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Abstract

A brief introduction to the fractional Fourier transform and its
properties is given. Its relation to phase-space representations
(time- or space-frequency representations) and the concept of
fractional Fourier domains are discussed. An overview of ap-
plications which have so far received interest are given and
some potential application areas remaining to be explored are
noted.

1 Introduction

The purpose of this paper is to provide a brief introduction
to the fractional Fourier transform (FRT). Since the ordinary
Fourier transform and related techniques are of importance in
the control field, it is natural to expect the fractional Fourier
transform to find many applications as well. This expectation
is further supported by the fact that the fractional Fourier trans-
form has already found many applications in the areas of signal
processing and communications. This paper will provide gen-
eral motivation and mention some of the more important prop-
erties of the transform. Those interested in learning more are
referred to a recent book on the subject [1] or the chapter-length
treatment [2].

The fractional Fourier transform is a generalization of the or-
dinary Fourier transform with an order (or power) parameter � .
The � th order fractional Fourier transform operator is the � th
power of the ordinary Fourier transform operator. (Readers not
familiar with functions of operators may think of them in anal-
ogy with functions of matrices. In the discrete case, where the
discrete ordinary and fractional Fourier transform operators are
represented by matrices, this is actually the case.) If we denote
the ordinary Fourier transform operator by

�
, then the � th or-

der fractional Fourier transform operator is denoted by
� �

. The
zeroth-order fractional Fourier transform operator

� 

is equal

to the identity operator � . The first-order fractional Fourier
transform operator

� �
is equal to the ordinary Fourier trans-

form operator. Integer values of � correspond to repeated ap-
plication of the Fourier transform; for instance,

� �
corresponds

to the Fourier transform of the Fourier transform.
� 
 �

corre-
sponds to the inverse Fourier transform operator. The � � th order
transform of the � th order transform is equal to the � � � � � � th

order transform; that is
� � � � � � � � � � �

, a property referred
to as index additivity. For instance, the �  " th fractional Fourier
transform operator

� 
 % &
, when applied twice, amounts to or-

dinary Fourier transformation. Or, the �  ' th transform of the
�  ( rd transform is the �  ) th transform. The order � may as-
sume any real value, however the operator

� �
is periodic in �

with period ' ; that is
� � � + - � � �

where 1 is any integer. This
is because

� �
equals the parity operator 2 which maps 3 � 5 �

to 3 � 7 5 � and
� +

equals the identity operator. Therefore, the
range of � is usually restricted to � 7 9 : 9 = or > � : ' � . Complex-
ordered transforms have also been discussed by some authors,
although there remains much to do in this area both in terms of
theory and applications.

The same facts can also be thought of in terms of the func-
tions which these operators act on. For instance, the � th or-
der fractional Fourier transform of the function 3 � 5 � is merely
the function itself, and the @ st order transform is its ordinary
Fourier transform A � B � , where B denotes the frequency do-
main variable. The � th fractional Fourier transform of 3 � 5 � is
denoted by 3 � � 5 � so that 3 
 � 5 � � 3 � 5 � and 3 � � B � � A � B � (or

3 � � 5 � � A � 5 � since the functional equality does not depend on
the dummy variable employed).

An example is given in figure 1, where we see the magnitude
of the fractional Fourier transforms of the rectangle function
for different values of the order � F > � : @ = . We observe that
as � varies from � to @ , the rectangle function evolves into
a sinc function, which is the ordinary Fourier transform of
the rectangle function. Such two-dimensional functions 3 � � 5 �
with variables � and 5 are known as rectangular time-order or
space-order representations of the function 3 � 5 � , depending on
whether the variable 5 is interpreted as time or space (or some-
thing else) [1].

The earliest known references dealing with the transform go
back to 1920s and 1930s; since then the transform has been
reinvented several times. It has received the attention of a few
mathematicians during the eighties [3, 4, 5]. However, interest
in the transform really grew with its reinvention/reintroduction
by researchers in the fields of optics and signal processing, who
noticed its relevance for a variety of application areas [6, 7, 8,
9]. A detailed account of the history of the transform may be
found in [1].
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Figure 1:

2 Definition

The most straightforward way of defining the fractional Fourier
transform is as an integral transform as follows:

� � � � � � � �
	 � � � � � 
 � � � � � � � � � � � 
 (1)

� � � � 
 � � � � 	 � 
 � � � � � � � � � � �
�

� � � ! � � � � � � � � � � � �
�

� & 
	 � � ( � � � � � � � � � � �
�

when � *� � � . When � � � � the transform is defined as� � � � 
 � � � � , � � � � � � and when � � � � � � the transform
is defined as � � � � 
 � � � � , � � � � � � . It can be shown that the
above kernel for � *� � � indeed approaches these delta function
kernels as � approaches even integers.

It is not easy to see from the above definition that the transform
is indeed the operator power of the ordinary Fourier transform.
In order to find the operator power of the ordinary Fourier
transform, we first consider its eigenvalue equation:

� / 0 � � � � 2 	 3 0 4 6 � / 0 � � � � (2)

Here
/ 0 � � � , 7 � � 
 � 
 � � � � are the Hermite-

Gaussian functions defined as
/ 0 � � � � � �

! 6 " 9 ( �
0 7 : �; 0 � ( � � � � 
 � � � � � �

�
� , where

; 0 � � � are the standard Her-
mite polynomials.


 � � � � � 7 � 9 � � is the eigenvalue associated
with the 7 th eigenfunction

/ 0 � � � . Now, following a standard
procedure also used to define functions of matrices, the
fractional Fourier transform may be defined such that it has
the same eigenfunctions but the eigenvalues raised to the � th
power:

� � / 0 � � � � � 2 	 3 0 4 6 �
�

� / 0 � � � � (3)

This definition is not unique for at least two reasons. First, it
depends on the choice of the Hermite-Gaussian set as the set of
eigenfunctions (which is not the only such possible set). Sec-
ond, it depends on how we resolve the ambiguity in evaluating

% 
 � � � � � 7 � 9 � � & �
. The particular definition which has so far

received the greatest attention, has the most elegant properties,
and which has found the most applications follows from choos-
ing % 
 � � � � � 7 � 9 � � & � � 
 � � � � � � 7 � 9 � � . With this choice,
the fractional Fourier transform of a square-integrable function

� � � � can be found by first expanding it in terms of the Hermite-
Gaussian functions as

� � � � �
�>0 ? ( @ 0 / 0 � � � 
 (4)

@ 0 � � / 0 � � � � � � � � � 
 (5)

and then applying
� �

to both sides to obtain

� � � � � � �
�>0 ? ( @ 0 � � / 0 � � � (6)

� � � � � �
�>0 ? ( @ 0 2 	 3 � 0 4 6 � / 0 � � � 
 (7)

� � � � � � � D �>0 ? (
2 	 3 � 0 4 6 � / 0 � � � / 0 � � � � F � � � � � � � � (8)

The final form can be shown to be equal to that given by equa-
tion 1 through a standard identity.

3 Fractional Fourier domains

One of the most important concepts in Fourier analysis is the
concept of the Fourier (or frequency) domain. This “domain”
is understood to be a space where the Fourier transform rep-
resentation of the signal lives, with its own interpretation and
qualities. This naturally leads one to inquire into the nature of
the domain where the fractional Fourier transform representa-
tion of a function lives. This is best understood by referring to
figure 2 which shows the phase space spanned by the axes �
(usually time or space) and + (temporal or spatial frequency).
This phase space is also referred to as the time-frequency or
space-frequency plane in the signal processing literature. The
horizontal axis � is simply the time or space domain, where the
original function lives. The vertical axis + is simply the fre-
quency (or Fourier) domain where the ordinary Fourier trans-
form of the function lives. Oblique axes making angle � consti-
tute domains where the � th order fractional Fourier transform
lives, where � and � are related through � � � � 9 � . Notice
that this description is consistent with the fact that the second
Fourier transform is equal to the parity operation (associated
with the � � axis), the fact that the � � st transform corresponds
to the inverse Fourier transform (associated with the � + axis),
and the periodicity of � � � � � in � (adding a multiple of � to �
corresponds to adding a multiple of � �

to � ).

For those familiar with phase spaces from a mechanics—rather
than signal analysis—perspective, we note that the correspon-
dence between spatial frequency and momentum allows one
to construct a correspondence between the familiar mechani-
cal phase space of a single degree of freedom (defined by the
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space axis and the momentum axis), and the phase space of
signal analysis (defined by the space axis and the spatial fre-
quency axis). What is important to understand for the present
purpose is that the phase space or time/space-frequency plane
we are talking about is essentially the same physical construct
as the classical phase space of mechanics.

Referring to axes making angle � �
�

� �
� with the � axis as the

“ � th fractional Fourier domain” is supported by several of the
properties of the fractional Fourier transform to be discussed
further below. However, the most substantial justification is
based on the fact that fractional Fourier transformation corre-
sponds to rotation in phase space. This can be formulated in
many ways, the most straightforward being to consider a phase-
space distribution (or time/space-frequency representation) of
the function � � � 
 , such as the Wigner distribution

� �
� � � 
 
 ,

which is defined as

� �
� � � 
 


� �
� � � � � �

�
� 
 � � � � � � �

�
� 


� � � � � � 	 � 	 � � � (9)

The many properties of the Wigner distribution [10] support its
interpretation as a function giving the distribution of signal en-
ergy in phase space (the time- or space-frequency plane). That
is, the Wigner distribution answers the question “How much
of the signal energy is located near this time and frequency?”
(Naturally, the answer to this question can only be given within
limitations imposed by the uncertainty principle.) Three of the
important properties of the Wigner distribution are� � �

� � � 
 
 	 

� � � �

� �
� � � 
 
 �

� �
� � � 


� �
� (10)� � �

� � � 
 
 	 �
� � � 
 � �

� �
� � � 
 
 �

� �
� � 
 


� �
� (11)� � � �

� � � 
 
 	 � 	 

� �

�
� � �

Signal Energy � (12)

Here
� �

denotes the integral projection (or Radon trans-
form) operator which takes an integral projection of the two-
dimensional function

� �
� � � 
 
 onto an axis making angle �

with the � axis, to produce a one-dimensional function.

Now, it is possible to show that the Wigner distribution� � �
� � � 
 
 of � � � � 
 is a clockwise rotated version of the

Wigner distribution
� �

� � � 
 
 of � � � 
 . Mathematically,

� � �
� � � 
 


� � �
� � � � � � � 
 � � � � � � � � � � � 
 � � � � 
 � (13)

That is, the act of fractional Fourier transformation on the origi-
nal function, corresponds to rotation of the Wigner distribution.
An immediate corollary of this result, supported by figure 3, is

� �
�

� �
� � � 
 
 �

� �
� � � � 


� �
� (14)

which is a generalization of equations 10 and 11. This equation
means that the projection of the Wigner distribution of � � � 

onto the axis making angle � gives us

�
� � � � 


� �
, the squared

magnitude of the � th fractional Fourier transform of the func-
tion. Since projection onto the � axis (the time or space do-
main) gives

�
� � � 


� �
and projection onto the 


�
� � axis (the

frequency domain) gives
�

� � 
 

� �

, it is natural to refer to the
axis making angle � as the � th order fractional Fourier domain.

(   ,   )

(a)  μ

W u
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 μ(   ,   )
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Figure 3:
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4 Applications

We begin by highlighting some of the applications of the frac-
tional Fourier transform which have received the greatest inter-
est so far. A more comprehensive treatment and an extensive
list of references may once again be found in [1] and [2].

The fractional Fourier transform has received a great deal of
interest in the area of optics and especially optical signal pro-
cessing (also known as Fourier optics or information optics)
[11, 12, 13, 14]. Optical signal processing is an analog signal
processing method which relies on the representation of sig-
nals by light fields and their manipulation with optical elements
such as lenses, prisms, transparencies, holograms and so forth.
Its key component is the optical Fourier transformer which can
be realized using one or two lenses separated by certain dis-
tances from the input and output planes. It has been shown that
the fractional Fourier transform can be optically implemented
with equal ease as the ordinary Fourier transform, allowing a
generalization of conventional approaches and results to their
more flexible or general fractional analogs.

The fractional Fourier transform has also been shown to be in-
timately related to wave and beam propagation and diffraction.
The process of diffraction of light, or any other disturbance sat-
isfying a similar wave equation, has been shown to be nothing
but a process of continual fractional Fourier transformation; the
distribution of light becomes fractional Fourier transformed as
it propagates, evolving through continuously increasing orders.

The transform has also found widespread use in signal and im-
age processing, in areas ranging from time/space-variant fil-
tering, perspective projections, phase retrieval, image restora-
tion, pattern recognition, tomography, data compression, en-
cryption, watermarking, and so forth (for instance, [8, 15, 16,
17, 18, 19, 20]). Concepts such as “fractional convolution” and
“fractional correlation” have been studied. One of the most
striking applications is that of filtering in fractional Fourier do-
mains [15]. In traditional filtering, one takes the Fourier trans-
form of a signal, multiplies it with a Fourier-domain transfer
function, and inverse transforms the result. Here, we take the
fractional Fourier transform, apply a filter function in the frac-
tional Fourier domain, and inverse transform to the original
domain. It has been shown that considerable improvement in
performance is possible by exploiting the additional degree of
freedom coming from the order parameter � . This improve-
ment comes at no additional cost since computing the fractional
Fourier transform is not more expensive than computing the or-
dinary Fourier transform [21]. The concept has been general-
ized to multi-stage and multi-channel filtering systems which
employ several fractional Fourier domain filters of different or-
ders [22]. These schemes provide flexible and cost-efficient
means of designing time/space-variant filtering systems to meet
desired objectives and may find use in control systems.

The fractional Fourier transform is intimately related to the har-
monic oscillator in both its classical and quantum-mechanical
forms. The kernel �

� � � � � � � given in equation 1 is precisely
the Green’s function (time-evolution operator kernel) of the

quantum-mechanical harmonic oscillator differential equation.
In other words, the time evolution of the wave function of a
harmonic oscillator corresponds to continual fractional Fourier
transformation. In classical mechanics, the relationship can
be most easily seen by noting that—with properly normalized
coordinates—the phase space point describing harmonic oscil-
lation follows circular trajectories; that is, it rotates in phase
space. Therefore, one can expect the fractional Fourier trans-
form to play an important role in the study of vibrating systems,
an application area which has so far not received attention.

Another potential application area is the solution of time-
varying differential equations. Namias and McBride and Kerr
[3, 4, 23] have shown how the fractional Fourier transform can
be used to solve certain differential equations. Constant coeffi-
cient (time-invariant) equations can be solved with the ordinary
Fourier or Laplace transforms. It has been shown that certain
kinds of second-order differential equations with non-constant
coefficients can be solved by exploiting the additional degree of
freedom associated with the order parameter � . One proceeds
by taking the fractional Fourier transform of the equation and
then choosing � such that the second-order term disappears,
leaving a first-order equation whose exact solution can always
be written. Then, an inverse transform (of order 	 � ) provides
the solution of the original equation. It remains to be seen if this
method can be generalized to higher-order equations by reduc-
ing the order from � to � 	 � and proceeding recursively down
to a first-order equation, by using a different-ordered transform
at each step.

We believe that the fractional Fourier transform is of potential
usefulness in every area in which the ordinary Fourier trans-
form is used. The typical pattern of discovery of a new appli-
cation is to concentrate on an application where the ordinary
Fourier transform is used and ask if any improvement or gen-
eralization might be possible by using the fractional Fourier
transform instead. The additional order parameter often allows
better performance or greater generality because it provides an
additional degree of freedom over which to optimize.

Typically, improvements are observed or are greater when deal-
ing with time/space-variant signals or systems. Furthermore,
very large degrees of improvement often becomes possible
when signals of a chirped nature or with nearly-linearly in-
creasing frequencies are in question, since chirp signals are the
basis functions associated with the fractional Fourier transform
(just as harmonic functions are the basis functions associated
with the ordinary Fourier transform).

The fractional Fourier transform has spurred interest in many
other fractional transforms; see [1] for further references. The
fractional Laplace and � -transforms, however, have so far not
received sufficient attention.

5 Transforms of some common functions

Below we list the fractional Fourier transforms of some com-
mon functions. Transforms of most other functions must usu-
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ally be computed numerically. It has been shown that the trans-
form of a continuous function whose time- or space-bandwidth
product is

�
can be computed in the order of

� � � � �
time

[21], just like the ordinary Fourier transform. Therefore any
improvements that come with use of the fractional Fourier
transform come at no additional cost. The discrete fractional
Fourier transform has been defined and studied in [24].

Unit function: The fractional Fourier transform of � � � � � 	
is


 � � 	 
 � � 	 � � � � � � � � � 	 � 	 � 
 � �
� (15)

This equation is valid when � �� � � � 	 where � is an arbitrary
integer. The transform is


 � � � when � � � � � 	 .

Delta function: The fractional Fourier transform of a delta
function � � � � � 
 � � � � � � is


 � � 
 � � � � � � 
 � � 	 � � � � � � � � 	 � � 	 � � � � � � � � � � � � � � � 	 � � � � � �
�

(16)

This expression is valid when � �� � � . The transform of

 � � �

� � � is

 � � � � � � when � � � � and


 � � � � � � when � � � � � � .

Harmonic Function: The fractional Fourier transform of a
harmonic function � � � � � � � � � � � �  � � � is


 � � � � � 	 � � �

 � � 	 � � � � � � � � � 	 � � 	 � 
 � � � � � � � � � � � � � 	� � 
 � � �

�
(17)

This equation is valid when � �� � � � 	 . The transform of� � � � � � �  � � � is

 � � �  � � when � � � � � 	 and


 � � �  � �
when � � � � � ! .

General chirp function: The fractional Fourier transform of a
general chirp function � � � � � � � � � � � � � �

�
� � � � � 
 is


 �
� � � 	 � ! � 	 � � # � �


 � % 	 � � � � � �
	 � � � � � �& � � 	 ' � 	 � ! � � 
 � � � � � � # � � � � � # 	 � 
 � � * � ' # � ! � 
 � � *

(18)

This equation is valid when � � � � � � � � - � � � � � �� � � �
	 . The transform of

� � � � � � � �
�

� is / 	 � � 	 � � � � 
 � � � when
� � � � � � � � � - � � � � � 
 � � � � 	 and / 	 � � 	 � � � � when
� � � � � � � � � - � � � � � 
 � � � .

Hermite-Gaussian functions: The fractional Fourier trans-
form of a Hermite-Gaussian function � � � � � � ! � � � is


 �
� � ! � � � 
 � � � � ! � � ! � � � � (19)

General Gaussian function: The fractional Fourier transform
of a general Gaussian function � � � � � � � � � � � � � �

�
� � � � � 
 is


 � � � � 	 � ! � 	 � � # � �

 � % 	 � � � � � �� � � � � � �& � � 	 � � � � ' � 	 � ! 	 � # � � � � ! # � � � � � # 	 * � ' ! 	 � � � � � *

& � � 	 � � � 	 � � � 	 ! � � � # � � � � � ! # 	 � 4 � 	 � � � � ! 	 � � � � � �
� (20)

Here � 7 ' is required for convergence.

6 Properties

Linearity: Let

 �

denote the � th order
fractional Fourier transform operator. Then
 � � 9 ; = ; � ; � � � 
 � 9 ; = ; � 
 � � ; � � � 
 .
Integer orders:


 ; � � 
 � ;
where



denotes the ordinary

Fourier transform operator. This property states that when � is
equal to an integer ? , the � th order fractional Fourier transform
is equivalent to the ? th integer power of the ordinary Fourier
transform, defined by repeated application. It also follows that
 � � ) (the parity operator),


 A � 
 � # � � 
 � � #
(the in-

verse transform operator),

 + � 
 � � , (the identity opera-

tor), and

 - � 
 - B � D +

.

Inverse: � 
 � � � # � 
 � �
. In terms of the kernel, this property

is stated as $
� #

� � � . � 0 � �
$ � � � � . � 0 � .

Unitarity: � 
 � � � # � � 
 � � E � 
 � �
where � � E denotes the

conjugate transpose of the operator. In terms of the kernel, this
property can stated as $

� #� � � . � 0 � �
$ �� � � 0 . � � .

Index additivity:

 � 	 
 � H � 
 � 	 � � H

. In terms
of kernels this can be written as $ � 	 � � H � � . � 0 � �I

$ � 	 � � . � 0 0 � $ � H � � 0 0 . � 0 � % � 0 0 .
Commutativity:


 � 	 
 � H � 
 � H 
 � 	
.

Associativity:

 � J � 
 � 	 
 � H � � � 
 � J 
 � 	

� 
 � H
.

Eigenfunctions:

 � � � ! � � � 
 � � � � � � � � & � � � � � ! � � � .

Parseval:
I

� � � � � K � � � % � � I
� �� � � � K � � � � % � . This prop-

erty is equivalent to unitarity. Energy or norm conservation
( L � � � 
 � L � � � � 
 or

� � � � � � � �
) is a special case.

Time reversal: Let ) denote the parity operator: ) � � � � � 
 �

� � � � � , then

 � ) � ) 
 �

(21)

 � � � � � � � 
 � � � � � � � (22)

Transform of a scaled function: Let M O and P R denote the
scaling M O � � � � � 
 � 	 T 	 � # � �

� � � � T � and chirp multiplica-
tion P R � � � � � 
 � � � � 	 R � 	

� � � � operators respectively. Then


 � M O � P ' � � � � � � # � � � � � 	 � 4 � � � � � � 	 � � � *
M ' O � 4 � � 4 � � 4 � � * 
 � 4 . (23)


 � � 	 T 	 � # � �
� � � � T � 
 � X 	 � � � � � �

	 � � T � � � � �& � � 	 � 	 � � � �
� # � � � � � 	 � 4 � � � � � � 	 � �

� � � 4 Y T � * � � � 0
* � � � Z �

(24)

Here � 0 � � - � � � � � T � � � � � � � and � 0 is taken to be in the
same quadrant as � . This property is the generalization of
the ordinary Fourier transform property stating that the Fourier
transform of � � � � T � is

	 T 	 6 � T  � . Notice that the fractional
Fourier transform of � � � � T � cannot be expressed as a scaled
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version of � � � � � for the same order � . Rather, the fractional
Fourier transform of � � � � � � turns out to be a scaled and chirp
modulated version of � � � � � � where � 
 �� � is a different order.

Transform of a shifted function: Let
� � � �

and � � � �

denote the shift
� � � � � � � � � � � � � � � � � � and the phase

shift � � � � � � � � � � � � � � � 	 � 
 � � � � � � � � operators respectively.
Then

� � � � � � � � � 
 � � � � � 	 � 
 � � �
� � � � � � � 	 � � � � � 
 � � � �

(25)
� � � � � � � � � � � � � � 
 � � 	 � � � � � 
 � � � � � � � � �

� � � � � � � � � � � � �
(26)

We see that the
� � � �

operator, which simply results in a trans-
lation in the � domain, corresponds to a translation followed
by a phase shift in the � th fractional domain. The amount of
translation and phase shift is given by cosine and sine multipli-
ers which can be interpreted in terms of “projections” between
the axes.

Transform of a phase-shifted function:
� �

� � � � � � � � 
 � � � � � 	 � 
 � � �
� � � � 
 � � � � � � � � � 	 �

(27)
� �

� � � � � � � � � � � � � 
 
 � � � � � � � � � 	 � � � � � � �
� � � � � � � � � � � �

(28)

Similar to the shift operator, the phase-shift operator which
simply results in a phase shift in the � domain, corresponds
to a translation followed by a phase shift in the � th fractional
domain. Again the amount of translation and phase shift are
given by cosine and sine multipliers.

Transform of a coordinate multiplied function: Let � and�
denote the coordinate multiplication � � � � � � � � � � � � � and

differentiation
� � � � � � � � � 	 � 
 � �  � � � � � � � � operators respec-

tively. Then
� �

�
� � � � � � � � � � � � � � �

� � �
(29)

� �
� �

�
� � � � � � � � � � � � � � � � � � 	 � 
 �

�  � � � � �
�

� � � � � (30)

When � � " the transform of a coordinate multiplied function
� � � � � is the derivative of the transform of the original function

� � � � , a well-known property of the Fourier transform. For arbi-
trary values of � , we see that the transform of � � � � � is a linear
combination of the coordinate-multiplied transform of the orig-
inal function and the derivative of the transform of the original
function. The coefficients in the linear combination are � � � �
and � � � � � . As � approaches # , there is more � � � � � and less� � � � � � � � in the linear combination. As � approaches " , there
is more � � � � � � � � and less � � � � � .

Transform of the derivative of a function:
� � � � � � � � � � � $ � � � � � �

� � �
(31)

� �
� � � 	 � 
 �

�  � � � � �
�

� � � � � �

� � � � � � $ � � � � � 	 � 
 � �  � � � � �
�

� � � � � (32)

When � � " the transform of the derivative of a function� � � � � � � � is the coordinate-multiplied transform of the original
function. For arbitrary values of � , we see that the transform is
again a linear combination of the coordinate-multiplied trans-
form of the original function and the derivative of the transform
of the original function.

Transform of a coordinate divided function:

� � � � � � � � � � � � 	 � � � � � � 
 � � 
 � � � � � 
 �

� � � � � � 
 � � � � � 
 � � � 
 � � � � � � 


(33)

Transform of the integral of a function:

� � �
� �

� � � � � 
 � � � 
 � � � � � � � � � 
 � � � � 	 � � �
� � � � � � 
 � � � 
 � � � � � 	 � � � 


(34)

A few additional properties are

� � � � 
 � � � � � � 
� � � � � � (35)
� �

� � � � � � $ � � � � � � � � � � � � � � � � $ � � � � � � � � � � (36)
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � (37)

It is also possible to write convolution and multiplication prop-
erties for the fractional Fourier transform, though these are not
of great simplicity [1].

We may finally note that the transform is continuous in the or-
der � . That is, small changes in the order � correspond to small
changes in the transform � � � � � . Nevertheless, care is always
required in dealing with cases where � approaches an even in-
teger, since in this case the kernel approaches a delta function.
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Digital computation of the fractional Fourier transform.
IEEE Trans Signal Processing, 44:2141–2150, 1996.

[22] M. A. Kutay, M. F. Erden, H. M. Ozaktas, O. Arıkan,
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