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A B S T R A C T   

Multisource image analysis that leverages complementary spectral, spatial, and structural information benefits 
fine-grained object recognition that aims to classify an object into one of many similar subcategories. However, 
for multisource tasks that involve relatively small objects, even the smallest registration errors can introduce 
high uncertainty in the classification process. We approach this problem from a weakly supervised learning 
perspective in which the input images correspond to larger neighborhoods around the expected object locations 
where an object with a given class label is present in the neighborhood without any knowledge of its exact 
location. The proposed method uses a single-source deep instance attention model with parallel branches for 
joint localization and classification of objects, and extends this model into a multisource setting where a refer-
ence source that is assumed to have no location uncertainty is used to aid the fusion of multiple sources in four 
different levels: probability level, logit level, feature level, and pixel level. We show that all levels of fusion 
provide higher accuracies compared to the state-of-the-art, with the best performing method of feature-level 
fusion resulting in 53% accuracy for the recognition of 40 different types of trees, corresponding to an 
improvement of 5.7% over the best performing baseline when RGB, multispectral, and LiDAR data are used. We 
also provide an in-depth comparison by evaluating each model at various parameter complexity settings, where 
the increased model capacity results in a further improvement of 6.3% over the default capacity setting.   

1. Introduction 

Advancements in sensors used for remote sensing enabled spectrally 
rich images to be acquired at very high spatial resolution. Fine-grained 
object recognition, which aims the classification of an object as one of 
many similar subcategories, is a difficult problem manifested by these 
improvements in sensor technology (Oliveau and Sahbi, 2017; Branson 
et al., 2018; Sumbul et al., 2018). The difficulty of distinguishing sub-
categories due to low variance between classes is one of the main 
characteristics of this problem that differs from traditional object 
recognition and classification tasks studied in the remote sensing liter-
ature. Other distinguishing features of fine-grained object recognition 
are the difficulty of collecting samples for a large number of similar 
categories, which can cause the training set sizes to be very limited for 
some classes, and the class imbalance that makes the traditional su-
pervised learning approaches to overfit to the classes with more samples. 
This makes it necessary to develop new methods for fine-grained clas-
sification that could cover the shortfalls of the traditional object 

recognition methods regarding these problems. 
One way to help decrease the confusion inherent to the data in fine- 

grained classification is to gather complementary information by uti-
lizing multiple data sources, which can provide more distinguishing 
properties of the object of interest. For example, a high-resolution RGB 
image can give details about texture, color, and coarse shape, whereas a 
multispectral (MS) image can provide richer spectral content and LiDAR 
data can yield information about the object height. However, the 
question of how to combine the data from multiple sources does not 
have a straightforward answer. Therefore, it is an open research problem 
to find a method to benefit from the distinct contents of the sources as 
effectively as possible. 

The common assumption of most multisource image analysis 
methods is that the data sources are georeferenced or co-registered 
without any notable errors that may prevent the pixel-level or feature- 
level fusion of the sources. This can be a valid assumption for tasks like 
land cover classification in which the classes of interest (e.g., water, 
forest, impervious surfaces) are significantly larger compared to the 
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registration errors (Chen et al., 2017). However, for multisource tasks 
that involve the classification of relatively small objects such as 
trees–similar to the problem we focus on in this paper–even the smallest 
registration errors can introduce high uncertainty among different 
sources and between the sources and the ground truth labels. Further-
more, it is not always possible to mitigate this uncertainty by trying to 
discover pixel-level correspondences between the sources due to the 
fine-grained nature of the problem and for other reasons such as dif-
ferences in the imaging conditions, viewing geometry, topographic ef-
fects, and geometric distortions (Han et al., 2016). 

The fine-grained recognition problem studied in this paper involves 
the classification of street trees using RGB, MS, and LiDAR data. 
Although the very high-resolution RGB images are manually inspected 
with respect to the reference tree locations in the GIS-based ground 
truth, there is still high location uncertainty in the MS and LiDAR data 
that contain trees of 4 × 4 and 8 × 8 pixels, respectively, due to the 
aforementioned reasons. To cope with this uncertainty introduced by 
registration errors and small sizes of the target objects, we crop tiles 
larger than the object sizes around the reference locations given by the 
point GIS data to ensure that each tree falls inside its corresponding tile. 
With such images covering larger neighborhoods than the typical object 
size, the problem becomes a weakly supervised learning (WSL) problem 
in the sense that the label of each image provides information about the 
category of the object it contains, but does not yield any information 
regarding its location in the neighborhood. The problem is illustrated in 
Fig. 1. 

To the best of our knowledge, the only related work that studied the 
multisource fine-grained recognition problem is that of Sumbul et al. 
(2019), where an attention mechanism over a set of candidate regions 
was used with guidance by a reference source to obtain a more effective 
representation of the sources which are fused together for the final 
classification. However, in that scheme, the attention mechanism simply 
aims to maximize the discriminative power of the attention-driven 
representation. While that approach yields promising results, it is sus-
ceptible to overfitting to accidental correlations appearing in training 
examples, and may learn to put too much emphasis on background 
features. In this work, we instead utilize a stronger WSL-based formu-
lation that aims to induce an instance attention behavior: instead of 
estimating pooling weights of candidate regions, we estimate the rele-
vance of each candidate region as a function of its spatial and semantic 
distinctiveness. Here, therefore, we aim to incorporate the prior 
knowledge that in most cases one (or very few) local regions actually 
belong to the object of interest in a local neighborhood. 

The method proposed in this paper loosely builds upon our pre-
liminary work (Aygunes et al., 2019), which has shown that weakly 
supervised learning objective can be repurposed to improve single- 
source object recognition when the images contain high location un-
certainty. In this paper, as our main contribution, we extend this idea to 
the multisource setting with a number of novel information fusion 
schemes. We first propose a more generalized version of our WSL-based 
instance attention model for single-source classification, which can be 
applied to any source with location uncertainty. Then, the proposed 

fusion schemes combine multiple additional sources that are processed 
with this instance attention method and a reference source that is 
assumed to have no uncertainty and is processed in a fully supervised 
fashion. Each proposed scheme aims to leverage the reference source to 
aid the instance attention branches by combining the reference with the 
additional sources in four different levels: probability level, logit level, 
feature level, and pixel level. We show that it is possible to benefit from 
the reference source with all levels of fusion, as they surpass the state-of- 
the-art baselines. As another contribution, we also propose a method-
ology to compare different models in a more principled way, by evalu-
ating each model at various parameter complexity settings. The results 
of this experiment highlight the importance of investigating approaches 
at various model capacities to make fair comparisons, as comparing 
different methods each of which having a different single model capacity 
setting can be misleading. Overall, our results indicate that we obtain 
significant improvements over the state-of-the-art. 

In the rest of the paper, we first present a summary of related work in 
Section 2 and give information about the data set we use in our exper-
iments in Section 3. We then describe our proposed methods in Section 
4. Next, we give details about our experimental setup, and present 
quantitative comparisons with several baselines and qualitative results 
in Section 5. Finally, we provide our conclusions in Section 6. 

2. Related work 

Multisource image analysis. There are many studies in the remote 
sensing literature that focus on multisource image analysis (Gomez- 
Chova et al., 2015; Dalla Mura et al., 2015), which has also received the 
attention of data fusion contests (Debes et al., 2014; Liao et al., 2015; 
Campos-Taberner et al., 2016; Yokoya et al., 2018). The research in-
cludes statistical learning methods such as dependence trees (Datcu 
et al., 2002), kernel-based methods (Camps-Valls et al., 2008), copula- 
based multivariate model (Voisin et al., 2014), and active learning 
(Zhang et al., 2015). Another well-studied problem is manifold align-
ment (Tuia et al., 2014; Hong et al., 2019; Gao and Gu, 2019) where the 
goal is to transfer knowledge learned in the source domain to a target 
domain. The underlying reason that necessitates this transfer is typically 
the spectral mismatch between the domains. In this paper, the main 
problem in the multisource analysis is the spatial mismatch among the 
image sources. 

More recently, deep learning-based methods have focused on clas-
sification with pixel-level or feature-level fusion of multiple sources. 
Pixel-level fusion includes concatenation of hyperspectral and LiDAR 
data preprocessed to the same resolution, followed by a convolutional 
neural network (CNN) (Morchhale et al., 2016), while in feature-level 
fusion, hand-crafted (Ghamisi et al., 2017) or CNN-based (Pibre et al., 
2017; Hu et al., 2017; Xu et al., 2018; Ienco et al., 2019) features, ob-
tained from different data sources such as multispectral, hyperspectral, 
LiDAR, or SAR, are processed with convolutional and/or fully-connected 
layers to obtain the final decision. 

Weakly supervised remote sensing. WSL approaches in remote sensing 
have utilized class activation maps for object localization. For example, 
Ji et al. (2019) combined the per-class activation maps from different 
layers of a convolutional network trained with image-level labels to 
obtain class attention maps and localize the objects. Wang et al. (2020) 
proposed a modification to the U-Net architecture to enable using 
image-level weak labels corresponding to the majority vote of the pixel 
labels instead of pixel-level strong labels during the training for a binary 
segmentation task. Xu et al. (2019) localized objects by using a combi-
nation of two different convolutional layers. Zhang et al. (2019) sug-
gested using gradients of network layers to obtain saliency maps for 
background and foreground classes. Similarly, Ma et al. (2020) obtained 
saliency maps by utilizing gradients with respect to the input pixels to 
localize residential areas in aerial images. Ali et al. (2020) studied 
destruction detection from only image-level labels where each image 
was represented using a weighted combination of the patch-level 

Fig. 1. Illustration of our multisource fine-grained object recognition problem. 
The sources are only approximately registered, therefore, it is unclear which 
pixels in the low-resolution sources (MS and LiDAR) correspond to the object of 
interest centered in the high-resolution reference source (RGB). Our goal is to 
implicitly tackle the registration uncertainties through instance attention to 
correctly predict the object class using information from all sources. 
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representations obtained from a convolutional network. The weights 
were learned by using a single fully-connected layer that was trained 
using a sparsity loss. Li et al. (2020a) introduced a global convolutional 
pooling layer to build a cloud detection network that was trained using 
block-level labels indicating only the presence or absence of clouds 
within image blocks without pixel-level annotations. However, all of 
these approaches focus on a binary classification scenario. For the multi- 
class setting, Li et al. (2018) used pairs of images with the same scene- 
level labels to train a Siamese-like network for learning convolutional 
weights, and updated this network with a global pooling operation and a 
fully-connected layer to learn class-specific activation weights. Hua 
et al. (2019) used a linear combination of all channels in the output of a 
CNN-based feature extractor network to learn class-specific feature 
representations that were further combined in a recurrent neural 
network to learn class dependencies. However, both of these approaches 
use a global combination of the convolutional channels where a single 
fully-connected layer is expected to learn the class attention mechanism. 
Furthermore, none of the approaches above considers the label uncer-
tainty problem in a multisource setting. In our case, while we do not aim 
to explicitly localize objects as in WSL studies, we propose a number of 
WSL-based formulations for addressing the spatial ambiguity in multi-
source object recognition. 

Another important problem is the noise in the type of the label where 
a scene or an object is labeled as another class instead of the true one. 
For example, Li et al. (2020b) proposed an error-tolerant deep learning 
approach for remote sensing image scene classification by iteratively 
training a set of CNN models that collectively partitioned the input data 
into a strong data set with all models agreeing on the original labels and 
a weak data set with the models producing different predictions. Each 
iteration built new CNN models that used the union of the strong data set 
with the original labels and the weak data set with the predicted labels 
as the new training data. Here, we assume that the label itself is correct 
but an uncertainty exists in its spatial location. 

In a more relevant problem caused by misalignment of GIS maps and 
images used for building extraction, Zhang et al. (2020) added a layer to 
a segmentation network to model the noise in the labels, and trained the 
model by calculating the loss using the noisy predictions and the noisy 
reference labels. Although such an approach can be useful in a task like 
building extraction, it might not be applicable for problems consisting of 
small objects like trees where a segmentation-based approach is not 
feasible due to the size and fine-grained nature of the objects. 

Tree classification. In this paper, we illustrate the proposed weakly 
supervised instance attention model and the multisource fusion schemes 
using a fine-grained street tree classification problem. Novel applica-
tions involving street trees include (Branson et al., 2018) where aerial 
images and street-view panoramas were jointly used for fine-grained 
classification. The feature representations computed by deep networks 
independently trained for the aerial and ground views were concate-
nated and fed to a linear SVM for classification of 40 tree species. More 
recently, Laumer et al. (2020) improved the existing street tree in-
ventories where the individual trees were referenced by only street ad-
dresses with accurate geographic coordinates that were estimated from 
multi-view detections in street-view panoramas. The methods proposed 
in this paper are not specific to tree detection. Thus, a full review on tree 
species mapping is beyond the scope of this paper. We refer the reader to 
Fassnacht et al.(2016) that provides a review of such methods in which 
multispectral, hyperspectral, and LiDAR data sources have been the 
most widely used modalities. 

3. Data set 

We conduct our experiments on the same data set as (Sumbul et al., 
2019), which is, to our knowledge, the only multisource data set that 
includes a fine-grained set of classes with an additional challenge of 
location uncertainty among the data sources due to the sizes of the ob-
jects of interest. The data set consists of a total of 48,063 instances of 

street trees belonging to 40 different classes. The fine-grained nature of 
the data set is illustrated in Fig. 2 where the scientific classification of 
tree species is presented as a hierarchy in which most species differ only 
in the lowest levels. The number of samples for each class in this highly 
imbalanced data set is shown in Table 1. 

For each tree sample, there are three images obtained from different 
sources: an aerial RGB image with 1 foot spatial resolution, an 8-band 
WorldView-2 MS image with 2 meter spatial resolution, and a LiDAR- 
based digital surface model with 3 foot spatial resolution. The label 
and location information for the tree samples were obtained from the 
point GIS data provided by the Seattle Department of Transportation in 
Washington State, USA (City of Seattle, Department of Transportation, 
2016). Since the GIS data set was constructed as part of a carefully 
planned field campaign for inventory management, we assumed that the 
class label for each tree is correct. However, we used visual interpreta-
tion on the aerial RGB image, that corresponds to the data source with 
the highest spatial resolution, as an additional effort to validate the 
consistency of the tree locations (Sumbul et al., 2018). Even though it 
was not possible to visually confirm the tree category from the remotely 
sensed data, we made sure that the provided coordinate actually coin-
cided with a tree for every single one of the samples. During this process, 
some samples had to be removed due to mismatches with the aerial data, 
probably because of temporal differences between ground data collec-
tion and aerial data acquisition. 

For the confirmed 48,063 samples, RGB images that were centered 
at the locations provided in the point GIS data were cropped at a size of 
25 × 25 pixels to cover the largest tree in the data set. The validation 
process for the tree locations, together with the fact that RGB images 

Fig. 2. Scientific classification of tree species. The taxonomy starts with the 
Spermatophyta superdivision and continues with the names of division, class, 
subclass, order, family, genus, and species in order. At the last level, the com-
mon names are given in parentheses next to the scientific names. The classifi-
cations are taken from Natural Resources Conservation Service of the United 
States Department of Agriculture (2016). 
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have higher spatial resolution than MS and LiDAR data, make RGB 
images suitable to be used as the reference source. This choice can be 
made with a high confidence if there is additional information regarding 
the georeferencing process of the data sources and their compatibility 
with the ground truth object locations. 

A tree in a 25 × 25 pixel RGB image corresponds to 4 × 4 pixels in MS 
and 8 × 8 pixels in LiDAR data. Although each source was previously 
georeferenced, registration errors can cause significant uncertainties in 
the locations of small objects such as trees, especially in sources with 
lower resolution such as MS and LiDAR. To account for the location 
uncertainties, we use images that cover a larger neighborhood than a 
single tree. Specifically, we use 12 × 12 pixel neighborhoods for MS and 
24 × 24 pixel neighborhoods for LiDAR (Sumbul et al., 2019). 

4. Methodology 

In this section, we first outline the weakly supervised multisource 
object recognition problem. Then, we explain the single-source weakly 
supervised instance attention approach. Finally, we present our four 
formulations to tackle the multisource recognition problem via instance 
attention. 

4.1. Weakly supervised multisource object recognition 

The multisource object recognition problem aims to classify an ob-
ject into one of the C classes by utilizing the images of the object coming 
from M different sources. This corresponds to learning a classification 
function that takes the images x1,⋯, xM of an object from M imaging 
sources and outputs a class prediction ŷ ∈ {1,⋯,C}. 

To cope with the location uncertainty in the data, we use images that 
cover a larger area than the objects of interest as the input to the model. 
More precisely, we assume that each image from the mth source covers 
an Nm × Nm pixel neighborhood and contains a smaller object of size 
Wm × Wm with an unknown location. In such a setting, the ground truth 
for an image becomes a weak label in the sense that it does not hold any 
positional information about the object, which makes the problem a 
weakly supervised learning problem. 

In this work, we focus on RGB, MS, and LiDAR data which are 

acquired in different conditions (resolution, viewpoint, elevation, time 
of day, etc.). As a result, different registration uncertainties are present 
among the data sources, which cause the locations of the same object in 
the images from different sources to be independent of each other. This 
becomes one of the major challenges of the weakly supervised multi-
source object recognition problem. 

4.2. Single-source weakly supervised instance attention 

Location uncertainty in a WSL problem necessitates either explicit or 
implicit localization of the object to be classified. Successful localization 
of the object helps to obtain a more reliable representation by elimi-
nating the background clutter, which in turn can improve the classifi-
cation results. Following this intuition, we construct our instance 
attention approach by adapting the learning formulation of Weakly 
Supervised Deep Detection Network (WSDDN) (Bilen and Vedaldi, 
2016). WSDDN extracts R candidate regions, some of which are likely to 
contain the object of interest, from an image x using a region proposal 
operator, ϕprop. Each of these regions is transformed into a feature vector 
of size F using a region encoder network, ϕregion, consisting of three 
convolutional layers and one fully-connected layer. We refer the reader 
to the caption in Fig. 3 for source-specific architectural details of the 
region encoder. For input x ∈ X, 

ϕenc : X→Ω (1)  

collectively represents candidate region extraction (ϕprop) and region 
encoding (ϕregion) operations. Here, the resulting ω ∈ Ω is an F × R ma-
trix of per-region feature vectors. To simplify the notation, we define the 
remaining model components as a function of ω ∈ Ω. 

After the region encoding operation, a localization branch scores 
candidate regions among themselves using softmax separately for each 
class, and outputs region localization scores: 

[
σloc(ω)

]

ci =
exp

(
[ϕloc(ω)]ci

)

∑R
r=1exp

(
[ϕloc(ω)]cr

) (2)  

where 
[
ϕloc(ω)

]

ci is the raw score of the ith candidate region for the class 
c, obtained by the linear transformation ϕloc. Similarly, a parallel clas-
sification branch assigns region classification scores corresponding to 
the distribution of class predictions for each region independently: 

[
σcls(ω)

]

ci =
exp

(
[ϕcls(ω)]ci

)

∑C
k=1exp

(
[ϕcls(ω)]ki

) (3)  

where 
[
ϕcls(ω)

]

ci is the raw score obtained by the linear transformation 
ϕcls. 

A candidate region that successfully localizes the true object is ex-
pected to yield both a higher localization score for the true object class 
than the other candidates and a higher classification score for the true 
class than the other classes. This property naturally yields a more 
instance-centric attention mechanism, compared to mainstream atten-
tion formulations that learn to weight candidate regions purely based on 
the discriminative power of the final attention-driven representation, 
see e.g. Sumbul et al. (2019). To implement this idea in a differentiable 
way, region localization and classification scores are element-wise 
multiplied and summed over all regions to obtain per-class localiza-
tion scores on the image level: 

[
ϕpred(ω)

]

c =
∑R

i=1

[
σloc(ω)

]

ci ⊙
[
σcls(ω)

]

ci. (4) 

Table 1 
Class names and number of samples in each class in the data set. The classes 
follow the same order as in Fig. 2.  

Class name Samples Class name Samples 

Douglas Fir 620 Red Maple 2,790 
Western Red Cedar 720 Japanese Maple 1,196 
Littleleaf Linden 1,626 Sunset Red Maple 1,086 
Japanese Snowbell 460 Bigleaf Maple 885 
Flame Ash 679 Sycamore Maple 742 
Green Red Ash 660 Paperbark Maple 467 
Thundercloud Plum 2,430 Pacific Maple 716 
Blireiana Plum 2,464 Norwegian Maple 372 
Cherry Plum 2,510 Flame Amur Maple 242 
Kwanzan Cherry 2,398 Mountain Ash 672 
Chinese Cherry 1,531 Horse Chestnut 818 
Autumn Cherry 621 Honey Locust 875 
Callery Pear 892 Kousa Dogwood 642 
Common Hawthorn 809 London Plane 1,477 
Washington Hawthorn 503 Katsura 383 
Midland Hawthorn 3,154 Sweetgum 2,435 
Orchard Apple 583 White Birch 1,796 
Apple/Crabapple 1,624 European Hornbeam 745 
Autumn Serviceberry 552 Red Oak 1,429 
Norway Maple 2,970 Scarlet Oak 489  
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The formulation up to this point is quite generic. To implement it in 
an efficient and effective way for our weakly supervised fine-grained 
classification task, we use the following three ideas. First, we obtain 
candidate regions from the input image in a sliding window fashion with 
a fixed window of size Wm × Wm, where Wm is experimentally chosen for 
each source m. Second, we put an additional softmax layer at the end of 
the network. This additional softmax layer effectively incorporates the 
prior knowledge that a local image area is likely to contain only a single 
class of interest. Finally, we add learnable per-class bias parameters to 
the class detection scores before the softmax operation, and update (4) 
as follows: 

[
ϕpred(ω)

]

c =
∑R

i=1

[
σloc(ω)

]

ci ⊙
[
σcls(ω)

]

ci + bc (5)  

where bc is the bias parameter for class c. Combining (1) and (5), we 
define the whole model as: 

ϕWSL(x) = ϕpred(ϕenc(x)), (6)  

and class probabilities as: 

P(c|x) =
[
σ
(
ϕWSL(x)

)]

c (7)  

where P(c|x) is the probability predicted for the cth class given image x 
and σ denotes the softmax operation. 

4.3. Multisource WSL models 

We base our models on the assumption that (at least) one of the m 
sources does not have a high uncertainty regarding the object location 
like the other sources. For simplicity, we refer to this source as x1. This 
typically corresponds to the high-resolution RGB imagery where 
georeferencing can be done relatively precisely and the object is located 
centrally within the image. We aim to use this reference source to miti-
gate the uncertainty in the other sources (x2,⋯,xM), which are referred 
to as the additional sources. The ultimate goal is to increase the overall 
classification performance by extracting (more) precise information 

from the additional sources. 
To handle this ambiguity in weakly labeled sources, we propose four 

weakly supervised multisource models with instance attention. These 
models handle the weakly supervised fusion problem progressively in 
different levels, as indicated by their names: (i) Probability-Level- 
Fusion, (ii) Logit-Level-Fusion, (iii) Feature-Level-Fusion, and (iv) 
Pixel-Level-Fusion. In the following, we define and discuss these model 
schemes in detail. Fig. 4 illustrates the proposed models. 

Probability-Level-Fusion. In this model, we propose to combine addi-
tional data sources with the reference source by taking an average of the 
output probabilities of all sources: 

P(c|x1:M) =
1
M

∑M

m=1
P(c|xm) (8)  

where P(c|xm) is obtained as in (7) using a separate instance attention 
network (ϕWSL

m ) for each m ∈ {2,⋯,M} and a simple CNN (ϕCNN
ref ) for the 

reference source x1. The only difference from (7) is that the logits 
coming from the additional sources ϕWSL

m (xm) are divided by a temper-
ature parameter Tm < 1 before the softmax operation to sharpen the 
output distribution which is much smoother compared to the output of 
the reference P(c|x1). A summary of this approach is given in Algorithm 
1. 

Algorithm 1. (Probability-Level-Fusion)  

Input: x1,⋯,xM  

Output: P(⋅|x1:M)

1: p1←σ(ϕCNN
ref (x1))

2: for m←2 to M do  
3: pm←σ(ϕWSL

m (xm))

4: end for 

5: P(⋅|x1:M)←
1
M
∑M

m=1
pm   

Combining the sources at the probability level corresponds to giving 
equal weights to the outputs of all sources and allowing them to 
contribute to the final classification evenly. This could cause a source 
with a more confident prediction to have a higher impact on the final 

Fig. 3. Illustration of the single-source weakly supervised instance attention model. Source index m is omitted from all variables for simplicity. For the mth source, 
the model takes xm with size Bm × Nm × Nm as the input. Region proposals are extracted using ϕprop with a sliding window of size Wm × Wm, resulting in Rm =

(Nm − Wm + 1)2 candidate regions. Each region is processed by ϕregion, which consists of 3 convolutional and 1 fully-connected layers. For MS, all convolutional layers 
have 64 kernels of size 3 × 3 and no pooling is used afterwards. For LiDAR, 64 convolution kernels with size 5 × 5 for the first two layers and 3 × 3 for the last layer 
are used, with max-pooling with kernel size 2 × 2 and stride 2 after each convolutional layer. The fully-connected layer of ϕregion outputs features of size 128. A fully- 
connected layer (ϕloc) and softmax across regions are applied to the resulting matrix of per-region feature vectors ωm for the localization branch, and another fully- 
connected layer (ϕcls) followed by softmax across classes is applied for the classification branch. Hadamard product of the resultant matrices is taken and the result is 
summed over the regions. Finally, a bias vector bm is added to obtain the logits. ReLU activation is used throughout the network. 
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decision, which can be desirable or undesirable depending on the reli-
ability of that particular source. The temperature parameter enables the 
model to pay more/less attention to some of the sources by adjusting the 
confidence levels of their predictions. 

Logit-Level-Fusion. We propose to combine the sources in the logit 
level in this model, by taking a weighted sum of the logit vectors ob-
tained from the reference source via reference CNN (ϕCNN

ref ) and the 
additional sources via weakly supervised instance attention networks 
(ϕWSL

m ) using the following formulation: 

ϕcomb(x1:M) = α1ϕCNN
ref (x1)+

∑M

m=2
αmS− 1( ϕWSL

m (xm)
)

(9)  

P(c|x1:M) =
[
σ
(
ϕcomb(x1:M)

)]

c (10)  

where S− 1 is the inverse sigmoid function that maps WSL logits from the 
interval [0,1] to ( − ∞,∞) to make them comparable to the logits ob-
tained from the reference network. Weights αm of the summation in (9) 
are obtained using softmax over learnable parameters βm: 

αm =
exp(βm)

∑M
i=1exp(βi)

. (11) 

The Logit-Level-Fusion approach is summarized in Algorithm 2. In 
this formulation, since the sources with equally confident individual 
predictions can have different logits, the impact of each source on the 
final decision can be different. Conversely, even when a source has less 
confidence in a particular class than some other source, it could 
contribute more to the score of that class if the corresponding logit is 
larger. Therefore, combining the sources in the logit-level instead of 
probability-level aims to add more flexibility to the model in terms of 
each source’s effect on the joint classification result. 

Algorithm 2. (Logit-Level-Fusion)  

Input: x1,⋯,xM  

Output:P(⋅|x1:M)

1:y1←ϕCNN
ref (x1)

2: For m←2 to M do  
3: ym←S− 1(ϕWSL

m (xm))

4: end for 
5: P(⋅|x1:M)←σ(

∑M
m=1αmym)

Feature-Level-Fusion. For each additional source m, we propose to 
combine penultimate layer feature vector of the reference network 
ϕenc

ref (x1) with the candidate region feature representations of each 
additional source ϕenc

m (xm). For this purpose, we replicate ϕenc
ref (x1) Rm 

times, and concatenate with ϕenc
m (xm) to obtain fused feature vectors of 

size Fref +Fm for each of the Rm candidate regions. The resultant vectors 
are processed by ϕpred

m in the same way as the single-source model to 
obtain a logit vector per additional source. Finally, these logits are 
combined in the form of a weighted sum: 

ϕcomb(x1:M) =
∑M

m=2
αmϕpred

m

(
ψ
(

ϕenc
ref (x1),ϕenc

m (xm)
))

(12)  

where ψ denotes the aforementioned replication and concatenation 
operations. Class probabilities are obtained using (10). Instead of an 
image-level combination, this approach focuses on utilizing the refer-
ence source earlier in the candidate region level. The idea behind this is 
to allow the model to leverage the lower-level information in the 
reference features and the candidate region features towards better 
classification and localization of the objects. Algorithm 3 provides a 
procedural description of Feature-Level-Fusion. 

Fig. 4. Illustration of the proposed multisource WSL models. The reference source x1 is represented with subscript ref , while subscript m ∈ {2⋯M} is used for the 
additional sources. Plate notation is used to represent the repetitions in the model. Variables are described in the text. 
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Algorithm 3. (Feature-Level-Fusion)  

Input: x1,⋯,xM  

Output: P(⋅|x1:M)

1: for m←2 to M do  
2: ym←ϕpred

m (ψ(ϕenc
ref (x1),ϕenc

m (xm)))

3: end for 
4: P(⋅|x1:M)←σ(

∑M
m=2αmym)

Pixel-Level-Fusion. Finally, we propose another form of a concatena-
tion of the penultimate reference features with the additional sources. 
This time, instead of concatenating the reference feature vector with the 
feature vectors of the candidate regions obtained via ϕenc

m , we replicate 
and concatenate them directly to the pixels of the images of the addi-
tional sources (xm), similar to the fusion technique in (Sumbul et al., 
2019). The fused input for the mth source is then processed by ϕWSL

m to 
obtain per-source logits. Finally, we take a weighted sum of the logits to 
obtain the combined logit vector: 

ϕcomb(x1:M) =
∑M

m=2
αmϕWSL

m

(
ψ
(

ϕenc
ref (x1), xm

))
, (13)  

which is followed by (10) to obtain class probabilities. In this scheme, 
the motivation behind combining reference features with the input 
pixels is that a higher-level descriptor of the target object coming from 
the reference source could be useful in the pixel-level to guide the 
network towards a better localization, and therefore a better classifica-
tion, of the object. The Pixel-Level-Fusion approach is summarized in 
Algorithm 4. 

Algorithm 4. (Pixel-Level-Fusion)  

Input: x1,⋯,xM  

Output: P(⋅|x1:M)

1: for m←2 to M do  
2: ym←ϕWSL

m (ψ(ϕenc
ref (x1),xm))

3: end for 
4: P(⋅|x1:M)←σ(

∑M
m=2αmym)

5. Experiments 

In this section, we first describe our experimental setup and imple-
mentation details for all methods. Then, we present our multisource 
results and compare them with other multisource methods as well as our 
single-source results. 

5.1. Experimental setup 

We conduct all experiments using two different multisource settings: 
(i) RGB & MS, and (ii) RGB, MS & LiDAR. The exact training procedure 
of each model differs from each other, especially in how they are pre- 
trained, which we observed to be very important on the final perfor-
mance of the model. Here, we first outline the common aspects of the 
overall training procedure which is shared among all models. Then, we 
give the model-specific details about certain changes in the training 
procedure and hyper-parameters. 

For all experiments, we randomly split the data set into training 
(60%), validation (20%), and test (20%) sets. All of the models are 
trained on the training set using Adam optimizer with learning rate 
10− 3. l 2-regularization with weight 10− 5 is applied to all trainable pa-
rameters. These settings are same as in (Sumbul et al., 2019). We use 
batches of size 100 in each iteration. Each batch is drawn from an 
oversampled version of the training set to cope with the class imbalance. 
Oversampling rate for each class is proportional to the inverse frequency 
of that class. We augment the training set by shifting each image in both 
spatial dimensions with the amount of shift in each dimension randomly 

chosen between 0 and 20% of the width/height. We adopt early- 
stopping with a patience value of 200 to schedule the learning rate 
and terminate the training. If the validation accuracy does not improve 
for 200 consecutive epochs, we first load the checkpoint with the highest 
accuracy and decrease the learning rate by a factor of 10. If no 
improvement is observed for another 200 epochs, we stop the training 
and choose the checkpoint with the highest validation accuracy for 
testing. We use normalized accuracy as the performance metric where 
the per-class accuracy ratios are averaged to avoid biases towards classes 
with more examples. 

5.2. Implementation details 

Single-source baseline classification networks. We train three separate 
single-source classification networks for RGB, MS, and LiDAR. The basic 
network architectures (CNN) are taken from (Sumbul et al., 2019). 
Dropout regularization is applied with a drop probability of 0.25 in the 
convolutional layers and 0.5 in the first fully-connected layer. We use 
the pre-trained RGB network to initialize the reference branch of all 
proposed multisource models and the pre-trained MS/LiDAR networks 
to initialize the MS/LiDAR branches. Such a pre-training strategy in-
creases the validation score, which in turn improves the performance of 
the multisource models that are fine-tuned after being initialized. 

Single-source instance attention models. Fully-connected layers of 
classification and localization branches of weakly supervised instance 
attention networks are initialized randomly while convolutional layers 
are initialized from the corresponding pre-trained baseline single-source 
classification networks. Similar to the basic classification network, we 
apply dropout with 0.25 drop probability in the convolutional layers and 
0.5 drop probability in the first fully-connected layer. We choose the 
region size parameter W as 5 pixels for MS and 8 pixels for LiDAR, which 
yield the highest validation accuracies in the experiments summarized 
in Fig. 5. 

Due to the multiplication of softmax outputs of classification and 
localization branches, output logits lie in the interval [0,1] when bias is 
not taken into account. Applying the final softmax operation before loss 
calculation with such logits results in smooth class distributions. Our 
experiments confirm that sharpening these distributions by introducing 
a temperature parameter (T) improves the performance of the model. 
With the addition of temperature, the final softmax in (7) becomes: 

Fig. 5. Impact of region proposal size (W) in terms of normalized validation 
accuracy for the single-source instance attention models. Proposals are 
extracted within 12 × 12 pixel neighborhoods for MS and 24 × 24 pixel 
neighborhoods for LiDAR as described in Section 3. The smallest proposal sizes 
for MS and LiDAR are 2 × 2 and 8× 8, respectively, because no pooling is used 
in the feature encoding network of the former whereas three pooling operations 
are included in the convolutional layers for the latter as described in Fig. 3. 
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P(c|x) =
[
σ
(
ϕWSL(x)

/
T
)]

c. (14)  

Using our preliminary results on the validation set, we fix T to 1/60 for 
both MS and LiDAR. 

Probability-Level-Fusion. We observe that fine-tuning the network 
consisting of a pre-trained basic RGB network and pre-trained instance 
attention models combined as Probability-Level-Fusion does not 
improve the validation score. Furthermore, random initialization 
instead of pre-training worsens the network performance. Upon this 
observation, although it is possible to train/fine-tune the whole model 
end-to-end, we decide not to apply any fine-tuning. We choose tem-
perature parameters (Tm) on the validation set via grid search, resulting 
in 1/48 for MS and 1/18 for LiDAR for the fused model. 

Logit-Level-Fusion. We initialize the RGB network and instance 
attention models from pre-trained models as in Probability-Level- 
Fusion. βm parameters in (11) are chosen as 1 for RGB and 2.5 for MS 
branch in the RGB & MS setting; 1 for RGB, 2.5 for MS, and 1.5 for LiDAR 
branch in the RGB, MS & LiDAR setting using the validation set. We also 
observe the temperature parameter to be useful in this case as well, and 
set it to 0.25 for both MS and LiDAR branches. The whole network is 
trained in an end-to-end fashion using dropout with a drop probability of 
0.25 in the convolutional and 0.5 in the first fully-connected layers of all 
branches. 

Feature-Level-Fusion. Even though it is possible to train both MS and 
LiDAR branches of the model jointly in all-sources setting, we obtain a 
higher validation accuracy when we combine separately trained RGB & 
MS and RGB & LiDAR models. After individual training of the MS and 
LiDAR branches, we choose the logit combination weights αm in (12) on 
the validation set as 0.74 for MS and 0.26 for LiDAR to obtain the 
combined RGB, MS & LiDAR classification results. As an alternative, we 
have tried incorporating logit combination similar to (11) but it per-
formed worse. 

For the training of RGB & MS and RGB & LiDAR models, we initialize 
the whole RGB network from the pre-trained basic CNN model following 
the same approach as the previous models. For MS and LiDAR branches, 
convolutional layers are initialized from pre-trained instance attention 
models while fully-connected layers are initialized randomly, since the 
sizes of the fully-connected layers in classification and localization 
branches change due to feature concatenation. Furthermore, we observe 
that freezing all pre-trained parameters and training the rest of the 
models yields better validation accuracies. Although we freeze some of 
the network parameters, we find that leaving the dropout regularization 
on for the frozen layers improves the performance. For the RGB & MS 
setting, we use a 0.5 and 0.1 drop probability for the convolutional and 
penultimate fully-connected layers, respectively, and T is tuned to 0.05. 
For the RGB & LiDAR setting, we use a 0.1 and 0.5 drop probability for 
the convolutional and penultimate fully-connected layers, respectively, 
and T is tuned to 0.025. 

Pixel-Level-Fusion. We make the same observation in this model as in 
Feature-Level-Fusion that combining separately trained RGB & MS and 
RGB & LiDAR models results in better validation performance than 
training both branches jointly. Similarly, we obtain higher validation 
accuracy for logit combination weights αm chosen as 0.76 for MS and 
0.24 for LiDAR using a grid search. 

For the training of RGB & MS and RGB & LiDAR branches, the basic 
RGB network is initialized using the pre-trained model. Since the size of 
the first convolutional layer of the instance attention model is different 
from its single-source version, the first layer is initialized randomly. We 
also observe that random initialization of the classification and locali-
zation branches results in higher scores. Other layers are initialized from 
the pre-trained instance attention model and the whole network is fine- 
tuned end-to-end. The drop probability of dropout is chosen as 0.25 for 
the convolutional layers and 0.5 for the fully-connected layers. The 
temperature parameter is set to 1/60 and kept constant as in the other 
models. 

5.3. Results 

Single-source results and ablation study. We first evaluate the effec-
tiveness of the instance attention framework in the case of single-source 
object recognition. For this purpose, we compare the MS-only and 
LiDAR-only instance attention models to the corresponding single- 
source baselines described in Section 5.2, as well as a single-source 
spatial transformer network (STN) based model. For the latter, we 
adapt the methodology of He and Chen (2019) to our case and use an 
STN to select a candidate region from each input image. In the STN 
baseline, selected candidate regions are scaled to the same size as the 
input images and are classified by a CNN with the same architecture as 
the single-source baseline models. We restrict STN to use only trans-
lation and scaling transformations and use the same scale for both 
spatial dimensions, which results in three parameters to estimate. We 
estimate these parameters using a separate CNN with the same archi-
tecture as the single-source baseline model, but replace the final layer 
with a 3-dimensional fully-connected layer. We note that RGB is the 
reference high-resolution source and contains centered object instances, 
therefore, instance attention and STN are not applicable to RGB inputs. 

Single-source results are presented in Table 2. From the results we 
can see that instance attention significantly improves both the MS-only 
results (from 40.6% to 48.3%) and the LiDAR-only results (21.2% to 
25.3%). The essential reason for the large performance gap is the fact 
that single-source baselines aim to model the images holistically. This 
can be interpreted as separately modeling each potential instance 
location of each class when applied to a larger area, which is clearly very 
ineffective. In contrast, instance attention models rely on local recog-
nition of image regions and attention-driven accumulation of local 
recognition results, which is much more resilient to positional ambigu-
ity. We also observe that instance attention yields consistently better 
results in comparison to STN on both MS and LiDAR inputs. 

As an ablative experiment, we additionally evaluate the importance 
of the localization branch (i.e., the ϕloc component) in instance attention 
models. We observe that the localization branch improves the MS-only 
result from 47.7% to 48.3% and the LiDAR-only result from 24.3% to 
25.3%. These results show that the model with only the classification 
branch already performs significantly better than single-source baseline 
models thanks to handling object recognition locally. Incorporation of 
the localization branch further improves the results thanks to better 
handling of positional ambiguity. 

Finally, we compare the MS-only and LiDAR-only instance attention 
models against the RGB-only single-source baseline. We observe that all 
MS models significantly outperform the RGB-only result, highlighting 
the value of detailed spectral information. We also observe that LiDAR is 
much less informative compared to MS, and, only the full single-source 
instance attention model for LiDAR is able to match the results of the 
RGB-only baseline model. 

Effect of neighborhood size. The proposed instance attention model 
uses W × W pixel windows as region proposals within N × N neighbor-
hoods as shown in Fig. 3. We have used 12 × 12 pixel neighborhoods for 

Table 2 
Single-source baseline networks, single-source instance attention models, and 
ablation study results in terms of normalized test accuracy (%).  

Model Accuracy 

Single-source baseline (RGB) 25.3  

Single-source baseline (MS) 40.6 
Single-source STN (He and Chen, 2019) (MS) 41.1 
Instance attention, ϕcls only (MS)  47.7 

Instance attention (MS) 48.3  

Single-source baseline (LiDAR) 21.2 
Single-source STN (He and Chen, 2019) (LiDAR) 20.8 
Instance attention, ϕcls only (LiDAR)  24.3 

Instance attention (LiDAR) 25.3  
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MS and 24 × 24 pixel neighborhoods for LiDAR to be consistent with our 
previous work (Sumbul et al., 2019). To study the effect of different 
neighborhood sizes, we perform additional experiments by fixing the 
region size parameter W to the best performing value of 5 pixels as 
presented in Fig. 5 and by varying the neighborhood size parameter N 
for the MS data. The results are presented in Fig. 6. We observe that the 
accuracy increases beyond the previously used setting of 12 × 12 pixels 
until the neighborhood size reaches 28 × 28 and starts to slightly 
decrease afterwards. Even though this increase seems to imply the ne-
cessity of using larger neighborhoods, it is important to note that there 
are other factors that affect this performance. An analysis of the tree 
locations in the GIS data shows that the average distance between 
neighboring trees in the MS data is slightly above 6 pixels. This means 
that increasing the window size too much also increases the risk of 
including highly overlapping regions across training and test samples. In 
addition, these relative accuracy improvements can also be a superficial 
result of the exploitation of background patterns, which is more likely to 
happen when the provided background contexts are large enough to be 
informative for class discrimination. In the rest of the experiments, 
therefore, we continue to use 12 × 12 pixels for MS and 24 × 24 pixels 
for LiDAR for the neighborhood size as in Sumbul et al.(2019). 

Performance versus model capacity. We now examine how the pro-
posed models perform with different model capacities for the RGB & MS 
setting. We believe that it is immensely important to compare formu-
lations with similar model complexities, and evaluate how their per-
formances vary as a function of model complexity, to reach accurate 
conclusions. For that purpose, we use the number of parameters as a 
proxy for the model capacity, and train all models by keeping the 
network depth (i.e., number of layers) constant while increasing the 
network width (i.e., number of filters for the convolutional layers and 
number of output units for the fully-connected layers). We run these 
experiments in five different settings, in each of which the width is 
increased by a constant factor, starting from the default model capacity 
setting where the number of parameters of each method is comparable 
to the model in (Sumbul et al., 2019). 

Fig. 7 shows the number of parameters of each model in each of these 
settings and their corresponding test scores. According to this, although 
Logit-Level-Fusion and Feature-Level-Fusion produce very similar re-
sults in the default setting with fewer parameters, the gap between 
Feature-Level-Fusion and the other methods increases as the model ca-
pacity increases, which points out that Feature-Level-Fusion is superior 
to other methods. Furthermore, all models’ scores tend to increase up to 
some point before plateauing, except for Pixel-Level-Fusion, which starts 
to drop as the number of parameters increases, due to the 8-channel 
input size of MS being constant while the number of RGB features 
concatenated to them increasing to the point that they dominate the MS 
input. 

The results of the model capacity experiments highlight two impor-
tant points which are often overlooked when different models are 
compared in the literature. First, evaluating a model in a single capacity 
setting might yield sub-optimal results and prevent us from observing 
the full potential of the model. As an example, while Feature-Level- 
Fusion, the best performing model according to Table 3, achieves a 
test score of 51.7% in the default setting, it shows a significantly higher 
performance of 58.0% test accuracy with an increase in the model ca-
pacity. Second, comparing different methods in a single capacity setting 
might be an unreliable way of assessing the superiority of one method to 
another. For instance, the small difference of 0.1% between the Logit- 
Level-Fusion and Feature-Level-Fusion scores in the default setting 
hinders us to reach a clear conclusion between the two methods. How-
ever, observation of a 1.4% difference with a higher capacity enables us 
to verify Feature-Level-Fusion’s superiority. Furthermore, the perfor-
mance difference between Logit-Level-Fusion and Probability-Level- 
Fusion closes or becomes reversed at different points as we increase 
the number of parameters. 

Comparison to the state-of-the-art. We compare the four proposed 
models against three state-of-the-art methods. The first method is named 
the basic multisource model that implements the commonly used scheme 
of extracting features independently from individual sources and 
concatenating them as the multisource representation that is used as 
input to fully-connected layers for the final classification. We use the 
end-to-end trained implementation in (Sumbul et al., 2019). The second 
method is the recurrent attention model (Fu et al., 2017). This model 
processes a given image at different scales using a number of classifi-
cation networks. An attention proposal network is used to select regions 
to attend in a progressive manner. Classification networks are trained 
with intra-scale classification loss while inter-scale ranking loss, which 
enforces the next scale classification network to perform better than the 
previous scale, is used to train the attention proposal networks. The 
third state-of-the-art method is the Multisource Region Attention Network 

Fig. 6. Effect of neighborhood size (N) in terms of normalized test accuracy for 
the MS-only instance attention model. 5 × 5 pixel proposals are extracted 
within these image neighborhoods. 

Fig. 7. Effect of width-wise increasing the number of parameters, hence the 
model capacity, in terms of normalized test accuracy for the RGB & MS setting. 
This analysis aims to make a fair comparison among the multisource instance 
attention formulations. 

Table 3 
Multisource instance attention results and comparison to state-of-the-art in 
terms of normalized test accuracy (%).  

Model Accuracy 

Two sources (RGB & MS) 
Basic multisource model (Sumbul et al., 2019) 39.1 
Recurrent attention model (Fu et al., 2017) 41.6 
MRAN (Sumbul et al., 2019) 46.6 
Instance attention - Probability-Level-Fusion 50.3 
Instance attention - Logit-Level-Fusion 51.6 
Instance attention - Feature-Level-Fusion 51.7 
Instance attention - Pixel-Level-Fusion 49.2  

Three sources (RGB, MS & LiDAR) 
Basic multisource model (Sumbul et al., 2019) 41.4 
Recurrent attention model (Fu et al., 2017) 42.6 
MRAN (Sumbul et al., 2019) 47.3 
Instance attention - Probability-Level-Fusion 51.9 
Instance attention - Logit-Level-Fusion 50.9 
Instance attention - Feature-Level-Fusion 53.0 
Instance attention - Pixel-Level-Fusion 51.6 
Instance attention - Feature-Level-Fusion (increased capacity) 58.0  
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(MRAN) (Sumbul et al., 2019), which has been shown to be an effective 
method for multisource fine-grained object recognition. MRAN extracts 
candidate regions from MS and/or LiDAR data in a sliding window 
fashion and extracts features from these candidates by processing them 
with a CNN. The features are pooled in a weighted manner to obtain an 
attention-based representation for the corresponding source. Attention 
weights are obtained through a separate network that takes pixel-wise 
concatenation of RGB features, coming from the same basic single- 
source network architecture that we use, to the candidate regions as 
the input. The final multisource representation is obtained by the 
concatenation of RGB, MS and/or LiDAR representations, which is used 
for classification. 

Table 3 lists the normalized test accuracies for the default model 
capacity setting (except for the bottom-most row), where the number of 
parameters is comparable to MRAN to enable comparisons with the 
state-of-the-art. Looking at these results, we see that all proposed 
methods outperform MRAN as well as the basic multisource model and 
the recurrent attention model. An interpretation for this could be that 
the instance attention is better suited to the classification task, arguably 
thanks to stronger emphasis on particular candidate regions. The last 
row of Table 3 shows the performance of Feature-Level-Fusion for RGB 
& MS in a higher model capacity setting with an 11.4% improvement 
over MRAN for RGB & MS, indicating that the model we propose can be 
scaled-up for increased performance. Feature-Level-Fusion for all ca-
pacity settings in Fig. 7 and both RGB & MS and RGB, MS & LiDAR 
settings in Table 3 indicates that combining the reference source with 
the additional sources earlier helps the network to better locate and 
classify the object of interest by making use of the additional informa-
tion in the reference features which is not present in the logit level. The 
drop on the performance of Pixel-Level-Fusion, on the other hand, shows 
that fusing high-level reference features with low-level pixel values is 
not as effective as using reference features just before the classification 
and localization branches. 

Effect of data augmentation. As previously explained in Section 5.1, 
we use random shift based spatial data augmentation during training. In 
this part, we analyze the effect of this data augmentation policy on the 
recognition rates. For this purpose, we train and evaluate the multi-
source instance attention models for the RGB & MS setting with and 
without data augmentation. The results presented in Table 4 show that 
data augmentation consistently improves each model by amounts 
varying from 0.6 to 1.7 points. We also observe that relative perfor-
mances of the multisource models remain the same with and without 
data augmentation. 

Stability analysis. The previous experiments use a single split of the 
data set into training, validation, and test sets. In this part, we evaluate 
the stability of the multisource instance attention models under different 
partitionings of the data set. For this purpose, we use a random split of 
the data set into five folds. (All of the previous experiments correspond 
to the combination of the first three folds (60%) as the training set, with 
the fourth fold (20%) being the validation and the fifth fold (20%) being 
the test sets.) For the stability analysis, we train and evaluate all models 
five times and report the mean and standard deviation of the test scores 
of these five runs. In each run, we use a unique combination of three 
folds as the training set, one of the remaining folds as the validation set, 
and the other fold as the test set. As a result, each of the five folds 

appears as an independent test set in the five runs. The results presented 
in Table 5 show that the performance variation across the folds is rela-
tively small, which is reassuring about the stability of the models. 

Class-specific results. Fig. 8 presents example results for the class- 
specific performances of the proposed methods. We observe that the 
classes receive different levels of contributions from different sources. 
When we consider the models for the individual sources, the MS network 
performs significantly better than the RGB network where all classes 
have an improvement between 1% and 44% in accuracy. On the other 
hand, half of the classes have better performance under the RGB 
network compared to the other half that perform better with the LiDAR 
network. When we compare the effect of the instance attention mech-
anism to the baseline single-source MS network, we observe that every 
one of the 40 classes enjoys an improvement in the range from 1% to 
19%. Similarly, for the use of the attention mechanism in the single- 
source LiDAR network, 27 of the classes receive higher scores with a 
maximum of 21%. When we consider the best performing fusion model 
(Feature-Level-Fusion) under the RGB & MS versus RGB, MS & LiDAR 
settings, we observe that 30 of the classes have improvements up to 7% 
with the latter. Most of the classes that do not improve are among the 
ones with the least number of samples in the data set. Finally, when the 
increased capacity network in the bottom-most row of Table 3 is 
compared to the default capacity one, the maximum improvement for 
the individual classes increases to 25%. Overall, although the highest 
scoring model contains both MS and LiDAR sources, the contribution of 
the LiDAR data to the performance seems to be less significant compared 
to the MS data. This indicates that the richer spectral information in the 
MS images provides more useful information than the LiDAR data for the 
fine-grained classification task. In addition, the proposed weakly su-
pervised instance attention mechanism benefits the source (MS) with the 
smallest expected object size (maximum of 4 × 4 pixels) the most. 

Fig. 9 shows the confusion matrix resulting from the Feature-Level- 
Fusion (RGB, MS & LiDAR) model. We observe that most confusions 
are among the tree classes that belong to the same families in the sci-
entific taxonomy shown in Fig. 2. For example, 28% of the thundercloud 
plum samples are wrongly predicted as cherry plum and 13% are 
wrongly predicted as blireiana plum, whereas 19% of the cherry plum 
samples are wrongly predicted as thundercloud plum and 15% are 
wrongly predicted as blireiana plum. Similarly, Kwanzan cherry and 
Chinese cherry have the highest confusion with each other, with 11% 
and 12% misclassification, respectively, 17% of common hawthorn are 
confused with midland hawthorn, and 25% of scarlet oak are mis-
classified as red oak. As the largest family of trees, maples also have 
confusions among each other, with notable errors for red maple, 
paperback maple, and flame amur maple. In particular, flame amur 
maple has some of the highest confusions as being the class with the 
fewest number of samples. As other examples for the cases with the 
highest confusion, 11% of the Japanese snowbell samples and 11% of 
autumn serviceberry are wrongly predicted as Japanese maple. All of 
these three types of trees have moderate crown density and have a 

Table 4 
Impact of data augmentation via random horizontal and vertical shifts in terms 
of normalized test accuracy (%) for the RGB & MS setting.  

Model Accuracy  

w/ aug. w/o aug. 

Instance attention - Probability-Level-Fusion 50.3 49.7 
Instance attention - Logit-Level-Fusion 51.6 50.1 
Instance attention - Feature-Level-Fusion 51.7 50.4 
Instance attention - Pixel-Level-Fusion 49.2 47.5  

Table 5 
Stability analysis of the multisource instance attention models in terms of 
normalized test accuracy (%). Mean and standard deviation of the scores of five 
different runs are shown.  

Model Accuracy 

Two sources (RGB & MS) 
Instance attention - Probability-Level-Fusion 50.5 ± 0.8 
Instance attention - Logit-Level-Fusion 52.0 ± 0.5 
Instance attention - Feature-Level-Fusion 51.5 ± 0.8 
Instance attention - Pixel-Level-Fusion 49.5 ± 0.3  

Three sources (RGB, MS & LiDAR) 
Instance attention - Probability-Level-Fusion 51.9 ± 0.4 
Instance attention - Logit-Level-Fusion 51.4 ± 0.6 
Instance attention - Feature-Level-Fusion 53.1 ± 0.6 
Instance attention - Pixel-Level-Fusion 51.1 ± 0.3  
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spread in the 15 − 25 feet range. Furthermore, autumn serviceberry and 
Japanese maple both have heights in the 15 − 20 feet range (see (Sumbul 
et al., 2018) for a description of the attributes for the tree categories in 
the data set). As a final example, 11% of orchard apple samples are 
wrongly predicted as Kwanzan cherry, with both species having mod-
erate crown density, medium texture, and spread in the 15 − 25 feet 
range. Similar behaviors are observed for all other models. Since most of 
these types of trees are only distinguished with respect to their sub- 
species level in the taxonomy and have almost the same visual appear-
ance, their differentiation using regions of few pixels from an aerial view 
is a highly challenging problem. We think that the overall normalized 
accuracy of 53% shows a significant performance for the fine-grained 
classification of 40 different tree categories. 

Qualitative results. Fig. 10 illustrates the region scores, normalized to 
the [0,1] range, obtained by multiplying per-region classification and 
localization scores in the Hadamard product in (4) for the predicted 
class. Our first observation is that the region scores for MS tend to have a 
smoother distribution with mostly a single local maximum, while LiDAR 
scores appear to be much noisier. This is in line with our previous 

observation that the information provided by the MS data appears to be 
more useful for the localization of the target object, which could explain 
its significantly higher contribution to the multisource classification 
results compared to LiDAR. 

Fig. 10(a) supports this observation, where all methods successfully 
localize the objects in the MS image and classify the input correctly, even 
though Logit-Level-Fusion and Pixel- Level-Fusion highlight different 
regions than the other methods for LiDAR. However, it is also possible to 
observe some cases as Fig. 10(b), where strong predictions by the LiDAR 
branch affect the final classification even when similar localization re-
sults are achieved by different methods for the MS data. In this particular 
case, the differences in the results of the LiDAR branches of Logit-Level- 
Fusion and Pixel-Level-Fusion have an impact on the misclassification of 
the input. 

Next, we examine the localization results of the misclassified samples 
to better understand the effect of localization for the failure cases. For 
Fig. 10(c), only Feature-Level-Fusion, which localizes the object differ-
ently than the other methods for both the MS and LiDAR data, is able to 
achieve a correct classification result. Looking at the corresponding MS 

Fig. 8. Example results for the class-specific performances of the proposed methods. From left to right: single-source RGB (red), single-source MS with instance 
attention (blue), single-source LiDAR with instance attention (yellow), and Feature-Level-Fusion (RGB, MS & LiDAR) (green). Best viewed in color. (For interpre-
tation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Confusion matrix for Feature-Level-Fusion (RGB, MS & LiDAR). Values represent percentages where each row sums to 1. The numbers greater than 0.10 are 
marked with red ellipses. The ones on the diagonal show correct classification, whereas off-diagonal entries indicate notable confusions. The Kappa coefficient for 
this matrix is obtained as 0.5116. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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image, we observe that the localization result indeed corresponds to a 
tree for Feature-Level-Fusion, which points out that the misclassification 
of the other methods could be due to wrong localization. A similar case is 
seen in Fig. 10(d) as well, where only Pixel- Level-Fusion succeeds at 
correctly classifying the input with a different localization than the 
others. However, even though MS and LiDAR inputs seem to coincide up 
to a certain degree for this particular example, the position of the 
localized object seems to differ a lot between the MS and LiDAR data, 
which highlights the possibility that even in the case of correct classi-
fication, the models can attend to contextual cues rather than the object 
itself. 

Even though localization has a substantial impact on the perfor-
mance, we also observe failure cases for some samples such as Fig. 10(g), 
where the models output incorrect predictions even though the locali-
zation is successful. This result shows that we could achieve higher 
scores with the proposed approaches by improving their fine-grained 
classification performances in addition to their localization capabilities. 

6. Conclusions 

We studied the multisource fine-grained object recognition problem 
where the objects of interest in the input images have a high location 
uncertainty due to the registration errors and small sizes of the objects. 
We approached the location uncertainty problem from a weakly su-
pervised instance attention perspective by cropping input images at a 
larger neighborhood around the ground truth location to make sure that 
an object with a given class label is present in the neighborhood even 
though the exact location is unknown. Using such a setting, we formu-
lated the problem as the joint localization and classification of the 
relevant regions inside this larger neighborhood. We first outlined our 

weakly supervised instance attention model for the single-source setting. 
Then we provided four novel fusion schemes to extend this idea into a 
multisource scenario, where a reference source, assumed to contain no 
location uncertainty, can be used to help the additional sources with 
uncertainty to better localize and classify the objects. 

Using normalized accuracy as the performance measure, we 
observed that all of the proposed multisource methods achieve higher 
classification scores than the state-of-the-art baselines with the best 
performing method (Feature-Level-Fusion) showing a 5.1% improve-
ment over the best performing baseline using RGB & MS data, and a 
5.7% improvement using RGB, MS & LiDAR data. Additionally, we 
provided an in-depth comparison of the proposed methods with a novel 
evaluation scheme studying the effect of increased model capacity on 
the model performance. As a result of this experiment, we confirmed 
that Feature-Level-Fusion is indeed the most promising approach among 
all proposed methods, with an accuracy of 58.0% using RGB & MS data, 
which is a 6.3% improvement compared to the default capacity setting. 
Future work directions include the use of additional multisource fine- 
grained data sets for illustrating the generalizability of the proposed 
method, the use of additional measures such as the Kappa coefficient for 
performance evaluation, and the extension of the proposed model to 
handle other types of uncertainties such as temporal changes in addition 
to the spatial uncertainties studied in this paper. 
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Fig. 10. Region scores for sample test images. RGB images are shown in the first column, MS (top) and LiDAR (bottom) neighborhoods shown in the second. 
Remaining columns show instance attention results respectively for Probability-Level-Fusion, Logit-Level-Fusion, Feature-Level-Fusion, and Pixel-Level-Fusion. 
Results for correct class predictions are denoted with green boxes and those with wrong predictions are shown with red boxes. Region scores are obtained as the 
multiplication of per-region classification and localization scores corresponding to the predicted class. Best viewed in color. 
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