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Abstract 

Possibility of representation of a value of convexification of function at the given point 
as a convex combination of the values of function (spannability) is studied. Spannability of 
functions turned out to be important in different fields e.g. in the study of quasi-cores of 
monetary economies with nonconvex preferences (mathematical economics), in the theary 
of relaxation of variation problems (variational calculus). Apparently, Shapley and Shubik 
(Econometrica, 1966, 34, 805-827) were first to discuss it. 

JEL classification: CGO 

1. Introduction 

This article is devoted to the study of spannability. A necessary and sufficient 
condition for spannability of a lower semicontinuous function with a graph not 
containing a line is obtained (Theorem 1). Also the case of a function with graph 
containing lines is studied (Theorem 2). Results obtained here are of a general 
nature and can potentially be used in order to study the relaxation of convexity 
conditions, for instance in the framework of general equilibrium among others. 

Spannability of a function means that the graph of its convexification (i.e. the 
greatest lower semicontinuous convex function not exceeding the function) is 
contained in the convex hull of the function's graph. (For an explicit definition see 
Section 2.) Apparently, at least in the context of economic theory (cores and 
competitive equilibria) Shapley and Shubik (1966) were first to discuss the 
spannability. Spannability of utility functions of traders turned out to be important 
in their study of quasi-cores of moaetary economies with nonconvex preferences. 
Shapley and Shubik (1966, p. 806) noted that " a  condition of 'spannability' . . .  
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helps restore some of the regularity that is lost when concavity [of utility functions 
or convexity of preferences] is abandoned, and which seems potentially useful 
beyond the immediate context of cores and competitive equilibria" and also (p. 
819) "[spannability of functions] appears to be quite fundamental to any investiga- 
tion of the relaxation of convexity conditions." This last insight proved to be quite 
fight. Specifically, spannabili~ turned out to be quite fundamental in the study of 
the important problem of relaxation of variational problems (see e.g. Ekeland and 
Temam, 1976, and more earlier references there). Here the spannability of 
integrands is of great importance for the construction of relaxation of variational 
problems. 

Shapley and Shubik (1966, theorem 3) gave some conditions on a function 
guaranteeing its spannability. Another sufficient condition (a-coerciveness for 
te > 1; see Section 2 for definition) was obtained by Ekeland and Temam (i 976, p. 
280, lemma 3.3) in connection with the study of relaxation of multidimensional 
variational problems. This result was further strengthened by Hiisseinov (1988) 
and somewhat later by Griewank and Rabier (1990, p. 693-697) to the case of 
l-coercive functions. As the simple example after Corollary 3 below shows, the 
power a = 1 is sharp. 

Shapley and Shubik assumed identical tastes for all involved agents represented 
by a nonconcave utility function U, that is, they allow for nonconvex preferences. 
They called U spannable if its negative - U  is spannable according to the 
definition above. Clearly everey concave function is spannable according to their 
definition. An economy in their paper is given by a specification of the set of 
agents N = {1,2,. • . ,  n}, initial endowments of agents and of utility function U. 
Using these data they constructed a finite game in characteristic form with 
characteristic function v :2  ~---} R. Strong (weak) e-core is defined as a set of 
payoff vectors ~ = ( a  t, a2,--  -, t~ n) satisfying 

~.~ ot i > v (  S ) - e ,  for all S c N, 
i ~ S  

( E l  ~ s °ti > v(S)  - s e  for all S c N, where s = #S). Evidently, every strong e-core 
allocation is a weak e-core allocation. Shapley and Shubic showed non-emptiness 
of both e-cores for sufficiently large replicas of the given economy. They 
discussed sociological interpretations of both kinds of cores and sociological 
consequences of these results. Non-emptiness of the weak e-core is shown almost 
at no condition on function U. However, the proof of existence of the strong 
e-core requires spannability and some differentiability property of U. Since these 
conditions are just sufficient for the existence of the strong e-core one might think 
that the same result is true under assumptions of a quite different nature on U. 
However, this is not true. Actually any set of sufficient assumptions should 
involve some variant of spannability (perhaps, some sort of approximate 
spannability), i.e. it is an almost necessary ingredient of any set of sufficient 
conditions. 
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The author is not familiar with any result on spannability except those referred 
to above. All of them turn out to be corollaries of Theorem I. It should be noted 
that the case studied in Theorem 2 sharply differs from the case considered in 
Theorem 1. In this case the characterization includes an explicit condition on the 
extreme points of some restriction of function, whereas in the first case the analog 
of that property is established on account of such a banal condition as lower 
semicontinuity. As simple examples show, this 'lack' of Theorem 2 is inherent for 
the case of a function with nontrivial lineality space of its epigraph (for definitions 
see Section 2). Specifically, the main result of this paper (Theorem I) could be 
used to clarify if a utility function is spannable, and therefore by the use of 
Shapley and Shubik's result discussed above, to decide if there exists a strong 
e-core in an economy involving this utility function. Indeed, since the domain of a 
utility function U in Shapley- Shubik's model is the positive orthant, or more 
generally, one just assumes this domain (consumption set) to be bounded from 
below, it follows that the epigraph of convexification of -U does not contain lines 
(see the last paragraph of the next section). Then one of the two essential 
conditions of Theorem 1 is satisfied almost at no condition on U. Note that the 
condition of lower semicontinuity and affinely boundedness from below involved 
in this theorem is quite technical. Therefore the unique essential condition of 
Theorem ! to be verified in order to determine if a given utility function is 
spannable is Assumption 1 formulated before Proposition 2 below. This seems to 
be a solvable task in many cases. Simple example can be constructed to illustrate 
this point. 

2. Notations and definitions 

We will freely use the usual notations and concepts from convex analysis. All 
of them can be found in Rockafellar (1970). We present reminders of some of 
them here and define some less common concepts. R = R U {-~,:~} the extended 
real line; R"-n-dimensional real coordinate space; dotal,  epif  and gr f  arc 
respectively, the domain, epigraph and graph of function f ;  f** the greatest lower 
semicontinuous convex function not exceeding f. Recall that dora f =  {x 
R"" jr(x) < ~} and e p i f =  {(x, a )  ~ R" × R" a ~f(x)}.  Notation f** is common, 
its origin due to the well-known fact that f** is the second Legendre transforma- 
tion of f. For the set A c R n we will denote by A and OA respectively its interior 
and boundary. A point a of a convex set A is called an extreme point if it cannot 
be represented as a convex combination of two points from A different from a. 
An exposed point is an extreme point through which there is a supporting 
hyperplane which contains no other points of A. An extreme ray is a face which is 
half-line. Recall that A ' c  A is called a face if every line segment in A with a 
relative interior point in A' has both end-points in A'. 
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A lineality space of a convex set A is defined as an intersection of asymptotic 
cones of A and -A. Specifically, it is a subspace consisting of vectors x such that 
A + A x c  A for all A ~ R. A function f is said to be affinely bounded from belG~w 
if there exists an affine function not exceeding f everywere. For an affine 
subspace M c R", its subset M o will be called embracing if the convex hull of M~ 
coincides with M. Recall that function f :  R~-~ R satisfying the conditior~ 
limll~l I_.~f(x)/llxlt ~ (o~ > 0) is called a-coercive. If limlf~l t _,~f(x) = ~ function 
f is simply called coercive. 

For a subspace L c R ~' by L i and PrL will be denoted its orthogonal 
complement and orthogonal projection operator to L, respectively. 

The following definition is central for this paper. 

m 

Definition 1. A function f "  R n -~ R is called spannable if for any point x ~ R n 
there exist points xt . . . . .  xm ~ R n and nonnegative numbers A~ . . . . .  A m with 
A I + . . . + A  m = l  such that 

m m 

x =  ~".Aix i and f * * ( x ) =  ~.,aif  ( xi), (1) 
i ~ l  iffil 

i.e. the graph of function f** is contained in the convex hull of the graph of 
function f. 

It can be easily shown that in Definition I the integer m can be restricted to n + 1. 
The convex envelope convf of f is defined as the greatest convex function not 

exceeding f everywerc. It is well known (see Rockafellar and Tyrrel, 1970, p. 36), 
and can be easily seen. that 

p 

(cony f )  ( x )  = inf ~". Aif  (x i ) ,  
i = l  

where the infimum is taken over all convex combinations Ef__ ~Aix i = x with an 
arbitrary p (provided f does not assume the value -oo, so that the summation is 
unambiguous). It is asumed that Aif(xi) = 0 when Ai = 0 and f ( x  i) = + ~ .  

Clearly, the convexification f** of f is the lower semicontinuous extension of 
cony f ,  that is, the greatest lower semicontinuous function majorized by convf. 

In the definition of spannability above we could replace f**  by convf and get 
a weaker concept of spannability. The relative interiors of domains of the 
convexification f** and the convex envelope convf coincide and these functions 
coincide on this common relative interior of their domain. Therefore for points 
from d dotal** = ri dora convf the two defioitions of spannability do not differ. 
It should be noted that actually under assumptions of all results on spannability 
referred to above and the results of the present paper the two concepts of 
spannability coincide. 
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Any function f :  R" --, R defined on a subset A of R" extended to R" as + ~  
out of A will be treated as a function defined on R". So the above definition of 
spannabilky equally applies to the functions defined on subsets of R". 

3. SpannabHity 

The following propositions are stages of a proof of the main theorem (Theorem 
1) on spannability. 

Propositian 1. Let a function f: R" --* R + be bounded away from zero on a closed 
half-space E c R" and f**  ( x) tend to infinity for x ~ E, IIxll  -- ,  ~. Then f**  is 
strictly positive on open half-space E. 

Proof. Let Mt(t ~ R) be a family of the h y ~ ) l a n e s  parallel to OE and such that 
t =  dist(M,, c3E) for M, not contained in E and t - -  - d i s t  (M,, OE) for M, 
contained in E. It is easily seen that a function of a scalar variable h defined as 
h( t ) - - inf{f (x) lx  ~ M,} is a nonnegative function tending to infinity for t - ,  -oo 
and is bounded from zero on (-oo,0]. Let us define also a function of the scalar 
variable h(t) = inf{f**(x) I x ~ M t} and show that 

h(t) --h**(t). (2) 

It can be easily checked that h is a convex, lower semicontinuous function not 
exceeding h. Therefore, h < h**. We must show that inverse inequality is also 
true. Fix t o E R and ¢ > O. Let x,o ~ M,o be an arbitrary point. Since 

f**(xto)  -- inf Aif(xi)'Ai>__O, E A i = l ,  E A i x i ' = - x , o , m ~ N  
i = !  

then there exist points x i (i = 1 . . . . .  m) and nonnegative numbers Ai(i = l . . . . .  m) 
such that ET'ffi iAixi ffi xt 0 and ET'= i a J ( x i )  < f * * ( x ,  o) + e. 

Denote by ti(i = 1 . . . . .  m) a number for which x i ~ Mr, (i = 1 . . . . .  m). Then 
h(t i) < f ( x i ) ( i  = ! . . . . .  m) and therefore 

m 

~.,Aih(ti) <f**(x to  ) + e. (3)  
i = l  

Besides, since V.~% ! Ajx~ = xt,, then clearly 
m 

E Ai ti -- to. 
i = 1  

the last two relations show that h (t o) _<f (x , ) .  ~',ince x,o is an arbitrary 
$ $  

point of hyperplane Mto then we have h (to) < h(to0). 
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Coincidence (1) prompts that h**(t) tends to + ~  for t--* - ~ .  Thus h is a 
nonnegative function such that h(t)>__c> 0 for t_<O and h**(t)-~ + 2  for 
t ~ - ~. It easily follows from these properties of h that 

h**(t)  > 0 for t < O. 

Since h**(t) = h(t) = inf{f**(x)  I x ~ Mr} then 

f * * ( x )  > 0 f o r  x ~ / ~ =  U M , .  [] 
t < 0  

The following condition on function f :  R" --* R will be referred to as Assump- 
tion 1 (see also Theorem 1 below): the graph of f contains an unbounded subset of 
any nonvertical extreme ray of the epigraph of f*~.  

Proposition 2. Let f :  R n --~ R be a lower semicontinuous nonnegative function 
satisfying Assumption 1. Then the set o f  zeros of  function f**  coincides with the 
convex hull o f  the set o f  zeros off-unction f. 

Proof. Denote by N and N**, respectively, the sets of zeros of functions f and 
f** .  Let x o ~ R n be an exposed point of the convex closed set N**. Let M be a 
hyperplane support to the convex closed set N** at x o such that M A N** = { Xo}. 
Denote by E and E' closed half-spaces defined by M and such that E' contains 
N**. Clearly E N N * * = { x  o} and then f * * ( x ) > 0  for x E E \ { x o } .  We will 
show that f * * ( x ) ~  +oo for x ~  E, l lxl l-- ,  ~. Suppose on the contrary there 
exists a sequence x k ~ E ( k =  1,2 . . . .  ), such that Ilxkll ~ ~ and f * * ( x )  < C 
(k = 1 ,2 . . . )  for some number C. Consider the sequence xk/llxkll (k = !,2 . . . .  ). 
Without loss of generality, we can suppose that it is converging. Denote by .~ its 
limit. It is easily seen that the function f**  vanishes along the ray d issuing from 
the point x o in the direction of the vextor ~. Clearly d is contained in E. But this 
contradicts that E n N** -- {x0}. 

If we suppose now f ( x  o) > 0 then from the lower semicontinuity of function f 
and coercivity of f * * ,  as proved above, on E it follows that f is bounded from 
zero on E t for sufficiently small t > 0. Here by E, is denoted that of two closed 
half-spaces defined by the hyperplane M,, which contains E. It is easily seen also 
that f * *  is coercive on E r Then by Proposition 1, f**  is strictly positive on /~,. 
But obviously, x0 ~/~, and hence f**(xo)  > 0, which contradicts f**(xo)  = O. 

Since the set of exposed points of closed convex set N** is dense in the set of 
extreme points (see Rockafellar, 1970, theorem 18.6) and set N is closed (because 
f is lower semicontinuous) then any extreme point of N** is contained in N. 

Let now e be an arbitrary extreme ray of the set N**. Then clearly e is an 
extreme ray of epi f** and then by Assumption ! contains an unbounded sequence 
from N. Clearly the origin of e, as an extreme point of N ~'*, also belongs to N. 
Therefore the whole ray e is contained in coN. [] 
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m 

Proposition 3. Let a function f :  R ~ ~ R be as in Theorem 1 (lower semicontinu- 
ous, affinely bounded from below and satisfying Assumption I). Then graph 
f D  ex(epi f); in other words, f coincides with f**  on the projection on R n of  the 
set of extreme points of the epigraph of  function f**.  

Proof. Suppose first that x o ~ R" is the projection of exposed point Zo =(Xo, 
f**(Xo)) of epi f**.  Since zo is an exposed point there exits a hyperplane F 
support to epi f** and such that (epi f * * )  n F = { zo}. It is easily seen that F is 
not vertical. Indeed if r was vertical, then it would contain the vertical ray 
e = {(x o, f * * ( x  o) + tr)" ct >__ 0}. Since e ~ epi f** ,  then e ~ (epi f * * )  t3 r ,  
which contradicts (epi f * * ) n  F =  {z0}. Since F is nonvertical, it is a graph of 
some linear function L Consider a function g = f -  I. Obviously, g** •f** - l, 
and x o is a unique zero of function g**. Then by Proposition 2, g (x  o) = O, i.e. 
f (xo)  = l (x o) =f**(x0) .  

Suppose now zo = (x0, f**(xo))  is an arbitrary extreme point of epi f**.  
Then by the above cited theorem 18.6 from Rockafellar (1970), there exists a 
sequence {Zk = Xk, f**(Xk))} of exposed points of epi f** converging to Zo. As 
is proved above, f ( x k ) = f * * ( x k ) ,  ( k =  1,2. . .) .  This together with the lower 
semicontinuity of f and f**  and convexity of f** implies f ( x  o) = lira infkf(x ~) 
= l im  infkf**(Xk)=f**(Xo),  whence f ( xo )=f**(Xo) ,  ra 

Theorem 1. Let f :  R" -o R be a lower semicontinuous affinely bomwled from below 
function ,iuch that epi f** does not contain lines. Then f is spannable if and only 
if its graph contains an unbounded subset of any nonvertical extreme ray of  the 
epigraph of f**.  

Proof. Necessity. Suppose the assumption of Theorem 1 is not satisfied, i.e. there 
exists a nonvertical extreme ray ~ of epi f** such that a set ~ N graph f is 
bounded. Denote by • the unit vector with the direction of ray ~. Let ~, be the 
vertex of ray ~ and z0 ~ e such that half-line {(zo - e) + ae  : a > 0} is contained 
in ~,, and does not intersect the graph of function f:  

{ ( Z o -  e) + ate : ot >_ 0} N graph f = O .  (4) 

We assert that the point zo = (x0 ,  f * * ( x 0 ) )  has no representation (1). Indeed, 
if such a representation exists, since the coefficients A k (k = 1 . . . . .  m) are strictly 
positive, the point zo is a relative interior point of the polytope P = co {(x~, 
f (xk)):  k ---- 1 . . . . .  m}. Since ~ is a face of epi f** ,  then by theorem 18.1 from 
Rockafellar (1970), polytope P is contained in ~. In particular, the points zk 
(k  = 1 . . . . .  m) are contained in ~. This, together with (3) gives zk ~ [~:, z0 - el ,  
k = 1 . . . . .  m. But in this case P also is contained in the convex set [ ~:, z0 - e ] ,  
whence z0 ~ P, which contradicts zo ~ ri P. 

Sufficiency: If the assumption of Theorem 1 is satisfied, ",hen clearly any 
nonvertical extreme ray of epif** is contained in co(graph f) .  By Proposition 3, 
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graph f contains all extreme points of epif**. In particular, we have from that 
that any vertical extreme ray of epif** is contained in epif. Since epi f** does 
not contain lines, then by virtue of theorem 18.5 from Rockafellar (1970), we 
obtain 

co(graph f U  (vertical extreme rays of epif** )) D epif**,  

and then, in particular, 

co(epi f U  (vertical extreme rays of epif** )) ::9 graph f** 

Thus, for each point x o ~dom f**,  the point (xo, f * * ( x o ) ) ~  co(epif). 
Therefore, there exist points x~ . . . . .  x,,, ~ R n and numbers A~ . . . . .  A,~ > 0, 
~k~ l At, = 1 and a l, . . . ,  a,~ _ > 0 such that 

m 

(Xo, f * * ( X o ) ) =  E Ak(xk, f ( x k )  + a k ) .  
k,=l 

If some of the numbers a k are strictly positive, replacing them by zero in the 
right-hand side, we obtain that Xo= Ek~lAkxk and f**(Xo)>  Ek~lAkf(xk), 
which contradicts the definition of f**.  Let now F be a hyperplane support to 
epif** at the point (x 0, f**(x0)). Then clearly all points (x k, f(xk)) (k = 
1 . . . . .  m) are contained in F.  Since dim F- -  n, by Caratheodory's theorc a (e.g. 
Rockafellar, 1970, p. 155), the point (x 0, f**(xo)) is also a convex combination 
of at most n + 1 of points (x k, f(xk)) (k = 1 . . . . .  m). Therefore, we can suppose 
that m < n + 1. Thus, 

m 

(Xo, s**(xo)) = E S(x,)), (5) 
k = l  

where m ~ n + ! and A k > 0, k = 1 . . . . .  m, ~k~ i Ak = 1 or equivalently 
m 

Xo -- )-". AkXk, (6) 
k ~ l  

m 

f**(Xo) = Y'~ Akf (xk) (7) 
k = !  

and the required representation has a place. Theorem I is proved. [] 

n 

Corollary 1. let f." R n -* R be a lower semicontinuous, affinely bounded from 
below function, such that dom f c R n does not contain lines. The f is spannable if 
and only i f  its graph contains an unbounded subset o f  any nonvertical extreme ray 
of  the epigraph o f f** .  

Proof. It is easily seen that epif** does not contain a nonverfical line, because if 
it did contain such a line, then projection onto R" of that line should be line 
contained in dom f. Obviously, epif** also does not contain vertical lines, ra 



F. Hiisseinov / Journal o f  Mathematical Economics 28 f1997) 29--40 37 

The following corollary is a translation of theorem 3 from Shapley and Shubik 
(1966) from concave framework into convex. We will preface it with some 
necessary defnitions. A function f :  R~.---, R is called suplinear, if for every linear 
function l with negative coefficients the difference f -  l has a finite lower bound. 
A function f will be called strictly decreasing, if for each x, y ~ R~ such that 
y-x~Rn+, y - x * O ,  f ( x )  < f ( y ) .  

Corollary 2. If f." Rn+ ~ R is continuous suplinear and strictly decreasing, then f is 
spannable (Shapley and Shubik 1966). 

Proof. Let us show that the graph of convexification f**  does not contain any 
rays. To this end, let us first show that f**  is strictly decreasing. Fix points x 0, 
x I ~ R~ such that z --- xl - x0 ~ R~.\{0}. Let p be any positive normalized vector 
in R n. Denote D = {x ~ R n : px <px o + 1} and 81 -- inf{f(x) - f ( x  + z): x ~/9} 
which is positive, because D is compact and f is continuous. 

Let xm, . . . .  x m ~ R~. be arbitral" points and A I . . . . .  An, be arbitrary nonnega- 
tive numbers such that ~k~ i Ak -- 1 and ~k ~= ; A k x k = Xo. Denote 10 = {k" x k ~ D} 
and I l ={I ..... m}\In. Then 

E >- (8) 
kelo 

for a positive number 8 o = I/[2(px o + i)]. Indeed, if Ek ~ 1oAk < 8o, then 

p ' ( E A . x , ) =  EAkP'X,> E A , ( p . x o + l ) > ( l - S o ) f p ' x o + l )  
Xke l j  k ~ !  I k~l~ 

>p .x o. 
Therefore 

p'Xo =P' (  ~ AkXk) =p" ~-'~A, Xk +P" ~"~A~Xk>P'Xo, 
XkEIj k ~ l  o k ~ l ;  

and thereby (7) is proved. 
Obviously, 

k¢~ ! I 

Then using (7) we will have 

E Akf( Xk + Z) ----- E At~f( xk + Z) + E AI~/( xk + Z) 
k ~ !  I k ~ l  o k ~ !  I 

< E - 8,) + E 
k~ lo  k~l~ 

m 

Y'. ~kf( xk) -- ~o~,  
k - !  
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whence, 

f * * ( x l )  < f * * ( x 0 )  - ~50 ($j < f * * ( x l ) ,  

Since f** is nonincreasing, we have for Xo = 0 and x~ ~ RN+, x~ ~ O, f (x~)  < 
f ( x ] / 2 ) < _ f ( x o ) .  Thus f** is strictly increasing. Consequently, grf** may 
contain just downward rays. This is also impossible, because of suplinearity of 
f**,  which immediately follows from suplinearity of f. Thus, grf** does not 
contain any ray. Therefore the convex closed set epif** has no nonvertical 
extreme rays. By Corollary 1, f is sp~',nable. [] 

Remark. In the proof of Corollary 2 we established that a function ,f satisfying 
assumptions of Shapley-Shubik's theorem in addition to spannability has the 
following properties: convexification f** is strictly decreasing and the~'e is no ray 
in R~_ such that the restriction of f** to that ray is affine. 

Corollas. 3. Let f." R" ---> R be a lower semicontinuous function such that 

f ( x )  
lim ~ = :~. (9) 

11,,11-. ~ Ilxll 
Then f is spannable. 

Proof. Cieariy f is bounded from below and it is not difficult to show that 
convexification f** also satisfies assumption (9). Therefore grf** does not 
contain any ray and then epif** does not contain any nonvertical extreme ray. By 
Theorem 1, function f is spannable. !:! 

Corollary 3, in particular, contains Ekeland and Temam's lemma 3.3 (1976, p. 
280), where instead of assumption (9) a more restrictive assumption limtlx! j._,~ 

f ( x ) / [ l l x l l  '~] = ~ ( a  > 1) is adopted. As the following example show the growth 
condition (9) is sharp. 

Example 1. 

2Ix[ if Ixl _< I,  
f ( x )  = [xl + 1 if I xl > I. 

Then f**(x) = Ix l and clearly f is not spannable. 

D 

Theorem 2. Let f" R # ~  R be an affinely bounded from below fu:wtion with 
nontrivial lineality space L o f  epif**. Then f is spannable i f  and only if  projection 
Pr~ ± (gr fN  epif**) contains an unbounded subset o f  any nonvertical extreme 
ray of  epif** N L z and moreover, for  extreme point ~ o f  the set epif** N L ± t'<e 
graph o f f  contains an embracing subset o f  ~ + L. 
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Proof. Without loss of generality, we will assume that f is nonnegative and the 
lineality space L of epif** is contained in the horizontal hyperplane R" × {0} in 
R "+1 = R" × R. Hyperplane R" X {0}, as above, will be identified with R", then L 
will be a subspace of R". 

We will assume also that L is different from R" (the case L = R" is trivial). 
Let f be spannable and ~ be an extreme point of epif** n L l . Let F be a 

hyperplane support to epif** at ~. Obviously, F contains ~: + L, moreover, 5 + L 
is a face of F n  epif**. Since f is spannable, then for an arbitrary point z -- (x0, 
f**(Xo)) of ~,+L there exist points zk = (xk ,  f(xk))  ( k =  1, 2 . . . . .  m) and 
positive numbers A~ . . . . .  Am, '~1+ " ' "  + A m =  I, such that z=A~zz  
+ - . -  +A,,z,, ,  (or (x 0, f**(Xo))=  A~(x i, ffxl)) + ---  +Am(x m, f(xm)). Since 
z ~ ~ + L c F and all points z, . . . . .  zm are placed above F ,  then zl . . . . .  z,~ ~ F 
and then zl . . . . .  zm ~ F n  epif**. Moreover, since ~ + L is a face of F A  epif** 
and z ~ ~ + L is a relative interior point of polytope P = co{z~ . . . . .  z J ,  then 
P c 5 + L and then, in particular, z~ . . . . .  Zm ~ Z + L. Thus for any point z ~ ~: + L 
there are points z~ . . . . .  z~, ~ ~- + L such that z ~ co{z~,.. . ,  zm}. Therefore the 
graph of function f contains an embracing subset of ~ + L. 

Let us suppose now that ~ is a nonvertical extreme ray of epi f** n L ± not 
satisfying the assumption of Theorem 2, i.e. Pr L _1_ (gr fN epi f  *~ ":.., ~ is bounded. 
Then there exists a segment Z[~o, ~ c ~, where ~o is the vertex of ~,, such that 

Pr L .L (gr f n  epif**)  c [ ~.o,~,, ] (10) 

Consider ~ + ~,) + L. Obviously, this set does not contain any point of the set 
g r f n  epif**. Let F "  be a hyperplane in L ± support to epif** [ L' at ~ in 
L ± " 

Obviously, F i contains ~. Therefore F =  F ± +L is a hyperplane in R '~+~ 
support to epif** and contains ~ + L. Since ~' is an extreme ray of convex closed 
set F J- Nepif** ]L~, then ~ + L is a face of F N  epif**. Since we assumed 
function f to be spannable, and a ray ~,, in particular, a point z0 = z~ + • (e is a 
unit vector with direction ~) belong to grf**, it is a convex combination of points 
zl . . . . .  Zm E grf, i.e. 

z 0 = A ~ z l + . . .  +Amz,,, A k > 0 k = l  . . . . .  m, A I +  . . -  + A n , = l .  (11) 

Then the relative interior of polytop¢ P = co{ z l , ' -  -, zm} intersects ~ + L. 
By theorem 18.1 from Rockafellar (1970) polytope P is contained in the face 

g, + L. it follows from (11) that at least one of the points z~ . . . . .  z~ must belong 
to z0 + [ + L, which contradicts (10). 

Sufficiency: suppose the assumptions of Theorem 2 are satisfied. First of "all, by 
virtue of the second assumption (embracing), without loss of generality, we may 
assume that f** coincides with f on the set Prr. =,. + L for any extreme point ~. 
of the set epif** n L ± . Thus g r f n  L ± = g r ( f l  L~) (L6 ~ = Pr.L ~) contains all 
extreme points of epif** n L l = epif** [ ~ and contains an unbounded subset 
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of any extreme ray of epi(f** I ~ ) .  Then as was shown in the proof of Theorem 
I, 

co(grf  ! v~) D epi( f** ]v~.). (12) 

since the convex closed set epif** ! Ld- does not contain lines it has at least one 
extreme point z0. Thus grf  contains the affine space Zo + L parallel to L. From 
here and (11), we have 

co g r f ~  (epif** n L~-) U ( Z'0 + L).  

Therefore co grf  D epif** = (epif** n L ±) + L. [] 
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