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Abstract Wormhole configurations in Einstein’s general theory of relativity (GR) require exotic matter sources violating the
weak energy condition (WEC). Rastall’s theory is a generalization of GR in its matter source considering a nonconserved energy-
momentum (EM) tensor. Hence, on the one hand, the nature of this generalization of the matter source of field equations and, on
the other hand, the possibility of respecting energy conditions for dynamical wormholes in contrast with static ones motivates us to
study the possibility of existence of wormhole configurations respecting energy conditions or minimizing the violations of them in
Rastall’s modified theory. We derive general analytical solutions considering a constant redshift functions and a particular equation
of state for energy density and pressure profiles. We show that because of the modifications in EM source of the field equations,
there exist solutions respecting the WEC in the vicinity of the wormhole’s throat for a specified values of the parameters. Some
particular solutions are discussed in detail.

1 Introduction

Despite the success of Einstein’s general relativity (GR) in explaining many gravitational phenomena, it falls short in explaining
dark matter and dark energy. To address these issues, modifications of GR have been proposed, e.g., scalar-tensor theories [1], f(R)
theories [2], and braneworlds [3]. For a comprehensive review, see [4].

In 1972, Peter Rastall proposed a modification to Einstein’s theory with a nonconserved energy-momentum tensor [5]. In his
theory, the divergence of energy-momentum tensor is proportional to the gradient of the Ricci scalar through a proportionality
constant [5]. Hence, in contrast with the standard conservation law of the energy-momentum, the Bianchi identity still holds. Rastall
gravity yields some interesting results, for instance, the late time accelerating expansion of the universe can be explained [6], and
the de Sitter black hole solutions can be found without explicitly assuming a cosmological constant [7]. The question of equivalence
of Rastall gravity to Einstein’s theory as a redefinition of the EM tensor was raised in [8]. However, it has been shown that the nature
of this theory considering a nonconserved EM source is not just a redefinition of EM, and it gives different results than GR, see
for instances [9–13]. It is shown recently that a Lagrangian formulation for a Rastall-type theory can be provided in the context of
f (R, Lm) and f (R, T ) theory [14, 15] where R is the Ricci scalar, Lm is the Lagrangian of matter fields, and T is the trace of the
energy-momentum tensor.

Einstein’s general theory of relativity (GR) admits solutions describing geometrical bridges connecting two distant regions of a
universe or even two different universes. For the first time, it was Wheeler who proposed the term “wormhole” for these geometrical
bridges in order to provide a mechanism for having “charge without charge.” He claimed that the electric charge emerges as a
manifestation of the topology of a space, a sheet with a handle [16]. The interest in these solutions almost declined over the years
until the notion of traversable Lorentzian wormholes was introduced by Morris, Thorne, and Yurtsewer [17, 18]. It was discussed
that these structures could allow humans not only to travel between distant parts of a universe, or even two universes, but also to
construct time machines. In the framework of GR, the flaring-out condition on the throat of wormhole leads to the violation of weak
energy condition (WEC) demanding an exotic matter source in the Earth-based laboratory context. This violation of the energy
condition is conventionally a problematic issue that requires a resolution or at least a minimization [19–22]. Numerous studies have
endeavored to address the nature of exotic matter within various settings [23–26]. One approach is to construct thin-shell wormholes
in the context of GR via a cut-and-paste procedure in which the exotic matter source is minimized by concentrating at the wormhole’s
throat [23, 27–29]. Another approach is to investigate the modified theories of gravity where the presence of curvature higher order
terms in curvature may provide a possibility for constructing wormhole structures by ordinary matter sources [30, 31]. As instances,
see wormhole solutions in Brans–Dicke theory [32–36], Einstein–Gauss–Bonnet theory [37, 38], f (R) gravity [39–42], scalar-tensor
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gravity [43], and higher dimensional theories [44–48]. Moreover, in contrast with static wormholes in GR, it has been noted that
for evolving wormholes, there is this possibility of satisfaction of energy conditions for a finite interval of time [49, 50], see also
pioneer works [22, 51–61].

Akin to the other modified theories, Rastall theory also has numerous successful applications in cosmology and astrophysics,
and this drives a motivation for investigating it versus the conditions for the existence of wormholes structures. Nevertheless, our
main motivation for the present study relies on very distinct feature of this theory that distinguishes it from other modified theories:
its modification in the matter source of the Einstein field equations only and leaving the geometric part unaltered. As a result, this
provides very unique possibilities in the context of this theory as (i) the field equations remain rather simple to be handled, and (ii)
the main concern in constructing wormholes, the need for exotic matter fields, can be traced easily by the nonminimal coupling of the
EM tensor and geometry, and their interplay through a constant coupling parameter. We will see the footprint of this coupling in the
solutions derived. On the other hand, the possibility of respecting ECs for finite time intervals in dynamical configurations, in contrast
with static cases, in GR, stimulates another motivation to investigate how these dynamical configurations behave in Rastall theory.
Therefore, the objective of our study is to discover viable dynamical wormhole solutions within the framework of Rastall theory
and demonstrate how the nonminimal coupling nature of this theory influences the shape and evolution of these solutions. Here, it
is necessary to mention that static wormhole solutions have been studied in the context of Rastall theory showing that the WEC can
be met for some particular solutions, see for instance [62–66]. In [67], it is shown that Rastall theory is capable of modifying the
energy condition requirements of the matter source to satisfy the strong energy condition at the throat. This modification demands
that either the Rastall coupling κ or λ has to be negative. It is concluded that Rastall gravity has the potential to alleviate some issues
encountered by static wormholes within the framework of Einstein gravity. Since the dynamical wormholes in the context of Rastall
theory have not been studied yet, it seems worthwhile to put one step further to explore the theory for the possible generalizations
of the static solutions to dynamical cases.

The organization of the paper is as follows. In Sect. 2, we derive the general analytical solutions of the field equations for a
wormhole geometry. In Sect. 3, we analyze some particular solutions versus the flaring-out condition and WEC, and show that under
some constraints, these conditions are respected in the context of Rastall gravity. Section 4 is devoted to our concluding remarks.

2 Evolving wormholes in Rastall theory

The validity of the energy-momentum conservation law in the four dimensional spacetime was questioned by Rastall [5]. He
considered the following hypothesis

Tμν
;μ � λR,ν , (1)

where Tμν is the energy-momentum tensor of matter source, λ is the Rastall constant parameter, and R is the Ricci scalar. Hence,
the Einstein field equations get modified as

Gμν + κλgμνR � κTμν , (2)

where κ is the gravitational coupling. In the present work, we are interested in dynamical wormhole solutions of these field
equations. For the static wormhole solutions in Rastall theory, see [62–67]. Hence, we consider a time-dependent generalization of
Morris–Thorne wormhole metric as [17]

ds2 � −U (r )dt2 + R(t)2

(
dr2

1 − B(r )
r

+ r2(dθ2 + sin2 θ dφ2)

)
, (3)

where R(t) is the scale factor of the background universe, U(r) is the redshift function, and B(r) is the wormhole shape function.
The static Morris–Thorne wormhole is recovered by setting R(t) � constant. In order to have a wormhole geometry, the following
general constraints on the redshift and shape functions are required [17, 18].

• The wormhole throat connecting two asymptotic regions is located at the minimum radial coordinate r0 � B(r0).
• The shape function B(r) must satisfy the so-called flaring-out condition B(r ) − r B ′(r ) > 0 at the vicinity of the throat which

reduces to B
′
(r0) < 1 at the throat.

• In order to keep the signature of the metric for r > r0, the shape function holds the condition 1 − B(r )
r > 0.

• For asymptotically flat wormholes, the metric functions should satisfy the conditions U (r ) → 1, B(r )/r → 0 as r → ∞. In this
case, the metric (3) tends to the flat Friedmann–Robertson–Walker metric in the asymptotic region.

• The redshift function U(r) must be finite and nonzero throughout the spacetime in order to ensure the absence of horizons and
singularities.

We use a similar methodology as in [68] for evolving Lorentzian wormholes in GR. We will see that how Rastall’s parameter
appears in the solutions for the scale factor and shape function to modify the similar solutions in [68]. Considering the metric (3)
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with the constant redshift function U (r ) � 1, and the energy-momentum tensor Tμ
ν � diag(−ρ(t , r ), Pr (t , r ), Pl (t , r ), Pl (t , r )),

field Eq. (2) yields

ρ(t , r ) � 1

κ

(
3H2 +

B
′
(r )

r2R(t)2 − κλR

)
, (4)

Pr (t , r ) � 1

κ

(
−3H2 − 2Ḣ − B(r )

R(t)2r3 + κλR

)
, (5)

Pl (t , r ) � 1

κ

(
−3H2 − 2Ḣ − B

′
(r )

2r2R(t)2 +
B(r )

2r3R(t)2 + κλR

)
, (6)

where H � Ṙ(t)/R(t), and the Ricci scalar reads as

R � 2B
′
(r )

r2R(t)2 + 12H2 + 6Ḣ . (7)

For integrating the present system of three nonlinear partial differential Eqs. (4), (5), and (6) with five unknowns R(t), B(r ), ρ(t ,
r ), Pr (t , r ) and Pl (t , r ), one can consider a physically motivated constraint; more specifically an equation of state for the sets of
unknowns (ρ(t , r ), Pr (t , r )) and (ρ(t , r ), Pl (t , r )) or even for (Pr (t , r ), Pl (t , r )) as in [68]. Another possibility is to consider
traceless constraint on EM tensor as in [69]. Here, in order to keep the equation of state as much as possible general which can
reduce to some known specific equations of state, we consider a general EoS including our three unknowns (ρ(t , r ), Pr (t , r ), Pl (t ,
r ) as in [70, 71]

ρ(t , r ) � ω

1 + 2γ
(Pr (t , r ) + 2γ Pl (t , r )), (8)

where ω and γ are the equation of state parameters. This equation of state depending on two parameters ω and γ can reduce to the
following special cases: (i) the barotropic EoS as ρ(t , r ) � ωP(t , r ) when Pr (t , r ) � Pl (t , r ) � P(t , r ), ∀γ , which reduces to
cosmological constant for ω � −1, (ii) the traceless EM’s EoS as −ρ(t , r ) + Pr (t , r ) + 2Pl (t , r ) � 0 when ω � 3, γ � 1, and
(iii) the dimension (n) dependent EoS ρ(t , r ) � α(Pr (t , r ) + (n − 2)Pl (t , r )) [72] in n � 4 when γ � 1. Later, we will see that
how the Rastall’s coupling β and the wormhole conditions together put constraints on each of these two parameters ω and γ in (8).

Combining the set of Eqs. (4, 5, and 6) with the EoS (8), we obtain the following single nonlinear partial differential equation in
our unknown functions B(r) and R(t)

(1 + γ (2 + ω))r B
′
(r ) − ω(γ − 1)B(r )

κ(1 + 2γ )r3 � − R(t)2 (1 + 2γ )
(
8ωḢ + 12H2(ω + 1)

)
(4 + 8γ )κ

+ λR(1 + ω)R(t)2. (9)

This equation can be integrated for B(r) and R(t) by separating it into the radial and temporal parts as follows:

(1 + γ (2 + ω))r B
′
(r ) − ω(γ − 1)B(r )

(1 + 2γ )r3 − 2β(1 + ω)B
′
(r )

r2

� β(1 + ω)R(t)2(12H2 + 6Ḣ ) − R(t)2 (1 + 2γ )
(
8ωḢ + 12H2(ω + 1)

)
(4 + 8γ )

, (10)

where β � κλ. This equation can be considered as the master equation to be solved for our unknowns, and it is similar to the
master equation in [68]. In [68], the master equation was derived by combining the field equations considering the relation pr (t ,
r ) � αpt (r , t) where in general α � α(r ). However, one notes to the modification here by the Rastall’s parameter β and the
difference in the coefficients due to the different equations of state used. The radial and temporal parts of Eq. (10) give the following
ordinary differential equations (ODEs) for the shape function and scale factor, respectively

(1 + γ (2 + ω))r B
′
(r ) − ω(γ − 1)B(r )

(1 + 2γ )r3 − 2β(1 + ω)B
′
(r )

r2 � C , (11)

and

R(t)2[(6β(ω + 1) − 2ω)Ḣ + (12β(ω + 1) − 3(ω + 1))H2] � C. (12)

Let the constants a � 6β(ω + 1) − 2ω and d � 12β(ω + 1) − 3(1 + ω), then Eq. (12) can be rewritten as follows:

R(t)2[aḢ + dH2] � C , (13)
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or equivalently

aR(t)R̈(t) + bṘ(t)2 � C , (14)

where the constant b � d − a � a + ω − 3. Here, one notes that the dynamics of the scale factor depends on the Rastall’s coupling
parameter β and EoS parameter ω while is independent of the parameter γ .

In the following subsections, we obtain general exact solutions to Eqs. (11) and (14) for two cases C � 0 and C �� 0. Some
particular sub-classes of the obtained general solutions will be investigated versus the flaring-out and weak energy conditions in the
next section.

2.1 Solutions for C � 0

2.1.1 Solution for the shape function

Integrating Eq. (11) for C � 0, the shape function can be obtained as follows:

B(r ) � r0

(r0

r

) (1−γ )ω
1−2β(2γ +1)(ω+1)+γ (ω+2)

, (15)

Here, one observes that how the Rastall’s coupling parameter β modifies the wormhole’s shape function in comparison with the case
of GR when β � 0. The resulting geometry can be asymptotically flat or nonflat depending on the set of parameters ω, γ and β.

The flaring-out condition at the throat reads as follows:

B ′(r0) � (γ − 1)ω

1 − 2β(2γ + 1)(ω + 1) + γ (ω + 2)
< 1. (16)

Moreover, in order to satisfy the asymptotically flatness B(r )
r → 0 as r → ∞, the following condition should be fulfilled

−1 <
(1 − γ )ω

1 − 2β(2γ + 1)(ω + 1) + γ (ω + 2)
< 1. (17)

2.1.2 Solution for the scale factor

One can integrate Eq. (14) for C � 0 to find the general solution

R(t) � (R0 t + R1)
1

1+b/a � (R0 t + R1)
a
d , (18)

where R0 and R1 are integration constants. One observes that this solution does not contain the big bang singularity if t �� − R1
R0

.
Here, one notes that the solution (18) is a generic dynamic wormhole solution that is similar to the solution obtained in [68] in
GR. Hence, the general form of the solution for the scale factor is independent of the Rastall gravity due to the similarity in the
governing ODE on R(t) in (14). However, the solutions may differ depending on the assumed parameter constraints for the purpose
of the solution in the underlying theory. Here, Rastall’s coupling β arises in the power a

d and can be considered as a factor for
distinguishing the solution from those in GR in the limit β → 0. Later, we will discuss the values of β parameter and its effect on
the satisfaction of wormhole conditions. The following particular subclasses of (15) and (18) can be of interest.

• a � d
For this case, the scale factor, shape function, and ω are given by

R(t) � R0 t + R1, ω � 6β − 3

1 − 6β
, β �� 1

6
,

B(r ) � r3

r2
0

.

(19)

One can verify that this solution to (10) fails to satisfy the flaring-out condition for evolving wormhole solutions. Hence, we do
not analyze this solution versus the WEC.

• a � 2d
In this case, we have

R(t) � (R0t + R1)
2, ω � 9β − 3

2 − 9β
, β �� 2

9
,

B(r ) � r0

(r0

r

) 3(3β−1)(γ−1)
β(5γ +7)−γ−2

,

(20)

where γ should satisfy the wormhole conditions.
• a � 1

2d
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In this case, we find

R(t) � (R0t + R1)
1
2 , ω � 3,

B(r ) � r0

(r0

r

) 3(γ−1)
8β(2γ +1)−5γ−1

.

(21)

Here, the β parameter remains arbitrary, and γ should satisfy the wormhole conditions. Here to make clear how the Rastall gravity,
and not only the choice of the stress-tensor, is important in influencing the solutions (20) and (21), one may consider the following
two possibilities: (i) fix the parameter γ and ω by assuming known specific stress energy tensors at this step, so that solutions
now clearly depend on the Rastall factor, and (ii) consider the theoretically and observationally verified values or ranges on Rastall
parameter β, and then obtain corresponding allowable ω and γ values satisfying the wormhole conditions that can include parameter
ranges for both the normal and exotic matters. The latter possibility implies how the coupling parameter β confines or affects the
matter sources needed for such configurations. Up to this point, one observes the constraint on ω parameter. In Sect. 3, in order to
investigate the obtained viable solutions versus the ECs, regarding the theoretical and observational constraints on β parameter [5,
73–76], we will consider two admissible ranges 0 < β < 1

6 and β < 0, and we will analyze the above latter possibility in detail.
Specifically, we show that the satisfaction of wormhole conditions is possible for two observationally obtained values of β � 0.163
[75] and β � 0.041 [74]. As an instance, for the particular solution of a � 1

2d , consideration the EoS parameters ω � 3, γ � 0.35
with β � 0.041 provides the possibility of satisfaction of all wormhole conditions that are illustrated in Fig. 4. This is an interesting
case in the sense that substituting these EoS parameters in (8) and defining an effective pressure Pe(t , r ) � Pr (t , r ) + (0.7)Pl (t ,
r ), we have an effective equation of state Pe(t , r ) � 1.7

3 ρ(t , r ) which denotes a matter source respecting ECs. This indeed is an
example of the first possibility mentioned above as well.

2.2 Solutions for C �� 0

2.2.1 Solution for the shape function

The shape function B(r) can be obtained by integrating (11) as

B(r ) � − C

6β(ω + 1) − ω − 3
r3 + C1 r

(γ−1)ω
1−2β(2γ +1)(ω+1)+γ (ω+2) , (22)

where C and C1 are separation and integration constants, respectively. Like (18), the solution (22) is a generic wormhole shape
function and is similar to the solution in [68]. The difference being is upto some parameter choices. However, one observes that,
as we will see later in analyzing solutions versus WEC, the difference in the underlying theories, i.e., here the being of Rastall
parameter β, can play a crucial role in satisfying wormhole conditions even by ordinary matter sources. This indeed implies how
such a modification in EM source, akin to the higher order curvature terms in other modified theories, is capable of solving the
issue of the need for exotic matter in GR. To be specific, the presence of β puts constraints on the required matter sources, i.e., on
ω and γ , see the classification given in Table 1. In other words, as discussed in [67] for static cases, considering the field equations
Gμν � κr Sμν where the effective EM tensor Sμν includes the Rastall’s modification term βRgμν , the actual matters make up with
phantom characteristics. Therefore, in Rastall gravity, general wormhole solutions can exist with both normal and phantom matters,
depending on the Rastall coupling parameter.

Using the (initial) condition B(r0) � r0 at the wormhole’s throat, we can determine integration constant C1 as

C1 � (6β(ω + 1) − ω − 3)r0 + Cr3
0

(6β(ω + 1) − ω − 3)r
(γ−1)ω

1−2β(2γ +1)(ω+1)+γ (ω+2)
0

, (23)

from which we find the flaring-out condition at the throat as

B ′(r0) � −Cr2
0 (1 + 2γ ) + ω(1 − γ )

−1 + 2β(2γ + 1)(ω + 1) − γ (ω + 2)
< 1. (24)

Here, one observes that depending on the set of parameters ω, γ , and β, the coefficient of the first term in (22), i.e., k � C
6β(ω+1)−ω−3 ,

appears as an effective cosmological constant. This means that for C �� 0, we have asymptotically (anti) de Sitter-like solutions, and
the asymptotic flatness condition does not hold here. Also, as it is pointed out in [68], the above defined k constant can be interpreted
as a topological number denoting the spatial curvature of the background FRW spacetime taking values ±1, 0 representing a closed,
open, and flat universe, respectively. One can write the B(r) function as

B(r ) � −kr3 + Bn(r ), (25)

where k represents the spatial curvature of the FRW metric, and Bn(r ) is the shape function of a wormhole inhabiting within this
spacetime. One should note to the difference here in (23) and (24), similar to [77, 78] as instances, and in [68], where the throat
condition Bn(r0) � r0 is imposed only on the second term Bn(r ) in the shape function. It is mentioned in [77, 78] that imposing the
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throat condition B(r0) � r0, the spatial extension of the wormhole solution cannot be arbitrarily large. Following [68], the throat
condition Bn(r0) � r0 together with the flaring-out condition gives

B ′(r0) � (γ − 1)ω

1 − 2β(2γ + 1)(ω + 1) + γ (ω + 2)
< 1. (26)

The asymptotic flatness condition reads as follows:

−1 <
(1 − γ )ω

1 − 2β(2γ + 1)(ω + 1) + γ (ω + 2)
< 1. (27)

2.2.2 Solution for the scale factor

Considering the general case a, b �� 0, Eq. (14) can be integrated giving the following first-order nonlinear differential equation

Ṙ2(t) � C

b

(
1 − R0R

− 2b
a

)
, (28)

where R0 is an integration constant and hence ∫
dR√

1 − R0R− 2b
a

� ±
√
C

b

∫
dt , (29)

for C/b > 0. Here, one can obtain the explicit form of the scale factor R(t) for some particular cases of parameters a and b. The
following particular cases can be of interest.

• a � −2b This case gives the scale factor R(t), ω and shape function B(r) as follows

R(t) � 1

R0
− R0

4

(
±

√
C

b
t + R1

)2

, ω � 3 − 9β

9β − 2
, β �� 2

9
,

B(r ) � (9β − 2)C

12β − 3
r3 +

r0
(
(3 − 12β) + (9β − 2)Cr2

0

)
12β − 3

(
r

r0

) 3(3β−1)(γ−1)
−β(5γ +7)+γ +2

,

(30)

where R1 is an integration constant.
Considering Bn(r ) as the shape function of the inhabiting wormhole, we have

R(t) � 1

R0
− R0

4

(
±√

kt + R1

)2
, ω � 3 − 9β

9β − 2
, β �� 2

9
,

Bn(r ) � r0

(
r

r0

) 3(3β−1)(γ−1)
−β(5γ +7)+γ +2

,

(31)

where the reality of the solution requires k � 1. Later, we will show that the WEC can be respected in both the above cases for
a � −2b.

• a � −b
In this case, one finds

R(t) � 1√
R0

sin

(
±

√
CR0

b
t + R1

)
, β � 1

4
,

B(r ) � − 2C

ω − 3
r3 +

r0
(
2Cr2

0 + ω − 3
)

ω − 3

(
r

r0

) 2(γ−1)ω
2γ−ω+1

,

(32)

where R1 is an integration constant. We do not analyze this solution versus the wormhole conditions since the contraction of the
field Eq. (2) by the metric gives the Ricci scalar as R � 1

1−4β
T which diverges for β � 1

4 and T �� 0 [5].

3 Weak energy condition

In order to investigate the obtained viable solutions versus the energy conditions, regarding the theoretical and observational
constraints on β parameter [5, 73–76], we will consider two admissible ranges 0 < β < 1

6 and β < 0.
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3.1 WEC for 0 < β < 1
6

In this subsection, considering 0 < β < 1
6 , we obtain the valid ranges of ω and γ satisfying both the WEC (ρ ≥ 0, ρ + Pr > 0, and

ρ + Pl > 0) and flaring-out condition (B
′
(r0) < 1) simultaneously.

3.1.1 Analysis of solutions for C � 0

Here, we analyze the following particular solutions for the scale factor when C � 0.

• a � 2 d
Inserting the scale factor and the shape function in (20) into the field Eqs. (4–6), one obtains

ρ(t , r ) � − 3(3β − 1)(6β − 1)R2
0

2πG(4β − 1)(R0t + R1)2

+
3r−2

0 (2β − 1)(3β − 1)(6β − 1)(γ − 1)

8πG(4β − 1)(β(5γ + 7) − γ − 2)(R0t + R1)4

(r0

r

)3+ 3(3β−1)(γ−1)
β(5γ +7)−γ−2

, (33)

ρ(t , r ) + Pr (t , r ) � (6β − 1)R2
0

2πG(4β − 1)(R0t + R1)2

− r−2
0 (6β − 1)(2β(7γ − 1) − 4γ + 1)

8πG(4β − 1)(β(5γ + 7) − γ − 2)(R0t + R1)4

(r0

r

)3+ 3(3β−1)(γ−1)
β(5γ +7)−γ−2

, (34)

ρ(t , r ) + Pl (t , r ) � (6β − 1)R2
0

2πG(4β − 1)(R0t + R1)2

− r−2
0 (6β − 1)(4β(γ − 4) − 2γ + 5)

16πG(4β − 1)(β(5γ + 7) − γ − 2)(R0t + R1)4

(r0

r

)3+ 3(3β−1)(γ−1)
β(5γ +7)−γ−2

. (35)

In order to avoid the singularities in density and pressure profiles that corresponds to the big bang singularity at R(t) � 0, it
requires t �� − R1

R0
. Combining the constraint on ω and β in (20) with 0 < β < 1

6 , the flaring-out, flatness, and weak energy
condition can all be satisfied simultaneously if

R0R1 > 0,
2β − 1

14β − 4
< γ <

16β − 5

4β − 2
, r0 >

1

2

√
14βγ − 2β − 4γ + 1

R2
0 R

2
1(5βγ + 7β − γ − 2)

. (36)

Here, one observes that the satisfaction of all wormhole conditions imposes some interesting constraints. Specifically: (i) The
required matter type (γ and ω parameters) for a specific solution is constrained by the Rastall’s coupling, and (ii) the wormhole
throat radius r0 cannot be arbitrary, and is constrained by the Rastall’s coupling β and the matter parameter γ . This is similar to the
result in [79] where it is shown that for wormholes in the Einstein-de Sitter universe, the wormhole throat radius not only depends
on the shape function parameters but also on the background cosmological constant. For a specific set of parameters according to
the constraints (36), the behavior of ρ, ρ + Pr , and ρ + Pl as well as B(r)/r are illustrated in Figs. 1 and 2. The positiveness of ρ,
ρ + Pr , and ρ + Pl represents the satisfaction of the WEC in Rastall’s theory. Figure 1 shows that for β � 0.163 with variety of
γ values in the range given by (36), the WEC remains respected for a variety of wormholes with radius r0 satisfying (36). Here,
one notes that the throat radius r0 is fixed for a fixed value of β and γ , and is defined as the point where B(r) is minimum. In
case of a dynamic wormhole, the throat area is subject to change in time due to changing R(t). In Fig. 2, the first plot represents
the asymptotic flatness of B(r)/r function, and the other plots represent the satisfaction of WEC for a specific wormhole with the
characteristic parameters r0 � 0.1, β � 0.163, γ � 0.4.

• a � 1
2d

Inserting the scale factor and shape function in (21) into the field Eqs. (4–6), we find

ρ(t , r ) � 3R2
0(6β − 1)

32πG(4β − 1)(R0t + R1)2

+
3r−2

0 (6β − 1)(2β − 1)(γ − 1)

8πG(4β − 1)(8β(2γ + 1) − 5γ − 1)(R0t + R1)

(r0

r

) 3(γ−1)
8β(2γ +1)−5γ−1 +3

, (37)

ρ(t , r ) + Pr (t , r ) � (6β − 1)R2
0

8π (4β − 1)G(R0t + R1)2

− r−2
0 (6β − 1)(β(8γ + 4) − γ − 2)

4πG(4β − 1)(8β(2γ + 1) − 5γ − 1)(R0t + R1)

(r0

r

) 3(γ−1)
8β(2γ +1)−5γ−1 +3

, (38)
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Fig. 1 This figure represents the behavior of ρ, ρ + Pr , and ρ + Pl , respectively, for various wormholes characterized by the throat radius r0 and γ parameter
given in (36). Here, we considered the set of constants R0 � 2, R1 � 3, β � 0.163, t � 1 and G � 6.67 × 10−11

Fig. 2 This figure indicates the behavior of B(r )
r , ρ, ρ + Pr , and ρ + Pl versus the radial coordinate r and time coordinate t, respectively. Here, we considered

the set of constants R0 � 2, R1 � 3, r0 � 0.1, β � 0.163, γ � 0.4 and G � 6.67 × 10−11

ρ(t , r ) + Pl (t , r ) � (6β − 1)R2
0

16πG(4β − 1)(R0t + R1)2

+
r−2

0 (6β − 1)(β(8γ + 4) − 4γ + 1)

16πG(4β − 1)(8β(2γ + 1) − 5γ − 1)(R0t + R1)

(r0

r

) 3(γ−1)
8β(2γ +1)−5γ−1 +3

. (39)

In this case, satisfaction of flaring-out condition, flatness condition, and WEC at throat requires

R0, R1 < 0 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ <
2−4β
8β−1 , 0 < β < 1

8 ; r0 ≥ 2
√

− 2βγ R1−2βR1−γ R1+R1

R2
0 (16βγ +8β−5γ−1)

,

γ >
−4β−1
8β−4 , 0 < β < 1

8 ; r0 >

√
−8βγ R1−4βR1+4γ R1−R1

R2
0 (16βγ +8β−5γ−1)

,

γ > 1
2 , β � 1

8 ; r0 >

√
− 6γ R1−3R1

6γ R2
0

,

−4β−1
8β−4 < γ <

2−4β
8β−1 , 1

8 < β < 1
6 ; r0 >

√
−8βγ R1−4βR1+4γ R1−R1

R2
0 (16βγ +8β−5γ−1)

.

(40)

R0, R1 > 0 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ <
2−4β
8β−1 , or γ >

−4β−1
8β−4 ; 0 < β < 1

8 ; r0 >
√

2
√

8βγ R1+4βR1−γ R1−2R1

R2
0 (16βγ +8β−5γ−1)

,

γ > 1
2 , β � 1

8 ; r0 >

√
R1

γ R2
0

,

−4β−1
8β−4 < γ <

2−4β
8β−1 , 1

8 < β < 1
6 ; r0 >

√
2
√

8βγ R1+4βR1−γ R1−2R1

R2
0 (16βγ +8β−5γ−1)

.

(41)

Similar arguments given for the previous solution, and its figures can be also made here. Figure 3 shows that for a specific
β � 0.041, the WEC will be satisfied for variety of wormholes with r0 and γ meeting the constraints in (40). Figure 4 shows the
asymptotic behavior of B(r), as well as ρ, ρ + Pr , and ρ + Pl satisfying the WECs for a specific set of parameters according to
the constraints (40) in the entire spacetime.
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Fig. 3 This figure represents the behavior of ρ, ρ + Pr , and ρ + Pl , respectively, for various wormholes characterized by the throat radius r0 and γ parameter
given in (40). Here, we considered the set of constants R0 � −2, R1 � −3, β � 0.041, t � 1 and G � 6.67 × 10−11

Fig. 4 This figure represents the behavior of B(r )
r , ρ, ρ +Pr , and ρ +Pl , respectively, for various wormholes characterized by throat radius r0 and γ parameter

given in (40). Here, we considered the set of constants R0 � −2, R1 � −3, r0 � 2, β � 0.041, ω � 3, γ � 0.35 and G � 6.67 × 10−11

3.1.2 Analysis of solutions for C �� 0

Here, we analyze the following two particular cases.

• a � −2b
Substituting the scale factor and shape function in (30) into the field Eqs. (4–6), we find

ρ(t , r ) � 3CR2
0(3β − 1)(6β − 1)(9β − 2)

2πG(4β − 1)
(
−48β + R2

0

(
2
√

3(4β − 1)R1t
√

(2−9β)C
4β−1 + (2 − 9β)Ct2 + 3(4β − 1)R2

1

)
+ 12

)

−
162R2

0(2β − 1)(3β − 1)(6β − 1)(γ − 1)
(
C(9β − 2) + r−2

0 (3 − 12β)
)

πG(1 − 4β)2(β(5γ + 7) − γ − 2)

(
R2

0

(√
3t

√
(2−9β)C

4β−1 + 3R1

)2
− 36

)2

(r0

r

)3− 3(3β−1)(γ−1)
−β(5γ +7)+γ +2

, (42)

ρ(t , r ) + Pr (t , r ) � CR2
0(6β − 1)(9β − 2)

2πG(4β − 1)
(

48β + R2
0

(
2
√

3(1 − 4β)R1t
√

(2−9β)C
4β−1 + (9β − 2)Ct2 + (3 − 12β)R2

1

)
− 12

)

+
6R2

0(6β − 1)(2β(7γ − 1) − 4γ + 1)
(
C(9β − 2) + r−2

0 (3 − 12β)
)

πG(β(5γ + 7) − γ − 2)
(
−48β + R2

0

(
2
√

3(4β − 1)R1t
√

(2−9β)C
4β−1 + (2 − 9β)Ct2 + 3(4β − 1)R2

1

)
+ 12

)2

(r0

r

)3− 3(3β−1)(γ−1)
−β(5γ +7)+γ +2

, (43)

ρ(t , r ) + Pl (t , r ) � CR2
0(6β − 1)(9β − 2)

2πG(4β − 1)
(

48β + R2
0

(
2
√

3(1 − 4β)R1t
√

(2−9β)C
4β−1 + (9β − 2)Ct2 + (3 − 12β)R2

1

)
− 12

)

+
3R2

0(6β − 1)(4β(γ − 4) − 2γ + 5)
(
C(9β − 2) + r−2

0 (3 − 12β))
)

πG(β(5γ + 7) − γ − 2)
(
−48β + R2

0

(
2
√

3(4β − 1)R1t
√

(2−9β)C
4β−1 + (2 − 9β)Ct2 + 3(4β − 1)R2

1

)
+ 12

)2

(r0

r

)3− 3(3β−1)(γ−1)
−β(5γ +7)+γ +2

. (44)
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Fig. 5 This figure represents the behavior of ρ, ρ + Pr , and ρ + Pl , respectively, for various wormholes characterized by the throat radius r0 and γ parameter
given in (45). Here, we considered the set of constants R1 � 5, R0 � 2, C � −3, β � 0.041, t � 1 and G � 6.67 × 10−11

Fig. 6 This figure indicates the behavior of B(r )
r , ρ, ρ + Pr , and ρ + Pl regarding r and t from left to right, respectively, for 0.3 < r < 10 and 0 < t < 5.

The arbitrary constants are taken as follows:R0 � 2, β � 0.041, C � −3, R1 � 5, r0 � 0.3, γ � 0.2 and G � 6.67 × 10−11

Since 0 < β < 1
6 and ω � 3−9β

9β−2 , the WEC and flaring-out condition will be satisfied under the fallowing conditions

C < 0 :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

R0 ≤ −2
|R1| , or R0 > 2

|R1| ; − 1
2 < γ ≤ 2β−1

14β−4 , r0 >

√
14βγ−2β−4γ +1
(9β−2)(2γ +1)C ,

−2
|R1| < R0 < 2

|R1| , − 1
2 < γ ≤ 20β−7βR2

0 R
2
1 +2R2

0 R
2
1−4

−76β+5βR2
0 R

2
1−R2

0 R
2
1 +20

, r0 >

√
14βγ−2β−4γ +1
(9β−2)(2γ +1)C .

(45)

Similar arguments given for the previous solutions and their figures can be also made here. Figure 5 shows that for a specific
β � 0.041, the WEC will be satisfied for variety of wormholes with r0 and γ meeting the constraints in (45). Figure 6 shows the
behavior of B(r)/r as well as ρ, ρ + Pr , and ρ + Pl satisfying the WEC for a specific set of parameters according to the constraints
in (45). As it is seen from the first plot, in this case, we have a finite wormhole configuration which cannot be arbitrarily large.

• a � −2b, k � 1

Considering the shape function and scale factor as (31) leaves the field Eqs. (4–6) as

ρ(t , r ) � − 3(6β − 1)R2
0

(
(3β − 1)R2

0(R1 ± t)2 − 4β
)

2π (4β − 1)G
(
R2

0(R1 ± t)2 − 4
)2

+
6(6β − 1)(β(6β − 5) + 1)(γ − 1)R2

0r
−2
0(

Gπ (4β − 1)(β(5γ + 7) − γ − 2)
(
R2

0(R1 ± t)2 − 4
)2

) (r0

r

)3− 3(3β−1)(γ−1)
−β(5γ +7)+γ +2

, (46)

ρ(t , r ) + Pr (t , r ) � (6β − 1)R2
0

(
R2

0(R1 ± t)2 + 4
)

2πG(4β − 1)
(
R2

0(R1 ± t)2 − 4
)2

− 2R2
0r

−2
0 (6β − 1)(2β(7γ − 1) − 4γ + 1)

πG(4β − 1)(β(5γ + 7) − γ − 2)
(
R2

0(R1 ± t)2 − 4
)2

(r0

r

)3− 3(3β−1)(γ−1)
−β(5γ +7)+γ +2

, (47)

ρ(t , r ) + Pl (t , r ) � (6β − 1)R2
0

(
R2

0(R1 ± t)2 + 4
)

2πG(4β − 1)
(
R2

0(R1 ± t)2 − 4
)2

− r−2
0 R2

0(6β − 1)(4β(γ − 4) − 2γ + 5)(
πG(4β − 1)G(β(5γ + 7) − γ − 2)

(
R2

0(R1 ± t)2 − 4
)2

) (r0

r

)3− 3(3β−1)(γ−1)
−β(5γ +7)+γ +2

. (48)
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Fig. 7 This figure represents the behavior of ρ, ρ + Pr , and ρ + Pl , respectively, for various wormholes characterized by the throat radius r0 and γ parameter
given in (49). Here, we considered the set of constants R1 � 5, R0 � 2, β � 0.041, t � 1 and G � 6.67 × 10−11

Fig. 8 This figure indicates the behavior of Bn (r )
r , ρ, ρ + Pr , and ρ + Pl regarding r and t from left to right, respectively, for 0.3 < r < 20 and 0 < t < 5.

The arbitrary constants are taken as follows:R0 � 2, β � 0.041, R1 � 5, r0 � 0.3, γ � 0.3 and G � 6.67 × 10−11

Considering 0 < β < 1
6 and ω � 3−9β

9β−2 , the WE, flaring-out, and asymptotically flantess conditions will be satisfied simultane-
ously if

R0 �� 0, R0 �� ±2

|R1| ,
2β − 1

14β − 4
< γ <

16β − 5

4β − 2
, r0 > 2

√
14βγ − 2β − 4γ + 1

(5βγ + 7β − γ − 2)
(
R2

0 R
2
1 + 4

) (49)

Figure 7 shows that the WEC will be satisfied for variety of wormholes with r0 and γ meeting the constraints in (49). Figure 8 shows
the asymptotic behavior of Bn(r )/r as well as ρ, ρ + Pr , and ρ + Pl respecting WEC in entire spacetime.

3.2 WEC for β < 0

Some observational tests of Rastall theory indicates negative values of β , see as an instance [73]. Hence, in this subsection, we
address the WEC and flaring-out condition for β < 0.

3.2.1 Analysis of solutions for C � 0

• a � 2d
In order to satisfy the WEC, flaring-out condition, and flatness condition in this case, using Eq. (20) with β < 0, the following
constraints should be satisfied.

R0R1 > 0,
2β − 1

14β − 4
< γ <

16β − 5

4β − 2
, r0 >

1

2

√
14βγ − 2β − 4γ + 1

R2
0 R

2
1(5βγ + 7β − γ − 2)

. (50)

The constraints here are the same as the obtained ones for 0 < β < 1
6 in (36).

• a � 1
2d

Using (21), since ω � 3 and β < 0, the following restrictions on γ parameter provide respecting the WE, flaring-out, and flatness
conditions

R0, R1 < 0 :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

γ <
2−4β
8β−1 , r0 ≥ 2

√
− 2βγ R1−2βR1−γ R1+R1

R2
0 (16βγ +8β−5γ−1)

,

γ >
−4β−1
8β−4 , r0 >

√
−8βγ R1−4βR1+4γ R1−R1

R2
0 (16βγ +8β−5γ−1)

.

(51)
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R0, R1 > 0 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ <
2−4β
8β−1 , or γ ≥ 0; β < − 1

4 ; r0 >
√

2
√

8βγ R1+4βR1−γ R1−2R1

R2
0 (16βγ +8β−5γ−1)

,

−4β−1
8β−4 < γ < 0, β < − 1

4 ; r0 ≥ 2
√

− 2βγ R1−2βR1−γ R1+R1

R2
0 (16βγ +8β−5γ−1)

,

γ <
2−4β
8β−1 , or γ >

−4β−1
8β−4 ; − 1

4 ≤ β < 0; r0 >
√

2
√

8βγ R1+4βR1−γ R1−2R1

R2
0 (16βγ +8β−5γ−1)

(52)

3.2.2 For solution of C �� 0

• a � −2b
Considering Eq. 30, the WEC and flaring-out condition will be met if

C < 0 :

⎧⎨
⎩

R0 ≤ −2
√

5
|R1| or R0 > 2

√
5

|R1| , − 1
2 < γ ≤ 2β−1
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√
14βγ−2β−4γ +1
(9β−2)(2γ +1)C ,

−2
√

5
|R1| < R0 < 2

√
5

|R1| , − 1
2 < γ ≤ 20β−7βR2

0 R
2
1 +2R2

0 R
2
1−4

−76β+5βR2
0 R

2
1−R2

0 R
2
1 +20

, r0 >

√
14βγ−2β−4γ +1
(9β−2)(2γ +1)C .

(53)

• a � −2b, k � 1
Considering (31), with β < 0 and ω � 3−9β

9β−2 , the WE, flaring-out, and flatness conditions will be respected if

R0 �� 0, R0 �� ±2

|R1| ,
2β − 1

14β − 4
< γ <

16β − 5

4β − 2
, r0 > 2

√
14βγ − 2β − 4γ + 1

(5βγ + 7β − γ − 2)
(
R2

0 R
2
1 + 4

) (54)

4 Conclusion

In this paper, analytical evolving wormhole solutions with a constant redshift function are investigated in the context of Rastall’s
modified theory. A general class of solutions, including the asymptotically flat and (anti)de Sitter solutions, is derived by assuming
a particular equation of state for the energy density and pressure profiles. Regarding the theoretical and observational constraints
on Rastall’s coupling β, two admissible ranges 0 < β < 1

6 and β < 0 are considered in order to study the solutions versus the
required conditions for traversable wormholes. It is shown that simultaneous satisfaction of all these conditions is achievable under
the obtained constraints on the parameters of the solutions. Also, it is shown that the size of the wormhole throat is constrained
and depends on both the Rastall’s coupling β and the equation of state parameters of the matter source. A list of three particular
solutions with their constraints providing the satisfaction of all wormhole conditions is given in Table 1.

Data Availability Statement No data associated in the manuscript.

References

1. V. Faraoni, Cosmology in scalar tensor gravity (Springer, Dordrecht, 2004). https://doi.org/10.1007/978-1-4020-1989-0
2. A.D. Felice, S. Tsujikawa, f (R) theories. Living Rev. Relativ. 13 (2010). https://doi.org/10.12942/lrr-2010-3
3. R. Maartens, Brane-world gravity. Living Rev. Relat. 7, 7 (2004). https://doi.org/10.12942/lrr-2004-7
4. T. Clifton, P.G. Ferreira, A. Padilla, C. Skordis, Modified gravity and cosmology. Phys. Rep. 513, 1 (2012). https://doi.org/10.1016/j.physrep.2012.01.

001
5. P. Rastall, Generalization of the Einstein theory. Phys. Rev. D 6, 3357 (1972). https://doi.org/10.1103/PhysRevD.6.3357
6. H. Moradpour, Y. Heydarzade, F. Darabi, I.G. Salako, A generalization to the Rastall theory and cosmic eras. Eur. Phys. J. C 77, 259 (2017). https://

doi.org/10.1140/epjc/s10052-017-4811-z
7. Y. Heydarzade, H. Moradpour, F. Darabi, Black hole solutions in Rastall theory. Can. J. Phys. 95, 12 (2017). https://doi.org/10.1139/cjp-2017-0254
8. M. Visser, Rastall gravity is equivalent to Einstein gravity. Phys. Lett. B 782, 83 (2018). https://doi.org/10.1016/j.physletb.2018.05.028
9. F. Darabi, H. Moradpour, I. Licata, Y. Heydarzade, C. Corda, Einstein and Rastall theories of gravitation in comparison. Eur. Phys. J. C 78, 25 (2018).

https://doi.org/10.1140/epjc/s10052-017-5502-5
10. G.G.L. Nashed, W.E. Hanafy, Non-trivial class of anisotropic compact stellar model in Rastall gravity. Eur. Phys. J. C 82, 679 (2022). https://doi.org/

10.1140/epjc/s10052-022-10634-0
11. M.F. Sakti, A. Suroso, A. Sulaksono, F.P. Zen, Rotating black holes and exotic compact objects in the Kerr/CFT correspondence within Rastall gravity.

Phys. Dark Universe 35, 100974 (2022). https://doi.org/10.1016/j.dark.2022.100974
12. L. Meng, D.J. Liu, Tidal love numbers of neutron stars in Rastall gravity. Astrophys. Space Sci. 366, 105 (2021). https://doi.org/10.1007/s10509-021-

04013-6
13. M. Cruz et al., A thermodynamics revision of Rastall gravity. Class. Quantum Gravity 36, 225007 (2019). https://doi.org/10.1088/1361-6382/ab45ab
14. J.C. Fabris, O.F. Piattella, D.C. Rodrigues, On Rastall gravity formulation as a f (R, Lm ) and a f (R, T ) theory. Eur. Phys. J. Plus 138, 232 (2023).

https://doi.org/10.1140/epjp/s13360-023-03845-1

123

https://doi.org/10.1007/978-1-4020-1989-0
https://doi.org/10.12942/lrr-2010-3
https://doi.org/10.12942/lrr-2004-7
https://doi.org/10.1016/j.physrep.2012.01.001
https://doi.org/10.1103/PhysRevD.6.3357
https://doi.org/10.1140/epjc/s10052-017-4811-z
https://doi.org/10.1139/cjp-2017-0254
https://doi.org/10.1016/j.physletb.2018.05.028
https://doi.org/10.1140/epjc/s10052-017-5502-5
https://doi.org/10.1140/epjc/s10052-022-10634-0
https://doi.org/10.1016/j.dark.2022.100974
https://doi.org/10.1007/s10509-021-04013-6
https://doi.org/10.1088/1361-6382/ab45ab
https://doi.org/10.1140/epjp/s13360-023-03845-1


Eur. Phys. J. Plus         (2023) 138:703 Page 15 of 16   703 

15. W.A.G. De Moraes, A.F. Santos, Lagrangian formalism for Rastall theory of gravity and Gödel-type universe. Gen. Relat. Gravity 51, 167 (2019).
https://doi.org/10.1007/s10714-019-2652-9

16. J.A. Wheeler, On the nature of quantum geometrodynamics. Ann. Phys. 2, 604 (1957). https://doi.org/10.1016/0003-4916(57)90050-7
17. M.S. Morris, K.S. Thorne, Wormholes in spacetime and their use for interstellar travel: a tool for teaching general relativity. Am. J. Phys. 56, 395–412

(1988). https://doi.org/10.1119/1.15620
18. M.S. Morris, K.S. Thorne, U. Yurtsever, Wormholes, time machines, and the weak energy condition. Phys. Rev. Lett. 61, 1446 (1988). https://doi.org/

10.1103/PhysRevLett.61.1446
19. Visser M, Lorentzian wormholes: from Einstein to Hawking American Institute of Physics (1995)
20. D. Hochberg, M. Visser, Geometric structure of the generic static traversable wormhole throat. Phys. Rev. D 56, 4745 (1997). https://doi.org/10.1103/

PhysRevD.56.4745
21. D. Hochberg, M. Visser, Null energy condition in dynamic wormholes. Phys. Rev. Lett. 81, 746 (1998). https://doi.org/10.1103/PhysRevLett.81.746
22. D. Hochberg, M. Visser, Dynamic wormholes, antitrapped surfaces, and energy conditions. Phys. Rev. D 58, 044021 (1998). https://doi.org/10.1103/

PhysRevD.58.044021
23. M. Visser, Traversable wormholes: some simple examples. Phys. Rev. D 39, 3182 (1989). https://doi.org/10.1103/PhysRevD.39.3182
24. M. Visser, Traversable wormholes from surgically modified Schwarzschild spacetimes. Nucl. Phys. B 328, 203 (1989). https://doi.org/10.1016/0550-

3213(89)90100-4
25. E.F. Eiroa, C. Simeone, Thin-shell wormholes in dilaton gravity. Phys. Rev. D 71, 127501 (2005). https://doi.org/10.1103/PhysRevD.71.127501
26. O.B. Zaslavskii, Traversable wormholes: minimum violation of the null energy condition revisited. Phys. Rev. D 76, 044017 (2007). https://doi.org/10.

1103/PhysRevD.76.044017
27. E. Poisson, M. Visser, Thin-shell wormholes: linearization stability. Phys. Rev. D 52, 7318 (1995). https://doi.org/10.1103/PhysRevD.52.7318
28. S. Habib Mazharimousavi, M. Halilsoy, Z. Amirabi, Stability of thin-shell wormholes supported by normal matter in Einstein-Maxwell-Gauss-Bonnet

gravity. Phys. Rev. D 81, 104002 (2010). https://doi.org/10.1103/PhysRevD.81.104002
29. M.R. Mehdizadeh, M.K. Zangeneh, F.S.N. Lobo, Higher-dimensional thin-shell wormholes in third-order Lovelock gravity. Phys. Rev. D 92, 044022

(2015). https://doi.org/10.1103/PhysRevD.92.044022
30. F.S.N. Lobo, Wormhole geometries in modified gravity. in AIP Conference Proceedings, vol. 1458 (2011), p. 447. https://doi.org/10.1063/1.4734456
31. T. Harko, F.S.N. Lobo, M.K. Mak, S.V. Sushkov, Modified-gravity wormholes without exotic matter. Phys. Rev. D 87, 067504 (2013)
32. A.G. Agnese, M. La Camera, Wormholes in the Brans-Dicke theory of gravitation. Phys. Rev. D 51, 2011 (1995). https://doi.org/10.1103/PhysRevD.

51.2011
33. K.K. Nandi, A. Islam, J. Evans, Brans wormholes. Phys. Rev. D 55, 2497 (1997). https://doi.org/10.1103/PhysRevD.55.2497
34. F.S.N. Lobo, M.A. Oliveira, General class of vacuum Brans-Dicke wormholes. Phys. Rev. D 81, 067501 (2010). https://doi.org/10.1103/PhysRevD.81.

067501
35. S.V. Sushkov, S.M. Kozyrev, Composite vacuum Brans-Dicke wormholes. Phys. Rev. D 84, 124026 (2011). https://doi.org/10.1103/PhysRevD.84.

124026
36. E.F. Eiroa, M.G. Richart, C. Simeone, Thin-shell wormholes in Brans-Dicke gravity. Phys. Lett. A 373, 1 (2008). https://doi.org/10.1016/j.physleta.

2008.10.065
37. G. Dotti, J. Oliva, R. Troncoso, Exact solutions for the Einstein-Gauss-Bonnet theory in five dimensions: black holes, wormholes, and spacetime horns.

Phys. Rev. D 76, 064038 (2007). https://doi.org/10.1103/PhysRevD.76.064038
38. G. Dotti, J. Oliva, R. Troncoso, Vacuum solutions with nontrivial boundaries for the Einstein-Gauss-Bonnet theory. Int. J. Mod. Phys. A 24, 1690 (2009).

https://doi.org/10.1142/S0217751X09045248
39. F.S.N. Lobo, M.A. Oliveira, Wormhole geometries in f (R) modified theories of gravity. Phys. Rev. D 80, 104012 (2009). https://doi.org/10.1103/

PhysRevD.80.104012
40. N.M. Garcia, F.S.N. Lobo, Wormhole geometries supported by a nonminimal curvature-matter coupling. Phys. Rev. D 82, 104018 (2010). https://doi.

org/10.1103/PhysRevD.82.104018
41. N.M. Garcia, F.S.N. Lobo, Nonminimal curvature-matter coupled wormholes with matter satisfying the null energy condition. Class. Quantum Gravity

28, 085018 (2011). https://doi.org/10.1088/0264-9381/28/8/085018
42. S. Bhattacharya, S. Chakraborty, f (R) gravity solutions for evolving wormholes. Eur. Phys. J. C 77, 558 (2017). https://doi.org/10.1140/epjc/s10052-

017-5131-z
43. R. Shaikh, S. Kar, Wormholes, the weak energy condition, and scalar-tensor gravity. Phys. Rev. D 94, 024011 (2016). https://doi.org/10.1103/PhysRevD.

94.024011
44. M. La Camera, Wormhole solutions in the Randall-Sundrum scenario. Phys. Lett. B 573, 27 (2003). https://doi.org/10.1016/j.physletb.2003.08.042
45. G. Dotti, J. Oliva, R. Troncoso, Static wormhole solution for higher-dimensional gravity in vacuum. Phys. Rev. D 75, 024002 (2007). https://doi.org/

10.1103/PhysRevD.75.024002
46. J. Matulich, R. Troncoso, Asymptotically Lifshitz wormholes and black holes for Lovelock gravity in vacuum. J. High Energy Phys. 2011, 118 (2011).

https://doi.org/10.1007/JHEP10(2011)118
47. T. Torii, H. Shinkai, Wormholes in higher dimensional space-time: exact solutions and their linear stability analysis. Phys. Rev. D 88, 064027 (2013).

https://doi.org/10.1103/PhysRevD.88.064027
48. M.G. Richarte, Wormholes and solitonic shells in five-dimensional DGP theory. Phys. Rev. D 82, 044021 (2010). https://doi.org/10.1103/PhysRevD.

82.044021
49. S. Kar, D. Sahdev, Evolving Lorentzian wormholes. Phys. Rev. D 53, 722 (1996). https://doi.org/10.1103/PhysRevD.53.722
50. N. Riazi, B. Nasre Esfahani, Time-dependent wormholes in an expanding universedominated by traceless matter. Astrophys. Space Sci. 271, 237–243

(2000). https://doi.org/10.1023/A:1002434423671
51. S.A. Hayward, Dynamic wormholes. Int. J. Modern Phys. D 08, 373–382 (1999). https://doi.org/10.1142/s0218271899000286
52. S. Kar, Evolving wormholes and the weak energy condition. Phys. Rev. D 49, 862 (1994). https://doi.org/10.1103/PhysRevD.49.862
53. S.V. Sushkov, Y.Z. Zhang, Scalar wormholes in a cosmological setting and their instability. Phys. Rev. D 77, 024042 (2008). https://doi.org/10.1103/

PhysRevD.77.024042
54. K.F. Peter, Kuhfittig, static and dynamic traversable wormhole geometries satisfying the Ford-Roman constraints. Phys. Rev. D 66, 024015 (2002).

https://doi.org/10.1103/PhysRevD.66.024015
55. L.A. Anchordoqui, D.F. Torres, M.L. Trobo, S.E. Perez Bergliaffa, Evolving wormhole geometries. Phys. Rev. D 57, 829 (1998). https://doi.org/10.

1103/PhysRevD.57.829
56. M. la Camera, On thin-shell wormholes evolving in flat FRW spacetime. Modern Phys. Lett. A 26, 857 (2011). https://doi.org/10.1142/

s0217732311035407

123

https://doi.org/10.1007/s10714-019-2652-9
https://doi.org/10.1016/0003-4916(57)90050-7
https://doi.org/10.1119/1.15620
https://doi.org/10.1103/PhysRevLett.61.1446
https://doi.org/10.1103/PhysRevD.56.4745
https://doi.org/10.1103/PhysRevLett.81.746
https://doi.org/10.1103/PhysRevD.58.044021
https://doi.org/10.1103/PhysRevD.39.3182
https://doi.org/10.1016/0550-3213(89)90100-4
https://doi.org/10.1103/PhysRevD.71.127501
https://doi.org/10.1103/PhysRevD.76.044017
https://doi.org/10.1103/PhysRevD.52.7318
https://doi.org/10.1103/PhysRevD.81.104002
https://doi.org/10.1103/PhysRevD.92.044022
https://doi.org/10.1063/1.4734456
https://doi.org/10.1103/PhysRevD.51.2011
https://doi.org/10.1103/PhysRevD.55.2497
https://doi.org/10.1103/PhysRevD.81.067501
https://doi.org/10.1103/PhysRevD.84.124026
https://doi.org/10.1016/j.physleta.2008.10.065
https://doi.org/10.1103/PhysRevD.76.064038
https://doi.org/10.1142/S0217751X09045248
https://doi.org/10.1103/PhysRevD.80.104012
https://doi.org/10.1103/PhysRevD.82.104018
https://doi.org/10.1088/0264-9381/28/8/085018
https://doi.org/10.1140/epjc/s10052-017-5131-z
https://doi.org/10.1103/PhysRevD.94.024011
https://doi.org/10.1016/j.physletb.2003.08.042
https://doi.org/10.1103/PhysRevD.75.024002
https://doi.org/10.1007/JHEP10(2011)118
https://doi.org/10.1103/PhysRevD.88.064027
https://doi.org/10.1103/PhysRevD.82.044021
https://doi.org/10.1103/PhysRevD.53.722
https://doi.org/10.1023/A:1002434423671
https://doi.org/10.1142/s0218271899000286
https://doi.org/10.1103/PhysRevD.49.862
https://doi.org/10.1103/PhysRevD.77.024042
https://doi.org/10.1103/PhysRevD.66.024015
https://doi.org/10.1103/PhysRevD.57.829
https://doi.org/10.1142/s0217732311035407


  703 Page 16 of 16 Eur. Phys. J. Plus         (2023) 138:703 

57. A.V.B. Arellano, F.S.N. Lobo, Evolving wormhole geometries within nonlinear electrodynamics. Class. Quantum Gravity 23, 5811 (2006). https://doi.
org/10.1088/0264-9381/23/20/004

58. B.N. Esfahani, The null energy condition in wormholes with cosmological constant. Gen. Relativ. Gravity 37, 271–279 (2005). https://doi.org/10.1007/
s10714-005-0018-y

59. M. Cataldo, F. Aróstica, S. Bahamonde, (N + 1)-dimensional Lorentzian evolving wormholes supported by polytropic matter. Eur. Phys. J. C 73, 2517
(2013). https://doi.org/10.1140/epjc/s10052-013-2517-4

60. M. Cataldo, S. del Campo, Two-fluid evolving Lorentzian wormholes. Phys. Rev. D 85, 104010 (2012). https://doi.org/10.1103/PhysRevD.85.104010
61. N. Riazi, M.R. Bordbar, Time-dependent wormhole in an inhomogeneous spherically symmetric space time with a cosmological constant. Astrophys.

Space Sci. 331, 315–320 (2011). https://doi.org/10.1007/s10509-010-0435-6
62. K.A. Bronnikov, J.C. Fabris, O.F. Piattella, E.C. Santos, Static, spherically symmetric solutions with a scalar field in Rastall gravity. Gen. Relat. Gravit.

48, 162 (2016). https://doi.org/10.1007/s10714-016-2152-0
63. G. Mustafa, M.R. Shahzad, G. Abbas, T. Xia, Stable wormholes solutions in the background of Rastall theory. Modern Phys. Lett. A 35, 2050035

(2020). https://doi.org/10.1142/S0217732320500352
64. I.P. Lobo, M.G. Richarte, JM Graça nd H Moradpour, Thin-shell wormholes in Rastall gravity. Eur. Phys. J. Plus 135, 550 (2020). https://doi.org/10.

1140/epjp/s13360-020-00553-y
65. N. Nazavari, K. Saaidi, A. Mohammadi, Wormhole solution in modified teleparallel-Rastall gravity and energy conditions. Gen. Relat. Gravity 55, 45

(2023). https://doi.org/10.1007/s10714-023-03093-9
66. H. Moradpour, N. Sadeghnezhad, S.H. Hendi, Traversable asymptotically flat wormholes in Rastall gravity. Can. J. Phys. 95, 1257 (2017). https://doi.

org/10.1139/cjp-2017-0040
67. S. Halder, S. Bhattacharya, S. Chakraborty, Wormhole solutions in Rastall gravity theory. Modern Phys. Lett. A 34, 1950095 (2019). https://doi.org/10.

1142/S0217732319500950
68. S. Bhattacharya, T. Bandyopadhyay, Revisiting the evolving Lorentzian wormhole: a general perspective. Gen. Relat. Gravity 53, 104 (2021). https://

doi.org/10.1007/s10714-021-02878-0
69. S. Kar, D. Saahdev, Restricted class of traversable wormholes with traceless matter. Phys. Rev. D 52(4), 2030 (1995). https://doi.org/10.1103/PhysRevD.

52.2030
70. L.A. Anchordoqui, S.P. Bergliaffa, D.F. Torres, Brans-Dicke wormholes in nonvacuum spacetime. Phys. Rev. D 55, 5226 (1997). https://doi.org/10.

1103/PhysRevD.55.5226
71. M.R. Mehdizadeh, F.S.N. Lobo, Novel third-order Lovelock wormhole solutions. Phys. Rev. D 93, 124014 (2016). https://doi.org/10.1103/PhysRevD.

93.124014
72. M.R. Mehdizadeh, M.K. Zangeneh, F.S.N. Lobo, Einstein-Gauss-Bonnet traversable wormholes satisfying the weak energy condition. Phys. Rev. D 91,

084004 (2015). https://doi.org/10.1103/PhysRevD.91.084004
73. H. Moradpour, A. Bonilla, E.M.C. Abreu, J.A. Neto, Accelerated cosmos in a nonextensive setup. Phys. Rev. D 96, 123504 (2017). https://doi.org/10.

1103/PhysRevD.96.123504
74. W. El Hanafy, Impact of Rastall gravity on mass, radius, and sound speed of the pulsar PSR J0740 + 6620. APJ 940, 51 (2022). https://doi.org/10.3847/

1538-4357/ac9410
75. R. Li, J. Wang, Z. Xu, X. Guo, Constraining the Rastall parameters in static space-times with galaxy-scale strong gravitational lensing. Mon. Not. R.

Astron. Soc. 486, 2407 (2019). https://doi.org/10.1093/mnras/stz96
76. H. Moradpour, I.G. Salako, Thermodynamic analysis of the static spherically symmetric field equations in Rastall theory. Adv. High Energy Phys. 2016,

3492796 (2016). https://doi.org/10.1155/2016/3492796
77. M.R. Mehdizadeh, A.H. Ziaie, Dynamical wormholes in Lovelock gravity. Phys. Rev. D 104, 104050 (2021). https://doi.org/10.1103/PhysRevD.104.

104050
78. M.R. Mehdizadeh, Dynamical wormholes in Einstein Gauss Bonnet gravity. Eur. Phys. C 80, 310 (2020). https://doi.org/10.1140/epjc/s10052-020-

7871-4
79. Y. Heydarzade, N. Riazi, H. Moradpour, Phantom wormhole solutions in a generic cosmological constant background. Can. J. Phys. 93, 1523 (2015).

https://doi.org/10.1139/cjp-2015-0359

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other
rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

123

https://doi.org/10.1088/0264-9381/23/20/004
https://doi.org/10.1007/s10714-005-0018-y
https://doi.org/10.1140/epjc/s10052-013-2517-4
https://doi.org/10.1103/PhysRevD.85.104010
https://doi.org/10.1007/s10509-010-0435-6
https://doi.org/10.1007/s10714-016-2152-0
https://doi.org/10.1142/S0217732320500352
https://doi.org/10.1140/epjp/s13360-020-00553-y
https://doi.org/10.1007/s10714-023-03093-9
https://doi.org/10.1139/cjp-2017-0040
https://doi.org/10.1142/S0217732319500950
https://doi.org/10.1007/s10714-021-02878-0
https://doi.org/10.1103/PhysRevD.52.2030
https://doi.org/10.1103/PhysRevD.55.5226
https://doi.org/10.1103/PhysRevD.93.124014
https://doi.org/10.1103/PhysRevD.91.084004
https://doi.org/10.1103/PhysRevD.96.123504
https://doi.org/10.3847/1538-4357/ac9410
https://doi.org/10.1093/mnras/stz96
https://doi.org/10.1155/2016/3492796
https://doi.org/10.1103/PhysRevD.104.104050
https://doi.org/10.1140/epjc/s10052-020-7871-4
https://doi.org/10.1139/cjp-2015-0359

	Dynamical wormhole solutions in Rastall theory
	Abstract
	1 Introduction
	2 Evolving wormholes in Rastall theory
	2.1 Solutions for C=0
	2.1.1 Solution for the shape function
	2.1.2 Solution for the scale factor

	2.2 Solutions for Cneq0
	2.2.1 Solution for the shape function
	2.2.2 Solution for the scale factor


	3 Weak energy condition
	3.1 WEC for  0<β<=16
	3.1.1 Analysis of solutions for C=0
	3.1.2 Analysis of solutions for Cneq0

	3.2 WEC for  β<0
	3.2.1 Analysis of solutions for C=0
	3.2.2 For solution of Cneq0


	4 Conclusion
	References


