, manual-screening procedure is

open to inaccurate diagnoses and human driven errors. Automating this manual

screening procedure could be a plausible solution to avoid these issues. However,

automating this procedure is a challenging problem because of the complexities

in cervix cell structures. Although a large number of studies have been done on

the automatization of the Pap smear test procedure, it is still a manual-screening

procedure. In this work, we present an automatic computer-assisted system which

segments and orders nuclei in the cells of a Pap smear slide image according to

their dysplasia degree in an unsupervised way. With the help of our system cy-

totechnicians could skip normal cells and focus on the cells with dangerous nuclei.

Our procedure consists of two main steps. The first and the most crucial step is

the accurate segmentation of nucleus regions and the second step is ordering of

segmented nucleus regions according to their extracted features.

1.1 Problem Definition and Motivation

In order to color the Pap smear slides, a dye of Hematoxylin and Eosin is used

for staining the nucleus and cytoplasm. Basically Hematoxylin stains the nucleus

and combination of Hematoxylin with Eosin stains the cytoplasm. After the

staining procedure we get a Pap smear slide where nuclei and cytoplasm parts

are colored with the tones of red and blue which makes analyzing the cells on

the slide easier. We present an example cell from a Pap smear slide with its

background, cytoplasm and nucleus after the staining procedure in Figure 1.1.

There are thousands of cells in a typical single Pap smear slide. The slides are

scanned with different magnification levels using a microscope by cytotechnicians

in order to detect the abnormal cells in the slides. These main magnification

levels are 10x, 20x, 40x and 100x. Each of these magnification levels has its own
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Figure 1.1: An example cell from a Pap smear slide with its background, cyto-
plasm and nucleus after the staining procedure.

task like identification of background, close up view for overlapped, occluded and

grouped cells and examining the size, color, shape and texture of a single cell in

details.

There are several difficulties that are associated with the Pap smear test. As

a result of traditional Pap smear staining test technique, we have high number of

cells including overlapped, occluded and grouped cells. Identifying these occluded

and overlapped cells requires different settings in terms of magnification and

focus. The other problem is that, in addition to nucleus and cytoplasm there are

inflammations and other microorganisms in the Pap smear slides (see Figure 1.2).

Also, staining of cells in a Pap smear slide is not homogeneous and the contrast

between nucleus and cytoplasm is usually low. Figure 1.2 illustrates these main

problems for a 20x magnification Pap smear image.

The first step of diagnosing cervical cancer is to classify the cells in a Pap

smear slide as normal and abnormal. The categorization in [4] further divides

normal cells into three subcategories called Superficial, Intermediate and Colum-

nar. Table 1.1 summarizes normal degree cells with their main characteristics.

Abnormal cells have four different categories according to their cancer risk. In

order from lower risk to higher risk, they are Mild dysplasia, Moderate dysplasia,

Severe dysplasia and Carcinoma in situ. When cancer risk is increasing, the

nuclei of the cells is getting larger, darker, also nucleus is more deformed and the
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Figure 1.2: An example 20x magnification Pap smear image with inconsistent
staining, poor contrast, grouped, occluded and overlapped cells. The red circles
depict inflammations and other microorganisms.

ratio of nucleus and cytoplasm area is higher (see Table 1.2 ). As it could be

observed from the Table 1.1 and Table 1.2, the given precancerous and cancerous

cells differ in their morphological characteristics like size, color, shape and texture

of both nucleus and cytoplasm.

Most of the work in the literature works on individual cells where the problem

is simple contour finding of nucleus and cytoplasm. However, in real world set-

tings, we have much more complex cell structures including occluded, overlapped

and grouped cells and it is impossible to have all these cells isolated from each

other in Pap smear slides. So, in order to present effective and realistic solutions,
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we work on real world dataset which includes all these mentioned difficulties and

problems above.

In this thesis we present a study to segment and order the nuclei of the cells

according to their abnormality degree. The presented approach in this study is

motivated by the way which is used by cytopathologists to detect the abnormal

cells. At the first stage, the pathology experts use lower level magnifications to

select potential cells in particular parts of the Pap smear slide. Then, they switch

to higher magnification levels to have closer look at this part of the Pap smear

slide in order to observe the characteristics of the cells like size, color, shape

and texture. They mostly use 10x magnification and/or 20x magnification as

low level magnification; and 40x magnification and/or 100x magnification as high

level magnification. Since it is even very difficult for an expert to differentiate the

boundaries of grouped cells which overlap and occlude each other, they mainly

consider the nuclei of the cells while making their decisions.

Based on these facts and inspired by human way of examination of cervical

cells, in this study we focus on only the segmentation and ordering of nuclei

regions in Pap smear slide images. Therefore, we first segment the Pap smear

images at 20x magnification, and following segmentation, we eliminate some of

the segmented regions in order to obtain only the nucleus regions by using four

different extracted features from the segmented regions of 20x magnification Pap

smear image. Then we segment the remaining nucleus regions over 40x magnifica-

tion and extract effective features from 40x magnification. We extract 15 different

features and apply six different ordering algorithms to rank the nucleus regions

according to their dysplasia degree. We test the ordering algorithms with differ-

ent combination of features. In our study, we use a non-parametric hierarchical

segmentation algorithm and we sort the segmented nucleus regions by applying

different ordering algorithms in an unsupervised way. Figure 1.3 summarizes the

steps of our presented system.
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Figure 1.3: Main steps of the proposed automatic segmentation and ordering
procedure for the cells in Pap smear Images.

1.2 Data Set

We have two different data sets, namely Hacettepe and Herlev data set. Below

we give details of these data sets.

1.2.1 Hacettepe Data Set

The Hacettepe data set was collected at the Department of Pathology at the

Hacettepe University Hospital under the supervision of Dr. Sevgen Önder from

Hacettepe University. To capture images of Pap smear test slides, we used a

microscope connected to a digital camera.

Our dataset includes 252 images from three different patients’ Pap smear test
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slides. We captured images of same areas in Pap smear test slides at three different

magnification levels . There are 84 images from each of these three Pap smear

slides; four of them at 10x magnification, 16 of them at 20x magnification and 64

of them at 40x magnification. Then we generated image triplets for seven different

areas in which there are three images for 10x magnification, 20x magnification

and 40x magnification levels. Figure 1.4 illustrates one of these triplets as an

example. As it can be seen from the figure, when magnification level increases,

we see more details of cells in the Pap smear images. However, in our study 10x

magnification images are not used, only 20x magnification and 40x magnification

image pairs are used for segmentation.

1.2.2 Herlev Data Set

Herlev data set was collected by the Department of Pathology at Herlev Uni-

versity Hospital and the Department of Automation at Technical University of

Denmark. In this data set there are 917 images of Pap smear cells [4]. Each

image includes only one cell with its nucleus, cytoplasm and background, and

each of these cells are manually classified into one of the seven classes by doctors

as presented in Table 1.1 and Table 1.2. Since we have ground truth order of

these cells according to abnormality degree, we use Herlev data set to show our

ordering results.

1.3 Contributions

In this study we aim to obtain an order of segmented nucleus regions according

to their abnormality degree. Once we get this ordered list of nuclei, it will be

enough for doctors and cytotechnicians to focus on abnormal cells in the ordered

nuclei list. In this way the diagnosing process will be more efficient and take less

time by investigating only the candidate nucleus regions.

Ordering algorithms are applied on segmented nucleus regions; therefore the
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most important step is accurate segmentation of nucleus regions. As mentioned

and illustrated previously, there many grouped, overlapped and occluded cells

in the Pap smear images; therefore in this study we aim only the segmentation

of nucleus regions in the given Pap smear images in order to have realistic re-

sults. For this purpose, we follow human’s approach to the segmentation problem

where we first segment Pap smear images at low level magnification, which is 20x

magnification in this study, and we only choose the regions which are considered

as nucleus regions. After we obtain the nucleus regions from 20x segmentation,

we switch to 40x magnification to extract good quality features in terms of mor-

phological properties of nucleus regions such as size, color, shape and texture.

Finally we apply ordering algorithms using these extracted features to order the

segmented nucleus regions.

Differently from most of the studies in the literature we work on real world

data set collected from the Department of Pathology at Hacettepe University

which includes grouped, overlapped and occluded cells. Moreover the captured

Pap smear images have inconsistent staining and poor contrast between cyto-

plasm and nuclei. Our segmentation method has human inspired approach and

it is a an unsupervised algorithm. Both segmentation and ordering process are

unsupervised processes and they do not require learning step as well training and

test sets.

This thesis is organized as follows. Chapter 2 gives a brief summary of previous

studies related to segmentation and classification/ordering of cells, especially for

the Pap smear images. In Chapter 3, we explain our segmentation method for

20x magnification and 40x magnification images in detail. In Chapter 4, we first

give details of our extracted features from 40x magnification images and then

we describe our distance calculation methods to obtain distance matrixes. In

Chapter 5 we explain ordering algorithms which are used to order the segmented

nucleus regions, and finally in Chapter 6 we present our experimental results for

both segmentation and ordering algorithms.
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Table 1.1: Normal Cells
Figures Characteristics

Superficial Cell;
Oval shape,
Very small size nucleus,
Small ratio of nucleus/cytoplasm.

Intermediate Cell;
Round shape,
Small size nucleus,
Small ratio of nucleus/cytoplasm.

Columnar Cell;
Column-like shape,
Larger size nucleus,
Medium ratio of nucleus/cytoplasm.
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Table 1.2: Abnormal Cells
Figures Characteristics

Mild Dysplasia;
Light color nucleus,
Large size nucleus,
Medium ratio of nucleus/cytoplasm.

Moderate Dysplasia;
Dark color nucleus,
Large size nucleus,
Large ratio of nucleus/cytoplasm.

Severe Dysplasia;
Dark color nucleus,
Large size nucleus,
Deformed nucleus
Very large ratio of nucleus/cytoplasm.

Carcinoma in situ;
Dark color nucleus,
Large size nucleus,
Deformed nucleus
Very large ratio of nucleus/cytoplasm.
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Figure 1.4: Three Pap smear images of the same area with the size of 512×512,
1024×1024 and 2048×2048 respectively correspond to 10x, 20x and 40x magnifi-
cation levels.
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Chapter 2

Related Work

In this section, we present a brief survey of some previous works related to seg-

mentation.

Automatic thresholding, morphological operations and active contour models

are the popular methods that are used for segmentation of the cells in Pap smear

images. In the literature, much of the works consider single cells as an input to

segment only a nucleus and its cytoplasm. However, in real world settings we

have grouped cells that overlap and occlude each other.

As one of the popular methods, automatic thresholding [5, 6] could give good

results for the isolated single cells. In case of enough contrast, active contour

based methods [7, 8, 9, 10, 11] are successful to extract better localized nuclei

boundaries, but they are very sensitive to parameters and initializing process.

Watershed algorithms are another common approach. Watershed-based methods

[9, 12, 13] are more successful to segment multiple cells in the given images, but

they require preprocessing, especially for selecting markers. Using shape priors

together with active contour methods could be a solution for the overlapping and

occluded cells [14]. However, there are still unsolved problems such as the number

and location of cells related to this approach; and also to define a prior shape for

the overlapped and occluded cells is another main problem. In the following, we

describe some of the selected works in details.
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In study [5], authors only consider single cells and find contours of both nucleus

and cytoplasm. They first do pre-processing to enhance the edges of nucleus

and cytoplasm, then they apply automatic thresholding to obtain nucleus and

cytoplasm regions. This method is valid the only an isolated single cell; in case

of overlapped or occluded cells it fails.

Bamford and Lovell [7] use a viterbi search-based dual active contour algo-

rithm where they estimate their active contour model in a dynamic way. This

approach is based on the contrast between nucleus and cytoplasm. They mark

a point inside the nucleus, considering nucleus is darker than its cytoplasm. For

this purpose, they first reduce the search space and find the nucleus contour by

minimizing some cost function. However, this approach tends to fail in case of

inappropriately arranged parameter for the global minimum.

Dagher and Tom [8] present a new approach to the segmentation problem for

blood and corneal cells. They basically combine watershed algorithm and the

active contour model. They prepare the images by removing noise and then they

use down sampled watershed segmentation result to initialize the snake contours

for the nuclei. The difficulty of this approach is finding initial contours of nucleus

and also active contour models require many parameters to tune.

Huang and Lai [9] aim to find approximate segmentation for liver cells in the

biopsy images by eliminating non-nucleus regions in a heuristic way. For the

segmentation, first they apply marker-based watershed algorithm to find approx-

imate boundaries of nucleus regions, then they use snake model to refine these

boundaries. However, finding marker for all nucleus regions is nearly impossible

due to overlapping and occluded cells in Pap smear images.

Harandi et al. [10] present a segmentation method for the Thin Prep slide

images which uses active contour algorithm to extract the cell boundaries in

cell groups. As a similar approach to our study, they use two different resolution

levels. They use lower resolution images to find the regions of interest, and higher

resolution images for segmentation. However, in their study they work on specific

parts of slide images where there is no inflammation and other microorganisms.
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Li et al.[11] roughly segment an image into nucleus, cytoplasm, and back-

ground regions applying k-means clustering, and then they use snake algorithm

to improve segmentation results for nucleus and cytoplasm. k-means clustering

is also preferred by Tsai et al.[6] as a thresholding method to extract the cells

from background.

Plissiti et al.[12] first detect nuclei centroids and use the detected centroids

as markers for the watershed segmentation to obtain the boundaries of nucleus

regions. Then they extract shape, texture, and intensity features and obtain

nucleus regions by using a binary SVM classifier with the features.

The study presented by Wu et al. [15], also aims to segment a single cell

image. The method uses prior information of nucleus such as the shape, size and

contrast between nucleus and its cytoplasm. They use a parametric cost function

to extract the boundary of the given single cell by assuming that the nucleus is

in an elliptical shape. This approach also is not suitable for the segmentation of

Pap smear images where there are many grouped, overlapped and occluded cells.

In the work presented by Walker et al.[16] they segment nucleus regions by

removing cytoplasm regions using morphological closing operation. Following

this, they apply morphological opening operation to correct the obtained nucleus

regions. Since they use global thresholding to remove cytoplasmic parts, it tends

to fail depending on image structure.

Shah [17] calculates the approximate cell locations at the first step based

on a clustering approach. In the second step he uses an ellipse shape as prior

information to find the final cell locations. This method shows good performance

for the Pap smear images taken at lower magnifications.

In [18] authors segment a single-cell image into nucleus, cytoplasm and back-

ground region by using the fuzzy C-means (FCM) clustering technique.

The study in [19] aims to segment the individual cytoplasm and nuclei in a

group of overlapping cervical cells. In this study authors first specify single cells

and grouped cells together with their nuclei, then they perform a joint level set
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optimization on these specified nuclei and cytoplasm pairs. This optimization

basically includes a set of restrictions in terms of the length and area of each cell,

a prior on cell shape and the amount of cell overlap.

In study [20], authors propose a multi-scale watershed-based method to seg-

ment nerve cell nuclei. They apply watershed segmentation algorithm at different

scales and select a set of regions by thresholding regions’ features.

Among these previous works, there are a few studies which take account real

world data set with the main challenges of grouped, overlapped and occluded

cells, and poor contrast. In [21] Gençtav and Aksoy present a non-parametrical

segmentation algorithm to segment Pap smear images. For this purpose they

first extract background using an automatic threshold, and then they apply their

hierarchical segmentation algorithm to detect nucleus and cytoplasm regions.

Since the aim of segmentation is to detect the abnormal cells in the images,

following segmentation, many studies classify segmented cells. Huang and Lai [9]

classify hepatocellular carcinoma cells, which is a common type of liver cancer, in

biopsy images using an SVM-based graph classifier. In order to classify cervical

cells, Walker et al. [16] extract textural features from co-occurrence matrix and

classify the cervical cells according to these features by using a quadratic Bayesian

classifier. Neural networks are used to classify blood cells by Theera-Umpon [22]

as a classification method. In [23] authors use a hierarchical multiple classifier

with more than 300 features to classify the segmented cells. A pixel-based classi-

fication method is used by Zhang and Liu [24] with 4,000 multispectral features.

Most of these works explained above classify cells into two classes namely

normal and abnormal. Different from these works Marinakis et al. [25] consider

this problem as multiclass classification where the number of classes is seven.

They extract 20 features computed from nucleus and cytoplasm regions and apply

a genetic algorithm to select features, and then classify the regions by using a

nearest neighbor classifier. However, compared to binary classification results,

they obtain less successful results.

The studies show that when the classification problem of cells is considered as
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normal and abnormal cell labeling, we obtain higher accuracy scores. However,

these results are obtained with a limited number of instances in datasets and

mostly they are synthetically prepared and controlled data sets which do not

include the main challenges such as grouped and overlapped cells. The other

point is that classification requires a large dataset where there should be enough

samples for each class to be used in the training procedure. At this point, as a real

world problem, we have two main challenging facts related to classification. The

first one, we have seven different categories for the cells, which make classification

even harder. The second one, we have imbalanced data in which among hundreds

of cells, the frequency of observing abnormal cells is very small; so it is nearly

impossible to have a sufficient number of cells for each class.

Based on these facts and in order to present realistic solutions, we approach

this problem as an ordering problem rather than a classification problem. With

this approach we aim to get an ordered list of nuclei in the Pap smear in which

normal cells are conglomerated at one end and abnormal cells are conglomerated

at the other end.
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Chapter 3

Segmentation

In the segmentation step, we aim to obtain an accurate segmentation of nucleus

regions in the most correct way. However, segmentation of cell nucleus is a difficult

task due to the reasons beyond our control. One main problem is the traditional

staining techniques that are used to color cervical cells on a Pap smear test slide

with the tones of blue and red colors. These traditional staining techniques cause

inhomogeneity in the slide and also inconsistency between different slides. In

addition to inconsistent staining, grouped cells usually overlap or occlude each

other. Even manually, it is not easy to differentiate boundaries of overlapping

cells. Figure 3.1 illustrates two different Pap smear images which are at 20x

and 40x magnification with these mentioned problems. Therefore, segmentation

of Pap smear test images is still a challenge due to inconsistent staining, poor

contrast and overlapping cells.

In Figure 3.1, we show two Pap smear images at 20x and 40x magnification

of same slide area. In the figure, the Pap smear images have size of 1024 and

2048 in each dimension corresponding to 20x magnification and 40x magnifica-

tion respectively. To see the main differences between 20x and 40x magnification

in Figure 3.2, we show the close up views of a small Pap smear region at 20x

and 40x magnification. As it could be observed from this figure, the 40x mag-

nification image has more detailed texture but worse contrast compared to 20x

magnification image. Following our segmentation, we rank the segmented nucleus
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regions according to their extracted features. Contrast is an important property

for segmentation and detailed texture is an important property for feature ex-

traction. With these facts we end up with a tradeoff where it is better to use 20x

magnification images for segmentation and 40x magnification images for feature

extraction.

To overcome this tradeoff, we propose a two-phase approach to segmentation

problem. The first phase is the segmentation of Pap smear images at 20x magni-

fication. Following segmentation, we eliminate some of these segmented regions

which are potentially not nucleus. The final phase is the segmentation of remain-

ing 20x magnification nucleus regions over 40x magnification images. The details

of each step are explained in the following sections.

3.1 Segmentation Method

Pap smear images have three main regions which are background, cytoplasm

and nucleus. However, because of the factors like overlapped cells, inconsistent

staining and poor contrast in Pap smear images, it is nearly impossible to segment

cytoplasm of each nucleus accurately. Therefore, to have realistic results, in our

segmentation we focus on obtaining only the nucleus regions in the most correct

way.

In their work, Gençtav and Aksoy [21] present a study for segmentation and

classification of cervical cells. Basically they first extract background regions

using a threshold value to obtain cells. Then, they segment the remaining cell

regions using a hierarchical segmentation algorithm. Finally they classify the

segmented regions as nucleus or cytoplasm region. In our study we aim to segment

only nucleus regions by following and modifying their proposed segmentation

method. In this section we give a brief summary of this segmentation algorithm.

The algorithm developed by Gençtav and Aksoy [21] is a parameter free al-

gorithm and it basically uses the spectral, shape and gradient information of the

Pap smear images. In their study they first extract the background region which
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Figure 3.1: 20x (1st row) and 40x (2nd row) magnification Pap smear images
with inconsistent staining, poor contrast and overlapping cells.
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Figure 3.2: The original image at 20x magnification (A), close up view of the red
rectangle at 20x magnification which has more contrast (B) and the corresponding
image at 40x magnification which has more detail (C).

is the region that does not include any cytological structures and it has fully white

pixels. For this purpose, they transform the Pap smear images from RGB color

space to the Lab color space. After this transform, they distinguish background

from cell regions by using L channel of the Lab color space. In the Lab color

space, the L channel corresponds to brightness of the image. As a final step of

background extraction, they use minimum error thresholding to determine the

threshold value which distinguishes background and cell regions from each other.

Then, following background extraction, they segment the remaining cell re-

gions into the areas of nucleus and cytoplasm. The proposed segmentation algo-

rithm in [21] is based on the work of Akçay and Aksoy [26] where a segmentation

method was developed to detect geospatial objects like buildings, roads, etc. au-

tomatically. They use the neighborhood, spectral and morphological information

and apply morphological opening and closing operations to extract the candi-

date regions. Later they build a hierarchical tree from the extracted regions

and select the most meaningful regions in that tree. To select the meaningful

regions, they optimize spectral homogeneity and neighborhood connectivity mea-

sure where spectral homogeneity is the variances of multi-spectral features and

neighborhood connectivity is the sizes of connected components.

Since Pap smear images have different image structure and objects compared
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to remotely sensed images, in [21], the candidate regions are extracted by apply-

ing watershed segmentation to h-minima transforms of the image gradient instead

of using morphological opening and closing operations. The watershed segmen-

tation algorithm is considered to be one of the effective segmentation methods

which does not require any prior information about the segment number in the

image. The most important characteristic of this segmentation method is that

it models local contrast differences using magnitude of image gradient. Relative

contrast between nucleus, cytoplasm and background plays an important role in

our segmentation problem especially on identifying nucleus regions. Thus water-

shed segmentation fits as a suitable solution to extract the candidate regions.

There are many different algorithms to compute watersheds. However, they

mostly suffer from over-segmentation when they are computed from raw image

gradient. To overcome this problem Gençtav and Aksoy [21] use a multi-scale

approach to get accurate segmentation results over Pap smear images. They

generate a hierarchical partitioning of cell regions with the dynamics which are

related to regional minima of image gradient. Here a regional minimum is formed

from a group of neighboring pixels with the same value x where the pixels on its

external boundary have a value greater than x.

As a result of the multi-scale watershed segmentation algorithm, they obtain

a set of nested partitions of a cell region. Later, similarly to [26], they build a

hierarchical tree from the multi-scale partitions of a cell region and select the most

meaningful segments among different levels of the tree. However, again because

of different image structure of Pap smear Images, in [21] differently calculated

homogeneity and circularity measures are optimized for the meaningful region

selection step. Here nucleus regions are the meaningful regions and it is easier to

differentiate them by using their appearance, i.e., their homogeneity and shape

features. Therefore, after small segmented regions in the lower levels are merged

to form nucleus, the aim is to obtain homogeneous and circular nucleus regions at

some higher level. The full formed nucleus regions in the most homogeneous and

circular way are the segments we want to obtain. These nucleus regions may stay

the same during some number of levels until they merge with their surrounding

segments of cytoplasm.
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3.2 Segmentation at 20x Magnification

In this section, our goal is to segment the cell regions of 20x magnification images

and obtain correctly segmented nucleus areas. For this purpose we apply the

described segmentation algorithm in the previous section to 20x magnification

Pap smear images. Differently from this algorithm we do not extract background

regions. As Figure 3.1 shows in our Pap smear images there is not a clear back-

ground region that is full of white pixels. Therefore, we do not have enough

contrast to distinguish cell regions from background. Based on this fact, we di-

rectly apply the segmentation algorithm proposed in[21] to the Pap smear images.

Finally we obtain a segmentation map of segmented regions of background, cyto-

plasm and nucleus where the selected regions are numbered starting from 2 while

1 values represent the background.

However, when we directly apply the algorithm, we have over segmented seg-

mentation result (see Figure 3.3). As it could be seen from the figure, especially

background and cytoplasm parts are over segmented. To avoid this case, after

segmentation of 20x magnification Pap smear images, we eliminate some regions

potentially not nucleus. For this purpose, following the segmentation, we extract

four different features for each region which are namely mean intensity, size, circu-

larity and homogeneity. We select only potential nucleus regions by eliminating

rest of the regions according to experimentally determined threshold values of

these extracted features. These features and their threshold values are discussed

below. Figure 3.4 shows each step of the segmentation for a 20x magnification

Pap smear image.

Extracted Features from 20x Magnification Pap smear Images

After applying the automatic segmentation method, a set of features is ex-

tracted from each segmented region of 20x magnification Pap smear images. At

20x magnification segmentation step, our goal is to obtain only the nucleus regions

by eliminating the rest of the regions those are not nucleus regions. Therefore,

we need features to characterize and distinguish nucleus regions from cytoplasm

and background regions. Figure 3.5(a) shows an example area of a segmented
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20x magnification Pap smear image. As it could be seen from the figure, com-

pared to cytoplasm and background regions, nucleus regions are darker, circular

and more homogenous. Based on these criteria we extract four different features

from the segmented regions, which are mean intensity, size, circularity and homo-

geneity. Then, we select only nucleus regions according to experimentally fixed

threshold values of these features. To calculate the threshold values of these fea-

tures, we use three Pap smear images at 20x magnification which are included

in our dataset. The threshold values are determined qualitatively based on the

experiments which are done on these three Pap smear images.

• Mean Intensity feature corresponds to normalized L channel values of

Lab color space that are in the range between 0 and 1. However, since Pap

smear slides are colored with tones of blue and red, it differs between 0 and

0.4. We experimentally fix threshold value for this feature to 0.13. The

regions whose mean intensity is less than 0.13 are eliminated.

• Size feature of a region is the total number of pixels in that segmented

region. We have two different experimentally fixed threshold values which

are respectively 120 and 1060. The value 120 is used to eliminate very

small regions while 1060 vale is used to eliminate very large regions like

background regions.

• Circularity feature of each region is calculated as

fcirc =
4πA

P 2
(3.1)

where A and P is the area and the perimeter of a region respectively. Since

the perimeter of a 1-pixel size region is 0, the circularity of regions is between

0 and 1 for the regions whose size is larger than 1 pixel; the circularity value

1 represents a perfect circular region. The regions with the circularity value

less than 0.62 is eliminated. The value 0.62 is determined experimentally.

• Homogeneity feature of each node in the hierarchical tree is calculated

based on spectral similarity of the region to its parent node by using the

F-statistic. In linear regression, F-statistic is used to test the significance
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of the variances of two populations. In our problem, F-statistics is used to

measure the correlation between the means of two distributions concerning

their pooled variance at different levels of the hierarchical tree. According

to formula presented in [21], we calculate the homogeneity of a region as

follows

F (R1, R2) =
(n1 + n2 − 2)n1n2

n1 + n2

(m1 −m2)
2

s21 + s22
(3.2)

where R1 is a node in the hierarchical tree and R2 is its parent node. ni, mi

and s2i indicate the number of pixels, the mean of the pixels and the scatter

of the pixels for Ri respectively, where i = 1, 2.

The threshold value for this feature is set to 20675 experimentally; so that

the regions whose homogeneity value is less than this value are eliminated.

The regions which satisfy the threshold criteria for each feature are consid-

ered as nucleus regions. Figure 3.5(b) illustrates region elimination result of

Figure 3.5(a) according to these threshold values of features.

After we select the regions which are considered as nucleus, we extract each

of these regions from the original 20x magnification Pap smear image as an indi-

vidual image by adding 3 pixels margin to their bounding box position. Each of

these individual 20x magnification nucleus regions is used as a template for the

segmentation step of 40x magnification Pap smear images.

3.3 Segmentation at 40x Magnification

In this section, we explain segmentation of nucleus regions selected from 20x

magnification Pap smear images over 40x magnification Pap smear image. Since

we manually capture Pap smear images of the same slide area at 20x and 40x

magnification, we have registration error due to the drift and optical distortion

of the lens. Therefore, calculating corresponding relative positions of extracted

20x magnification regions in 40x magnification images is likely to be inaccurate.

Considering this fact, we extract the same regions from original 40x magnification
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images by calculating relative positions and adding 35 pixels margin in order to

guarantee that the nucleus is in the extracted region. The number 35 is not

a significant value for a 2048×2048 size 40x magnification Pap smear image.

However, it is experimentally determined minimum value to cover the registration

error.

Due to the added 35 pixels margin, the extracted regions from 40x magnifica-

tion images are likely to have unnecessary additional background and cytoplasm

part, and as mentioned previously, compared to 20x magnification images, 40x

magnification images have much more details (see Figure 3.2). As a conse-

quence of these two facts, the extracted 40x magnification images tend to be

over-segmented. Therefore, additional background and cytoplasm parts should

be removed to avoid poor segmentation results while saving the image part con-

taining the nucleus. As a possible solution to this problem we attempt to apply

template matching between extracted pairs of 20x and 40x magnification Pap

smear images. As mentioned in the previous section we extract segmented nu-

cleus regions from 20x magnification images by adding three pixels margin. In

this way we obtain nearly a perfect template where nucleus is centered. After we

scale 40x magnification nucleus region images by a factor of 0.5, we apply tem-

plate matching over the extracted and scaled 40x magnification regions by using

corresponding extracted 20x magnification regions as a rectangular template T

where the nucleus is in the center. We use sum of squared difference (SSD) as a

template matching method which is formulized as

SSD(x, y) =
∑
x′,y′

(T (x′, y′)− I(x+ x′, y + y′))
2

(3.3)

where T (x′, y′) represents pixel values of template image and I(x + x′, y + y′)

represents the pixel values of the image patch to compare the given template

image over the source image by sliding the template.

After we obtain accurate relative positions from template matching process,

we extract final regions from the 40x magnification Pap smear images by adding 5

pixels margin. Finally, we apply the segmentation algorithm on extracted regions.

Figure 3.6 summarizes the overall segmentation process.
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Depending on texture structure of nucleus regions, the extracted nucleus im-

ages from 40x magnification could get segmented into more than one pieces (see

Figure 3.7(a)). To solve this undesirable case, we use coarse nucleus boundaries

obtained from 20x magnification templates. For this, we first resize the 20x mag-

nification templates by factor two to have the same size as 40x magnification

images. Figure 3.7(b) shows the steps to obtain the nucleus boundary from cor-

responding 20x magnification template for the given nucleus in Figure 3.7(a).

Later we merge the segmented regions of the 40x magnification image whose at

least 75% area overlap with the coarse nucleus region that is obtained from 20x

magnification template. Figure 3.7(c) shows the final segmentation result after

merging the regions.

As a final step of 40x magnification segmentation, we overlay the segmented

40x magnification images on the original 40x magnification Pap smear image.

Figure 3.8 shows the final segmentation result for 40x magnification Pap smear

image.
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Figure 3.3: Over segmented 20x magnification Pap smear image result when the
segmentation algorithm is applied directly.
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Figure 3.4: Segmentation steps for a 20x magnification Pap smear image. Raw
image (1st row), the same Pap smear image after the segmentation algorithm
is applied (2nd row), potential nucleus regions after eliminating the rest of the
regions (3rd row).
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(a)

(b)

Figure 3.5: An example area from 20x magnification segmented image; (a) before
region elimination, (b) after region elimination.
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Figure 3.6: The overall process of obtaining a segmented nucleus region from a
40x magnification Pap smear image.

(a) (b) (c)

Figure 3.7: Initial segmentation result of the given 40x magnification nucleus
image (a), calculated 40x magnification coarse boundary from 20x magnification
nucleus template (b), the merged regions whose 75% overlap with the coarse
boundary of the nucleus (c).
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Figure 3.8: Final segmentation result of 40x magnification Pap Smear Image.
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Chapter 4

Feature Extraction and Distance

Measures

In this chapter we first describe and explain the details of our features extracted

from 40x magnification. Then, we present our tested methods for combination of

features to obtain distance matrix in order to rank nucleus regions.

4.1 Feature Extraction

Dysplastic changes and abnormality degree of cervical cells can be determined

by analyzing their cytoplasm and nucleus characteristics like size, color, texture

and shape. However, as explained in the previous sections in details, it is nearly

impossible to segment cytoplasm of each nucleus correctly. Since in Pap smear

slide images cells overlap and occlude each other, it is even a difficult task for

cyto-technicians and doctors to distinguish cytoplasm of each nucleus. Therefore,

in this study we only consider nucleus regions and aim to rank them by using

extracted features from only the nucleus regions.

Following segmentation of nucleus regions at 40x magnification, we extract

15 different features from a nucleus region. Eight of these features are defined or
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proposed to use by us as follows:

Contrast and homogeneity features are calculated from the L-channel co-

occurrence matrix of a nucleus region. Each element (i, j) in the co-occurrence

matrix represents the number of times that the pixel with value i occurred hori-

zontally adjacent to a pixel with value j for four different offsets. At this point,

contrast value is the intensity contrast between a pixel and its neighbor over the

whole image, so that a constant image contrast value is 0. Contrast feature is

calculated as ∑
i,j

| i− j |2 p(i, j) (4.1)

where i and j specify position of an element in the co-occurrence matrix, for row

and column respectively; and p(i, j) is the cell value of the co-occurrence matrix

at (i, j).

Homogeneity is the value that measures the closeness of the distribution of

elements in the normalized L channel co-occurrence matrix to its diagonal. Ho-

mogeneity feature is calculated as∑
i,j

p(i, j)

1+ | i− j |
(4.2)

where i and j specify position of an element in the co-occurrence matrix, for row

and column respectively; and p(i, j) is the cell value of the co-occurrence matrix

at (i, j).

Local binary patterns (LBP) feature is the special case of the Texture Spec-

trum model which is proposed in [27] [28]. LBP is one of the efficient texture

models in the literature. Basically it labels pixels in the image by thresholding

the neighborhood of each pixel in binary way. It has advantages like computa-

tional simplicity, suitability for real-time settings and robustness to the variations

caused by illumination. In order to extract LBP features, we use the Matlab im-

plementation presented in [29] [30] where a resulting LBP feature contains a

rotation-invariant LBP histogram of a nucleus region image in a (8,1) circular

neighborhood where 8 pixels are sampled in a circular fashion with 1 pixel radius

around a centered pixel.
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Mean intensity of a and Mean intensity of b features correspond to the

normalized a and b channel values of Lab color space respectively.

We use the Mean intensity , Size and Circularity features as explained

in the previous chapter.

The remaining seven features described below are a subset of the features used

in [4] for characterizing cervical cells.

Nucleus elongation is the ratio between the shortest diameter and the longest

diameter of the segmented nucleus region.

Nucleus roundness is the ratio between the nucleus area and the area bounded

the circle given by the nucleus longest diameter.

Nucleus perimeter is the perimeter length of the nucleus region.

Nucleus Longest Diameter is diameter of the smallest circle that circum-

scribes the nucleus region and calculated as the largest distance between two

pixels on the border of the nucleus region.

Nucleus Shortest Diameter is diameter of the largest circle that is encircled

by the nucleus region.

Nucleus Maxima and Nucleus Minima is the number of pixels each of which

is the maximum/minimum value inside of a 3×3 window centered on it.

In the Chapter 6 we test different combinations of these features in order to

determine the optimal number and combination of the features.

4.2 Distance Measures

In this section we present our approaches for computing distance matrixes in

order to combine multiple features. Since our ordering methods require a distance

matrix with positive values as an input for the ranking of the nucleus regions (see
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Figure 4.1: An overview of combining distance matrixes obtained from features

Ordering chapter for more details), we need to obtain a distance matrix from a

set of different combinations of the features.

Figure 4.1 shows an overview of our steps to compute an ultimate distance

matrix from multiple features. As it could be seen from the figure, we first

compute distance matrixes of each feature using the Euclidean distance metric

and we apply standart z-score normalization to each of these distance matrixes

as

X ′ =
X − µ
σ

(4.3)

where X represents one of these distance matrixes, µ is the mean of the matrix

elements and σ is the standard deviation of the matrix elements; X ′ corresponds

to the final zscore normalized distance matrix.

After z-score normalization, each element of X is centered to have mean 0 and

scaled to have standard deviation 1. Approximately 95% of the elements of the

distance matrix have z-score value between -1 and +1.

Later we map the distance matrices to a new space using different functions.

We aim to observe whether these mapping functions is helpful to improve the

results. Next, obtained distance matrix of each feature is combined by adding

them together. In the last step, if the minimum value of the final distance matrix

is a negative number, we shift this matrix to positive zone in a linear way by

subtracting the minimum value from the elements of distance matrix.

We use 5 different functions for mapping of distance matrixes. Below we
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explain our functions to map and compute a distance matrix of a feature.

Method1: No mapping function. We only shift the distance matrix after z-score

normalization as

DMn = X ′ −min(X ′). (4.4)

where DMn indicates distance matrix of nth feature

Method2: Log-sigmoid transfer function is the mapping method. Distances

matrix elements are calculated and scaled into the range between 0 and 1 as

DMn =
1

1 + e(−X′)
. (4.5)

Method3: Exponential function is the mapping method. Distances matrix ele-

ments are mapped to the interval (0,Inf).

DMn = e(−X
′). (4.6)

Method4: Mapping function is the square root of each element in the distance

matrix. Since square root function is valid for the positive values, we first shift

the z-score result matrix, and then map this distance matrix by taking the square

root of the distance matrix.

DMn =
√
X ′ −min(X ′) (4.7)

Method5: Square root is again the mapping function but in a different way.

This time we first take the square root of the raw distance matrixes, later we

apply z-score normalization and finally shift the distance matrix.

Y = fzscore(
√
X)

DMn = Y −min(Y )
(4.8)
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Chapter 5

Ordering

Finding a linear order for the objects of a dataset is a basic and important problem

of data analysis and pattern recognition. Ordering algorithms aim to get a sorted

list of the objects in a dataset by optimizing specific functions.

In this section, we introduce our ordering problem and methods to order the

segmented nucleus regions according to their abnormality degree. Basically we

aim to get an ordered list of nucleus regions where they are sorted from normal

nuclei to the most abnormal nuclei. In this way cytotechnicians or doctors could

save time by skipping normal nucleus regions and focus on only the cancerous

nucleus regions.

Classifying cells according to their abnormality degrees is a well-researched

problem of medical imaging and many different supervised approaches have beeb

studied for this purpose. However supervised methods require large training sets

for the learning phase to classify segmented nucleus regions. Collecting such a

large training set is a difficult and challenging task due to previously mentioned

facts like overlapping cells, and inconsistent staining. Moreover compared to nor-

mal cells, frequency of dysplastic/abnormal cells is quite small; therefore, it is not

realistic to collect a balanced, large training dataset which has sufficient number

of cells for each class. Training the supervised methods with imbalanced datasets

mostly induces biased results. Within this framework, unsupervised ordering
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methods are promising as they do not require any learning phase. However, it

has two main difficulties which make ordering challenging. The first one is that;

we need to get an ordered list with multiple criteria. In our ordering problem, our

multiple criteria are different combinations of the extracted features. Secondly,

we do not have a reference point to order the nucleus regions. Except these facts,

due to the nature of combination and permutation, time complexity could get

worse with the size of objects in the dataset and number of dimension which are

the features in our case.

Definition of Ordering

Given n objects in a dataset which is {O1, ..., On}, we first compute an n ×
n symmetric dissimilarity matrix D where D(i, j) represents the dissimilarity

between the ith and jth objects of the dataset. Later according to a defined

optimization function we reorder the dataset by minimizing a loss function or

maximizing a merit function as

minLoss(ϕ(D)) or maxMerit(ϕ(D)) (5.1)

where ϕ is the defined permutation function in order to reorder the elements of

D by permuting rows and columns at the same time.

In this thesis, in order to sort extracted nucleus regions from 40x magnification

Pap smear images, we apply different ordering algorithms on the nucleus features

extracted before. For this purpose, we use the R seriation package introduced in

[31]. In [31] authors implement different existing algorithms with R project. In

the following we first explain the details of the implemented ordering algorithms

in [31] and their usage in our dataset.

• Hierarchical clustering (HC)

Hierarchical clustering is one of the most popular clustering algorithms used

in biological research, especially for the works related to genes [32, 33, 34,

35]. The idea behind the algorithm is producing nested clusters where

each of them can be represented as a binary tree. In this binary tree data

structure nodes are placed according to their similarities. Even though this

38



method is more like a clustering approach, still we could use the leaves of

produced binary tree as an ordered list.

• Hierarchical Clustering Reordered by Optimal Leaf Ordering

(OLO)

This ordering algorithm is an extended version of HC (Hierarchical Clus-

tering). The algorithm first performs hierarchical clustering, and then im-

proves the result of hierarchical clustering with optimal leaf ordering ap-

proach by minimizing the Hamiltonian path. In graph theory, the Hamilto-

nian path corresponds to a path which visits each vertex exactly once in an

undirected or directed graph. In our ordering problem, the vertexes are our

nuclei and the edges of the undirected graph are the distances between two

nucleus regions based on the extracted features. These distances represent

the similarities between nuclei pairs in the graph. In our work we use the

implemented algorithm in [31] which is introduced by [32]. In the paper

authors minimize the Hamiltonian path and suggest a fast algorithm with

time complexity O(n4).

• Hierarchical Clustering Reordered by Gruvaeus and Wainer Al-

gorithm (GW)

The method reorders the objects with an additional criterion after perform-

ing hierarchical clustering. The proposed algorithm aims to find a unique

optimal order of a binary hierarchical clustering tree by testing the arrange-

ment of the leaf nodes so that, at each level the objects on the left and right

edges of each cluster are adjacent to the nearest object outside the cluster;

in this way, they are the most similar ones to each other. At this points our

nuclei are the leaves of the hierarchical clustering tree and we aim to find

an order where the most similar nuclei are side by side. In [31], package

gclus [36] implementation is used for this ordering algorithm.

• Traveling Salesperson Problem Solver (TSP)

The traveling salesperson problem (TSP) is a famous optimization problem

[37]. Ordering with TSP solver also corresponds to minimizing the Hamil-

tonian path length through a graph heuristically. In R seriation package
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we use the algorithm which minimize the Hamilton path where the vertexes

are our nuclei, and the edges of the graph are the distances between nucleus

pairs.

• Rank-two Ellipse Seriation by Chen

In this ordering algorithm again the Hamiltonian path is the criteria in

which the rank-two ellipse seriation method uses a minimal span loss func-

tion to calculate Hamiltonian path where the length of the Hamiltonian

path is equal to the resulting value of the minimal span loss function [38].

• ARSA

ARSA is a heuristic simulated annealing algorithm for the ordering of ob-

jects which is included in the R seriation package [31]. A symmetric dissim-

ilarity matrix in which the values in rows and columns only increase when

moving away from the main diagonal is a perfect anti-Robinson matrix,

and the number of violations in an anti-Robinson matrix are called as anti-

Robinson events. The proposed algorithm aims to minimize anti-Robinson

events as a loss function. In the [31], they use the code developed by [39]

for this ordering method.
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Chapter 6

Experiments

In this section we present and discuss our experimental segmentation and ordering

results performed on the Hacettepe and Herlev data sets.

As described in Chapter 3 in detail, we first segment Pap smear images at 20x

magnification. After we obtain segmented regions from 20x magnification Pap

smear images, we eliminate non-nucleus regions by using four different features

extracted from these segmented regions. Then, we segment the nucleus regions,

which are obtained from 20x magnification, at 40x magnification to extract good

quality features to use in the ordering procedure. Following segmentation, we

order the segmented nucleus regions by using different features extracted from

40x magnification Pap smear images with different ordering algorithms.

Below we provide detailed experimental evaluations of our segmentation and

ordering algorithms.

6.1 Evaluation of Segmentation

In the Hacettepe data set there are multiple cells; therefore, in order to evaluate

the segmentation results of this data set, for each input image of Pap smear slide,

we need to prepare a corresponding ground truth Pap smear image in which all
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Table 6.1: The ZSI results of three Pap smear images for the ground truth com-
pared to our segmentation.

40x Magnification Pap Smear Images ZSIs

Pap Smear Image 1 0.857
Pap Smear Image 2 0.805
Pap Smear Image 3 0.780

nuclei boundaries are delineated manually. After preparation of ground truth

images, in order to match and compare segmented nuclei in a Pap smear image

with the corresponding ground truth image, we compute the Zijdenbos similarity

index (ZSI) [40] which is basically the ratio of twice the common area between

two regions A1 and A2 to the sum of individual areas. The Table 6.1 presents ZSI

results of three Pap smear images from our Hacettepe data set. The segmentation

results of 40x magnification Pap Smear Image 1, Pap Smear Image 2 and Pap

Smear Image 3 are shown in Figure 6.2(a), 6.2(b) and 6.2(c) respectively. Since

0.7 specifies excellent agreement between the segments [40], it could be seen from

the Table 6.1 that our proposed segmentation method is successful.

For the segmentation of nuclei in the Pap smear images, we proceed in two

steps. First we segment Pap smear images at 20x magnification and select only

the potential nucleus regions by eliminating non-nucleus regions with respect to

thresholds values of four different features. Figure 6.1(a), 6.1(b) , 6.1(c) show

segmentation results for three different Pap smear images from the Hacettepe

data set. In the second step, we segment the selected nucleus regions at corre-

sponding 40x magnification Pap smear images as explained in Chapter 3 in detail.

Figure 6.2(a), 6.2(b) , 6.2(c) show the final segmentation results of corresponding

40x magnification Pap smear images.

In our segmentation step, it is very important to obtain all the nuclei in the

Pap smear images as accurately segmented nucleus regions. Once we have the

true nucleus regions, our method is able to segment the most of those regions

at 40x magnification; otherwise, once we miss a region at 20x magnification, we

cannot obtain this region from the corresponding 40x magnification Pap smear

image. Even though we obtain the most of nucleus regions successfully at 20x
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magnification Pap smear images, we may miss or/and inaccurately segment some

nuclei due to the some problems; especially the ones related to insufficient con-

trast. Below we specify these main problems.

• We could have insufficient contrast between nucleus and cytoplasm because

of the nature of Pap smear images. The main reason of this insufficient

contrast is the staining process of Pap smear images. As explained previ-

ously, after the staining procedure we come across inhomogeneity in a single

slide. In such a case, usually the dye that is used to color the cells in Pap

smear images spreads over a wider area in the cell and cause to smooth the

contrast.

• Focus is one of the most important problems of our segmentation step that

can be observed from the presented results. In a Pap smear image, there are

thousands of cells and they overlap each other. To examine these cells which

are overlapped by other cells, cyto-technicians use different focus levels. In

order to make focus problem clear, in Figure 6.3, we present the same Pap

smear image at three different focus levels. As it could be seen from the

figure, at each focus level of Pap smear images we observe new cells form

different layers of Pap smear slide.

In our 20x magnification Pap smear images, we have cells which are just

dark regions, just like the cells in the middle of Figure 6.3(a). Even though,

they are slightly darker than cytoplasm, they do not have shape of an or-

dinary nucleus. To understand what really these regions are, we need to

switch to a different focus level. Our segmentation results also are affected

by low contrast which is originated from this focus issue. In case of insuf-

ficient contrast, these regions are missed or segmented in such a way that

they are merged with other darker regions.

Moreover, the focus level may not be the same for some nuclei at 20x and

40x magnification; so that, a nucleus, which could be seen clearly at 20x

magnification, is invisible at 40x magnification, or vice versa. Since we use

a single focus setting in the experiments, some of these problems cannot be

avoided.

43



• Illumination is another problem which is related to microscope settings

and the lighting condition of the room where the Pap smear images are

captured. As an example, the illumination difference between Pap smears

images could be seen in Figure 6.2(a) and Figure 6.2(b). In the elimina-

tion step of non-nucleus regions, we use the same threshold value of mean

intensity feature for all Pap smear images in the data set. Therefore, after

elimination, step we have some extra cytoplasm or background regions se-

lected as nucleus regions due to this fact (see Figure 6.1 ). Mostly, except

intensity, these regions are similar to a nucleus region in terms of size and

circularity; therefore these regions should be eliminated. However, in such

a case, because of the threshold value and their intensity values, they are

considered as nucleus regions.

• The other factor which affects segmentation results is manually prepared

20x and 40x magnification Pap smear image pairs. Although we reduce the

registration error by applying template matching, we still have this problem

slightly in some Pap smear images (see Figure 6.1(b) and Figure 6.2(b)).

Among the mentioned issues, focus problem can be prevented by capturing

multiple images of the same the Pap smear slide area at different focus levels. For

the rest of these issues, which are beyond our control, using technologically more

advanced devices such as camera and microscope could help to avoid illumination

and drift problem. With them, segmentation results will be improved.

When we directly segment the Pap smear images at 40x magnification, we

obtain over segmented results in which especially nuclei of cells are fragmented

into many pieces due to more detailed texture of 40x magnification Pap smear

images. However, we need detailed texture as a feature to be used in ordering

step. Our segmentation method avoids this problem by obtaining nucleus regions

from 20x magnification and extracting the features from corresponding regions

of 40x magnification Pap smear images. Also, since sizes of 40x magnification

images are four times larger than 20x magnification images, it takes considerably

more time segmenting the Pap smear images at 40x magnification. Thus, our

approach, segments nucleus regions accurately and extract good quality features
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in computationally efficient way. Moreover, as a non-parametric, unsupervised

and robust algorithm, the proposed segmentation method ensures the necessary

conditions of an automatic screening system.

Since we have a single magnification for the Herlev data set we directly use

the Herlev segmentation results from [21].

6.2 Evaluation of Ordering

In Chapter 4 we explain our five different mapping functions for distance matrixes.

After experimenting with these mapping functions, we observe that there is no

significant difference between the simplest method (Method 1 ) and the other

mapping functions in terms of performance. Therefore, in order to keep the

process simple, we decide to use the Method 1 which only shifts the distance

matrix after z-score normalization.

Below, we present our ordering results for the segmented nucleus regions.

Since we have the ground truth values of nuclei in the Herlev data set, we first

show our ordering results for the Herlev data set.

6.2.1 Ordering Results of the Herlev Data Set

To measure the success of ordering algorithms statistically for the Herlev data

set we use kappa coefficients as our evaluation criteria. Kappa coefficients, also

known as Cohen’s kappa coefficients, are statistical measures which quantify the

correlation between categorical variables [41]. Since kappa coefficients take into

account the agreement occurring by chance, it is considered to be a more robust

measure compared to simple agreement calculation.

Suppose that each object in a set of N objects is assigned to one of g categories

by two raters. Then, we get a confusion matrix n where nth
ij element is the number

of observations which are labeled as category i by the first rater and as category
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j by the second rater. Kappa coefficients are calculated as follows

k =
Po − Pe

1− Pe

(6.1)

where Po and Pe correspond to proportion of the observed and the expected

agreement by the raters. Here k = 1 and k = 0 stand for complete agreement

and no agreement among the raters, respectively.

Weighted Kappa coefficients

Kappa coefficients only consider the matches between the observed agree-

ment and the expected agreement on the main diagonal of confusion matrixes.

Weighted kappa lets us consider off diagonal elements as well by including an

additional weight matrix. Weighted kappa coefficients are calculated as

kw =
Po(w) − Pe(w)

1− Pe(w)

=

∑
wijPij −

∑
wijPiPj

1−
∑
wijPiPj

. (6.2)

We use the following weight matrix as presented in [21]:

1 0.5 0 0.25 0.25 0 0

0.5 1 0 0.25 0.25 0 0

0 0 1 0 0 0 0

0.25 0.25 0 1 0.5 0.25 0.25

0.25 0.25 0 0.5 1 0.5 0.5

0 0 0 0.25 0.5 1 0.5

0 0 0 0.25 0.5 0.5 1


. (6.3)

To perform the ordering algorithms on the Herlev data set, we randomly select

25 cells from each class of the Herlev data set, except the columnar class. Since

in the Hacettepe data set columnar cells are rarely encountered, we drop and do

not include the columnar cells in our ordering experiments. Below we evaluate

the ordering results of these 150 cells from the Herlev data set.

In Table 6.2, we show our single and combined features which are used in

the ordering algorithms. The features between F1-F8 correspond to the features
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defined by us. The features between F9-F15 are a subset of the features used in

[4] for characterizing cervical cells. Rest of the features, between F16-F26, are

different combinations of the given single features. In the following we explain

the details of the combined features.

• k and kw performances of the circularity, the contrast and the homogeneity

features are worse than 0.2 for all of the ordering algorithms. Therefore,

in order to improve the ordering algorithms performances, we construct a

new subset of our features called F17, which does not include circularity,

contrast and homogeneity features.

• F16 is similar to F17; but this time, it does not include mean intensity

values of a and b channels of the Lab color space. In other words, we only

have the L channel of the Lab color space as a mean intensity feature.

• F18, F19 and F20 respectively include the circularity, the contrast and the

homogeneity features in addition to F17 in order to show how they affect

the ordering algorithms performances.

• F21 includes only the features between F9-F15 which are a subset of the

features used in [4].

• F23 is the combination of F17 and F21 in which there are features moslty

with the better performance than 0.2 in terms of k and kw.

• F22 is similar to F23, but this time, it does not include mean intensity

values of a and b channels of the Lab color space. In other words, we only

have the L channel of the Lab color space as a mean intensity feature.

• F24, F25 and F26 respectively include the circularity, the contrast and the

homogeneity features in addition to F23.

The Tables 6.3, 6.4, 6.5, 6.6, 6.7 and 6.8 respectively show the performances

of the ordering algorithms HC, OLO, GW, TSP, Chen and ARSA. Table 6.9

shows the best performance analysis of each of these ordering algorithm with the

corresponding feature set(s), and Figures 6.4, 6.5, 6.6, 6.7, 6.8 and 6.9 illustrate
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these best performances on the input Herlev data set. In the experimental results

higher values of k and kw indicate better ordering performances.

As the results in the Table 6.9 show, we get the best performance with the fea-

tures defined by us. According to the ordering algorithm performances presented

in the tables, the L channel mean intensity of the Lab color space, size and texture

features of a nucleus region are essential features to determine its abnormality

degree as expected (F16). Using a and b channel mean intensity values of the

Lab color space improves the ordering performances (F17). The most interesting

thing could be observed from the results is that; circularity feature do not show

good performance alone (F3). However when it is used with the essential features,

which are L channel mean intensity of the Lab color space, size and texture, the

performances of the ordering algorithms increase significantly (F18). Since cir-

cularity represents the deformation in the boundaries of the nucleus regions, this

case is also reasonable.

Among the ordering algorithms, the worst performance belongs to HC (Hi-

erarchical Clustering) algorithm and the best performances belong to GW and

OLO algorithms for the most of the feature combinations. Basically, both GW

and OLO are extended versions of HC algorithm. OLO is the hierarchical clus-

tering reordered by optimal leaf ordering and GW is the hierarchical clustering

reordered by Gruvaeus and Wainer algorithm as explained in Chapter 5.

These results indicate that we could get an ordered list of nuclei, without

cytoplasm features by using only the features extracted from nuclei. Moreover,

Figures 6.4, 6.5, 6.6, 6.7, 6.8 and 6.9 show that in the results of the ordering

algorithms, we have naturally formed two groups of normal and abnormal cells,

where normal cells are located in the one end of the ordered list and the abnormal

cells are located in the other end of the ordered list.

In [21], the best performance values obtained by using only nucleus features are

k = 0.055 and kw = 0.140. This shows that our features and ordering algorithms

improves the ordering results. Moreover, we could obtain more improved ordering

results by using cytoplasm features together with our nucleus features.
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Table 6.2: Features for the Herlev Data Set
Features Explanations

F1 mean intensity
F2 size
F3 circularity
F4 contrast
F5 homogeneity
F6 lbp
F7 mean intensity of a-channel
F8 mean intensity of b-channel

F9 nucleus elongation
F10 nucleus roundness
F11 nucleus perimeter
F12 nucleus longest diameter
F13 nucleus shortest diameter
F14 nucleus maxima
F15 nucleus minima

F16 F1 + F2 + F6
F17 F1 + F2 + F6 + F7 + F8
F18 F1 + F2 + F3 + F6 + F7 + F8
F19 F1 + F2 + F4 + F6 + F7 + F8
F20 F1 + F2 + F5 + F6 + F7 + F8

F21 F9 + F10 + F11 + F12 + F13 + F14 + F15

F22 F1 + F2 + F6 + F9 + F10 + F11 + F12 + F13 + F14 + F15
F23 F1 + F2 + F6 + F7 + F8 + F9 + F10 + F11 + F12 + F13 + F14 + F15
F24 F1 + F2 + F3 + F6 + F7 + F8 + F9 + F10 + F11 + F12 + F13 + F14 + F15
F25 F1 + F2 + F4 + F6 + F7 + F8 + F9 + F10 + F11 + F12 + F13 + F14 + F15
F26 F1 + F2 + F5 + F6 + F7 + F8 + F9 + F10 + F11 + F12 + F13 + F14 + F15
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Table 6.3: HC Ordering Performance

Features k kw

F1 0.072 0.266
F2 0.176 0.313
F3 0.024 0.005
F4 -0.016 0.007
F5 -0.016 0.007
F6 0.288 0.411
F7 0.072 0.266
F8 0.072 0.266

F9 0.072 0.266
F10 0.072 0.266
F11 0.072 0.266
F12 0.072 0.266
F13 0.072 0.266
F14 0.056 0.253
F15 0.072 0.264

F16 0.144 0.253
F17 0.072 0.133
F18 -0.008 0.204
F19 0.080 0.105
F20 0.080 0.105

F21 0.072 0.266

F22 0.016 0.111
F23 0.072 0.264
F24 0.152 0.296
F25 0.008 0.040
F26 0.008 0.040
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Table 6.4: OLO Ordering Performance

Features k kw

F1 0.232 0.378
F2 0.232 0.378
F3 0.104 0.187
F4 0.032 0.024
F5 0.032 0.024
F6 0.240 0.384
F7 0.232 0.378
F8 0.232 0.378

F9 0.232 0.378
F10 0.232 0.378
F11 0.232 0.378
F12 0.232 0.378
F13 0.232 0.378
F14 0.232 0.378
F15 0.232 0.378

F16 0.248 0.389
F17 0.248 0.386
F18 0.296 0.425
F19 0.128 0.269
F20 0.128 0.269

F21 0.232 0.378

F22 0.240 0.378
F23 0.256 0.386
F24 0.192 0.335
F25 0.232 0.378
F26 0.232 0.378
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Table 6.5: GW Ordering Performance

Features k kw

F1 0.272 0.408
F2 0.288 0.408
F3 0.104 0.187
F4 0.032 0.026
F5 0.032 0.026
F6 0.240 0.381
F7 0.272 0.408
F8 0.272 0.408

F9 0.272 0.408
F10 0.272 0.408
F11 0.272 0.408
F12 0.272 0.408
F13 0.272 0.408
F14 0.240 0.381
F15 0.240 0.381

F16 0.216 0.335
F17 0.224 0.370
F18 0.328 0.425
F19 0.184 0.307
F20 0.184 0.307

F21 0.272 0.408

F22 0.232 0.378
F23 0.240 0.381
F24 0.208 0.351
F25 0.184 0.343
F26 0.184 0.343
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Table 6.6: TSP Ordering Performance

Features k kw

F1 0.280 0.397
F2 0.232 0.378
F3 0.104 0.187
F4 0.040 0.032
F5 0.048 0.037
F6 0.248 0.389
F7 0.248 0.375
F8 0.280 0.400

F9 0.208 0.335
F10 0.288 0.403
F11 0.240 0.378
F12 0.320 0.425
F13 0.304 0.422
F14 0.056 0.231
F15 0.248 0.373

F16 0.288 0.403
F17 0.288 0.414
F18 0.000 0.149
F19 0.208 0.321
F20 0.160 0.280

F21 0.312 0.425

F22 0.216 0.329
F23 0.272 0.395
F24 0.264 0.381
F25 0.224 0.367
F26 0.232 0.367

53



Table 6.7: Chen Ordering Performance

Features k kw

F1 0.256 0.384
F2 0.256 0.386
F3 0.104 0.187
F4 0.024 0.015
F5 0.024 0.015
F6 0.248 0.378
F7 0.256 0.384
F8 0.256 0.384

F9 0.256 0.384
F10 0.256 0.384
F11 0.256 0.384
F12 0.256 0.384
F13 0.256 0.384
F14 0.256 0.384
F15 0.256 0.384

F16 0.256 0.386
F17 0.256 0.386
F18 0.232 0.365
F19 0.192 0.340
F20 0.192 0.340

F21 0.256 0.384

F22 0.248 0.378
F23 0.248 0.378
F24 0.248 0.378
F25 0.240 0.375
F26 0.240 0.375

54



Table 6.8: ARSA Ordering Performance

Features k kw

F1 0.248 0.378
F2 0.248 0.384
F3 0.104 0.187
F4 0.040 0.032
F5 0.024 0.015
F6 0.248 0.378
F7 0.248 0.378
F8 0.248 0.378

F9 0.248 0.378
F10 0.248 0.378
F11 0.248 0.378
F12 0.248 0.378
F13 0.248 0.378
F14 0.248 0.378
F15 0.248 0.378

F16 0.248 0.378
F17 0.248 0.378
F18 0.264 0.395
F19 0.208 0.356
F20 0.208 0.356

F21 0.248 0.378

F22 0.248 0.378
F23 0.248 0.378
F24 0.256 0.386
F25 0.248 0.378
F26 0.248 0.378

Table 6.9: Best Performance Analyses of the Ordering Algorithms

The Ordering Algorithm The Best Performance Feature Set k kw

HC F6 0.288 0.411
OLO F18 0.296 0.425
GW F18 0.328 0.425
TSP F12 0.320 0.414
Chen F2, F16, F17 0.256 0.425
ARSA F18 0.264 0.395
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6.2.2 Ordering Results of the Hacettepe Data Set

Figure 6.10 shows an example ordering result for a Pap smear image from the

Hacettepe data set. This resulting image is obtained by applying OLO ordering

algorithm with a new feature set that includes L channel mean intensity of the

Lab color space, size, circularity and texture features (F1+F2+F3+F6). Since

we do not have the ground truth abnormality degree values of the cells in the

Hacettepe data set, we are not able to present numeric results. However, as it

could be observed from the figure, the color bar specifies the order of the nucleus

regions where blue color and its tones correspond to potential large abnormal

nucleus regions and red color and its tones correspond to small nucleus regions

or inflammations.

6.3 Implementation Settings and Computa-

tional Complexity

Template matching process of the segmentation step was implemented in C++

by using the OpenCV library. Rest of the segmentation step was implemented in

Matlab. The ordering step was implemented in R Project by applying the ordering

algorithms that are provided by the R Package seriation. In a PC with a 2.30 GHz

Intel Core i7 processor and 8 GB RAM, the overall process of segmenting nucleus

regions at 20x magnification and ordering these segmented nucleus regions in 40x

magnification takes 1280 seconds (∼21 minutes) for an example Pap smear pair

from the Hacettepe data set which includes 98 segmented nuclei. Time complexity

can be improved by using optimized codes for the Matlab implementation part.
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(a)

(b)

(c)

Figure 6.1: Segmentation results of three Pap smear images at 20x magnification.
1st column shows initial segmented results and 2nd row shows the selected nucleus
regions.
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(a) (b)

(c)

Figure 6.2: Final segmentation results at 40x magnification. The given images
are corresponding pairwise images of 20x magnification Pap smear images shown
in Figure 6.1.
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(a) (b) (c)

Figure 6.3: Three Pap smear images that correspond to the same Pap smear slide
area at three different focus settings.
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Figure 6.4: Best performance of the ordering algorithm HC: k = 0.288, kw =
0.411. The images are resized to the same width and height so the relative sizes
of the cells are not proper.
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Figure 6.5: Best performance of the ordering algorithm OLO: k = 0.296, kw =
0.425. The images are resized to the same width and height so the relative sizes
of the cells are not proper.
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Figure 6.6: Best performance of the ordering algorithm GW: k = 0.328, kw =
0.425. The images are resized to the same width and height so the relative sizes
of the cells are not proper.
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Figure 6.7: Best performance of the ordering algorithm TSP: k = 0.288, kw =
0.414. The images are resized to the same width and height so the relative sizes
of the cells are not proper.
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Figure 6.8: Best performance of the ordering algorithm Chen: k = 0.256, kw =
0.386. The images are resized to the same width and height so the relative sizes
of the cells are not proper.
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Figure 6.9: Best performance of the ordering algorithm ARSA: k = 0.264, kw =
0.395. The images are resized to the same width and height so the relative sizes
of the cells are not proper.
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Figure 6.10: Ordering result for the segmented nucleus regions of Figure 6.2(a).
The tones of colors represent the similarities between the nucleus regions.
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Chapter 7

Conclusion

We presented a computer-assisted screening procedure which aims to automate

the Pap smear screening process and provide an ordered nuclei list to help the

cyto-experts. We only aimed to accurately segment nucleus regions by using a

multi-scale hierarchical segmentation algorithm. To overcome contrast and de-

tailed texture tradeoff, where contrast is an important property for segmentation

and detailed texture is an important property for feature extraction, we first

segmented the Pap smear images with better contrast at low level (20x) magni-

fication, and we only chose the regions which are considered as nucleus regions.

Then, we switched to a higher level (40x) magnification of the Pap smear images

to extract good quality features for each obtained nucleus, in terms of morpholog-

ical properties of the nucleus regions, i.e. size, color, shape and texture. Finally

we compared different ordering algorithms using the features extracted from nu-

cleus regions for the ranking of the segmented nucleus regions according to their

abnormality degrees.

Considering the fact that it is even very difficult for an expert to differentiate

the boundaries of cytoplasm for each nucleus, where grouped cells overlap and

occlude each other in the Pap smear images, our ultimate goal is the ordering

of the cervical cells by using only the features extracted from the segmented

nucleus regions. Our experiments using two data sets showed that the proposed

unsupervised segmentation and ordering methods could accurately segment and
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order the segmented nucleus regions according to their abnormality degree in

images having inconsistent staining, poor contrast, and unknown number of cells.

Furthermore, the experiments also showed that the cervical cells could be sorted

according to their abnormality degree by using only the nucleus features. The

ordering algorithms produced a list where the normal cells are located in one end

of the list and the abnormal cells are located in the other end of the list. In this

way, the ordered list groups the cells into normal and abnormal classes.
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