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An Adaptive Speckle Suppression Filter 
for Medical Ultrasonic Imaging 

Mustafa Karaman, M. Alper Kutay, and Gozde Bozdagi 

Abstract- An adaptive smoothing technique for speckle sup- 
pression in medical B-scan ultrasonic imaging is presented. The 
technique is based on filtering with appropriately shaped and 
sized local kernels. For each image pixel, a filtering kernel, which 
fits to the local homogeneous region containing the processed 
pixel, is obtained through a local statistics based region growing 
technique. Performance of the proposed filter has been tested on 
the phantom and tissue images. The results show that the filter 
effectively reduces the speckle whie preserving the resolvable 
details. The simulation results are presented in a comparative 
way with two existing speckle suppression methods. 

I. INTRODUCTION 
ECAUSE of the coherent nature of phased array ultra- B sound scanners, constructive and destructive interference 

effects of backscattered echoes from unresolvable random 
tissue inhomogeneities result in mottled B-scan images [ 11-[4]. 
This occurs especially in imaging organs such as liver and kid- 
ney whose underlying structures are too small to be resolved 
by ultrasound scanners. Speckle is the term used for granular 
pattern that appears on B-scans due to the mottling and can be 
considered as a kind of multiplicative noise. Speckle degrades 
the image quality of B-scans, and hence reduces the ability of 
a human observer to discriminate the fine details in diagnostic 
examination. It also decreases the efficiency of further image 
processing such as edge detection. 

Various speckle reduction methods based on incoherent 
processing and image postprocessing techniques have been 
reported in the literature. Incoherent processing techniques are 
based on the averaging of multiple images of the same scan 
plane, where the images are obtained by varying transducer 
frequency and/or view angle to achieve independent or par- 
tially uncorrelated speckle patterns [5], [6]. These imaging 
techniques increase target-detection capability of phased array 
scanning at the expense of increased system complexity. On 
the other hand, speckle suppression schemes based on image 
postprocessing involve nonadaptive or adaptive filtering of the 
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B-scan image to smooth out speckle. These techniques do not 
require any hardware modification in the image reconstruction 
system, and hence have found a growing interest [7]-[16]. 

Ultrasound B-scan images have some special features that 
must be preserved by the filtering, such as bright large scale 
interfaces between organs, structures with dimensions com- 
parable to speckle size, and boundaries between two regions 
with slightly different gray levels. Therefore, linear nonadap- 
tive smoothing techniques used for other image processing 
purposes may not be adequate for ultrasound images. Many 
of such techniques introduce severe blurring and/or show 
unacceptable performance in elimination of speckle. Various 
adaptive filtering techniques for different applications, es- 
pecially for removal of signal dependent noise, have been 
reported in the literature [ 191-[23]. Adaptive filtering schemes 
based on image local statistics have been used for speckle 
reduction in ultrasonic B-scan imaging [7], 181, [11]-[131. 

Identification of characteristic parameters of speckle statis- 
tics is critical for speckle suppression techniques based on 
adaptive postfiltering. It has been shown that the envelope 
detected echo signal of the fully developed speckle has the 
Rayleigh distribution with the mean proportional to the stan- 
dard deviation [3], [17], [18], [lo]. Recently, Loupas ef al. 
[ 1 11 have shown that nonlinear processing (such as logarithmic 
compression) employed on ultrasound echo images affects the 
speckle statistics in such a way that the local mean becomes 
proportional to the local variance rather than the standard 
deviation. This result has been used in adaptation of filter 
parameters to smooth out speckle from B-scans [8], [11]-[13]. 

In this study, an adaptive speckle suppression filter (ASSF) 
based on smoothing of B-scan images using local statistics 
is presented. The filter adaptation is achieved by using ap- 
propriately shaped and sized local filtering kernels. Since no 
limitation on kernel shape is imposed, each kernel effectively 
fits an arbitrarily shaped homogeneous region containing the 
processed pixel. Each kernel is obtained through a region 
growing which employs image local statistics as the region 
growing criteria. Performance of ASSF is tested on both 
a tissue-mimicking phantom image and a liver image. The 
results are presented in a comparative way with two speckle 
suppression methods proposed in [ 1 11, [ 121. 

In the next section, the adaptive speckle suppression, includ- 
ing the measurements of speckle statistics on the phantom and 
tissue images and filtering procedure, are presented. Section I11 
covers the simulation results and comparison. Selection of the 
filter parameters and computational complexity of the filter 
are discussed in Section IV. 
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A. The Measurements 

Various measurements on a phantom image and a liver 
image are performed to examine the speckle statistics. These 
measurements are variance/mean versus window size and vari- 
ance versus mean. The phantom image (Fig. 4(a)) is a portion 
of a phased array B-scan sector image. It is reconstructed 
by digital processing of radio frequency data acquired from 
a standard AIUM resolution phantom with a conventional 
3.3-MHz, @-element linear array. The image has a 60-dB 
display dynamic range resulting from logarithmic compression 
of envelope detected echo. The pixel resolution of the phantom 
image is about 0.2 mm. Further details about the phased array 
data and reconstruction of the phantom image can be found 
in [24] and [25], respectively. The liver image (Fig. 9(a)) 
is obtained using a commercial scanner with a 3.5-MHz 
curvilinear array. The display dynamic range of the image 
is 50 dB and the pixel resolution is about 0.4 mm. 

To choose a proper window size to represent the speckle 
statistics, local mean and variance on speckle areas with on 
speckle areas with no resolvable details are measured for 
different sized square windows. The mean and variance are 
computed as 

W/2 W P  

(1) pi ' =  - 
,J w2 xi-m,j-n 

m=-W/2 n=-W/2 

WI2 W P  

a?. w == - w2 (xi-m,j-n - ~ i , j ) ~  (2) 
m=-W/2 n=-W/2 

where xi,j is the pixel at the location ( i , j ) ,  and W x W 
is the size of the square window. The ratios of variance to 
mean for different window sizes are shown in Fig. 1. For 
each window size, the variance and mean computations are 
carried out at different locations on speckle regions and the 
results are averaged. The error bars of the figure represent 
one standard deviation of the averaged results. Fig. 1 shows 
that the accuracy of estimation of the speckle statistics, as 
expected, increases with window size. The asymptotic value 
of the variance/mean of speckle is about 2.5 and 2.0 for the 
phantom and liver images, respectively. The figure indicates 
that the window sizes larger than 9 x 9 can approximate the 
speckle statistics for both of the phantom and liver images. 

The local variance, a;,j, and local mean, pi, j ,  at different 
locations on speckle regions are measured to test their relation 
(Fig. 2). In these measurements, a square window with a 
size of 11 x 11 is used. Fig. 2 illustrates that the ratio of 
variance to mean is constant and is about 2.5 and 2.0 for 
the phantom and liver images, respectively. As a result, the 
measurements indicate that the relation between variance and 
mean of the speckle on the phantom and liver images is linear 
[ 111. Furthermore, the measurements depicted in Fig. 2 fit to 
the following signal-dependent noise model [ 111: 

x = s + J ; ; n  (3) 

where x, s,  and n represent the observed signal, noise-free 
signal, and noise, respectively. This model implies that, on 
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Fig. 1. 
phantom image and (b) the liver image. 

The local statistics computed on different windows for (a) the 

homogeneous regions where s can be assumed constant, the 
image variance is proportional to the mean. 

B. The Filter 

The signal-dependent noise model leads to use of smoothing 
operators on the homogeneous regions where the signal can 
be assumed constant. The local variance to mean ratio of 
speckle can be easily measured on the image. Then, using 
the measured parameter, it is possible to decide whether the 
processed pixel is within a homogeneous region or not. In 
general, if the local variance to mean ratio is larger than that 
of speckle, then the corresponding pixel can be considered as 
a resolvable object. Otherwise, it belongs to a homogeneous 
region, and hence is subject to smoothing [12]. The shape 
of speckle pattern and average speckle size vary at different 
locations of sector images. Therefore, it is highly desirable 
to have arbitrarily shaped and sized homogeneous regions for 
smoothing. The designed ASSF overcomes these problems in 



KARAMAN et ul.: ADAF'TIVE SPECKLE SUPPRESSION FILTER 285 

380, 1 
I 

360 - 
340 

320 - 

- 

240 - 
220 - 
200 - 
180' I 80 90 100 110 120 130 140 150 

MEAN 

I 1 - a=0.001, b=0.01, c=50 

0.02t 

a=0.001, M . 0 5 .  c=100 1 
I " I 

0.01 L. J 

'0 011 Oj2 013 014 015 016 017 Ole 019 1 
VARIANCE / MEAN 

(a) Fig. 3. 
local statistics, a. 

The statistical similarity bound, B ( c r ) ,  as a function of normalized 

350 - 

300 - 

w 4 250 - 
5 

3 
200- 

150 - 

100- 

this paper (cy0 = 2.5 and cy0 = 2.0 for the phantom and liver 
images, respectively). According to the measurements depicted 
in Fig. 1, the window size is chosen as 11 x 11 for all statistics 
computations in this study if not stated otherwise. As the first 
step in ASSF, ai,j for all ( i ,  j )  and cy0 are computed and stored 
in a table to be used in the region growing. 

2 )  Region Growing Procedure: The region growing is used 
to form groups of pixels satisfying a certain homogeneity crite- 
rion [26], [27]. Depending on the application, the homogeneity 
criterion, which is the critical point in region growing, can be 
a function of various image parameters, such as gray level, 
texture, local statistics, and color similarities. Each parameter 
characterizes the homogeneity from a different point of view. 

loo MEAN 160 180 200 In ASSF, the local statistics, cr,,j, are used as the quan- 
... _. .. . 

titative measure to obtain a homogeneous region for each 
image pixel. A fixed sized square window, which accurately 
represents the statistics, is chosen to compute the 
local statistics at each pixel location. In region growing, each 

(b) 

Fig. 2. 
speckle on (a) the phantom image and (b) the liver image. 

The linear relation between the local variance and mean of the 

speckle suppression. This is achieved through a region growing 
procedure which effectively fits the grown region to the 
homogeneous area without imposing any shape constraint. The 
region growing procedure employs a look-up table consisting 
of statistical bounds for different values of local statistics, 
instead of using a single hard bound as the growing criteria. 
The overall procedure of ASSF can be described in three 
main steps: computation of local statistics, region growing, 
and application of the smoothing operator. 

I )  Computation of Local Statistics: The local statistics is 
computed using the mean and variance expressions given in 
( 1 )  and (2), respectively. For the sake of simplicity, a single 
parameter representing the local variance to mean ratio for a 
pixel located at ( i $ j )  is defined as 

(4) f f L J  - -. 

Also, the characteristic value of the local statistics of speckle 
is denoted by (YO and will be used accordingly in the rest of 

- G 
PL,>J 

image pixel is taken as a seed point. Then, any pixel with 
local statistics close to the seed pixel's local statistics within a 
certain bound is included to the region of the seed pixel. This 
search is repeated for all pixels which are spatially close to the 
seed pixel within a certain distance bound. In other words, to 
test whether a pixel (m, n) belongs to the homogeneous region 
of a seed pixel ( i , j ) ,  the following must be satisfied: 

(7) 

These tests are performed for all pixels (e.g., for all m and n)  
to obtain the final homogeneous region for the seed pixel ( i ,  j ) .  
The connectivity, statistical similarity criterion, and spatial 
distance bound, expressed in (5 ) ,  (6), and (7), respectively, are 
used to control the shape and size of the growing region. Test 
of the connectivity is easily realized in the region growing by 
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following the neighboring pixels of the seed pixel andor pixels 
already included in the region. The spatial distance bound, Dtl, 
is the locality parameter and hence depends on the kernel size 
used for computation of the local statistics. In ASSF, the Di, 
is chosen in such a way that the total number of pixels in the 
grown region does not exceed W 2 .  The statistical similarity 

bound, p( .), is chosen as a function of ( Y , . ,  as 

(8) 

where ( 1 ,  (1,  and c are coefficients that depend on N O  and 
the desired smoothing level. The coefficient a is a biasing 
factor which controls smoothing employed both on speckle 

/ l ( f k , . , )  = a + t x - ~ l  " , , J  
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Fig. 5 .  
by (bl HRGMF, ( c )  AWMF, (dl ASSF-MEAN, and (e) ASSF-MEDIAN. 

The magnified portions of the phantom image: (a) original and filtered 

and signal, e.g., larger values of a result in higher smoothing 
of both speckle and edges. The coefficient 6 is a scaling factor 
used for adjusting the magnitude of statistical bound. Larger 
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(a) HRGMF, (b) AWMF, (c) ASSF-MEAN, and (d) ASSF-MEDIAN. 

Histogram of the nonnalized variance of the filtered phantom images: 

values of b increase smoothing level as far as c allows. The 
third coefficient, c, controls the value and the sharpness of the 
statistical threshold, and hence directly depends on NO. The 
pixel with local statistics below this threshold is smoothed 
more and vice versa. Since speckle statistics mainly depend 
on the scanner specifications, the coefficients of (8) can be 
determined beforehand and stored in a look-up table. For two 
different sets of the coefficients, the P ( N )  for the normalized 
N is shown in Fig. 3. 

The region growing procedure described above results in 
a connected, appropriately shaped and sized homogeneous 
region for each seed pixel. Note that the grown region is not 
necessarily symmetric around the seed pixel. Also note that, 
in the limiting case, the grown region can have a unity size 
that consists of only the seed pixel. 

3) Application of Smoothing Operator: A smoothing oper- 
ator (mean or median) is applied on each kernel obtained 
through the region growing: The output corresponding to each 
seed pixel is the meadmedian of the pixels within the grown 
region associated with the seed pixel. After filtering of the 
whole image, the neighboring regions with similar intensity 
values are merged. Then, the output pixel values corresponding 
to the seed pixels of the merged regions are updated by 
applying the smoothing operator on the new kernels. The 
merging is realized as follows. Consider the grown region of a 
seed pixel located at ( i . , j ) .  Let this region be labeled by . Z i , j ,  

and denotes the number of pixels in 2 i . j .  If N,, j  5 Kb, 
then Zi,J is not involved in the merging procedure. Otherwise, 
each region Z,,,,, neighboring the region Zi, is merged to the 
region Z;,j  if the following is satisfied: 

Here, ALL and Kh are positive constants and represent the 
bounds for the gray level intensity and the number of pixels, 
respectively. 
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Fig. 7. Pixel values along row 93 of the original and filtered phantom 
images: (a) HRGMF, (b) AWMF, (c) ASSF-MEAN, and (d) ASSF-MEDIAN. 

111. SIMULATIONS AND COMPARISON 

The performance of ASSF is investigated on the phantom 
and tissue images together with two recently reported methods 
[ 1 11, [ 121 employing image local statistics in filter adaptation. 
The filter proposed in [l 13 is an adaptive weighted median 
filter (AWMF) whereas the other reported in [12] is a homo- 
geneous region growing mean filter (HRGMF). Each of these 
methods is outlined here before presenting the simulations and 
comparison. 

A. The Methods 

1) ASSF: The ASSF with two different smoothing opera- 
tors, arithmetic mean and standard median, is considered here. 
The overall procedure of ASSF can be outlined as follows: 

Prepare the table for the region growing criteria (8). 
Compute ai,j for all (z,j) ((l), (2), and (4)). 
For all pixels: 
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--Grow the homogeneous region ((5)-(8)). 
-Apply smoothing operator in the grown region. 
-Output the result. 
For all pixels: 
-Merge the neighboring regions (9). 
-Update the outputs by applying smoothing operator 

The spatial distance bound Db of (7) is chosen in such a way 
that the number of pixels in the grown region does not exceed 
11 x 11, which is the window size used for the computations 
of cui,j's. The bounds used for the region merging (9) are 
&i = 5 and Kb = 5. Also, the coefficients of (8) are chosen 
as a = 0.001, b = 0.01, and c = 50 for the phantom image 
and a = 0.001, b = 0.05, and c = 100 for the tissue image. 

2) HRGMF: The filtering kernels of HRGMF are obtained 
through a split and merge procedure used in region growing 
based segmentation. The kernel shape is restricted to be 

on the merged regions. 
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rectangular. The procedure of HRGMF can be outlined as 
follows: An initial seed region with size comparable to average 
speckle size is chosen. If N, 5 QO, then the initial seed region 
is taken as the final region. Otherwise, the initial seed region is 

region (one at a time) until ( v ,  5 NO. Then, the final seed 

region is grown by merging the neighboring pixels along a 
row/column if a s  < QO where 

1 1  
contracted by splitting edge rows and columns of the current (1s = ~- -y( .r l .  / - p L  J ) * .  

1 ' 1  J '25 s 
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Histogram of the normalized variance of the filtered liver images: 

Here, S represents the merged row/column, z k , ~  are pixels 
within S, QS is the number of pixels within S, and ,LL%,~ is 
the mean of the current region excluding S .  The growing 
is continued until as > QO. The standard mean filtering is 
applied on the final grown region and the output is assigned 
to the seed pixel. In our simulations with HRGMF, the initial 
seed region has a size of 7 x 7, and cy0 is 2.5 and 2.0 for the 
phantom and tissue images, respectively. 

3) AWMF: The weighted median processing in AWMF 
is performed on a fixed running window with the weights 
adjusted according to the local statistics. For filtering operation 
on pixel ( z , j ) ,  the pixel weights in the window with a size of 
W x W are chosen as follows: 

(1 1) 

where W O  is the central weight and g is a scale factor. 
The negative weights are set to zero. If a,,J = 0, then 
AWMF performs the maximum smoothing and behaves as a 
standard median filter with a kernel size of W x W .  If cy,,J is 
sufficiently large, then it fully preserves the signal value. In our 
simulations, the parameters of AWMF are chosen as W = 9 
and WO = 99 for filtering of both the phantom and liver images 
whereas the value of g is 5 and 7.5 for the phantom and liver 
images, respectively. 

wm,n = WO - g J ( i  - m)2 + ( j  - n)2a % > I  

B. Simulation Results and Comparison 
The performance of each filter outlined in the previous 

subsections is evaluated qualitatively on the phantom and liver 
images. Fig. 4 shows the original and filtered phantom images 
using HRGMF, AWMF, ASSF with mean operator (ASSF- 
MEAN), and ASSF with median operator (ASSF-MEDIAN). 
The two portions of each image, showing a cyst structure 
and distribution of the point reflectors, are magnified and 
presented in Fig. 5. For each filtered image, the histogram 
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Fig. 11. Pixel values along column 205 of the original and filtered liver 
images: (a) HRGMF, (b) AWMF, (c) ASSF-MEAN, and (d) ASSF-MEDIAN. 

of the normalized local variance is given in Fig. 6, where the 
local variance at each pixel is normalized to that of the original 
image pixel. Also, pixel values and normalized local variance 
along row 93 are given in Figs. 7 and 8, respectively. The 
original and filtered liver images are shown in Fig. 9. The 
histograms of normalized variances of the filtered images are 
given in Fig. 10. Pixel values and local variance along the 
column 205 are presented in Figs. 11 and 12, respectively. 

Comparison of the filtered images (Figs. 4 and 9) together 
with the variance histograms (Figs. 6 and 10) indicates that 
each filter effectively smooths speckle regions on the images, 
but each filter shows different action to preserve edges and 
textural content of resolvable structures. The AWMF preserves 
the edges and point targets relatively better than the HRGMF, 
where the HRGMF performs partial smoothing in almost all 
regions. The ASSF, especially ASSF-MEAN, does not smooth 
the edges and preserves the textural content of resolvable 
objects. The ASSF-MEDIAN acts as similar to the AWMF 
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in smoothing of low contrast lesions. It is illustrated in Fig. 5 
that ASSF shows better performance in preserving the point 
targets compared to the others. Fig. 5 depicts that ASSF- 
MEAN fully preserves the textural content and edges of the 
cyst while smoothing the speckle region surrounding the cyst. 
The HRGMF and AWMF smooth the inside of the cyst as well 
as the surrounding speckle region. Figs. 6 and 10 illustrate 
that the number of highly smoothed and preserved pixels of 
the ASSF images, indicated by the number of pixels with very 
large and very small local variances, respectively, is larger 
than that of any other filter. Figs. 7, 8, 11, and 12 illustrate the 
action of each filter along a single image line. The normalized 
variances corresponding to the output of ASSF along the 
regions containing resolvable objects are relatively closer to 
unity. In general, the simulation results show that each filter 
can effectively suppress speckle and performance of ASSF- 
MEAN to preserve the edges, point targets, and content of 
low contrast lesions better than that of the other filters. 

29 1 

Iv .  DISCUSSION AND CONCLUSION 

An adaptive filter for smoothing speckle from ultrasound B- 
scan images is investigated. This filter employs a smoothing 
operator (mean or median) on kernels obtained by the local 
statistics based region growing. The filter makes use of local 
image content to eliminate speckle effectively while preserving 
resolvable details. Trade-off between smoothing and signal 
preservation is controllable by the look-up table consisting of 
statistical similarity bounds for different values of local sta- 
tistics. Performance of the proposed filter has been evaluated 
and compared to that of two other filters by simulations on the 
B-scan phantom and tissue images. In these simulations, the 
filter adaptation parameters have been chosen through various 
trials to obtain good performance both in smoothing and in 
signal preservation. Future studies should quantitate the filter 
performance for various filter parameters using test phantoms 
containing both high and low contrast details with different 
size, contrast level, and spacing [28], [29]. 

Adaptation of ASSF, as well as those of HRGMF and 
AWMF, is based on the image local statistics. Since the 
adaptation criteria are based on the same ground, it may be 
expected that the performances of the filters would be similar. 
The better performance of ASSF in preserving resolvable 
details, however, is the result of different schemes employed 
in adaptation. In ASSF, adaptation of kernel shape as well 
as size results in effective fitting of the smoothing window to 
arbitrarily shaped and sized homogeneous regions. In addition, 
the look-up table, consisting of statistical similarity bounds 
used for the region growing, offers more efficient criteria to 
obtain homogeneous regions, compared to the case of using a 
tight bound such as (YO employed in HRGMF. 

The window size used for computations of local statistics is 
chosen as 11 x 11 by means of the measurements presented in 
Fig. 1 .  The window size depends on the average speckle size 
determined mainly by the scanner specifications. Therefore, 
the window size used in this study may not be suitable for 
other ultrasound scanners, and hence it must be measured prior 
to the filtering. The window size must be large enough for 
accurate measurement of local statistics. On the other hand, 
it must be kept sufficiently small for accurate detection of 
resolvable structures. 

The characteristic value of fully developed speckle statistics, 
CYO, is a critical factor in forming the look-up table of p( .) used 
for the region growing. Generally, pixels with ai,j < (YO are 
treated within the homogeneous region, and hence p(.) can 
be sufficiently large to achieve a desired smoothing level. On 
the other hand, for signal preservation, p(.) must be small 
for those pixels with ai,j < (YO that correspond to resolvable 
details. Since the speckle statistics depend on the scanner 
specifications, for different scanners, the coefficients used 
for forming the look-up table of p( .) must be appropriately 
determined through various trials. 

Smoothing using arbitrarily shaped and sized kernels can 
produce some high-frequency artifacts on the output image. 
The region merging procedure in ASSF is employed to avoid 
such artifacts. The similarity of mean intensities of the neigh- 
boring regions and the their sizes are used as the merging 
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criteria that are represented by A p  and Kb, respectively, in 
(9). Ap must be large enough to prevent the high-frequency 
artifacts and, on the other hand, it must be small enough to 
avoid blurring. Since the larger values of Kb can result in 
merging of regions corresponding to the resolvable details, it 
must be kept sufficiently small. These parameters also depend 
on the imaging system, and hence must be properly chosen for 
different ultrasound scanners. Also, speckle statistics may be 
modified by signal processing employed in some commercial 
scanners resulting in a nonlinear relation between speckle 
variance and mean [30]. Such effects must be compensated 
prior to speckle suppression with ASSF as well as with 
the methods employing filter adaptation based on the linear 
relation between speckle variance and mean [30]. The optimal 
selection of the filter parameters and compensation of signal 
processing effects independent to the scanner are the key to 
clinical application of the ASSF presented in this paper. Future 
studies should focus on this issue. 

Computational complexity of ASSF is comparable to that of 
HRGMF [12], since both of them involve similar processing, 
whereas AWMF [ l l ]  requires only computation of local 
statistics and weighted median filtering and is computationally 
more efficient than ASSF. The proposed filter, ASSF, is an 
image postprocessing technique and is designed for off-line 
applications. It can, however, be mapped on a special purpose 
hardware for real-time applications. 
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