
GHOSTWARE AND ROOTKIT DETECTION
TECHNIQUES FOR WINDOWS

a thesis

submitted to the department of computer engineering

and the institute of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

Cumhur Doruk Bozağaç

September, 2006

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. A. Aydın Selçuk (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. İbrahim Körpeoğlu

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Alper Şen

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet B. Baray
Director of the Institute

ii

ABSTRACT

GHOSTWARE AND ROOTKIT DETECTION
TECHNIQUES FOR WINDOWS

Cumhur Doruk Bozağaç

M.S. in Computer Engineering

Supervisor: Assist. Prof. Dr. A. Aydın Selçuk

September, 2006

Spyware is a significant problem for most computer users. In public, the term

spyware is used with the same meaning as adware, a kind of malicious software

used for showing advertisements to the user against his will. Spyware programs

are also known for their tendency to hide their presence, but advanced stealth

techniques used to be either nonexistent or relatively primitive in terms of effec-

tiveness. In other words, most of the spyware programs were efficient at spying

but not very efficient at hiding. This made spyware easily detectable with sim-

ple file-scanning and registry-scanning techniques. New spyware programs have

merged with rootkits and gained stealth abilities, forming spyware with advanced

stealth techniques. In this work we focus on this important subclass of spyware,

namely ghostware. Ghostware programs hide their resources from the Operat-

ing System Application Programming Interfaces that were designed to query and

enumerate them. The resources may include files, Windows Registry entries,

processes, and loaded modules and files. In this work, we enumerated these

hiding techniques and studied the stealth detection methodologies. We also in-

vestigated the effectiveness of the hiding techniques against popular anti-virus

programs and anti-spyware programs together with publicly available ghostware

detection and rootkit detection tools. The results show that, anti-virus programs

or anti-spyware programs are not effective for detecting or removing ghostware

applications. Hidden object detection or rootkit detection tools can be useful,

however, these tools can only work after the computer is infected and they do

not provide any means for removing the ghostware. As a result, our work shows

the need for understanding the potential dangers and applications of ghostware

and implementing new detection and prevention tools.

Keywords: spyware, ghostware, rootkit, stealth, detection.

iii

ÖZET

WINDOWS İŞLETIM SISTEMI IÇIN GHOSTWARE VE
ROOTKIT YAKALAMA TEKNIKLERI

Cumhur Doruk Bozağaç

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Yrd. Doç. Dr. A. Aydın Selçuk

Eylül, 2006

Spyware programları bilgisayar kullanıcıları için önemli bir problem teşkil et-

mektedirler. Genel olarak ”spyware” terimi kullanıcılara reklam göstermek veya

internet tarayıcılarından alışkanlıklarını takip etmek için kullanılan “adware” adlı

kötü niyetli programlar ile aynı anlamda kullanılır. Bu özelliklerine ek olarak spy-

ware programları varlıklarını gizleme eğilimleri ile de bilinirler, fakat bugüne kadar

bu konudaki yeteneklerini ya kullanmadılar ya da oldukça kıstlı kullandılar. Diğer

bir deyişle, kullanıcıyı takip etmede oldukça gelişmiş olan spyware programları

kendilerini saklama konusunda bu kadar başarılı değillerdi. Bu sebepten dolayı da

dosya tarama veya windows kütüğü tarama teknikleri ile kolayca yakalanabiliyor-

lardı. Yeni spyware programları “rootkit” denilen kendilerini saklama konusunda

uzman programlarla birleşerek kendilerini ustaca saklayabilen spyware’ler ha-

line geldiler. Kısaca “ghostware” adını verdiğimiz bu programlar işletim sistem-

lerinin uygulamalara sunduğu programlama arayüzlerini etkileyerek kendilerini ve

kaynaklarını saklayabilemektedirler. Bu çalışmamızda ghostware programlarının

kullandıkları teknikleri ve onlara karşı kullanılabilecek karşı teknikleri inceledik.

Ayrıca popüler anti-virüs ve anti-spyware programlarına ve karşı teknik kullanan

araçlara karşı etkililiklerini araştırdık. Sonuçlara göre anti-virüs ve anti-spyware

programları ghostware programlarını yakalamada ve kaldırmada yetersiz kaldı.

Karşı teknik kullanan araçlar nispeten başarılıydı fakat bu araçlar sadece enfek-

siyon sonrası kullanılabildiğinden ve sorundan kurtulmak için herhangi bir yöntem

içermediğinden, ghostware programlarının tehlikelerini ve kullanım alanlarını an-

layarak yeni yakalama teknikleri geliştirilmesi zorunluluğunu gösterdik.

Anahtar sözcükler : spyware, ghostware, rootkit.

iv

To my family...

v

Acknowledgement

I would like to express my gratitude to my supervisor Assist. Prof. Dr. A. Aydın

Selçuk for his supportive, encouraging and constructive approach throughout my

masters study and his efforts and patience during supervision of the thesis.

I would like to express my sincere appreciation to the jury members, Assist.

Prof. Dr. İbrahim Körpeoğlu, and Assist. Prof. Dr. Alper Şen for reviewing and

evaluating my thesis.

I want to thank to TÜBİTAK UEKAE /ILTAREN for the understanding and

support during my academic studies. I also want to thank to the people in work,

especially to my team leaders and to my teammates in Software Development

Team, for their ambition and enthusiasm. It was a pleasure to work with them,

and this let me continue my academic work together with my job.

Finally special thanks to my family for bringing me up and making me who

I am; and to the love of my life, Gülin, for her endless patience, encouragement

and support during my thesis work.

vi

Contents

1 Introduction 1

1.1 Spyware Types . 2

1.2 Problem Definiton . 4

1.3 Related Work . 5

1.4 Structure Of This Thesis . 6

2 Ghostware Techniques 7

2.1 Operating System Kernel and Windows API 8

2.2 User Mode Hooking Techniques 14

2.2.1 Import Address Table Hooking 15

2.2.2 Inline Function Hooking 16

2.2.3 DLL Injection . 17

2.3 Kernel Mode Hooking Techniques 19

2.3.1 System Service Dispatch Table (SSDT) Hooking 20

2.3.2 Interrupt Descriptor Table (IDT) Hooking 21

vii

CONTENTS viii

2.3.3 Input/Output Request Packet (IRP) Function Table Hooking 21

2.4 Direct Kernel Object Memory Access 22

3 Ghostware Detection 26

3.1 Hook Detection . 28

3.2 Hidden File Detection . 29

3.3 Hidden Process Detection . 31

4 Experiments and Evaluation 32

4.1 Methodology . 32

4.2 Test Results . 35

4.3 Data Mining Approach . 42

5 Conclusion 45

List of Figures

2.1 Ring Structure . 8

2.2 General Kernel Structure . 9

2.3 Windows Kernel Structure . 11

2.4 Passing Control from User Mode to Kernel Mode 13

2.5 System Service Dispatching General Structure 14

2.6 Import Address Table Hooking 15

2.7 Inline Function Hooking . 16

2.8 DLL Injection . 18

2.9 Kernel Mode Hooking Techniques 19

2.10 System Service Dispatch Table Hooking 20

2.11 I/O Request Packet Function Table Hooking 22

2.12 Process List Before Modification using DKOM 23

2.13 Process List After Modification using DKOM 24

3.1 Cross-view Detection Mechanism 27

ix

LIST OF FIGURES x

3.2 System Virginity Verifier . 30

4.1 Test Case Kernel-Mode Ghostware Structure 33

4.2 Vice detecting SSDT hooking . 38

4.3 System Virginity Verifier by Ruanna Rutkowska 39

4.4 Hidden Process Detected by Swap Context-Detour technique . . . 41

4.5 IceSword showing hidden files . 42

4.6 RAIDE detecting FUTo hooking 43

List of Tables

4.1 Anti-Virus Programs Detection Test Results 36

4.2 Anti-Spyware Detection Test Results 37

4.3 Ghostware and Rootkit Detection Tools Test Results 40

4.4 Data Mining Technique Test Results 40

xi

Chapter 1

Introduction

At the end of the 90’s, when Internet became popular, banner advertising com-

panies started using new techniques for showing advertisements. Pictures at the

top or bottom of a web page were simply ignored by the Internet users, if adver-

tisements were not blocked by firewalls or other security products. Consequently

spyware was born, with the aim of showing more advertisements to the user,

sometimes without the need of having a website. The first samples were installed

as bundled into freeware and shareware applications such as peer-to-peer file

sharing programs. Their purpose was to display advertisements through pop-up

windows while the user is surfing the web.

The term “Spyware” first began to be used in the computer software context

in 1999 when Zone Labs used it in a press release for its Zone Alarm firewall

product [37]. In 2000, Gibson Research launched the first anti-spyware product,

OptOut. Steve Gibson, the developer of OptOut, states that “Spyware is any

software that employs a users Internet connection in the background (the so-called

backchannel) without their knowledge or explicit permission” [32]. Consequently,

spyware refers to software that was installed without the knowledge and consent

of users and that operates in stealth.

The actions of many spyware programs go beyond simply facilitating adver-

tisements or gathering non-personal data [9]. Today, they are using techniques

1

CHAPTER 1. INTRODUCTION 2

similar to malicious threats ranging from silent installation to exploiting vulner-

abilities in operating system components. Furthermore, once installed on the

system, they are trying to stay resident and maintain their covert operations.

Many spyware programs are able to gather personal or confidential data and

transmit this data over network.

1.1 Spyware Types

A problem regarding spyware is the lack of a standard definition and categoriza-

tion. Some prefer a narrow definition that focuses on the surveillance aspects of

spyware and its ability to collect, store and communicate information about users

and their behavior. Others use a broad definition that include pop-up advertiser

applications, toolbars, search tools, browser hijackers and dialers. Definitions for

spyware also include hacker tools for remote access and administration, keylog-

ging and cracking passwords. In general, we can divide the spyware into two

parts:

• Adware: These programs are used for showing advertisements to the user.

We can categorize the types of adware like this:

– Browser Hijackers: Once installed in a users web browser, changes

its default start, search, and error page settings to alternative sites.

Browser redirection inflates the websites traffic gaining higher adver-

tising revenues, referral fees, and purchase commissions made through

the redirected website.

– Internet Explorer Toolbars: Internet Explorer allows users customise

the interface through dynamic loaded plug-ins called Browser Helper

Objects (BHO). Some plug-ins perform necessary functions, such as

the Yahoo Toolbar or Google Toolbar. However, spyware applications

can install and display themselves as toolbars, search bars, or task

buttons incorporated into Internet Explorer through browser plug-ins.

Various spyware toolbars spy, modify, and redirect web requests or

CHAPTER 1. INTRODUCTION 3

cause indecent pop-ups and send information from the host,such as

XXXToolbar.

– Pop-up Advertiser Applications: Display advertisements based on en-

tered website URLs while surfing the web or specific keywords entered

through a search engine. Some spyware applications like Cydoor down-

load the advertisement database to a users workstation in the form of

a list of URLs during installation. Gator fetch advertisements based

on the users web surfing activity and some criteria programmed in the

application.

– Drive-by Downloads: Internet Explorer uses ActiveX controls to en-

hance the browsers functionality and provide interactive programs for

Internet like Shockwave and Flash. A drive-by download is a program

that automatically downloads to a users computer, often without the

users consent or knowledge and having full access to the Windows

operating system using exploits in browser.

• Stealth Malware: The term “stealth malware” refers to a large class

of software programs that try to hide their presence from operating sys-

tem (OS) utilities commonly used by computer users and malicious code

detection software such as anti-virus and anti-spyware programs. Stealth

techniques range widely from the simple use of hidden file attributes to

sophisticated code hiding in bad disk sectors, from user-mode API inter-

ception to kernel-mode data structure manipulation, and from individual

trojan OS utilities to OS patching with system-wide effect.

– Rootkits: A number of tools available to the owner of the tool, mak-

ing it available for connection and providing stealth features for the

attacker. Rootkit originally referred to a set of recompiled Unix tools

such as ps, netstat and passwd that would carefully hide any trace of

the intruder that those commands would normally display, thus allow-

ing the intruders to maintain “root” privilege on the system without

the system administrator even seeing them. Now the term is not re-

stricted to Unix-based operating systems, as tools that perform a sim-

ilar set of tasks now exist for Microsoft Windows operating system.

CHAPTER 1. INTRODUCTION 4

A rootkit is often used to hide utilities. They are also used to abuse

a compromised system, by helping the attacker hide his access. For

example, the rootkit may hide an application that spawns a shell when

the attacker connects to a particular network port on the system.

– Trojans: Similar to rootkits, they are used to abuse a compromised

system, by opening backdoors to help the attacker subsequently access

the system and track victim activity. In general trojans include a set

of tools for data gathering. These tools can intercept network packets,

capture display and log key strokes. However, they do not include

advanced stealth features like a rootkit.

– Winsock Hijackers: A layered service provider (LSP) is between a

computers Winsock layer and TCP layer and can modify all data that

passes through the system. Spyware can install malicious LSPs to this

layer called Winsock Hijackers. They can monitor the network, access-

ing all data passing through the desktop, capable of redirecting web

requests to affiliate websites. Any attempt to remove these Winsock

hijackers can break the LSP chain and cause the Internet connection

to stop working.

– Man-in-the-Middle Proxies: Redirects all web surfing activity, includ-

ing secure connections, to a man-in-the-middle proxy under the dis-

guise of Internet connection accelerator. Can harvest sensitive infor-

mation such as passwords, credit card numbers, bank account infor-

mation, health care records, and confidential data.

1.2 Problem Definiton

In public, the term spyware is used with the same meaning as adware, since stealth

malware properties used to be either nonexistent or relatively primitive in terms

of effectiveness. In other words, most of the spyware programs were efficient at

spying but not very efficient at hiding. This made spyware to be easily detectable

CHAPTER 1. INTRODUCTION 5

with simple file-scanning and registry-scanning techniques. Afterwards leading-

edge spyware developers such as CoolWebSearch evolved, and they employed

hiding techniques similar to windows rootkits, in order to avoid detection. These

program consists of two parts. First, they gather user data such as keystrokes

and network communications. Secondly, they hide their presence from the user

and/or make uninstallation difficult.

When stealth features first appeared in computer viruses their main purpose

was to make the work of anti-virus researchers and applications as difficult as

possible. Today the apparent blending of malicious code writing and hacking

gives stealth code a whole new perspective. One of the most important things for

any attacker after compromising a host on the Internet is to operate covertly on

the host as long as possible. This is where stealth code becomes useful, it makes

both the intruder and its backdoor operations be invisible to user and detection

tools. This emerged spyware with rootkit techniques, or as we call it ghostware.

Ghostware programs hide their resources from the OS-provided Application

Programming Interfaces (APIs) that were designed to query and enumerate them.

The resources may include files, Windows Registry entries, processes, and loaded

modules. Ghostware programs are the next generation of information security

problem. In this work we will show their potential, what they can do and how they

can escape being detected, to shed light on this new type of malicous software.

1.3 Related Work

There is not much academic work on spyware and ghostware. The academic re-

search on spyware began with the articles attempting to define the problem and

warn ordinary users for the potential dangers and capabilities of spyware pro-

grams. For example, [53] and [13] enumerated some methodologies for spyware

infection, while [19] and [11] defined a categorization of spyware. It becomes

a controversial issue when ACM Communications reserved August 2005 volume,

which included articles like [23], [1] and [61], however the volume does not

CHAPTER 1. INTRODUCTION 6

include any research on this subject, the articles were about the discussion of

legal and ethical issues.

[62] and [2] explained how peer-to-peer programs and popular free programs

are used for the distribution of bundled spyware programs. [46] made experiments

on the effectiveness of spyware communication in a university campus network.

After all this noise, Microsoft took the problem seriously and formed a spyware

research group by buying Giant Anti-Spyware Networks. [59] explains their

offered technique for stopping spyware programs by monitoring Windows auto-

start points.

The rootkits were not taken seriously in the Windows world, as they were

considered as a problem for Unix users only. [40], [24], [21], [7] and [45] are

the pioneers of Windows rootkits. They defined hooking methods for Windows

API and showed numerous ways of alternating the data flow in memory space.

[25], [14], [22] and [49] also included a history of rootkit methodologies and

explanations on hooking methodologies.

Our problem, that spyware using rootkit techniques can be extremely effective,

was first introduced by [51]. [17] also points out this problem and [60] and [58]

is a research on the detection of ghostware, however their solution is not a public

release yet.

1.4 Structure Of This Thesis

In this work we focus on this important subclass of spyware, namely ghostware.

In Chapter 2, we will reveal their hiding techniques. In Chapter 3, we will enlist

the detection methods against these techniques. In Chapter 4 we will investigate

the effectiveness of their hiding techniques against popular anti-virus programs

and anti-spyware programs together with publicly available ghostware detection

and rootkit detection tools. We will also test detection techniques.

Chapter 2

Ghostware : Spyware with

Stealth Techniques

The main purpose of a spyware program is allowing continued access to the

computer without being detected during this time. As we explained in Chapter

1, spyware programs employ stealth techniques for this purpose. Software using

these techniques are generally called “stealth malware”, which refers to programs

that try to hide their presence from operating system (OS) utilities commonly

used by computer users and malware detection software such as anti-virus and

anti-spyware programs. In this paper, we will use the term “ghostware” [60] for

these type of programs.

Main idea behind stealth features is to alter the execution path of any func-

tionality in operating system such that calls to system services or returns of the

system calls are diverted to the ghostware. This is called “hooking”. After the

diversion, ghostware can modify the functionality or filter the return values in or-

der to hide any information which can reveal its existence. This includes function

calls used to enlist processes, files, services or ports. In order to understand the

concept of hooking first we need to understand how operating system responds

to kernel functionality requests.

7

CHAPTER 2. GHOSTWARE TECHNIQUES 8

2.1 Operating System Kernel and Windows

API

The Intel x86 family of microchips use a concept called rings for access control.

The term ring appears to refer to the original 80386 architecture reference man-

ual’s drawing of the four levels of protection. There are four rings, with Ring Zero

being the most privileged and allowed total control of the processor, while Ring

Three being the least privileged, providing the most processor level protection as

shown in Figure 2.1. Internally, each ring is stored as a number and there are not

actually physical rings on the microchip [8].

Figure 2.1: Ring Structure

For the X86 processor systems, the use of other priority levels has been depre-

cated. Paging only has the concept of user or system access (priority 3 or priority

0, respectively). The processor and operating system work together to handle

transitions between the priority levels. The kernel itself, in both Linux and Win-

dows, runs in Ring 0, and a process running in Ring 0 is said to be at kernel level.

If a process runs in Ring 0, it can access all of the kernel’s memory structures,

and are therefore at the same level as the kernel code. User mode processes run

in Ring 3, are not able to access kernel space directly. By relying on Ring 0 and

Ring 3, all software on the machine is really carved up into two different worlds:

CHAPTER 2. GHOSTWARE TECHNIQUES 9

kernel mode (running in Ring 0) and user mode (running in Ring 3) [22].

Figure 2.2: General Kernel Structure

The user mode is what users typically see and interact with on a day-to-

day basis on your system, as it includes the programs they run, such as a mail

program, office program, text editor or game. The kernel mode, is beneath this

system controlling the whole operation managing access to the hardware and OS

functions. When a system boots up, the kernel is loaded into memory and begins

execution in Ring 0. After the kernel gets itself set up in memory, it activates

various user-mode processes that allow individual users to access the system and

run programs.

The kernel is special software that controls various extremely important ele-

ments of the machine. We are interested in Windows malicious code, so from this

point, the word kernel will be used as Windows kernel. As illustrated in Figure

2.3, the kernel sits between individual running programs and the hardware it-

self. Performing various critical housekeeping functions for the operating system

and acting as a liaison between user-level programs and the hardware, the kernel

serves a critical role. It includes the following core features [49]:

• Process and thread control: The kernel dictates which programs run and

when they run by creating various processes and threads within those

CHAPTER 2. GHOSTWARE TECHNIQUES 10

processes. A process is nothing more than some memory allocated to a run-

ning program, and the threads are individual streams of execution within a

process. The kernel orchestrates various processes and their threads so that

multiple programs can run simultaneously and transparently on the same

machine. Interprocess communication control. When one process needs

to send data to another process or the kernel itself, it can utilize various

interprocess communication features of most kernels to send signals and

data.

• Memory control: The kernel allocates memory to running programs, and

frees that memory when it is no longer required. This memory control is

implemented in the kernel’s virtual memory management function, which

utilizes physical RAM and hard drive space to store information for running

processes.

• File system control: The kernel controls all access to the hard drive, ab-

stracting the raw cylinders and sectors of the drive into a file system struc-

ture.

• Other hardware control: The kernel manages the interface between various

hardware elements, such as the keyboard, mouse, video, audio, and net-

work devices so various programs can utilize them for input and output

operations.

• Interrupt control: When various hardware components of the machine need

attention (e.g., a packet arriving on the network interface) or a program

encounters an usual event (e.g., division by zero), the kernel is responsible

for determining how to handle the resulting interrupts. By taking care of

the interrupt itself using kernel code or sending information to a particular

process to deal with it, the kernel keeps the system operating smoothly.

When most programs run, control may have to pass from user mode into

kernel mode, such as when the program needs to interact with hardware or use

some other kernel functionality. For this purpose control will be passed from user

mode to kernel mode, through tightly controlled interfaces. The software that

CHAPTER 2. GHOSTWARE TECHNIQUES 11

Figure 2.3: Windows Kernel Structure

implements this transition from Ring 3 to Ring 0 is referred to as a call gate, as

it acts as a gate for user-mode processes into software living in kernel mode [38].

The programs that are run on a day-to-day basis, such as an internet browser,

make function calls into various Win32 subsystem DLLs to interact with the

operating system. When developers create programs to run on Windows, these

programs include Win32 function calls to the Windows itself, implementing the

OS API. Win32 functions have all kinds of capabilities, such as manipulating

the screen, opening files in hard disk or running other programs [36]. These

functions are grouped into several different files, each with its own lump of code

to accomplish certain tasks, including User32.dll, Gdi32.dll, Advapi32.dll, and

Kernel32.dll.

Function calls in user mode can do one of three things [50]:

First, if they don’t require kernel-level interaction with hardware or other

processes, a Win32 user mode function could just handle the request and send

CHAPTER 2. GHOSTWARE TECHNIQUES 12

a response. For example, the GetCurrentProcessId function, returns a process’s

own process ID number.

Secondly, if handling of a function call from a user-mode application involves

the Win32 DLL needing information from a very special user-mode process called

Csrss.exe, which is is responsible for keeping the Win32 subsystem running. The

“csrss” is an abbreviation for Client/Server Run-Time Subsystem, and the ex-

ecutable keeps the Win32 subsystem operating by invoking user processes and

maintaining the state associated with each process. User-mode processes can ask

Csrss.exe for information about themselves or other processes without calling the

kernel.

Thirdly, a user-mode application could ask a Win32 DLL to take some action

that requires invoking a kernel function. For example, reading or writing file

means using the ReadFile or WriteFile function calls, which in turn requires the

corresponding Win32 DLL, ‘Kernel32.dll‘, to interact with the hardware. Ker-

nel32.dll will map the ReadFile and WriteFile function calls to another Win32

DLL called Ntdll.dll, which is quite an unknown and internal API. Ntdll.dll takes

the highly documented function calls of the Win32 API (like ReadFile and Write-

File), and convert them into the underlying function calls understood by the

kernel (called NtReadFile and NtWriteFile, respectively).

Ntdll.dll is responsible for making the transition from user mode to kernel

mode, jumping through a call gate into the kernel. Basically it invokes a kernel

functionality called the Executive, which has kernel mode responsibilities such as

making kernel function calls available to user mode, making various kernel-level

data structures available to other kernel-level processing, and managing certain

kernel state and global variables [49]. The Executive is placed in a file called

Ntoskrnl.exe. After being invoked it will determine which piece of underlying

kernel code is needed to handle a request and it will pass the execution to the

corresponding code. In the case of reading or writing a file, the Executive needs

to interact with hardware(hard disk), and it will accomplish this by using the

Hardware Abstraction Layer (HAL) of kernel. This layer is composed of device

drivers and the interface for reaching these drivers are implemented in a file called

CHAPTER 2. GHOSTWARE TECHNIQUES 13

Figure 2.4: Passing Control from User Mode to Kernel Mode

HAL.dll, which makes various different vendor hardware products look consistent

to the kernel.

The transition from user mode to kernel mode, or from Ntdll.dll to the Ex-

ecutive is called system service dispatching. As shown in Figure 2.5, invoking is

accomplished by use of a CPU interrupt signal. Ntdll.dll triggers interrupt num-

ber 0x2E on x86-compatible processors to invoke this transition [49]. Inside the

Executive, there is a part called the system service dispatcher, looks at the para-

meters and type of the system call and looking up a table called system service

dispatch table it determines here the appropriate system service code to handle

the request is located in kernel memory. After that, execution flow is transitioned

to the appropriate kernel code. This is how a user-mode process can read from

or write to a file, or perform other interactions with the hardware.

CHAPTER 2. GHOSTWARE TECHNIQUES 14

Figure 2.5: System Service Dispatching General Structure

2.2 User Mode Hooking Techniques

Hooking techniques are categorized according to where the hook is placed. (i.e.,

inside user space or kernel space) In the case of user mode hooking, ghostware

does not bother dealing with kernel code and directly attack user processes or

Win32 subsystem DLLs as shown in Figure 2.3. Instead it targets the APIs a

program uses. This makes sense when you consider that user applications must

rely upon the operating system to provide valuable functions such as opening files

and writing to the registry.

CHAPTER 2. GHOSTWARE TECHNIQUES 15

2.2.1 Import Address Table Hooking

Windows uses a format called Windows Portable Executable (PE) format [35]

for executable files. This standard allows programs to run in any version of Win-

dows without the need of recompiling them. In order to provide this flexibility,

PEs use dynamic symbol loading by using indirect addresses. Any call to exter-

nal functions, such as from the ones in Win32 DLLs, are compiled so that the

CALL uses a memory address to take the call address from. When the operating

system loads the executable, it resolves all the external symbols and writes their

addresses to these memory locations [14]. Whenever an application uses an API

function exported from a DLL such, the compiler creates data structure called

IMAGE IMPORT DESCRIPTOR in the application. this structure contains the

name of the DLL from which the function is exported and a pointer to the Import

Address Table (IAT), which contains all of the functions exported by the DLL

that are used by the application. The table is filled with IMAGE THUNK DATA

structures, which consists of the memory addresses of the desired functions all

of which are filled by the Windows loader. When an application wants to make

a call to an imported function, first the program code calls into the IAT. After

reading destination address of the real function, another jump is made. By simply

modifying this table, a ghostware can re-route program execution through itself,

which allows filtering or manipulation of data [51].

Figure 2.6: Import Address Table Hooking

CHAPTER 2. GHOSTWARE TECHNIQUES 16

2.2.2 Inline Function Hooking

An inline function hook is made by overwriting the code bytes of a target function

in a process so that whenever the function is called, it will first call the attacker’s

function, which in turn calls target function. There are two approaches in inline

function hooking. The first one is overwriting the actual executables or libraries

on hard disk. However, this approach requires disabling the Windows File Protec-

tion (WFP), if the target function is a Win32 DLL or executable. When any direc-

tory containing sensitive Windows files (e.g., the System32 directory) is changed,

the system signals WFP, invoking its functionality to check the digital signature

of the changed file. If the signature does not match a Microsoft-approved value

stored in the registry, WFP replaces the file with the proper Microsoft version

of the file [30]. The second approach is modifying the code in memory. First

attacker saves the first several bytes of the target function in what is called a

trampoline. Then he/she replaces these bytes with an immediate jump to a place

called detour. Detour calls the trampoline, which jumps to the target function

plus saved bytes. When the target function does its job and returns, the detour

can modify or filter the results and return to the source function that originally

called the target function [24]. The sequence is illustrated in Figure 2.7

Figure 2.7: Inline Function Hooking

CHAPTER 2. GHOSTWARE TECHNIQUES 17

2.2.3 DLL Injection

DLL injection is forcing an unsuspecting running EXE process to accept a DLL

that it never requested. The malicious DLL will be loaded into the memory space

of the executable which allows the DLL to reach all data of the target. The idea

is first brought up by [39]. There are two techniques used for DLL injection.

First one is to use hooks. Windows API has a function called SetWindow-

sHookEx, which makes it possible to hook window messages in another process,

which will effectively load any malicious DLL into the address space of that other

process. SetWindowsHookEx is defined like this:

HHOOK SetWindowsHookEx(

int idHook,

HOOKPROC lpfn,

HINSTANCE hMod,

DWORD dwThreadId

);

The first parameter is the type of event message that will trigger the hook.

This can be a hook procedure that monitors keystroke messages. The second

parameter identifies the address to be called when a hook is triggered. The

virtual-memory address of the DLL that contains this function is the third para-

meter. The last parameter is the thread to hook. Using this method, whenever

a process is about to receive a keyboard event, the specified DLL will be loaded

[22].

The second technique is using remote threads. [12] provides a step by step

explanation of implementation and using Windows API for this purpose:

• Allocate space in the victim process for the DLL code to occupy. There

is a built-in function in the Windows API to accomplish this task, called

VirtualAllocEx.

CHAPTER 2. GHOSTWARE TECHNIQUES 18

Figure 2.8: DLL Injection

• Allocate space in the victim process for the parameters required by the DLL

to be injected. This can be done using the built-in Windows VirtualAllocEx

function call, too.

• Write the name and code of the DLL into the memory space of the victim

process. The WriteProcessMemory function of Windows API call can be

used to write arbitrary data into the memory of a running process.

• Create a thread in the victim process to actually run the newly injected

DLL. The CreateRemoteThread function in Windows API starts an exe-

cution thread in another process, which will run any code already in that

process, including a newly injected DLL.

• Free up resources in the victim process after execution is completed. The

resources consumed by this technique can be freed after the victim thread

or process finishes running, using the VirtualFreeEx function of Windows

API.

CHAPTER 2. GHOSTWARE TECHNIQUES 19

2.3 Kernel Mode Hooking Techniques

User mode hooking is useful and easy to implement, but also it is relatively easy

to detect and prevent. With a user mode ghostware, the attacker has to break

into the system and modify a number of programs to stay resident and consider

all possible ways that can reveal itself. Moreover, since anti-malicious programs

run in kernel mode, they will be one step ahead and ghostware will have a lower

chance of survivability. A better solution would be installing a kernel memory

hook. A kernel mode hook and consequently kernel memory access rights will

make the ghostware on equal footing with any detection software. What is more,

the attacker just modifies the kernel so that it lies to any particular command or

program run by the administrator looking for that file. In this way, kernel mode

hooking is far more efficient.

Figure 2.9: Kernel Mode Hooking Techniques

CHAPTER 2. GHOSTWARE TECHNIQUES 20

2.3.1 System Service Dispatch Table (SSDT) Hooking

As we have explained in section 2.1, System Service Dispatch Table (SSDT)

plays an important role in system service call mechanism provided by the kernel,

for letting the user-mode code use its services. For example, whenever a user-

mode application needs access to files, registry or process objects, it calls the

appropriate Windows API call, which eventually generates a system service call

that is then handled by the kernel. First introduced by [40], SSDT hooking is a

powerful and widely adopted kernel-mode technique. Attacker simply changes the

content of the table and puts the hook function’s address instead of the address

of the internal kernel function that implements the corresponding service. After

that, any call to the specific system service can be intercepted. [25] The process

is illustrated in Figure 2.10.

Figure 2.10: System Service Dispatch Table Hooking

Some versions of Windows come with write protection enabled for certain

portions of memory. This becomes more common with later versions, such as

Windows XP and Windows 2003. These later versions of the operating system

make the SSDT read-only because it is unlikely that any legitimate program

would need to modify this table. However, as we commented before, a kernel

CHAPTER 2. GHOSTWARE TECHNIQUES 21

mode ghostware is on equal footing with any kernel program, so this was not

enough to stop hooking. By simply modifying the WP bit in the processor’s CR0

register, write protection can be overwritten [41].

2.3.2 Interrupt Descriptor Table (IDT) Hooking

Interrupt Descriptor Table (IDT) is used to handle interrupts. Interrupts can

originate from software or hardware. In the system call flow, Ntdll.dll triggers

interrupt number 0x2E to invoke kernel, which happens right before usage of

SSDT. The IDT specifies how to process interrupts, so a kernel mode hooking

can be realized by writing address of the hook function for interrupt number 0x2E.

Unlike other hooks, execution control does not return to the IDT handler, so the

typical hook technique of calling the original function, filtering the data, and

then returning from the hook will not work. The IDT hook is just a pass-through

function and will never regain control, so it cannot filter data. Consequently this

technique can only be used for identifying or blocking requests [22].

2.3.3 Input/Output Request Packet (IRP) Function Ta-

ble Hooking

Another possible location for kernel mode hooking is function tables in device

drivers. Whenever a driver is installed, it initializes a table of function pointers

that have the addresses of its functions to handle different types of I/O Request

Packets (IRPs). IRPs are used for several types of requests, such as reads, writes,

and queries.

The driver and IRP type to hook depends on attackers purpose. For example,

this technique can be used for hiding TCP or UDP ports. you could hook the

functions dealing with file system writes or TCP queries. However, just like the

IDT, major IRP handling functions do no return the execution flow, so normally

filtering the results is not possible. In order to use IRP for altering a query,

attacker changes the control flags, which enables execution of a callback function

CHAPTER 2. GHOSTWARE TECHNIQUES 22

Figure 2.11: I/O Request Packet Function Table Hooking

after IRP handler. I/O Manager will call the IoCompletionRoutine of the IRP

and after the handler has successfully finished processing the IRP and filling in

the output buffer with the requested information. By hooking the IoCompletion-

Routine attacker can filter query results [22].

2.4 Direct Kernel Object Memory Access

Instead of using a device driver, an attacker could directly patch the kernel in

the memory of the victim machine, a technique first described in detail by [21].

The technique is built upon the memory handling in Windows, specifically with

regard to the CPU running in Ring 0 and Ring 3. The Global Descriptor Table

(GDT) contains information about how memory is divided into various segments,

allocated to user programs and the kernel itself. All memory locations between

0x80000000 and 0xC0000000 are for use by the kernel and restricted to user-mode

CHAPTER 2. GHOSTWARE TECHNIQUES 23

processes. The GDT stores data about how various memory segments are placed

and access rights for each memory segment. The tricky part of GDT is, same

range of memory addresses can be defined in multiple segments. By use of some

Windows API weaknesses, a malicious process can add a new entry to the GDT,

thereby describing a new segment that maps to a whole memory range, that is,

a memory space starting at 0x00000000 and going to 0xFFFFFFFF. Using this

technique, the malicious process can access everywhere in kernel memory.

Figure 2.12: Process List Before Modification using DKOM

After gaining access rights for reaching every part of memory, a malicious

process can hide processes, elevate their privilege levels, or perform other modifi-

cations. As an example, the Windows operating system’s list of active processes is

obtained by traversing a doubly linked list referenced in the EPROCESS structure

of each process. When a user-mode application sends a request for the process

CHAPTER 2. GHOSTWARE TECHNIQUES 24

list, the appropriate system service function traverses the linked list and sends the

data back to the client. Specifically, a process’s EPROCESS structure contains a

LIST ENTRY structure that has the members FLINK and BLINK. FLINK and

BLINK are pointers to the processes in front of and behind the current process

descriptor, as shown in Figure 2.12 [7].

Figure 2.13: Process List After Modification using DKOM

By simply changing the FLINK and BLINK pointer values of the forward

and rearward EPROCESS blocks to by-pass a process, we can make that process

CHAPTER 2. GHOSTWARE TECHNIQUES 25

invisible, as shown in Figure 2.13.

Chapter 3

Ghostware Detection Techniques

Most of the malicious software detection techniques are based on the signature

matching approach used by anti-virus software. Each file execution and program

installation is investigated to determine file signatures for use by malicious code

scanner. In the case of spyware, this technique will only work during the load-

ing phase, which allows the anti-virus program to quarantine the file so that it

cannot be executed or installed. If the spyware is using stealth techniques and it

was loaded before the activation of anti-virus program, then standard detection

techniques will fail, since a ghostware can potentially by-pass the scanner. With

the appearance of the stealth techniques, detection softwares become pretty weak

and developers decided to improve detectors by adding forensic tools and behav-

ioral detectors. In this chapter we will explore the stealth detection techniques

used/usable for detecting ghostware.

There are two basic approaches to stealth detection. The first approach looks

for the hiding mechanism such as API interceptions or hooks. There are three

problems with this approach. First, there are many loading methods using differ-

ent entry points for hooking. The detection software need to look for all of these

points and updated frequently. This was the problem with ’Pedestal Software’s

Integrity Protection Driver’ [34], which is no longer supported by the developer.

The second problem is, it may catch many false positives due to legitimate uses

of API hooking by detectors, debuggers or in-memory software patching. And

26

CHAPTER 3. GHOSTWARE DETECTION 27

finally, if ghostware is capable of tracking detection attempts, it may use its hooks

for deceiving the detector.

Second technique is ’cross-view based detection’. Detector snapshots two view

of the system, a “high level” view and a “low level” view. The high level view will

show what the stealth software wants the user to see, with hidden files, processes

and other objects out of sight. The low level view is will contain everything

actually present on the system, including the hidden objects. The difference of

these two views, if exists, will be hidden objects.

Figure 3.1: Cross-view Detection Mechanism

The main problem with this approach is getting the views. First of all, getting

a low level view may not be easy especially for every object type. The operating

system need to be clean and yet there is not enough documentation for getting a

low level view. The technique must work deeper than any hooking technique to

get the data untampered. This can mean replicating or manipulating operating

system functionality or taking advantage of undocumented data structures to

acquire this view. Moreover, the ’high level’ view must be tainted. One API

function may not see a hidden file and yet others may be unaffected, so the the

file may be hidden only from a certain perspective, which high level view must

consider. Also, a ghostware can temporarily reveal the objects it was hiding, after

noticing a detection attempt, detector should not reveal itself.

CHAPTER 3. GHOSTWARE DETECTION 28

3.1 Hook Detection

There are many places where a hook can be hidden, as we explained in Chapter

2, including:

• Import Address Table (IAT)

• System Service Dispatch Table (SSDT)

• Interrupt Descriptor Table (IDT) with one per CPU

• Drivers’ I/O Request Packet (IRP) handler

• In-line function hooks

The basic algorithm for identifying a hook is tracing the execution flow and

looking for branches that fall outside of an acceptable range. Such branches would

be produced by instructions like call or jmp. Defining the acceptable range maybe

a problem, depending on the situation.

In a process Import Address Table (IAT), the name of the module containing

imported functions is listed. This module has a defined start address in memory,

and a size which defines the acceptable range. All legitimate I/O Request Packet

(IRP) handlers should exist within a given driver’s address range, and all entries

in the System Service Dispatch Table (SSDT) should be within the address range

of the kernel process, Ntoskrnl.exe. Interrupt Descriptor Table (IDT) hooks can

be a problem since there is no well defined address range here except the INT 2E

handler, which should point to the kernel, Ntoskrnl.exe. In-line hooks are quite

hard with this technique, since imported functions can be in another module.

Detector may need a complete disassembly of the function in order to find check

validity of address. VICE [5] uses this technique for detecting ghostware [22].

Another way for finding hooks in APIs and in system services is tracing and

counting execution calls.The idea is quite simple and elegant, if the ghostware has

compromised the system and trying to hide something by changing some execu-

tion path, then system will be executing extra instructions, during some typical

CHAPTER 3. GHOSTWARE DETECTION 29

system and library calls. In order to implement instruction counting, detector

can use a nice feature of Intel processors, the so called single stepping mode.

When the processor is working in this mode, it will generate debug exception af-

ter every instruction which was executed [45]. After recording execution path in

a clean system, the detector can perform execution tests checking to see whether

additional instructions have been executed in subsequent calls when compared to

the baseline. This method is implemented in Patchfinder [44].

Another detection technique is employed by modGREPER [42], which

searches through whole kernel memory (0x80000000 0xffffffff) in order to

find structures which looks like a valid module description objects. It recog-

nizes specific structure types used in hooking like DRIVER OBJECT and

MODULE DESCRIPTION and builds a list of found objects. After that, mod-

GREPER matches them to each other and finally compares this list against the

list of kernel modules obtained with documented API.

Another detection technique is based on the fact that code sections are read-

only in kernel memory, so programs should not modify their code under normal

circumstances. System Virginity Verifier (SVV) [43] uses this technique for

detecting ghostware. SVV checks if the code sections of important system DLLs

and system drivers (kernel modules) are exactly same in memory and on disk.

The difference can reveal a hook as shown in Figure 3.2. However this can also

be possible due to page faults and memory relocations, so this technique needs

careful handling of all possible OS modifications.

3.2 Hidden File Detection

Windows File Protection (WFP) provides some protection against file changes,

but employing additional file integrity checking tools for intrusion detection or

hidden file detection is a good practice against ghostware. The most famous

file integrity checking tool is Tripwire [56]. These tools look for changes to

critical system files and registry settings based on cryptographic hashes of known

CHAPTER 3. GHOSTWARE DETECTION 30

Figure 3.2: System Virginity Verifier

good files and settings. By this way, they can can spot file changes made to the

operating system files, probably by a kernel-mode ghostware.

Another tool for ghostware detection is Rootkit-Revealer [10]. It can detect

hidden registry entries as well as hidden files using cross-view difference. For the

low-level view, Rootkit-Revealer parses the files that correspond to the different

Registry hives without the aide of the standard Win32 API calls, such as Re-

gOpenKeyEx and RegQueryValueEx. It also parses the file system at a very low

level, avoiding the typical API calls. High-level view is taken by the system API

task manager uses. Comparison of these views reveal hidden objects.

Another detection tool is developed by Microsoft Research, GhostBuster [60],

which implements the cross-view difference based detection for files, registry and

processes. GhostBuster can perform low-level and high-level scans as an inside-

the-box solution, while it can also be used as an outside-the-box solution, per-

forming low-level scan during a Windows Preinstallation Environment [28] CD

CHAPTER 3. GHOSTWARE DETECTION 31

boot. GhostBuster uses the Master File Table, the Raw Hive Files, and the Ker-

nel Process List as the low-level resources to detect hidden files, registry entries,

and processes, respectively [58].

3.3 Hidden Process Detection

One way of detecting hidden process is through ’CSRSS.EXE’. Detector can track

the handles in CSRSS.EXE and identify the processes to which they refer and use

this as a low-level view for cross-view difference based detection. Every process’s

EPROCESS block contains a pointer to a structure that is its HANDLE TABLE.

[41] These handle table structures are linked by a LIST ENTRY, similarly to the

way all processes are linked by a LIST ENTRY. By finding the handle table for

any process and then walking the list of handle tables, detector can identify every

process on the system. This technique is used by F-Secure BlackLight [16].

Last detection technique is specially effective against hidden processes hidden

by DKOM as explained in Chapter 2.4. The SwapContext function in Ntoskrnl.exe

is called to swap the currently running thread’s context with the thread’s context

that is resuming execution. When SwapContext has been called, the current

thread address and next thread address are saved. By using the Detour technique

in Chapter 2.2.2 for verifying that the KTHREAD of the thread to be swapped in

points to an EPROCESS block that is appropriately linked to the doubly linked

list of EPROCESS blocks, one can detect hidden processes [7].

Chapter 4

Experiments and Evaluation

After explaining the stealth techniques in Chapter 2 and detection techniques in

Chapter 3, now we will investigate the practical effectiveness of detection tech-

niques against current ghostware programs.

4.1 Methodology

The test case consists of both kernel-mode ghostware and user-mode ghostware.

For the kernel-mode ghostware, we implement a modular structure for inject-

ing hooks. The hook codes are implemented as system drivers and there is a

loader/unloader system at the core using the Service Control Manager (SCM).

When a driver is loaded using the SCM, it is non-pageable and IRP-handling

functions, and other important code will be resident on the memory. Figure 4.1

shows the design structure.

The kernel-mode ghostware includes components for hiding processes, files

and ports. For process hiding it uses the SSDT hooking technique explained in

Chapter 2.3.1 and DKOM technique used by FU rootkit [18] as explained in

Chapter 2.4. For both techniques we define a keyword, which is “ cool ” in our

case, and hide every process that includes this string in its name. For file hiding we

32

CHAPTER 4. EXPERIMENTS AND EVALUATION 33

Figure 4.1: Test Case Kernel-Mode Ghostware Structure

also use the SSDT hooking technique. We hide every file or folder which includes

“ cool ” in its name and of course all file names of this program starts with

“ cool ”. For the port hiding case, we used the IRP hooking technique explained

in Chapter 2.3.3, hiding port 80 in TCP and UDP connections. Furthermore, we

also include FUTo [48] in our tests, an expansion to FU rootkit which handles

some weaknesses in FU by manipulating more tables,like PspCidTable, for hiding

objects.

In the case of user-mode ghostware, instead of implementation, we decided

to use the best user-mode hacker toolkit, Hacker Defender [20], for our tests.

It is capable of hiding processes, files, ports, services and registry keys using

DLL injection as explained in Chapter 2.2.3. This is an open source project

and we recompiled all the code before testing it. We also changed driver name,

CHAPTER 4. EXPERIMENTS AND EVALUATION 34

service names, process names and polymorph the executable with a polymorphic

encryptor called Morphine [29] for avoiding easy detection. Similar to the kernel-

mode ghostware, this hides every process or file or folder with the name hxdef in

it.

The test bed is a virtual machine using VMWare [57] software loaded with

Windows XP operating system. The test cases can be categorized into three

parts. We first used the best three anti-virus software, which are claiming to

be highly effective in detection and prevention of spyware. (namely, Symantec

Norton Anti-Virus 2006 [54], McAfee Anti-Virus/Anti-Spyware Program [27] and

Panda Anti-Virus+Anti-Spyware Titanium 2006 [33])

The tests are performed in three phases. First we load ghostware, install anti-

virus program and make a full scan to see if the program can detect previous

infections. We call this a “pre-load” test. Then we restart the computer and run

ghostware while anti-virus program is active and monitoring the computer, to see

if the program can detect any hooking or loading attempt. We call this a “load”

test. Finally we scan the folders of ghostware, without running them, in other

words make a manual scanning directly to the malicous code files to see if the

program can detect the malicious code by signature.

We also run tests with anti-spyware programs by picking the three most pop-

ular commercial ones, which are Lavasoft Adaware SE Professional 1.06 [26],

Bulletproofsoft Spyware And Adware Remover v9.3 [4] and Etrust Pestpatrol

Anti-Spyware 2005 [15]. We also include a widespread free tool called Spyware

Doctor v4.0 [52]. We apply the same testing approach to these files. Finally

we try detection with the tools mentioned in Chapter 3 such as: VICE,Rootkit-

Revealer, System Virginity Verifier and Flister. The implementers of FU rootkit

suggested another detection technique that we can call as Swap Context-Detour

Patching and provided some coding, which we included in our tests. We also

included F-Secure BlackLight [16], a commercial hidden process and hidden file

detector. Furthermore we made tests with IceSword, which is a ghostware detec-

tor in development phase originating from China and RAIDE [6], an academic

work for rootkit detection. All these tools can only work as detectors so we run

CHAPTER 4. EXPERIMENTS AND EVALUATION 35

and test them after the ghostware is loaded and running.

4.2 Test Results

The anti-virus test results, is shown in Table 4.1. The tests show that anti-

virus (AV) programs are weak against ghostware. First of all one would expect

the signature matching algorithms of these programs to be stronger. We used

the exact FU rootkit hooking code for process hiding with DKOM, and we only

recompiled it, yet none of the AV programs managed to detect it when we scan

the files. On the contrary, quite surprisingly, Norton managed to detect FUTo,

an expansion of FU. Furthermore, McAfee and Norton managed to detect system

driver and the config file of Hacker Defender, which we could not polymorph. In

our opinion, standard signature matching algorithms are not reliable for detecting

ghostware and this is why they need detection by behavior. Only Norton anti-

virus employed this technique and it did not catch the hooking behavior, instead

it caught the encryption/decryption code we used for Hacker Defender. Norton

quarantined the executable saying it may contain malicious code, which allowed

detection of Hacker-Defender while loading. None of the anti-virus programs

include any method for scanning hidden files or processes, so none of them worked

in the pre-load test.

The anti-spyware test results, are shown in Table 4.2. The tests show that

anti-spyware (AS) programs, in general, are not capable of removing or detecting

ghostware. These programs seem to be designed for detection of adware. They

include features like Browser Helper Object (BHO) scanning, registry scanning,

or file scanning for known adware signatures. None of them was able to detect

our samples except Spyware Doctor, which detected user-mode ghostware and

FU code. Furthermore, Spyware Doctor managed to detect the hidden process

by FU in load and pre-load tests.

CHAPTER 4. EXPERIMENTS AND EVALUATION 36

U
se

r-
M

o
d
e

H
o
ok

in
g

K
er

n
el

-M
o
d
e

H
o
ok

in
g

D
K

O
M

In
j
P

ro
c.

In
j
F
ile

In
j
P
or

t
SS

D
T

P
ro

c.
SS

D
T

F
ile

IR
P

P
or

t
D

K
O

M
F
U

D
K

O
M

F
U

T
o

N
or

to
n

A
V

P
re

-L
oa

d
x

x
x

x
x

x
x

x
N

or
to

n
A
V

L
oa

d
√

√
√

x
x

x
x

x
N

or
to

n
A
V

Si
gn

at
ur

e
√

√
√

x
x

x
x

√

M
cA

fe
e

A
V

P
re

-L
oa

d
x

x
x

x
x

x
x

x
M

cA
fe

e
A
V

L
oa

d
x

x
x

x
x

x
x

x
M

cA
fe

e
A
V

Si
gn

at
ur

e
√

√
√

x
x

x
x

x
P
an

da
A
V

P
re

-L
oa

d
x

x
x

x
x

x
x

x
P
an

da
A
V

L
oa

d
x

x
x

x
x

x
x

x
P
an

da
A
V

Si
gn

at
ur

e
x

x
x

x
x

x
x

x

T
ab

le
4.

1:
A

n
ti

-V
ir

u
s

P
ro

gr
am

s
D

et
ec

ti
on

T
es

t
R

es
u
lt
s

CHAPTER 4. EXPERIMENTS AND EVALUATION 37

U
se

r-
M

o
d
e

H
o
ok

in
g

K
er

n
el

-M
o
d
e

H
o
ok

in
g

D
K

O
M

In
j
P

ro
c.

In
j
F
ile

In
j
P
or

t
SS

D
T

P
ro

c.
SS

D
T

F
ile

IR
P

P
or

t
D

K
O

M
F
U

D
K

O
M

F
U

T
o

L
av

as
of

t
A

S
P

re
-L

oa
d

x
x

x
x

x
x

x
x

L
av

as
of

t
A

S
L
oa

d
x

x
x

x
x

x
x

x
L
av

as
of

t
A

S
Si

gn
at

ur
e

x
x

x
x

x
x

x
x

B
ul

le
tP

S
A

S
P

re
-L

oa
d

x
x

x
x

x
x

x
x

B
ul

le
tP

S
A

S
L
oa

d
x

x
x

x
x

x
x

x
B

ul
le

tP
S

A
S

Si
gn

at
ur

e
x

x
x

x
x

x
x

x
P
es

tP
.
A

S
P

re
-L

oa
d

x
x

x
x

x
x

x
x

P
es

tP
.
A

S
L
oa

d
x

x
x

x
x

x
x

x
P
es

tP
.
A

S
Si

gn
at

ur
e

x
x

x
x

x
x

x
x

Sp
y.

D
oc

.
A

S
P

re
-L

oa
d

x
x

x
x

x
x

√
x

Sp
y.

D
oc

.
A

S
L
oa

d
x

x
x

x
x

x
√

x
Sp

y.
D

oc
.

A
S

Si
gn

at
ur

e
√

√
√

x
x

x
√

x

T
ab

le
4.

2:
A

n
ti

-S
p
y
w

ar
e

D
et

ec
ti
on

T
es

t
R

es
u
lt
s

CHAPTER 4. EXPERIMENTS AND EVALUATION 38

Table 4.3 shows the ghostware and rootkit detection tools test results. Some

tools are made for specific purposes, such as Rootkit-Revealer only searches for

hidden files and hidden registry entries. As a result it is not included during tests

of techniques that hide process and this is shown as ’n.a.’ in the results. The

techniques in the table (the columns) can be can be thought to be more complex

and hard to detect from left to right. In this context, the trend of having more

successful detection on the left and having less detection on the right makes sense.

VICE, SVV and ModGreeper are old tools and they were released before DKOM

techniques were invented. As a result, although they are quite successful in user-

mode techniques and kernel-mode techniques, they have no use against DKOM

techniques. ModGreeper did not work at all, so we think it was build for specific

purposes, i.e., to detect specific techniques, which we did not test.

Figure 4.2: Vice detecting SSDT hooking

CHAPTER 4. EXPERIMENTS AND EVALUATION 39

Figure 4.3: System Virginity Verifier by Ruanna Rutkowska

CHAPTER 4. EXPERIMENTS AND EVALUATION 40

U
se

r-
M

o
d
e

H
o
ok

in
g

K
er

n
el

-M
o
d
e

H
o
ok

in
g

D
K

O
M

In
j
P

ro
c.

In
j
F
ile

In
j
P
or

t
SS

D
T

P
ro

c.
SS

D
T

F
ile

IR
P

P
or

t
D

K
O

M
F
U

D
K

O
M

F
U

T
o

V
IC

E
√

√
√

x
√

x
x

x
R

oo
tk

it
-R

ev
ea

le
r

n
.a

.
√

n
.a

.
n
.a

.
√

n
.a

.
n
.a

.
n
.a

.
SV

V
√

√
√

√
√

x
x

x
M

od
G

re
ep

er
x

x
x

x
x

x
x

x
F
lis

te
r

n
.a

.
x

n
.a

.
x

n
.a

.
n
.a

.
n
.a

.
n
.a

.
Sw

C
-D

et
ou

r
√

n
.a

.
n
.a

.
√

n
.a

.
n
.a

.
√

x
B

la
ck

L
ig

ht
√

√
n
.a

.
√

√
n
.a

.
√

x
Ic

eS
w

or
d

√
√

√
√

√
√

√
x

R
A

ID
E

x
x

x
√

√
n
.a

.
√

√

T
ab

le
4.

3:
G

h
os

tw
ar

e
an

d
R

o
ot

k
it

D
et

ec
ti

on
T
o
ol

s
T
es

t
R

es
u
lt

s

U
se

r-
M

o
d
e

H
o
ok

in
g

K
er

n
el

-M
o
d
e

H
o
ok

in
g

D
K

O
M

In
j
P

ro
c.

In
j
F
ile

In
j
P
or

t
SS

D
T

P
ro

c.
SS

D
T

F
ile

IR
P

P
or

t
D

K
O

M
F
U

D
K

O
M

F
U

T
o

D
at

a
M

in
in

g
√

√
√

√
x

x
x

x

T
ab

le
4.

4:
D

at
a

M
in

in
g

T
ec

h
n
iq

u
e

T
es

t
R

es
u
lt
s

CHAPTER 4. EXPERIMENTS AND EVALUATION 41

Swap Context-Detour Patching technique was quite successful for detecting

all kinds of hidden processes except the one used by FUTo. Figure 4.4 shows

hidden process detection by this technique.

Figure 4.4: Hidden Process Detected by Swap Context-Detour technique

Blacklight and Icesword also shine in our tests and they detected all techniques

except FUTo, but we need to add the fact that FUTo was developed against these

two tools. Especially IceSword offers various options to the user for detecting not

only ghostware but also techniques used by other kinds of spyware such as BHOs.

While Blacklight can only detect hidden processes and files, IceSword can detect

registry entries, services, drivers, ports etc. In Figure 4.5, we can see IceSword

revealing hidden files and folders.

Finally, we were particularly impressed by RAIDE, an academic research

project on beta phase. RAIDE not only detects the hooks, it also offers options for

removing the hook, deleting the hidden object etc., though, removal algorithms

do not work well and we received a number of Blue Screen of Deaths(BSoD)

during our testing. Figure 4.6 shows RAIDE command window detecting FUTo

technique.

CHAPTER 4. EXPERIMENTS AND EVALUATION 42

Figure 4.5: IceSword showing hidden files

The test results show us that anti-virus programs and anti-spyware programs,

as they exist today, are ineffective against the ghostware threat. Even specific

tools made for detecting hidden objects or hooks in system are not capable of

detecting all of the rootkit or ghostware attack techniques.

4.3 Data Mining Approach

We have seen that signature based approaches are weak against new threads, so

we also investigated the use of data mining based heuristic scanning technique

proposed by [47]. The idea is, malicious executables have common intentions

and they may have similar byte code. He claims that, we can detect malicious

executables by looking at the frequency analysis of byte code in a file. We need

to first form a model for byte frequencies by forming a two distinct datasets of

benign and malicious executables. First we train our model using these datasets,

and then we test it on new executables.

CHAPTER 4. EXPERIMENTS AND EVALUATION 43

Figure 4.6: RAIDE detecting FUTo hooking

We applied this technique on spyware programs by forming our own datasets

in [3]. The dataset consisted of 312 benign(non-malicious) executables and 555

spyware executables. The malicious collection was formed by using a malicious

code collection at [31] and manually collecting spywares by crawling the inter-

net using a sandboxed operating system. The benign executables were collected

from the system files in Windows XP operating system and from programs of

a stereotype user. Byte sequences were extracted using the hexdump tool. For

each file in the dataset, using this tool a hexdump file is formed. The tests were

made using the 5-fold cross validation technique. According to the results, we

had 91.28% accuracy and 4.92% false positive rate in our dataset, which was quite

promising and data mining based heuristic scheme has the potential to be used

for detecting new spyware programs.

CHAPTER 4. EXPERIMENTS AND EVALUATION 44

Using the exact byte sequence model in our previous tests, we applied this

technique on our ghostware samples. The test results in Figure 4.4 show that,

our model was not very successful on detecting ghostware programs. This is

probably due to the fact that out training dataset included not only ghostware

type of spyware, but all kinds of spyware. However, the technique relies on the

idea that executables with common intentions and will have similar byte code.

We do not have enough number of ghostware samples to form a ghostware specific

byte frequency model.

Chapter 5

Conclusion

When stealth features first appeared in computer viruses their main purpose was

to make the work of anti-virus researchers and applications as difficult as possible.

Today the apparent blending of malicious code writing and hacking gives stealth

code a whole new perspective. Spyware has become a threat to corporate and

personal information security. With the combined techniques of data interception

and stealth, a spyware application can include all the functionality needed for a

perfect information theft. Most of the current spyware lacks the advanced stealth

techniques employed by modern windows rootkits, thus they are incapable of

hiding their presence on a system. Nevertheless signature matching detection

algorithms greatly reduced their effectiveness and this emerged spyware with

rootkit techniques, or as we call it ghostware.

In this work we tested the most popular security tools along with specific

detection tools against ghostware. The results show that, anti-virus programs

or anti-spyware programs are not capable of detecting or removing ghostware

applications. Hidden object detection or rootkit detection tools can be useful,

however, these tools work after the computer is infected and they do not provide

any means for removing the ghostware. As a result, we need understand the

potential application of ghostware and implement new detection and prevention

tools.

45

CHAPTER 5. CONCLUSION 46

There is so much to be done in this field. First of all an official spyware

definition should be announced which includes the ghostware programs. The

lack of information misleads people and prevents them from taking precautions.

The adware type of spyware hit users very hard because most of the ordinary

users did not see what was coming. It is estimated that spyware infected 67%

to 90% of computers connected to the Internetin year 2005. Panda Anti-Virus

released an online Anti-Virus Scanner that can also detect Spyware in April 2005.

According to their reports [55], in the first 24 hours of the operation, 84 percent

of malicious code detected was spyware and the 74 most detected malicious code

were all spyware programs.

We need new detection and prevention tools for fighting ghostware. As we

explained in Chapter 3, the main approach for detecting a hidden object is com-

paring high level (infected) and low level (uninfected) views of the system. But

getting a low level is hard, because there is not enough documentation for getting

a low level view and the technique must work deeper than any hooking technique

to get the data untampered. At this point, we can get help from the Operating

System. If OS could export some lists for integrity checking (and the lists can

include checksums for its own integrity checking), then detectors work could be

quite easy.

Preventing an infection is quite tricky, because one needs to watch all the

entry points to detect an intrusion. However, this is not possible due of the

lack of documentation about this subject. Programs trying to close gates all

failed when new entry points are found. The documentation of the Windows API

should be better, similar to Unix, so that one can enumerate the possible ways

for hooking APIs. This would allow creation of detectors that simply watch the

gates and avoid intrusion.

Bibliography

[1] N. Awad and K. Fitzgerald. The deceptive behaviors that offend us most

about spyware. Communications of the ACM, 48(8):55–60, 2005.

[2] M. Boldt and J. Wieslander. Investigating Spyware in Peer-to-Peer Tools.

Blekinge Institute of Technology, 2003.

[3] D. Bozağaç. Application of Data Mining based Malicious Code. De-

tection Techniques for Detecting new Spyware. Available online

as www.cs.bilkent.edu.tr/∼guvenir/courses/cs550/Workshop/

Cumhur Doruk Bozagac.pdf, 2005.

[4] Bulletproofsoft Spyware Adware Remover. Online at: http://www.

bulletproofsoft.com.

[5] J. Butler and G. Hoglund. VICECatch the Hookers. Black Hat USA, 2004.

[6] J. Butler and P. Silberman. RAIDE : Rootkit Analysis Identifica-

tion Elimination. Available online as www.blackhat.com/presentations/

bh-europe-06/bh-eu-06-Silberman-Butler.pdf, 2006.

[7] J. Butler, J. Undercoffer, and J. Pinkston. Hidden processes: the implica-

tion for intrusion detection. Information Assurance Workshop, 2003. IEEE

Systems, Man and Cybernetics Society, pages 116–121, 2003.

[8] B. Caelli. What Are Rings. Available online as http://www.osronline.

com/article.cfm?article=224, 2003.

[9] E. Chien and S. Response. Techniques of Adware and Spyware. the Proceed-

ings of the Fifteenth Virus Bulletin Conference, Dublin Ireland, 2005.

47

BIBLIOGRAPHY 48

[10] J. Cogswell and M. Russinovich. Rootkit Revealer. Available online as

www.sysinternals.com/ntw2k/freeware/rootkitreveal.shtml.

[11] C. Cordes. Monsters in the Closet: Spyware Awareness and Prevention.

EDUCAUSE Quarterly, 28(2), 2005.

[12] Z. Csizmadia. Injecting a DLL into Another Process’s Address Space. Avail-

able online as www.codeguru.com/dll/LoadDll.shtml, 2000.

[13] B. Edelman. Methods and Effects of Spyware. Response to FTC Call for

Comments on Spyware, Mar, 2004.

[14] G. Erdélyi. Hide and Seek, Anatomy of Stealth Malware. Proceedings of the

2004 Black Hat Europe, pages 147–167, 2004.

[15] Etrust Pestpatrol Anti-Spyware. Online at: http://www.pestpatrol.com.

[16] F-Secure BlackLight. Online at: www.f-secure.com/blacklight.

[17] E. Florio. When Malware Meets Rootkits.

[18] FU Rootkit Project. Online at: http://www.rootkit.com/project.php?

id=12.

[19] C. Gutzman, S. Sweep, and A. Tambo. Differences and Similarities of Spy-

ware and Adware. University of Minnesota Morris, 2003.

[20] Hacker Defender Project. Online at: http://hxdef.org.

[21] G. Hoglund. A Real NT Rootkit, Patching the NT Kernel. Phrack Magazine,

9.

[22] G. Hoglund and J. Butler. Rootkits: Subverting the Windows Kernel.

Addison-Wesley, 2006.

[23] Q. Hu and T. Dinev. Is spyware an Internet nuisance or public menace?

Communications of the ACM, 48(8):61–66, 2005.

[24] G. Hunt and D. Brubacher. Detours: Binary interception of Win32 functions.

Proceedings of the 3rd USENIX Windows NT Symposium, pages 135–143,

1999.

BIBLIOGRAPHY 49

[25] K. Kasslin, M. St̊ahlberg, S. Larvala, and A. Tikkanen. HIDE AND SEEK

REVISITED - FULL STEALTH IS BACK. Virus Bulletin Conference 2005,

2005.

[26] Lavasoft Anti-Spyware. Online at: http://www.lavasoft.com.

[27] McAfee Anti-Spyware. Online at: http://www.mcafee.com.

[28] Microsoft Windows Preinstallation Environment(Windows PE). On-

line at: http://www.microsoft.com/licensing/programs/sa/support/

winpe.mspx.

[29] Morphine Project. Online at: http://hxdef.org.

[30] MSDN. Description of the Windows File Protection Feature. Available

online as http://support.microsoft.com/kb/222193/, 2003.

[31] Netlux. Online at: http://vx.netlux.org.

[32] OptOut. Online at: http://www.grc.com/optout.htm.

[33] Panda Anti-Spyware. Online at: http://www.pandasoftware.com.

[34] Pedestal Software. Online www.pedestalsoftware.com.

[35] M. Pietrek. Peering Inside the PE: A Tour of the Win32 Portable Executable

File Format. Microsoft Systems Journal, 9(3):15–34, 1994.

[36] B. Rector. Developing Windows 3 Applications with Microsoft SDK. SAMS

Carmel, Ind, 1992.

[37] F. Report. Monitoring Software on Your PC: Spyware, Adware, and Other

Software. 2005.

[38] S. Response. Windows Rootkit Overview. Technical report, Symantec, 2005.

Security Response Whitepaper.

[39] J. Richter. Load Your 32-bit DLL into Another Processes Address Space

Using INJLIB. Microsoft Systems Journal, 1994.

BIBLIOGRAPHY 50

[40] M. Russinovich and B. Cogswell. Windows NT System-Call Hooking. Dr.

Dobbs Journal, 22(1):42–46, 1997.

[41] M. Russinovich and D. Solomon. Microsoft Windows internals: Microsoft

Windows server 2003, Windows XP, and Windows 2000. Microsoft Press,

2005.

[42] J. Rutkowska. modGREPER. Available online as http://www.

invisiblethings.org/tools/modGREPER/modGREPER-0.3-bin.zip.

[43] J. Rutkowska. System Virginity Verifier. Available online as http://www.

invisiblethings.org/tools/svv/svv-2.3-bin.zip.

[44] J. Rutkowska. Detecting Windows Server Compromises with Patchfinder

2. Available online as www.invisiblethings.org/papers/rootkits\
detection\ with\ patchfinder2.pdf, 2004.

[45] J. Rutkowski. Advanced Windows 2000 Rootkit Detection (Execution Path

Analysis). present at Black Hat USA, pages 28–31, 2003.

[46] S. Saroiu, S. Gribble, and H. Levy. Measurement and Analysis of Spyware

in a University Environment. Proceedings of the ACM/USENIX Symposium

on Networked Systems Design and Implementation (NSDI), 2004.

[47] M. Schultz, E. Eskin, E. Zadok, and S. Stolfo. Data Mining Methods for

Detection of New Malicious Executables. IEEE Symposium on Security and

Privacy, 1:207–1, 2001.

[48] P. Silberman. FUTo. Available online as http://www.uninformed.org.

[49] E. Skoudis. Malware: Fighting Malicious Code. Prentice Hall PTR, 2003.

[50] D. Solomon and M. Russinovich. Inside Microsoft Windows 2000. Microsoft

Press Redmond, WA, USA, 2000.

[51] S. Sparks and J. Butler. Spyware and Rootkits, The Future Convergence.

Login, 29(6):8–15, 2004.

[52] Spyware Doctor. Online at: http://www.pctools.com/spyware-doctor/.

BIBLIOGRAPHY 51

[53] T. Stafford and A. Urbaczewski. SPYWARE: THE GHOST IN THE MA-

CHINE. Communications of the Association for Information Systems (Vol-

ume14, 2004), 291(306):291.

[54] Symantec Norton Anti-Virus. Online at: http://www.symantec.com.

[55] A.-S. Team. 84% of Malware on Computers Worldwide is Spyware. Tech-

nical report, Panda Anti-Virus, 2005. Available online as http://www.

pandasoftware.com/about/press/viewnews.aspx?noticia=5968.

[56] The tripwire software package. Online at: http://www.tripwire.com.

[57] VMware - Virtualization Software. Online at: www.vmware.com/.

[58] Y. Wang, D. Beck, B. Vo, R. Roussev, and C. Verbowski. Detecting Stealth

Software with Strider GhostBuster. Proc. DSN, 2005.

[59] Y. Wang, R. Roussev, C. Verbowski, A. Johnson, M. Wu, Y. Huang, and

S. Kuo. Gatekeeper: Monitoring Auto-Start Extensibility Points (ASEPs)

for Spyware Management. Usenix LISA: 18th Large Installation System

Administration Conference, 2004.

[60] Y. Wang, B. Vo, R. Roussev, C. Verbowski, and A. Johnson. Strider Ghost-

Buster: Why Its A Bad Idea For Stealth Software To Hide Files. Technical

report, Microsoft Research Technical Report MSR-TR-2004, 2004.

[61] M. Warkentin, X. Luo, and G. Templeton. A framework for spyware assess-

ment. Communications of the ACM, 48(8):79–84, 2005.

[62] J. Wieslander, M. Boldt, and B. Carlsson. Investigating Spyware on the

Internet. Proceedings of the Seventh Nordic Workshop on Secure IT Systems.

