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ABSTRACT

PATHOLOGICALLY CHRONIC PAIN AND PAIN AVOIDANCE BEHAVIOR

WITHIN PREDICTIVE PROCESSING FRAMEWORK

Demirkaya, Eysan
M.A., Department of Philosophy

Supervisor: Asst. Prof. Dr. Istvan Albert Aranyosi

June 2021

Pain as the most enquired philosophical theme is a complex experience, which
includes sensation, emotion, motivation, cognition, and social interaction. However,
there is not a single overarching philosophical theory that accounts for all the
dimensions of pain. The most overlooked discussion of pain is on its motivational
aspect; yet, it is indispensable for an integrated understanding of pain. Also, its least
debated area is the substantial relation between pathologically chronic pain and
action. In this thesis, I attempt to investigate why physiologically acute pain outlasts
its purposes to transform into pathologically chronic pain and why pathologically
chronic pain is accompanied by pain avoidance behavior by drawing inferences from

the explore-exploit dilemma. I also examine the related pain theories addressing their



failures in answering these questions. I conclude that analyzing pathologically chronic
pain and pain avoidance behavior within predictive processing framework (1)
provides an active learning account for pathologically chronic pain, (2) ensures an
active inference account for pain avoidance behavior, (3) allows an active learning
account for pain avoidance behavior only if certain conditions are met, and (4) points
out the disparate action strategies are accountable for pathologically acute pain, pain

avoidance behavior, and physiologically acute pain.

Keywords: Active Inference, Active Learning, Explore-Exploit Dilemma, Pain

Avoidance Behavior, Pathologically Chronic Pain
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OZET

ONGORUYE DAYALI ISLEME CERCEVESI ICINDE PATOLOJIK KRONIK

AGRI VE AGRIDAN KACINMA DAVRANISI

Demirkaya, Eysan

Yiiksek Lisans, Felsefe Boliimii

Tez Damgmani: Dr. Ogr. Uyesi Istvan Albert Aranyosi

Haziran 2021

Agr1, en ¢ok arastirilan felsefik temalardan biri olarak, algi, duygu,
motivasyon, bilis ve sosyal etkilesimleri iceren kompleks bir deneyimdir.
Fakat agrinin tiim boyutlarini kapsayan bir felsefe teorisi bulunmamaktadir.
Agr1 tartismalarinda en ¢ok gézardi edilen agrinin motivasyon boyutudur;
bununla birlikte motivasyon, agrinin biitiinciil bir anlayis1 i¢in temel bir
bilesendir. Ayrica, agrinin motivasyon yoniiniin en az tartisilan alani patolojik
kronik agr1 ile eylem arasindaki énemli iliskidir. Bu tezin esas amaci

fizyolojik akut agrinin fonksiyonlarini kaybederek neden patolojik kronik

il



agriya doniistiigiine ve agridan kaginma davranisinin patolojik kronik agriya
neden eslik ettigine kesfet-faydalan ikileminden ¢ikarimlarda bulunarak cevap
aramaktir. Bu tez ayn1 zamanda ilgili agr1 teorilerini ve onlarin bu sorulari
cevaplamadaki basarisizliklarini inceleyecektir. Bu tezden ¢ikarilan sonuglara
gore, Ongoriiye dayali isleme cergevesi (1) patolojik kronik agriy1 aktif
ogrenme ile agiklar, (2) agridan kaginma davranigini aktif ¢ikarim ile izah
eder, (3) agridan kaginma davranigini yalnizca belirli kosullar saglandiginda
aktif 6grenme ile ifade eder ve (4) farkli eylem stratejilerinin patolojik kronik
agridan, agridan kacinma davranisindan ve fizyolojik akut agridan sorumlu

olduguna isaret eder.

Anahtar Kelimeler: Agridan Kaginma Davranisi, Aktif Cikarim, Aktif

Ogrenme, Kesfet-Faydalan Ikilemi, Patolojik Kronik Agri
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INTRODUCTION

How can an inactive blueprint of the human brain that gives rise to an active agent be
achieved? One approach to this question is to scan the brain, which, falls into the
scope of neuroscience. Scanning is a way of producing the detailed images of the
human brain by the magnetic fields and radio waves (MRI and fMRI) or X-rays (CT)
or electrical charges (EEG) (Glover, 2011). Yet, these scanning techniques are not
nearly good enough to capture all the activities in the human brain. There are two
reasons for this situation. Initially, there are technical challenges in scanning such as
noise signals, image distortions, and signal dropouts. Secondly, the human brain is
complex. There are approximately 100 billion neurons in the human brain while these
are in communication with one another through one million billion synapses ("Brain
Facts and Figures", 2021). Signals are fired reaching to one thousand times every
second. This implies that up to one quadrillion signaling events occur each second.
What’s more, there is a lot more to the human brain than the neuronal cells and
signals. There are 10- to 50-fold more non-neuronal cells including the glial cells,
immune cells, neurotransmitters, neuromodulators, and hormones (Herculano-Houzel,
2012: 1). Some glial cells such as astrocytes, microglia, and oligodendrocytes have a
role in memory formation (Hertz & Chen, 2016: 1). To give an example, GABA
neurotransmitters are responsible for pain relief (Yowtak, Wang, Kim, Lu, Chung, &

Chung, 2013: 2469). The impact of immune T cells on stress responsiveness



exemplifies immune cells’ implications to the human brain functions (Morimoto &
Nakajima, 2019: 1). For instance, the neuromodulator histamine has a vital function in
learning (Tasaka, 1994: 27). Also, androgen is linked with visuospatial ability (Alj,
Begum, & Reza, 2018: 34). Further, the human brain is influenced by the other bodily
parts such as heart nerves and gut microbiome. For example, heart nerves affect
attention and motivation (McCraty, Atkinson, Tomasino, & Bradley, 2009:16).
Another example, a type of bacteria called Lactobacillus within the human gut
microbiome increases the appetite for sugar (Leitdo-Gongalves, Carvalho-Santos,
Fioreze, Anjos, & Baltazar,, 2017: 1; Appleton, 2018: 28). Through the efforts of
researchers from various disciplines encapsulating the microbiologists, geneticists,
biochemical engineers, chemists, medical doctors, and psychologists, a basic
understanding of their functions at small scales is already known but an understanding

of their functions at larger scales is still elusive.

A new promising neuroscientific method, which is cutting the brain into a number of
small slices and then scanning them with a high resolution electron microscope is
used recently (Zhu, Cizeron, Qiu, Benavides-Piccione, Skene, Fransen, Komiyama,&
Grant, 2018). The novelty of this approach comes from its surpassing challenges in
scanning. In particular, a cubic millimeter of the mouse brain containing a hundred
thousand neurons with a billion connections was cut into 25 thousand slices (Zhu et
al., 2018: 781). Five electron microscopes scanned them for five months collecting
more than 100 million images. Additionally, the formation of a 3D model out of 100

million images of a single cubic millimeter of the mouse brain took three months.



Further, the data gathered from it took up 2 million gigabytes of cloud storage. To
scan the human brain, this whole endeavor has to be replicated a million times, since
the human brain has around one million billion synapses. Consequently, complete
data of the human brain would take thousands of years and two million petabytes.
Surprisingly, these are just for mapping synapses. For a complete scanning of the
human brain, each influencer of the human brain must be mapped out. More
importantly, this would take millions of years and more data storage than that on the
Earth. On top of that, all this effort provides a static mapping of the human brain
instead of an active wiring of an agent. In order to reach an understanding of an active
agent, the laws and rules governing the activity of the human brain at micro- and

macro-level are necessary.

As opposed to these neuroscientific approaches, there is a propitious computational
approach called the predictive processing. Particularly, it suggests that it might not be
necessary to scan everything in he human brain and its influencers. The human brain
can be simplified into the probabilistic internal generative models that could match
the human brain regarding its functions. To exemplify, a probabilistic generative
model of the human brain can learn or false learn, remember or forget, imagine or
dream, develop an action or remain inactive, and so forth. By simplifying the human
brain into the generative models, it can be attained how the static mapping of the
human brain leads to an active agent (Friston, 2010; Clark, 2013; Hohwy, 2013).
However, similar to the human brain’s development of myriad disorders, a generative

model can develop a number of maladies. Specifically, if a probabilistic generative



model of the human brain is damaged in any of innumerable ways, then the agent may

be in persistent pains, intermittent hallucinations, or endless delusions.

From the faculties of the human brain to its disorders, maybe, the most peculiar thing
about the human brain is pain. There are three reasons for that: (i) it is not a process
that can be explained fully biochemically because the human brain’s pain answer is
distributed across multiple brain areas (Corns, 2015: 3), (ii) it is not a proper scientific
subject because it is indicated only by subjective report (Corns, 2018:1), (iii) the
success rate of pain targeted treatments is not 100% implying that patients who
suffered from pain will continue to suffer, and that pain management overrules pain

treatment in the medical arena (Main, Spanswick & Bartys, 2000).

Yet, the computational approach to the human brain may promise innovative
advancements particularly in understanding the emergences, maintenances, and
treatment of experiences such as pain. Thus, in this thesis I investigate pathologically
chronic pain and pain avoidance behavior within the predictive processing
framework. Specifically, I ask why physiologically acute pain outlives its purposes to
become pathologically chronic pain, and why pathologically chronic pain is
accompanied by pain avoidance behavior. I argue that by casting physiologically
acute pain, pathologically chronic pain, and pain avoidance behavior as Bayesian
probabilistic inference problems, different mechanisms having roles in the

development, continuation, and treatment of distinct pains and behaviors emerged.



These mechanisms encapsulate perceptual inference, active inference, and active

learning.

I aim (i) to expand the predictive processing framework to pathologically chronic pain
and pain avoidance behavior associated with the persistent pain by examining the
explore-exploit dilemma, (ii) to make it mechanistically-explicable, (iii) to render it
scientifically objectively comprehensible, and (iv) to pave the way for its treatment.
In Chapter 1, I start by reviewing the pain theories that come to the front in the
Philosophy of Mind, which are composed of evaluativism, imperativism, psycho-
functionalism. I then discuss some of the worries that gained prominence in the
literature. I also discuss whether or not these theories could tackle the main questions

of the thesis.

Chapter 2 shifts the conversation on pain to the review of the predictive processing
framework. In this chapter, I discuss the conceptual background of the framework.
That is, I demonstrate how this framework roots from Bayesian Brain Hypothesis and
the Predictive Coding Theory. I conclude the chapter by overviewing perceptual

inference, active inference, and active learning.

Throughout Chapter 3, I examine why physiologically acute pain outstays its
functions to turn into pathologically chronic pain, and why pathologically chronic
pain is associated by pain avoidance behavior. I claim that the main reason that

distinct mechanisms take part in gaining information and producing actions regarding



physiological acute pain, pathologically chronic pain, and pain avoidance behavior is
because of the influence of discrete levels of uncertainty on them. Through the
explore-exploit dilemma, I draw the observation that active inference and active
learning lead to the emergence and the preservation of pain avoidance behavior and
pathologically chronic pain, respectively. I also demonstrate how the perceptual
inference explains the sensory and perceptual character of both physiologically acute
pain and pathologically chronic pain. Before I conclude, I revolve around the

implementations of the thesis in the scope of philosophy, neuroscience, and

psychiatry.



CHAPTER I

PAIN

What is taken for granted regarding pain is that it is a complex, convergent, and
multidimensional experience (Krahe, Springer, Weinman, & Fotopoulou, 2013). It
encapsulates sensation, emotion, motivation, cognition, and social interaction. That is,
it is modulated by bodily sensations (i.e., nociception), affect (i.e., attitude),
evaluation (i.e., appraisal), action (i.e., volitional or involuntary behavior), and
cognitive processes (e.g., attention, expectancy, or mood) and interpersonal
interactions. It has phenomenal character, like other experiences with bodily
sensational component, such as hunger, tickles, and itches. Its affective character is,
mostly, unpleasant although there are cases of pleasant pain as well. When it is
unpleasant, it motivates the body to take an action to mitigate it. If it is pleasant, then

an action is taken by the body to protract it.

Yet, little is known about the nature of pain and its biological markers in the human

brain (Corns, 2016: 2950; Corns, 2018: 1). In the first instance, pain may be



physiological, pathological, or nociplastic (Woolf, 2010: 3742). Physiological pain is
crucial for physiological, adaptive and protective system of the body. It detects the
noxious incoming data and tissue damage, and signals for maintaining the integrity of
the body. In the former case, this kind of pain is also called nociceptive pain because
it relies on nociception (Figure 1A). Yet, if it is the latter, then it is also named
inflammatory pain because it originates from inflammation on tissues due to
damaging (Figure 1B). The adaptive and protective function of physiological pain
calls for action such as relatively simpler behavior like withdrawal reflex or relatively
more complex behavior like avoidance behavior. Consider an infant’s encounter with
the burn of the fire of a candle, the cut of the sharp edge of a knife, or the ice burn of
the coldness of an ice cube. After the very first experience of the infant with the hot,
sharp or cold objects, a withdrawal reflex may be demanded, whereas the following
experiences may demand an avoidance behavior. Alternatively, an inflammation on
the body as in the case of rheumatoid arthritis may call for an avoidance behavior.
However, pathological pain is not protective, and it is maladaptive (Woolf, 2010:
3742). It is dysfunctional. It stems form malfunctioning of the nervous system
because of a disease or a disorder damaging or irritating the nervous system. It is also
mentioned as neuropathic pain (Figure 1C). In addition, nociplastic pain is not
protective (Woolf, 2010: 3742). It is maladaptive and dysfunctional, as well (Figure
1D). Unlike pathological pain, it does not derive from a disease or a disorder.

Consider a nociplastic pain due to fibromyalgia.



Additionally, a physiological pain may be acute or chronic (Figure 2A and 2B). If it is
acute, then it is short-lived—i.e., lasts less than six months, while if it is chronic, it
persists—i.e., lasts more than six months (Grichnik & Ferrante, 1991:217). Further,
acute pain is treatable, whereas chronic pain is irrespective of a current disease or
disorder. Consider physiological acute tissue trauma pain resulted from stepping on a
lego piece. Alternatively, consider physiologically chronic pain sprung from
osteoarthritis. However, pathological pain may be acute or chronic. Consider
pathological chronic pain brought about by stroke, spinal cord injury, multiple
sclerosis, amputation, or diabetes. What’s more, whether a pain is physiological,
pathological, or nociplastic, what its matrices, biological processes, or neurological
activation patterns are difficult to track down because when such neuroscientific
methods are used, multiple areas of the human brain light up (Garcia-Larrea &

Peyron, 2013: S30). That is, brain is not modular when it comes to pain.

Apart from the nature of pain and its biological markers in the human brain, from
whether or not pain is a natural kind to whether it is a mental experience, a bodily
condition, or a representation, the controversies are numerous (Corns, 2018: 14).
Further, if it is a representation, then the kind of representation is controversial. The
neuroscientific approaches and the computational approach to the human brain, which
aim to explain how an inactive wiring of the human brain generates an active agent,
share an assumption. It is called strong representationalism according to which al/l
mental states and processes are representational (Armstrong, 1961). In detail, it

argues that a mental state is exclusively determined by its intentional content (Dretske,



1995; Tye, 1995). In parallel, a representation is a mental object that bears an
informative intentional content. For example, physiologically acute pain represents a

physiological disturbance.

Strong representationalism grounds these approaches to the human mind and has an
advantage over its weaker version holding that the intentional content does not ground
the mental state (Block, 1990) because it can explain all mental states and processes
with qualitative character by reducing the phenomenal character to the intentional
content. A qualitative character refers to “what it is like for one to be in that mental
state” (Block, 1990). The bodily sensations such as hunger, tickles, itches, and pain
have qualitative character. They pose a challenge for the weaker version of the
representationalism. Particularly, what it is like to be in a physiologically acute pain
experience for an agent cannot be accounted by the weak version of

representationalism.

However, the strong version of representationalism is not free of challenges. The
opponents of the strong representationalism attack to pain’s affective and
motivational characters. Initially, all mental states and processes with affective
character present a challenge for the strong version of representationalism. For
instance, pain is affective in its nature. It is felt as either pleasant or unpleasant. That
is, pain involves an attitude. Yet, the stronger version of representationalism cannot
account for the affective character of pain. Additionally, pain motivates an agent to

take an action. Yet, this motivational character of pain is not accounted by the strong

10



version of the representationalism. To explain the phenomenal, sensory, affective, and
motivational characters of pain, evaluativism, imperativism, and psycho-functionalism

emerge.

1.1 Evaluativism Regarding Pain

The evaluative perceptualist theory regarding pain argues that pain is a perception.
That is, pain has a modality-specific character called sensory character. This sensory
character refers to the bodily condition. Evaluativism is, also, an infentionalist
representationalist theory, which claims that pain represents a sort of bodily
disturbance. This object of perception has an intentional content. It indicates that
“something that is sensory—i.e., a kind of physiological disturbance, is the case”. In
this regard, it is an indicative content. In parallel, it needs to satisfy an accuracy

condition. That is, it either affirms or denies that something is the case.

Aside from its sensory character, evaluativism holds that unpleasantness or
pleasantness of pain—i.e., its affective character, forms evaluative content of the
representation (Bain, 2013). Consequently, according to evaluativists, there is a single
representation composed of two distinct contents, which are called indicative content
and affective content. Suppose that one drinks a glass of sour milk, and that therefore,
she feels a specific type of pain in her stomach. Her pain represents that (i) a
physiological disturbance in her stomach is the case, and (ii) this particular

disturbance is unpleasant for her.

11



However, there are, mainly, three worries about evaluativism regarding pain. First,
the messenger-shooting objection comes against the perceptualist aspect of
evaluativism (Jacobson, 2013). Particularly, how evaluativism, like any perceptualist
theory, explains the motivational character of pain appears to be problematic. It
suggests that pain as a representation is equivalent to a messenger that informs the
perceiver about the bodily disturbance. Given that pain’s motivational character is
what drives the perceiver to eliminate that pain when it is unpleasant for the perceiver,
representing the physiological disturbance that motivates to get rid of the pain is equal
to shooting the messenger. Yet, it is not clear that how shooting the messenger
eliminates the bodily disturbance. For example, one receives an e-mail from her
downstairs neighbor informing about the leakage from her ceiling that is unpleasant
for her downstairs neighbor and her. In this setting, the e-mail functions as a
representation with an informative indicative content and an affective content.
Nevertheless, this e-mail does not give her a motivation to fix the leakage coming
from her apartment. Additionally, deleting the e-mail does not mean that the leakage
is fixed. Analogously, pain perception does not motivate its perceiver to eliminate the

bodily disturbance.

The second objection attacks evaluativism’s representationalist aspect. It is called the
problem of semantic focus (Aydede, 2009). Specifically, whether the semantic focus
is on pain itself or on the semantic concepts that are related with the bodily
disturbance is problematic. It proposes that when a bodily disturbance is perceived by

a perceiver, the semantic concept PAIN is not applied to the bodily disturbance. The

12



semantic focus is already on the pain experience itself. For instance, in a scenario, in
which one perceives a traffic light, vision is the modality, and the color information is
the information that is specific to the visual modality. The object of this perception is
the traffic light. At the same time, this perception leads to the attachment of the
semantic concepts such as RED, YELLOW, or GREEN, which become parts of the

object of the perception.

The last objection attacks evaluativism’s intentionalist aspect. It is concerned with the
accuracy condition of the representation’s indicative content. That is, the necessary
conditions that make the bodily disturbance an unpleasant pain accurate or inaccurate
are still unclear (Corns, 2018: 6). Particularly, in evaluativism, a representation
indicates that something is the case. In this respect, it has an indicative content that
contains an accuracy condition. In other words, whether something is the case or not
implies the accuracy condition of the representation. If a pain is a representation that
accurately represents that the bodily disturbance is the case, then it is
misrepresentation that inaccurately represents that the bodily disturbance is the case.
It is possible that pain is a misrepresentation as well as that it is a representation. That
is, whether all pains are misrepresentations or some pains are representation is not
explicit in evaluativism. In the case of phantom pains of amputees, for example, a
pain felt on an amputated limb is an inaccurate representation of a bodily disturbance.
Hence, the phantom pain exemplifies a pain that is a misrepresentation. Yet, a pain
felt on a healthy limb of the amputee due to accidentally hitting it on a wall may

exemplify a pain as an accurate representation of the bodily disturbance.
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In connection with the first and the third objections, I have an additional worry. If
evaluativism is true, then how physiologically acute pain turns into pathologically
chronic pain is problematic. In detail, pain is an overarching term that involves mainly
physiologically acute pain and pathologically chronic pain. Pain caused by a broken
leg bone is an example of a physiologically acute pain, while a neuropathic pain is an
instance of pathologically chronic pain. Both are felt in certain areas of the human
body with varying degrees of intensity. The acute and chronic pain perception differs
from each other with respect to their motivating force for an action and their
accuracies regarding their felt places and intensities. In an evaluativist setting, they
appear to be problematic in some ways. First, if evaluativism is true, then
physiologically acute pain is purposeful—i.e., it has a sort of utility for the perceiver
such as warning the human body from of injury and motivating her to take an action.
Second, if evaluativism is true, then physiologically acute pain is an accurate
representation of either internally- or externally-caused sensation of the bodily
disturbance. At the same time, if evaluativism is true, then pathologically chronic pain
is, also, purposeful. Supplementally, if evaluativism is true, then pathologically
chronic pain is an accurate representation because it accurately represents a sensation
of the bodily disturbance. However, it is not the case that pathologically chronic pain
is purposeful and an accurate representation of a bodily disturbance. Therefore,
evaluativism does not account for what results in a misrepresentation that was once a

representation and the lack of motivation for an action-taking that was once there.
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1.2 Imperativism Regarding Pain

The imperative representational theory of pain holds that pain represents an
imperative. This representation—i.e., the command, has an intentional content. In
parallel, this intentional content forms the command’s imperative content. Different
from evaluativism, it represents that “something is to be done” in imperativism
(Klein, 2015). In this respect, it comprises information about an action performed by
the agent. The action may be either to stop doing something or to protect the human
body. Additionally, as opposed to the accuracy condition of the indicative content in
evaluativism, the imperative content has a satisfaction condition. That is, it either
satisfies or dissatisfies that something is to be done. In parallel, pain motivates doing
or acting on something directly through its imperative content (Hall, 2008: 530).
However, some pains may represent an unsatisfiable or an already satisfied
command. Consider headaches, neuropathic pains, and phantom pains as examples to

such pains (Martinez, 2015).

There are mainly three arguments against imperativism with regard to pain. The first
argument against imperativism with regard to pain is concerned with the imperative
content of pain. In particular, it argues that there are some pains that do not motivate
their agents to take actions, and they are problematic for imperativism. Consider that
morphine pain and pain after lobotomy do not result in action (Grahek, 2007). The
second argument against imperativism is about the pain’s imperative content, which is
called the problem of authority (Bain, 2011: 180). Precisely, it contends that a

command does not motivate an agent to execute an action concerning pain, and there
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is a problem of authority in imperativism. What motivates a system or an agent to
take an action is the reason, which gives the authority to the system or the agent
herself. The third argument against imperativism concerning pain is about the sensory
and affective characters of pain (Corns, 2018: 9). Clearly, it asserts that imperativism
concerning pain does not account the pain’s sensory and affective characters,

although it reflects the motivational aspect of pain.

In addition to these three worries about imperativism regarding pain, [ have an
additional worry. How physiologically acute pain turns into pathologically chronic
pain is problematic for imperativism similar to that it is the case for evaluativism. To
be specific, what changes the satisfaction command of an acute pain to the
satisfaction command of a chronic pain is unclear in imperativism. That is, what
determines the move from being satisfiable to being unsatisfiable is elusive. In other
words, the condition for an unsatisfiable pain is lacking in imperativism. For instance,
if evaluativism is true, then a phantom pain necessarily remains unsatisfiable.
However, this is not the case in that Ramachandran’s mirror-box approach to phantom

pain satisfies such pains (Ramachandran, 1998).

1.3 Psycho-functionalism Regarding Pain

Contrary to evaluativism and imperativism, psycho-functionalism is a theory against
the strong representationalism. It holds that pain represents a kind of bodily
disturbance as its sensory intentional indicative content. Unlike the evaluativists and

the imperativists, however, the psycho-functionalists reject the argument that the
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affective character of pain has an intentional indicative content because because it has
a qualitative character and a functional character irrespective of the accuracy
condition of a representation’s content. That is, regardless of whether there is a
representation or misrepresentation, it functions in the development of the affective-

motivational character of pain.

Instead, the affective and motivational characters of pain arise from the processing of
the representation’s indicative content. This is called m-processing occurring at sub-
personal level. The m-processing of a sensory information leads to either attraction or
aversion. This forms phen-desiring, which refers to the formation of desires regarding
either pleasant or unpleasant content. In addition, m-processing results in phen-
beliving. That is, it has a role in the formation of beliefs concerning the sensory
information. Further, m-processing which is composed of phen-desiring and phen-
beliving shapes reason for action. If there weren’t a reason for an action, then a
command would not motivate an agent to take an action. Also, if there is a reason for
an action, there is no need for a command. Therefore, m-processing gives rise to
actions, desires, and beliefs without an affective intentional content, as in

evaluativism, and without a command, as in imperativism.

Against psycho-functionalism, there is one major worry. It is about its sub-personal
aspect. To be specific, it argues that sub-personal level m-processing does not
elucidate the normative reasons for action (Bain, 2013). In order to explain the

normative motivations to act, personal level processing is necessary. Additionally, I
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have a further worry about psycho-functionalism. Similar to the case for both
evaluativism and imperativism, the way, in which a physiologically acute pain
becomes a pathologically chronic pain, creates a problem for psycho-functionalism.
Namely, if psycho-functionalism is true, then all agents with pathologically chronic
pains must have the same sub-personal and functional processing. Otherwise, an agent
with a slight individual difference in the sub-personal and functional processing does
not count as having pathologically chronic pain. It is, yet, the case that pathologically
chronic pain manifests individual differences from one agent to another although
these individual differences are not accounted scientifically at the sub-personal level.
Therefore, psycho-functionalism cannot explain the individual differences of the

agents with pathologically chronic pain.
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CHAPTER II

THE PREDICTIVE PROCESSING FRAMEWORK

From the conversation on pain, I move the dialogue toward the conceptual
background of the predictive processing framework before examining pathologically
chronic pain and pain avoidance behavior. Particularly, this framework roots from
Bayesian Brain Hypothesis and the predictive coding theory. Nevertheless, the fame
of the predictive processing framework comes from perceptual inference, active
inference, and active learning. Thus, I start by providing an overview of Bayesian
Brain Hypothesis and the predictive coding theory. Then, I dwell into perceptual
inference, active inference, and active learning before inquiring why physiologically
acute pain outlives its protective and adaptive functions to turn into pathologically
chronic pain and why pain avoidance behavior and pathologically chronic pain are

associated.

2.1 Bayesian Brain Hypothesis
One of the approaches to cognition is Bayesian Brain Hypothesis. It is an overarching

hypothesis composed of several different models to account for divergent domains
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and distinct levels of cognition. Importantly, it is the underlying hypothesis of the
predictive processing framework. The main tenet of this hypothesis is that brain is a
Bayesian inference machine (Friston, 2010). The underlying principle of this view is
that the brain has only indirect access to the bodily internal states and the
environmental external states. Consequently, it must infer the sources or causes of
these states. That is, brain generates probabilistic internal inferences following

Bayes’ rule.

Then, what is a Bayesian probabilistic inference? A Bayesian inference, prediction,
belief or information is a statistical probability distribution over an unknown source
or cause of a state (Friston, 2010). In that sense, Bayesian beliefs are different than

the explicit propositional beliefs.

Particularly, Bayes’ rule or Bayes’ theorem is a means of computing a probability of
predictive information when other certain probabilities of predictive information are

known. Its formula is as follows.

P(A|B) = P(A) P(B|A) / P(B)

This formula tells us that suppose there are two separate predictive information call
‘A’ and ‘B’. What we want to find is P(A|B) when P(A), P(B), and P(B|A) are known.
P(A|B) tells us how often ‘A’ happens given that ‘B’ happens. P(A) tells us how

likely ‘A’ is on its own. P(B) tells us how likely ‘B’ is on its own, and P(B|A) tells us
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how often ‘B’ happens given that ‘A’ happens. In other words, P(A|B), which is a
probabilistic inference reflects the integration of P(A), P(B), and P(B|A), which are

predictive information, in an approximately Bayesian optimal way.

What can be the sources or the causes of predictive information? Namely, the sources
of these predictive information can be either the prior predictions— the priors, that
are encoded in the generative model or the likelihoods of the current potentially multi-
sensory noisy information. If a belief is prior to an observation of a sensory input,
then it is called a prior belief. Additionally, the likelihood is the sensory evidence

(Figure 3).

What does the Bayesian optimal integration mean? It is an optimal integration
because it is based on their precision or uncertainty weights (Figure 3). That is, the
predictive information that has more precision influences the integration more. In
parallel, the more uncertain predictive information is, the less the influence is on
integration (Figure 4). Nevertheless, optimality does not refer to accuracy (Tabor &
Burr, 2019: 58). Thus, there may be a decoupling between a likelihood about
incoming sensory information and a prior. Therefore, Bayesian optimal integration

can result in a detachment from veridical sensory evidence.

What is got after the Bayesian optimal integration, then? If a prior belief is Bayesian
optimally integrated to either another prior belief or likelihood after observation of a

new sensory data, then a new belief called a posterior belief is formed (Figure 4). Yet,
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it is essential to note here what governs the Bayesian optimal integration. That is, the
likelihood and the prior do not necessarily match. The mismatch between them
governs the posterior formation through the Bayesian optimal integration. In other
words, the Bayesian optimal integration is centered on the comparison and adjustment

of the prior belief and the sensory input.

However, why is the Bayesian optimal integration necessary, and why is it maintained
over time? It is required for the formation of a belief that will be necessitated for the
access to the source of a state. It is maintained in order to increase the degree of
precision that is associated with a belief. That is, a belief is attached with a certain
degree of precision. In other words, precision implies certainty that is associated with
a belief. The precision of a belief, which is based on a sensory input, is tested against
the precision of the sensory data. Further, the precision of the sensation provides

either evidence in favor of or evidence against the prior belief.

What is the evidence against a prior belief in light of sensory data? It is the precision
of prediction error, which is calculated via the difference between the precision of the
sensory data and the precision of the prior (Figure 3). That is, the precision of the
prediction error provides how much evidence is given. In this respect, what governs

the Bayesian optimal integration is the prediction error.

Does this imply that the Bayesian optimal integration is biased?. Based on the relative

precision of the sensory input and that of the prior—i.e, based on the precision of the
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prediction error, the posterior belief biases toward either of them. Suppose that the
posterior belief is biased towards sensory evidence by either increasing the precision
of sensory input and/or failing to attenuate it or decreasing the precision of the prior

belief (Figure 4-5).

What is exactly the function of the prediction error? It is signaling /earning, which
occurs through the Bayesian optimal integration. How much learning is occurred is
called the learning rate. 1t is calculated by the ratio of the precision of the prediction
error and the precision of the prior. Consider that the prior is constant, the learning
rate relies on the precision of the sensory input. In this sense, the learning is open to
change and the learning rate is variable. In parallel, a system can adapt to dynamically

altering uncertain environment.

However, how can the learning rate be increased allowing a system to adapt to its
environment? It is ensured though a single imperative, which is the minimization of
prediction error. It is important to note that, the prediction error minimization should
occur over the long-term average. To exemplify, if the precision of prediction error is
too large, then the prediction error minimization will be excessive and the learning
rate will be vast. Through prediction error minimization, a system adapts to its ever-

changing and uncertain environment.

What, more importantly, can a prediction error signal other than learning? It is false

learning. That is, the predictive error minimization leads to maladaptation to an
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environment. False learning or maladaptation to an environment is probable. If the
precision of the sensory input is overestimated or the precision of the prior is
underestimated, then the precision of the prediction error will be huge. This situation
yields that the posterior moves towards the sensory mean and away from prior mean.
Consequently, this results in false belief or false inference. This culminates in a

maladaptation of the system or the agent to the body or the environment.

2.2 The Predictive Coding Theory

The predictive coding or Bayesian coding hypothesis is the first steps of the predictive
processing framework. It depicts that beliefs are encoded in the form of
probabilitydensity distributions (Friston, 2010; Clark, 2013). Having said that
probability density distributions encode uncertainty, encoding beliefs implies that the
neural systems of biologically possible models take uncertainty into account
fundamentally. Therefore, this hypothesis postulates that brain’s learning can be cast
in terms of statistics, in which uncertainty is transmitted within the neural networks
(Rao & Ballard, 1999: 79). It suggests that, through this way, the neural networks
optimize their connectivity and the dynamics among them in order to maximize the

evidence for its generative model of the environment (Hohwy, 2016: 259).

2.3 The Predictive Processing Framework
The predictive processing framework casts Bayesian probabilistic inference
pertaining to the prediction error minimization over the long-term average (Hohwy,

2013; Clark, 2013). That is, an internal generative model of a system or an agent
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produces innumerable beliefs that are directed to capture the incoming sensory
information. Then, what is a generative model? A hierarchical probabilistic internal
generative model is used to generate an expected consequence that may arise from
hidden (latent) state of the body or the environment, and, even, in the absence of the
external stimulation (Figure 6). It is shaped over time to reflect a precise
representation of the body and the environment. The prior beliefs are formed by the
relatively higher mental states and carry weight with the relatively lower mental
states, and that therefore, they are called top-down beliefs (Tabor & Burr, 2019: 55).
The sensory data is created by the relatively lower mental states and carry weight with
the relatively higher mental states. In parallel, they are also named bottom-up beliefs
(Tabor & Burr, 2019: 55). In this regard, there is a hierarchy of beliefs within the
model of the system. There are also bidirectional connections among them. That is,
there are multi-level connections among beliefs. The internal generative model
chooses the top-down belief that best matches with the sensory input thereby the
prediction error between the prior belief and the sensory data is minimized. After the
countless trials of matching of the priors with the inputs, the internal generative model

of the system promises the prediction error minimization over the long-term average.

The reason lurking behind the process of prediction error minimization over the long-
term average within the predictive processing framework is the hierarchical internal
generative model’s encoding of the probability distributions of the beliefs with
uncertainty. The uncertainty encoded in the generative model is tackled with the

precision-weighting process, where a belief associated with the highest precision is
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weighted against the others. By the transmission of the difference between the belief
with the highest precision and the actual sensory input in the form of prediction error,
the prediction error minimization occurs. The repetition of this process results in the
prediction error minimization over the long-term average, in which the prediction
error gets closer and closer to zero and the match gets closer and closer to exact

match.

2.3.1 Perceptual Inference

Perception is a process of probabilistic knowledge-driven inference in the predictive
processing framework (Clark, 2013: 2). It arises as a result of the successful
prediction-error minimization. To infer the source or the cause of an incoming
sensory information or fo perceive is perceptual inference (Clark, 2013: 6; Hohwy,
2013: 14). It refers to a mechanism that aims to meet the encoded sensory data with a
prior belief of the hierarchical internal generative model of a system or an agent. That

is, the prior is tested against the actual sensory input.

An internal generative model encodes beliefs about the body and the environment as
multiple top-down probability distributions with differing degrees of uncertainty.
These reflect a range of candidate beliefs about the potential causes of the sensory
state of the body or the world. Therefore, the prior belief of the generative model may

be from various spatial and temporal levels.
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However, it is not exact issue of matching the prior directly with the sensory input. It
is directed to minimize the prediction error that arises from the difference between the
sensory information and the prior over the long-term average (Clark, 2013: 7). Given
that, it aims to use the prediction error as a learning signal to revise the system’s
internal generative model of its body and environment, the perceptual prior beliefs
refer to what the generative model has learned from its previous encounters with the
source of the incoming sensory data (Clark, 2013: 7). When the prior beliefs are
tested against the actual incoming sensory information, the evidence for the internal
generative model is maximized for the accurate and precise beliefs. Further, the
process of matching the prior with the sensory input involves computing various
probability distributions of the sensory data (Clark, 2013: 7). The reason is that an
inference may be consistent with many distinct sets of causes. They can be

distinguished only by their relative probabilities of occurrence.

2.3.2 Active Inference

Action, within the predictive processing framework, is an inferential process (Clark,
2013: 6). The inference of an action by a system or an agent results in either an
inferred outcome or predicted information through the action. In this regard, the
inferred action is either exploratory or exploitative. That is, the system selects either
an exploratory or exploitative optimal action policy to achieve what is estimated. The
policy means a sequence of states leading to the concrete action or behavior. Under
the selected policy, prediction errors may be induced because of the mismatch

between what is estimated and what is the current case. The system selectively
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samples inputs to minimize the prediction errors under that action policy. To
selectively sample, the system may alter its actions under that policy, thereby the

sampled input may better reflect the predicted outcome or information.

In parallel, there are two kinds of mechanisms described under active inference
(Friston, FitzGerald, Rigoli, Schwartenbeck, O’Doherty, & Pezzulo, 2016: 864;
Gadsby & Hohwy, 2019: 3). A particular mechanism of active inference is for utility.
It is for reaping an outcome or reward. The other mechanism of active inference is for
epistemic value. It is for reducing uncertainty about a system’s internal generative
model of its body or environment. Importantly, under active inference process, the
systems cover the reduction of uncertainty within its model by means of fixing the

model and changing its actions.

2.3.3 Active Learning

An active system or agent minimizes prediction errors through either by carrying out
actions to sample input that better captures what is inferred or by updating the
parameters of the system’s internal generative model to produce predictions that
better reflect data (Friston et al., 2016: 864; Tabor & Burr, 2019: 55). The former
alternative is introduced under active inference process. The latter is called active

learning.

The inference of an action policy under active learning is for mitigating uncertainty

about the system’s model. Instead of fixing the model and changing its actions, as it is
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the case for active inference, the model itself is updated in active learning. What
updates the model is information in active learning process. In that sense, the inferred
action policy is exploratory. Specifically, Bayesian optimal integration of the
incoming information and the prior beliefs occurs over time to minimize the future
prediction errors (Tabor & Burr, 2019: 56-7). That is, an active learner actively infers

with increasing precision in future encounters (Clark, 2013: 10).
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CHAPTER III

WHY DOES PHYSIOLOGICALLY ACUTE PAIN OUTLAST ITS PURPOSES TO
TRANSFORM INTO PATHOLOGICALLY CHRONIC PAIN AND WHY IS
PATHOLOGICALLY CHRONIC PAIN ACCOMPANIED BY PAIN AVOIDANCE

BEHAVIOR?

Why physiologically acute pain outstays its functions to become pathologically
chronic pain, and why pathologically chronic pain is accompanied by pain avoidance
behavior remained elusive within the predictive processing framework. Essentially, in
order to answer to these questions, I cast pathologically chronic pain and pain
avoidance behavior as Bayesian probabilistic inference problems. Given that pain is a
complex, convergent, and multidimensional experience, a Bayesian probabilistic
model of pathologically chronic pain involves sensory, perceptual, affective, and
motivational aspects. To date, the most researched feature of pathologically chronic
pain within the predictive processing framework is established on perceptual
inference. Following that, initially, I demonstrate what the perceptual inference
account refers to regarding pathologically chronic pain. Up-to-date research holds that

a complete understanding of pathologically chronic pain necessitates an explanation
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of its motivational character, as well. However, when casting pathologically chronic
pain and pain aversive behavior as Bayesian probabilistic inference problems, their
motivational aspects call upon the explore-exploit dilemma and the emergence of
active inference and active learning. In parallel, I call attention to the different levels
of uncertainty and their influence on the emergence of active inference and active
learning. Additionally, I show that different mechanisms are at work in gaining
information and producing actions regarding pathologically chronic pain and pain
avoidance behavior. Finally, I will propose that active inference and active learning
lead to the emergence of pain avoidance behavior and pathologically chronic pain,
respectively. Therefore, section 1 describes the influence of perceptual inference over
pain. Section 2 lays out the key elements of the explore-exploit dilemma. Section 3
elaborates the implications of this dilemma on the unfolding of pathologically chronic

pain and pain aversive behavior that accompanies pathologically chronic pain.

3.1 The Perceptual Inference Account of Pathologically Chronic Pain

Briefly, perceptual inference is a mechanism that functions in gaining information
about the state that causes pain perception. What is inferred when pain is cast in terms
of the perceptual inference is the cause of nociception. Perceptual inference is
governed by the minimization of the mismatch between the encoded relative
precisions of the incoming sensory data and the prior belief in the predictive
processing framework. In parallel, this principle applies to pain encapsulating
physiological, pathological, and nociplastic pain resulting in nociceptive prediction

error minimization.
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The research on the sensory aspect of pain, particularly, nociception goes back a long
way. Pain perceptions generally involve nociceptive aspect, although it is not
necessary for all pains. For example, some patients with pathological pains arisen
from spinal cord injury, or some patients with nociplastic pains resulted from
fibromyalgia do not have nociception. Yet, in the case of physiological pain, there is
generally nociception. One exception is congenital insensitivity to pain, which causes
the lacks of nociceptors and, in parallel, the encoding of nociceptive input to the
model of a system or an agent (Woolf, 2010: 3742). What governs the physiological
nociception is the minimization of the mismatch between the relative precisions of the
physiological noxious input and the prior belief in the generative model of a system or

an agent.

As to pathological pain, there is two directions to take. First, if there is not a
nociceptive aspect of a particular pathological pain, then the perceptual inference
account is insufficient to explain the pathological pain. Second, if there is a
nociceptive character of a certain pathological pain, then the same principle—i.e., the
prediction error minimization, applies. However, this is the tricky part. The reason is
that the perceptual inference mechanism points to the presence of an underlying
deficit in precision optimization within pathological pain. Specifically, the prediction
error is a function of the relative uncertainties of beliefs resulted from the actual
nociceptive cause and the prior encounters with the nociceptive source. It should be

minimized over the long-term average. It occurs through Bayesian optimal
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integration. That is, Bayesian optimal integration implies the nociceptive prediction
error minimization. However, it is biased. It allows that the posterior nociceptive
belief, which is formed via integration of the sensory information and the prior belief,
biases toward either of them. It may bias towards the nociceptive evidence by either
increasing the precision of nociceptive information and/or failing to attenuate it or
decreasing the precision of the prior beliefs. Bayesian optimal integration indicates
nociceptive learning. In other words, the nociceptive prediction error minimization
means learning. If it occurs, then a system or an agent can adapt to the dynamically
altering uncertain body and environment. However, false nociceptive learning may
occur too. Having said that Bayesian optimal integration is biased, the precision of a
nociceptive input may be overestimated and/or the precision of a prior may be
underestimated or vice versa. This may result in the nociceptive posterior moves
towards the sensory mean and away from prior mean. Through this, the predictive
error minimization leads to maladaptation to the body or the environment or false
learning, false belief, or false inference. That is to say that the nociceptive posterior
belief may spend time deviating from the optimal nociceptive inference. This
inference will manifest as more or less transitory false nociceptive inference or
entrenched false nociceptive inference. As a result of the deviation from the optimal
inference, it may fail to correct itself over time. This leads to a cascading and
increasingly ensconced malfunctions. This refers to the pathological condition. As a
result, this provides a ground for addressing how pathological pain perception is
formed and maintained against counter perceptual evidencies. Given that the

deviation from the optimal nociceptive inference requires time, the pathological pain
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is maintained over time. The reason is that the reliance relatively more on nociceptive
information leads to sampling and solving the uncertainties on the body and the
environment more and for longer time. The deviation may entail time less than six
months. In such a case, it may be referred as pathologically acute pain. However, if it
endures more than six months or even a life time, then this may make it pathological

chronic pain.

Analogous to pathologically chronic pain perception, many psychopathological
disorders are associated with inappropriate beliefs about precisions of the prior beliefs
and sensory information. That is, they are linked with entrenched false inferences. To
exemplify, autism spectrum disorder has been related with higher prior expectation
for the sensory precision (Van de Cruys, Evers, Van der Hallen, Van Eylen, Boets,
de-Wit, & Wagemans, 2014). Particularly, a patient with autism spectrum disorder
appeals relatively more to the senses than the priors with in the agent’s hierarchical
internal generative model’s parameters (Hohwy, 2013: 161) Hallucinations in
schizophrenia have been connected with higher prior expectations for the variations
of the sensory input (Sterzer, Adams, Fletcher, Frith, Lawrie, Muckli, Petrovic,
Uhlhaas, Voss, & Corlett, 2018). Delusions have been concomitant with false
inference that is resulted from the reduction of the sensory precision in comparison
with the prior precision (Adams, Brown, & Friston, 2014). Specifically, there is a
heightened and continuous expectation for uncertain sensory data and increased and
persistent reliance on the prior beliefs in both hallucinations in schizophrenia and

delusions (Hohwy, 2013: 158). It is hypothesized that heightened chronic pain
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expectation gives rise to heightened chronic pain perception (Hechler, Endres, &

Thorwart, 2016).

3.2 Is Action Required for a Full-Fledged Account of Pathologically Chronic Pain?
If a system or an agent has settled on a posterior perceptual or nociceptive inference
resulted in pathologically chronic pain, then why action should have a role in the
system or the agent with pathologically chronic pain is a further inquiry. An answer
may come from two different trajectories. If a pathologically chronic pain has a
nociceptive aspect, then two supportive arguments in favor of action may be given.
First, without action none of the beliefs of an agent can be favored strongly (Hohwy,
2013: 79). That is, action increases the precision and the accuracy of an inference
encoded as a probability distribution. For example, suppose that one has happened to
step on a lego piece in the middle of the night when she was trying to figure out the
location of the light switch on the wall. The perceptual inference accounts for the
noxious nociception caused by stepping on the Lego piece. She acts to minimize the
following mismatch between the incoming sensory information—i.e., that there is
something on the floor that may cause a damage on the body, and the prior
inference—i.e., that the body integrity is intact. Many things can cause the exactly
same inference. What causes this particular perception, which is a Lego piece, can be
understood only by pulling her leg up, and furning her head down and gazing at the

stuck piece on her foot.
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Second, action is relatively more efficient than relying just on the perceptual inference
(Hohwy, 2013: 80). In other words, to stay put for perceptions requires time, and it
hereby is inefficient way to favor strongly an inference. For instance, one decided not
take an action to turn the lights on and remained curious about what was the cause of
noxious nociception perceived a couple of minutes ago in the middle of the midnight.
Instead of carrying out an action to switch on the lights, she will wait the sunrise,
thereby the sun light will fill the room and light the cause of nociception. This may
take for hours. In contrast, switching on the lights takes just a couple of seconds.
Therefore, active inference is relatively more efficient than the perceptual inference

given a particular situation.

However, the second trajectory comes from where there is no nociceptive
information. That is, if there is not a nociceptive aspect of a pathologically chronic
pain (along with nociplastic pain), then what makes the pain pathological and chronic
(or nociplastic) necessitates an account of action. Hence, the perceptual inference
account of pathologically chronic pain is insufficient for its complete understanding.

It fails to account for its motivational aspect.

What’s more, the perceptual inference account of pain fails to account for the
accompanying pain avoidance behavior. For instance, suppose one has a leg fracture
due to falling on ice that may heal in three months. According to the perceptual
inference, she will perceive a physiologically acute pain due to the fracture over this

period of time. Especially, suppose that she perceives more pain when there is
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pressure on the location of the fracture. Thus, she avoids leaning on her broken leg’s
side while sleeping to avert the perception of the physiologically acute pain. Suppose,
further, that her perceptual inference deviated from its optimal precision and resulted
in an entrenched pathologically chronic pain. Having said, she avoids to lean on her
broken leg’s side while sleeping to avert the perception of the pathologically chronic
pain. Therefore, irrespective of whether this is a physiologically acute pain or a

pathologically chronic pain, an account of action regarding pain is necessary.

3.3 The Explore-Exploit Dilemma: The Gap in the Pain Literature

When pathologically chronic pain, which has a motivational aspect, and pain
avoidance behavior are cast in terms of Bayesian probabilistic inference problems,
they call for a deep scrutiny of action within the predictive processing framework.
Bayesian probabilistic internal generative models are characterized by exploitative
action or exploratory action strategies (Figure 7). In parallel, active inference and
active learning lead to attenuation or uplift of the exploration and exploitation
strategies as functions of prediction error minimization over the long-term average
(Hohwy, 2013: 71; Markovi¢ , Goschke, &Kiebel, 2020: 3). Particularly, the
equilibrium between exploration and exploitation is governed by the minimization of
uncertainty by means of active inference and active learning (Seymour & Mancini,
2020: 5). However, balancing exploration and exploitation brings along the explore-
exploit dilemma. It refers to knowing when to switch to exploitation of learned
information, and to pause exploring for new information about an ever-changing and

uncertain environment, and vice versa (Markovi¢ et al., 2020: 2). That is, if a certain
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action yields prosperous surprise minimization, then how long the action should be
prolonged culminates in the dilemma. Specifically, if the action perpetuated, then the
system or agent would never know if the action is necessitated indefinitely within the
environment, or if the cause of the action has otherwise ceased (Schwartenbeck,

Passecker, Hauser, FitzGerald, Kronbichler & Friston, 2019: 1).

Exploitative actions are outcome-driven actions (Friston et al., 2016: 863). That is,
they are the best actions that result in the best outcomes based on the present beliefs
about the environment (Schwartenbeck et al., 2019: 1). In this respect, they are

pragmatic and susceptible to risks (Seymour & Mancini, 2020: 5).

Contrarily, exploratory actions are information-driven actions (Friston et al., 2016:
863). In other words, they are the actions that yield information about whether there
are any better action whose outcome is partially or fully unknown at present
(Schwartenbeck et al., 2019: 1). In this sense, exploratory actions are epistemic and

susceptible to ambiguity (Friston et al., 2016: 863).

There are two kinds of exploratory strategies: goal-directed and random exploration
(Friston et al., 2016: 863). Goal-directed or directed exploration is motivated by
uncertainty within a system’s model of the environment based on either the uncertain
mapping from a state to an outcome or an uncertain state (Schwartenbeck et al., 2019:
2). This entails that the system samples information that is held with the highest

uncertainty (Schwartenbeck et al., 2019: 2). In addition to that, the goal-directed

38



exploration adds cost, noise, or bonus to policy that is arbitrarily chosen due to the

highest uncertainty (Kakade & Dayan, 2002: 554).

Here it is important to note that there are two types of uncertainty or surprise, which
are unexpected uncertainty and expected uncertainty (Schwartenbeck et al., 2019: 2).
Unexpected uncertainty refers to ambiguity, whilst expected uncertainty refers to risk
(Figure 8). In parallel, an exploitative policy is sensitive to expected uncertainty,
whereas an exploratory policy is sensitive to unexpected uncertainty. Essentially, for a
system, it is necessary to tackle with an ambiguity before tackling with a risk of a

policy (Schwartenbeck et al., 2019: 2).

There are, also, two types of goal-directed exploration: the hidden state exploration
(Figure 7B), and the model parameter exploration (Figure 7C). Goal-directed
ambiguity reduction relies on the mapping between the hidden state and the
observation. That is, a system must infer both the action policy and the current hidden

state that causes the observation.

If the mapping from underlying a hidden state to an outcome is unambiguous, then the
system can navigate to the outcome. This implies that the system can actively sample
until it achieves the outcome, which has unambiguous mapping to the hidden state
(Figure 9). In other words, the hidden state exploration can occur through active
inference (Schwartenbeck et al., 2019: 2). Active inference ensures the hidden state

exploration by driving a system to actively look for already learned or known salient
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outcome that provides an inference of the hidden state unambiguously
(Schwartenbeck et al., 2019: 5; Tabor & Burr, 2019: 56). For example, suppose that
one flips a certain coin and always observes heads. Additionally, one has learned
previously that a loaded coin always shows heads, and a normal coin shows a mixture
of heads and tails when it is flipped a number of times. Thus, the mapping from the
hidden state to the observation is unambiguous. In parallel, suppose that her inference
is to observe heads if she flips it one more time. The hidden state that causes this
observation and inference may result from that this certain coin is a loaded one. Yet,
the hidden state can be just luck, as well. In this scenario her expected uncertainty is
based on that this certain coin is loaded. Contrarily, her unexpected uncertainty is
based on the idea that the observation of heads is due to mere luck. Her inference will
be that if they rely on luck, then the coin will show tails at least one time; and if they
are because of coin’s being loaded, then the coin will show heads all the time. In
order to minimize the unexpected uncertainty, her inferred policy will be to flip the
coin multiple times. Suppose that she observes heads irrespective of the number of

times flipping the coin. Thus, she infers that the coin is actually a loaded coin.

However, if a system is ignorant about the mapping of its model, then the system acts
in order to learn its model’s previously unexplored contingencies. That is , if in a

goal-directed exploration, a system needs to reduce not only the uncertainty about the
current hidden state, but also the uncertainty of the mapping between the hidden state
and an outcome along with inferring the best action policy that is uncertain at present

to achieve the uncertainty reduction, then it is model parameter exploration (Figure
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9). It occurs through active learning (Schwartenbeck et al., 2019: 5). Active learning
assures the model parameter exploration by compelling a system to actively try out
novel combinations of the hidden states and outcomes in order to actively learn about
the mappings, in which the outcomes are guaranteed (Schwartenbeck et al, 2019: 7;
Tabor & Burr, 2019: 55). To exemplify, suppose one wants to make soft chocolate
chip cookies. Yet, suppose that she has a knowledge gap concerning the recipe of soft
chocolate chip cookies. Particularly, she is uncertain about whether adding too much
or not enough flour makes a chocolate chip cookie soft. Additionally, suppose that she
is not certain concerning whether over-beating or under-beating the eggs produces
soft chocolate chip cookies. Moreover, suppose that she has not learned whether she
should melt the butter or she should not melt the butter for soft chocolate chip
cookies. In this setting, her mapping from the hidden state, which is the recipe, to the
observation, which is the softness of the chocolate chip cookies, is ambiguous. That
is, these contingencies are associated with the highest uncertainties. To fill her
knowledge gap— to learn and minimize the uncertainties, her inferred policy will be
to actively try out novel combinations of the amounts of flour, egg-beating, and

butter-melting.

Additionally, for active learning to occur there must be stable regularities or rules in
an environment that can be learned (Figure 9). That is, active learning refers to being
able to carry information from one trial to the next. This is provided by the
regularities or rules in an environment. Further, active learning occurs over time. In

that sense, it is a slow way to reduce uncertainty. Contrarily, active inference can
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often be a faster way of reducing uncertainty (Schwartenbeck et al., 2019: 25). In the
cases where active learning is broken and it is possible to calculate uncertainty, active

inference can reduce uncertainty instead of active learning.

In contrast to goal-directed exploration, random or undirected exploration (Figure
7A) is directed to randomly sampling information regarding the altering and uncertain
environment while diverging from the best action already learned given the current
beliefs (Schwartenbeck et al., 2019: 1). This entails that a randomly exploratory
action is not informed by a system’s uncertainty regarding a hidden state or its
mapping (Schwartenbeck et al., 2019: §). Importantly, random exploration can allow
a divergence from the currently best action policy whose outcome is fully and
certainly known. It also occurs through active inference. This implies that such an
action will not decrease uncertainty per se but may cause accidental belief updating or
learning due to random or stochastic selection of different policies. In this regard,
random exploration may have an adaptive function in the absence of goal-directed
exploratory actions that may be a result of a system’s inefficacy to calculate
uncertainties—i.e., active inference and/or learning is broken (Schwartenbeck et al.,

2019: 10, 25).

Therefore, goal-directed exploration can refer to either exploring the hidden state that
causes the outcome or exploring the parameterization of the system’s model.
Concurrently, gaining information and uncertainty minimization can be achieved by

either active inference or active learning. In other words, the exploration of the hidden
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state is called active inference, whereas the exploration of the model parameterization
is called active learning. Furthermore, in the lack of goal-directed exploration,

random exploration may result in adaptive learning.

Importantly, inferences made through hidden state exploration by active inference and
through model parameter exploration by active learning can either support or oppose
each other (Schwartenbeck, 2019: 5). If there are regularities and/or rules within a
system’s environment that are stable enough in order to be learned through time by a
system, then the hidden state exploration can be cast in terms of active learning. In
this setting, the prediction made through hidden state and model parameter
exploration boost each other (Schwartenbeck et al., 2019: 24). However, if the context
changes randomly, then the hidden state exploration is cast in terms of active
inference and may contradict with an inference made by active learning. That is, the
minimization of surprise by means of model parameter exploration may produce an
action that opposes the minimization of uncertainty through hidden state exploration
when there is high ambiguity or novelty (Schwartenbeck et al., 2019: 25).
Particularly, if an outcome is ambiguous due to the ambiguity in a system’s mapping
from a hidden state to its outcome, then the system infers that this is highly interesting
and can be actively learned. Nevertheless, given that the outcome is ambiguous, it is
highly aversive from the active inference perspective. For instance, suppose that one
decided to watch a sci-fi movie she will enjoy, and what she got is The Matrix, The
Matrix Reloaded, and The Matrix Revolutions. Suppose that she saw the Matrix and

The Matrix Reloaded and really enjoyed the prequel. Additionally, suppose that she
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has previously learned that the sequels are never better than the prequels. In this
context, which movie should she choose? Given that she saw the first two movies,
there is an unambiguous mapping from the hidden state—i.e., a movie, to the
outcome—i.e., enjoyment and a prior belief that the prequels are the best. Her inferred
action would be to choose The Matrix over The Matrix Reloaded since she would
achieve the outcome through the hidden state exploration. Therefore, active inference
results in that she should re-watch The Matrix. However, there is a novel, interesting,
and informative option, which is The Matrix Revolutions. In parallel, in her mapping
of the structure of the environment, there is a knowledge gap due to the ambiguous
mapping that can be filled with model parameter exploration. Thus, active learning

leads to that she should watch The Matrix Revolutions.

3.4 The Active Learning Account of Pathologically Chronic Pain and The Active
Inference Account of Pain Avoidance Behavior

So far, I have referred to the perceptual inference account of physiologically acute
pain and pathologically chronic pain that was held until recently. After the progress in
the predictive processing literature capturing the intertwinement of perceptual
inference and active inference, I have touched on the latest well-establishment of the
influence of action in the literature of pain. The up-to-date challenge is the position of
the active learning within the framework and its contributory effect on pain. In
connection with this, Tabor and Burr (2019) suggest that pathologically chronic pain
is formed due to precision weighting of noxious information that eventually leads to

the learned optimal precision weighting over time, and that informs a system’s model
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to explore or exploit its environment. Nevertheless, when the tables are turned, this
paper does not elaborate on the offerings of the explore-exploit dilemma through
active inference and active learning to the emergences of persistent pain and pain
avoidance. In order to pave the way for my research, I have pointed out to the
exploration-exploitation dilemma within the predictive processing framework, as
well. Thus, the question that I investigate here is exactly how active inference and
active learning play role in the formation, maintenance and treatment of
pathologically chronic pain and pain avoidance behavior. The main motive lurking
behind my current inquiry is that to track down the reason causing that
physiologically acute pain outwears its purposes to convert into pathologically
chronic pain. Additionally, to figure out the ground for the arise of concomitant pain

avoidance is another motive of this analysis.

Active inference and active learning lay out a general ground for understanding a
system’s exploitative and exploratory actions (Schwartenbeck et al., 2019: 35).
Following that, active inference and active learning mechanisms promise a clarified
understanding of goal-directed cognitive deficits within the scope of
psychopathological conditions (Schwartenbeck et al., 2019: 26). Further, the trade-off
between exploitative actions and exploratory actions lies at the heart of pain,

especially pathologically chronic pain and pain avoidance actions.

Particularly, the interchange among hidden state exploration, model parameter

exploration, random exploration, and exploitation is governed by their relative
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precisions. Their relative certainties are products of the prediction error minimization,
since prediction error is a function of their uncertainties. Therefore, the trade-off
between them is governed by minimization of uncertainties. In parallel, when
pathologically chronic pain and pain avoidance behavior are casted as Bayesian
probabilistic inference problems, they are guided by the minimization of
uncertainties. Therefore, the minimization of uncertainty is closely linked with
pathologically chronic pain and pain avoidance behavior. In parallel, the trade-off
between hidden state exploration, model parameter exploration, random exploration,
and exploitation is closely linked with pathologically chronic pain and pain avoidance

actions.

However, they may result in contrasting actions when an action policy is highly
interesting and novel due to its high ambiguity and, at the same time, it is highly
aversive because of the same reason—i.e., its ambiguity of the outcome. That is, if the
outcomes of a policy are ambiguous respective of high ambiguity about the mapping
between the policy and the outcome, then the policy is highly informative. However,
if the system is certain regarding that the outcomes of the policy are ambiguous, then
the same policy is highly aversive. Importantly, the ambiguity in the mapping of the
system must be resolved before the resolution of the uncertainty about the outcomes.
Hence, the uncertainty about the model parameterization modulates the effect of

uncertainty regarding hidden states on action (Schwartenbeck et al., 2019: 25).
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On top of these, I propose that, in the case of pathologically chronic pain, its
formation and maintenance result from active learning, while accompanying pain

avoidance behavior results from active inference. Consider the following argument.

(i)  Pathologically chronic pain is a pain experience that originates from a disease
or an injury, and lasts for a long time irrespective of the endurance of its cause.
(Ass.)

(i1))  Pain avoidance behavior is the development and the maintenance of aversion to
certain actions to refrain from inducing pain. (Ass.)

(i)  Pathologically chronic pain and pain avoidance behavior involve goal-directed
exploratory action strategies because the goal that directs them is to minimize
unexpected uncertainty—i.e., ambiguity. (Ass.)

(iv) A system or an agent with pathologically chronic pain has biological
alterations, which work as stable regularities, within her mappings between the
hidden states and their outcomes because of a past disease or injury. (Ass.)

(v)  Ifitis uncertain that the outcome of a goal-directed exploratory policy will
result in pain due to high ambiguity regarding the agent's mapping between the
hidden state and the outcome, then this policy is highly informative, interesting
and novel—i.e., the model parameter exploration. (Ass.)

(vi)  Active learning is updating the parameters of a system or an agent’s generative

model to produce inferences that better reflect the incoming information. (Ass.)
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(vii)  Therefore, pathologically chronic pain involves the model parameter
exploration. The mapping of the system or the agent with pathologically chronic

pain gets certain gradually through active learning. (i, iii, iv, v, Vi)

(viii) If it is uncertain that the outcome of a goal-directed exploratory policy will
result in pain, and the agent's mapping from the hidden state to the outcome is
unambiguous; then this policy is highly aversive. (Ass.)

(ix)  Active inference is carrying out actions to sample input that better captures
what is inferred either for epistemic purposes or achieving an outcome. (Ass.)

(x) Therefore, pain avoidance behavior originates as the hidden state exploration

(xi)  Therefore, the uncertainty in the outcomes of an action policy and the
uncertainty in the generative model result in the emergence of pathologically
chronic pain and pain avoidance behavior. Pain avoidance behavior accompanies

pathologically chronic pain. (v, vii, viii, X)

(xii)  Physiologically acute pain is a nociceptive or inflammatory experience that
originates from a disease or an injury, and lasts for a short time with reference to
the agent's gradual healing, which indicates no new stable regularities laid out
biologically. (Ass.)

(xiii)  The action occurs as a result of physiologically acute pain involves

exploitative action strategy. (Ass.)
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(xiv)  If'there is high ambiguity regarding the agent's mapping between the hidden
state and the outcome in addition to that active inference is broken due to a
disease or an injury, which resulted in physiologically acute pain, then through
active learning new biologically stable regularities (i.e., brain plasticity) are
formed and physiologically acute pain turns into pathologically chronic pain.
(Ass.)

(xv)  Therefore, the trade-off among the model parameter exploration, the hidden
state exploration, and the exploitation is governed by the uncertainty

minimization within the predictive processing framework. (vii, x, xiii, Xiv)

(xvi)  Pathologically chronic pain and its accompanying pain avoidance behavior
are psychopathological conditions. (Ass.)

(xvil) Therefore, active inference and active learning mechanisms promise a
clarified understanding of the goal-directed cognitive deficits within the scope of

psychopathological conditions. (xii, xvi)

Phantom limb pain can be given as an exemplificatory case. Phantom limb pain is
modulated by the model parameter exploration. That is, after an amputation, the
generative model of an system or an agent incorporates in uncertainty regarding her
model of her body. In order to minimize the uncertainty, it is expected that the
amputee will engage in the model parameter exploratory activities through active
learning. This will allow her to convey what she learnt in one occasion to the next so

that she may exploit via active inference this information in the future. However, the
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exploitative action strategies may not work all the time. The reason of this is that the
generative model of the amputee will keep altering because of brain’s plasticity. This
manifests that there is not stable biological regularities. This will motivate the
amputee to take exploratory action strategies. The shift back and forth between the

model parameter exploration and exploitation continues indefinitely.

Further, the pathologically chronic phantom limb pain is accompanied by pain
avoidance behavior. After the minimization of the uncertainty in the mapping of the
amputee’s generative model as much as it is possible, whether the outcome of an
action is painful or not may be ambiguous. Therefore, this action policy will be

interpreted as aversive resulting in pain avoidance behavior.

3.5 The Future Directions

The thesis paves the way for three future directions in distinct disciplines such as
philosophy, neuroscience, and medicine. First, given that pain is a complex
experience, its modulators also enclose thought, beliefs and desires. They may have
impacts on the emergence, maintenance, and management or treatment of
pathologically chronic pain. Hence, the predictive processing framework is required

to explain such propositional mental states (Williams, 2020).

Second, although the computational approaches to cognition have a convincing
advantage over the neuroscientific approaches to cognition, the neural underpinning

of the computational activities in the human brain is necessitated for a full-blown

50



apprehension of cognition. In parallel, the brain oscillations and the synchrony at
different frequencies may provide further evidence on information flow across areas

of the human brain, which underlies the computational processes.

The neuroscientific approach to cognition combined with the prediction error
framework hypothesizes that the information refers to the predictions and the
prediction errors (Ploner, Sorg & Gross, 2017). Beta (12-30 Hz) frequency reflects the
prior predictions and takes role in feedback signaling in the descending pathway of
pain (Arnal & Giraund, 2012). Further, the prediction errors are reflected by gamma
(30-100Hz) frequency and serves feedforward signaling in the ascending pathway of
pain (Pinheiro, Queirds, Montoya, Santos, Nascimento, Ito, Silva, Nunes Santos,
Benevides, Miranda, S4 & Baptista, 2016). In the pathologically chronic pain cases,
there is an abnormal increase in theta (4-8 Hz) frequency (Stern, Jeanmonod &
Sarnthein, 2006; Sarnthein, Stern, Aufenberg, Rousson & Jeanmonod, 2006),
however its role in the predictive processing framework has not been refined yet. It
may be hypothesized that theta frequency refers to posterior inference concerning

pathologically chronic pain.

Third, having said that pain is fundamentally about action, the cognitive behavioral
therapy (CBT) may promise noteworthy pain treatment methods. CBT is a kind of
therapy that lies at the intersection of multiple disciplines such as psychology,
psychiatry, pharmacology, and so forth (Tang, 2018). Its theoretical basis is on the

learning models such as the classical Pavlovian (habitual) conditioning, the operant
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(instrumental) conditioning, Rescorla-Wagner learning, associative learning, and so
on (Tabor & Burr, 2019: 54). It adds the influence of beliefs and appraisals in the
learning models. In addition, it recognize the effect of behavior on psychological
responses. In parallel, the psychopathological conditions such as pathologically
chronic pain can be treated by means of CBT. However, it necessitates that these

learning models and active learning must find a middle ground.
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CONCLUSION

In this thesis, I disputed that the computational approaches like the predictive
processing have a great advantage over the neuroscientific approaches when it comes
to an efficient understanding of the human brain. Peculiar as is pain, I held that pain is
worthy to be studied philosophically because (i) it is not fully biochemically
explicable, (ii) it is not objectively identifiable, and (iif) it is not treatable but
manageable according to what is currently known. Additionally, I made cases for
evaluativism, imperativism, and psycho-functionalism regarding their explanatory
power on pain. Yet, all three failed at different points. Further, I argued that the
predictive processing framework holds out high hopes of refined comprehension of
the goal-directed cognitive deficits within the scope of psychopathological conditions
such as pathologically chronic pain and pain avoidance behavior. Particularly, I
revolved around the questions (/) why physiologically acute pain overstays its
protective function to become a pathologically chronic pain and (//) why pain
avoidance behavior accompanies pathologically chronic pain. I made use of the
explore-exploit dilemma to respond these inquiries. I inferred that (/) pathologically
chronic pain comprises the model parameter exploration through active learning, (2)
pain avoidance behavior involves the hidden state exploration through active
inference, (3) physiologically acute pain results in exploitative action. I proposed that

(a) the very same uncertainty in outcomes of an action strategy entails both
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pathologically chronic pain and pain avoidance behavior, and () the high ambiguity
in a system or an agent's internal mapping between hidden states to outcomes and the
broken active inference because of a disease or an injury entail the transformation of
physiologically acute pain to pathologically chronic pain. Thus, pain avoidance
behavior accompanies pathologically chronic pain, and physiologically acute pain
leaves its protective and adaptive purposes to turn into non-protective and
maladaptive pathologically chronic pain. Moreover, the thesis has three future
directions: (4) the predictive processing framework may bring forward an account for
thoughts, beliefs, and desires, which modulate pathologically chronic pain, (B) the
brain oscillations such as theta and the synchrony at different frequencies may require
an investigation and may offer further evidence on information flow across areas of
the human brain with pathologically chronic pain, (C) CBT may assure pathologically
chronic pain treatment, if the learning models grounding CBT and active learning

underpinning the predictive processing framework needs to settle a dispute.
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APPENDIX

Pain

\
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Figure 1. The classification of pain based on causes. Mainly, there are three
kinds of pain: physiological pain, pathological pain, and nociplastic pain.
Physiological pain has two sub-types: nociceptive pain (A), and
inflammatory pain (B). Nociceptive pain results from cuts, fire burns, or
ice burns. Inflammatory pain originates from tissue trauma that results in
inflammation. Pathological pain stems from injuries or diseases such as
strokes, diabetes, amputations, spinal cord injuries, or multiple sclerosis

(C). Nociplastic pain such as fibromyalgia arises from no particular reason
(D).
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Figure 2. The classification of pain based on persistency.
Pain is either acute or chronic. What makes a pain acute are
that it lasts less than six months-i.e., short-lived, that it has a
function in protection of the bodily integrity, and that its
function is an adaptation that results in the survival of a
system or an agent (A). Contrarily, what makes a pain
chronic are that it lasts more than six months or a life time,
that it lacks function in the survival of a system or an agent,
and that it is a maladaptation of a system or an agent (B).

64



o=1/precision
‘,::% Sensorimotor likelihoo
172}
d.;:) Prior bayesian belief
A
> PEw=PE/c
£
2
O
o ..
~ Probability
, Distribution
Prediction Error :
>
2
z (PE)
o
()
)
>
B
=
<
Na)
o
. TR
- | Probability
Distribution

Actual Sensorimotor Input

Figure 3. The key elements of Bayesian Brain Hypothesis. Beliefs or inferences
are statistical probability distributions over the unknown sources of states. A
prior belief is a belief that is encoded prior to a sensorimotor information. A
sensorimotor likelihood is a current sensorimotor information. Sensorimotor
likelihood is noisy information. A prior belief that will match with a
sensorimotor likelihood has also a subjective uncertainty. The difference
between the precision of a prior belief and the precision of the actual
sensorimotor input refers to the precision of prediction error (PE). The
precision of the prediction error is weighted and set off for the formation of a
refined belief called a posterior belief.
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Figure 4. The influence of precise source of information on posterior belief. The
relative precisions of the prior belief and the sensorimotor likelihood contribute to
the precision of the posterior belief. If an inference is relatively more precise, then
it has a greater impact on the formation of the posterior belief. The precision of an
inference is shown as relatively more narrower probability density. For example,
the precision of the sensorimotor likelihood remained as constant, if the precision
of the prior belief is relatively higher than the precision of the sensorimotor
likelihood, then the prior belief contributes more in the formation of the posterior
belief, and the probability density of the posterior belief is drawn toward the prior
belief (A). However, if the precision of the prior belief is relatively lower than the
precision of the sensorimotor likelihood, then the the sensorimotor likelihood
contributes more in the formation of the posterior belief, and the probability
density of the posterior belief is drawn toward the sensorimotor likelihood (B).
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Figure 5. The decoupling of the actual sensorimotor information from the
subjective experience of a system or an agent. Within the predictive processing
framework, there is a decoupling between an actual sensorimotor information and
a prior belief of a system or an agent. Suppose that there is an actual threatening
sensorimotor information in the environment. If there is a relatively precise prior
belief that reflects the bodily integrity and safety of the system or the agent, then
although there is a threatening current sensorimotor information, the posterior
belief, influenced more by the prior belief, reflects the bodily integrity and safety
(A). Contrarily, the prior belief is relatively less precise than the relative precision
of the sensorimotor likelihood, then the posterior belief is relatively closer to the
sensorimotor likelihood, and it reflects the threat towards the bodily integrity (B).

67



State 4
Higher Level e

Mental States

State 3
State 2

State 1

Figure 6. The hierarchical probabilistic internal generative model. It generates
inferences that results from the hidden external states, and, even, in the absence
of its external stimulation by the hidden states. It is formed over time to reflect
a precise representation of the body and the environment. There is a hierarchy
of inferences. The prior beliefs are generated by the relatively higher mental
states. The sensorimotor likelihoods are created by the relatively lower mental
states, and they carry weight towards the relatively higher mental states
because of the mismatch between the sensorilikelihoods and the priors.
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Figure 7. The classification of action strategies. Mainly, there are two types of
action strategy: exploratory action strategy and exploitative action strategy. An
exploratory action policy is information-driven. That is the role of an exploration is
to gain information. There are two sub-types of exploration: random exploration
and goal-directed exploration. A random exploratory action policy is to randomly
sample information that is available in the body and the environment, which results
in updating in the generative model of a system or an agent. It occurs through
active inference (A). There are two kinds of goal-directed exploration: the hidden
state exploration and the model parameter exploration. The hidden state
exploration is to gain information about the source of a sensorimotor information
that causes an observation by means of active inference (B), whereas the model
parameter exploration is to gaining information for generating the mapping from a
hidden state to its observation through active learning (C). In contrast, an
exploitative action policy is outcome-driven. That is, it occurs to achieve a certain
observation via active inference (D).
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Figure 8. The classification of uncertainty
kinds. Mainly, there are two kinds of
uncertainty: expected uncertainty and
unexpected uncertainty. The expected
uncertainty stands for risk, while the
unexpected uncertainty refers to ambiguity.
Exploitative action strategy is sensitive to
risk (A). However, exploratory action
strategy is sensitive to ambiguity (B).
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Figure 9. The trade-off among the action strategies. Whether there is an
ambiguity within a system or an agent’s model’s mapping from a hidden state
to an observation or not, and whether the observation is ambiguous or not
determine the system or the agent’s action policy. Additionally, whether the
ability of the system or the agent to make an active inference or to do active
learning has influence over the trade-off among the action strategies. For
instance, active learning may be broken by the lack of stable regularities in the
body and the environment. As another example, active inference may be
broken by the lack of activity in a certain body part. In parallel, stepping on
lego pieces may need to the hidden state exploration for the observation of the
lego pieces on the floor, while multiple sclerosis may need to the model
parameter exploration for the precise representation of the current body form.
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