
IMAGE CLASSIFICATION WITH ENERGY
EFFICIENT HADAMARD NEURAL

NETWORKS

a thesis submitted to

the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements for

the degree of

master of science

in

electrical and electronics engineering

By

Tuba Ceren Deveci

January 2018

IMAGE CLASSIFICATION WITH ENERGY EFFICIENT

HADAMARD NEURAL NETWORKS

By Tuba Ceren Deveci

January 2018

We certify that we have read this thesis and that in our opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

A. Enis Çetin(Advisor)

Ömer Morgül

Emre Akbaş

Approved for the Graduate School of Engineering and Science:

Ezhan Karaşan
Director of the Graduate School

ii

ABSTRACT

IMAGE CLASSIFICATION WITH ENERGY
EFFICIENT HADAMARD NEURAL NETWORKS

Tuba Ceren Deveci

M.S. in Electrical and Electronics Engineering

Advisor: A. Enis Çetin

January 2018

Deep learning has made significant improvements at many image processing tasks

in recent years, such as image classification, object recognition and object detec-

tion. Convolutional neural networks (CNN), which is a popular deep learning

architecture designed to process data in multiple array form, show great success

to almost all detection & recognition problems and computer vision tasks. How-

ever, the number of parameters in a CNN is too high such that the computers

require more energy and larger memory size. In order to solve this problem, we

investigate the energy efficient network models based on CNN architecture. In

addition to previously studied energy efficient models such as Binary Weight Net-

work (BWN), we introduce novel energy efficient models. Hadamard-transformed

Image Network (HIN) is a variation of BWN, but uses compressed Hadamard-

transformed images as input. Binary Weight and Hadamard-transformed Image

Network (BWHIN) is developed by combining BWN and HIN as a new energy ef-

ficient model. Performances of the neural networks with different parameters and

different CNN architectures are compared and analyzed on MNIST and CIFAR-10

datasets. It is observed that energy efficiency is achieved with a slight sacrifice at

classification accuracy. Among all energy efficient networks, our novel ensemble

model outperforms other energy efficient models.

Keywords: Image classification, deep learning, convolutional neural networks,

energy efficiency, ensemble models.

iii

ÖZET

VERİMLİ ENERJİLİ HADAMARD SİNİR AĞLARI İLE
GÖRÜNTÜ SINIFLANDIRMASI

Tuba Ceren Deveci

Elektrik Elektronik Mühendisliği, Yüksek Lisans

Tez Danışmanı: A. Enis Çetin

Ocak 2018

Derin öğrenim, görüntü sınıflandırması, nesne tanıma, nesne algılama gibi

görüntü işleme görevlerinde son yıllarda önemli başarılar elde etmiştir. Çoklu

dizi şeklindeki verileri işlemek üzerine tasarlanmış popüler bir derin öğrenim

mimarisi olan evrişimli sinir ağları (CNN), algılama ve tanıma problemleri ve

bilgisayarla görme görevlerinin neredeyse tamamında büyük başarı göstermiştir.

Ancak CNN’deki yüksek parametre sayısı bilgisayarlar için daha fazla enerji ve

daha büyük bellek boyutu gerektirmektedir. Bu sorunu çözmek amacıyla en-

erji verimli ağ modellerini inceliyoruz. Daha önceden ortaya atılmış olan İkili

Ağırlık Katsayılı Ağlar (BWN) gibi enerji tasarruflu modellere ek olarak yeni en-

erji tasarruflu modeller sunuyoruz. Hadamard-dönüşümlü görüntü ağları (HIN),

BWN’nin bir varyasyonu olup, girdi olarak Hadamard dönüşümü ile sıkıştırılmış

görüntüleri kullanmaktadır. İkili Ağırlık ve Hadamard-dönüşümlü Görüntü Ağı

(BWHIN) BWN ve HIN’i birleştirilmesiyle özgün bir verimli enerjili model olarak

geliştirilmiştir. Farklı parametreler ve farklı CNN mimarileri ile sinir ağlarının

performansları karşılaştırılmış ve MNIST ve CIFAR-10 veri setleri üzerinde analiz

edilmiştir. Enerji verimliliğinin sınıflandırma doğruluğunda küçük bir fedakarlık

yapılarak sağlandığı gözlenmiştir. Verimli enerjili ağlar arasında, yeni topluluk

modelimiz diğer modellerden daha iyi performans göstermiştir.

Anahtar sözcükler : Görüntü sınıflandırması, derin öğrenme, evrişimli sinir ağları,

enerji verimliliği, topluluk modelleri.

iv

Acknowledgement

First and the foremost, I would like to express my gratitude and sincere thanks to

my supervisor Prof. Dr. A. Enis Çetin for his suggestions, guidance and support

throughout the development of this thesis.

I also would like to thank Prof. Ömer Morgül and Asst. Prof. Dr. Emre

Akbaş for accepting to be a member of my thesis committee and reviewing my

thesis.

I would like to thank Tübitak Bilgem İltaren for enabling to complete my

M.Sc. study and my colleague for supporting me in every possible way.

I am also thankful to Damla Sebhan Bozbay, who is my best friend of all

time, and Selin Yücesoy, who is always there to listen and share everything, for

their support and love for all those years since high school. I want to thank Tuba

Kesten, who is the best colleague and the best travelling companion in my life, for

her encouragement and understanding. I would love to thank Damla Sarıca, my

precious working-out friend, and Ecem Bozkurt for making me love this university

more. I want to thank Elmas Soyak for her friendship and our precious, enjoyable

dialogues since bachelor years. I also would like to thank Merve Kayaduvar and

Gökçe Öztürk Türker for giving me new perspectives and helping me get through

my hard times. I am thankful to Güneş Sucu for helping me in Python language

and Tensorflow library with a great knowledge as computer engineer.

Last but not least, I am and I always will be grateful to my parents and my

brother for their life-long guidance, patience and love.

v

Contents

1 Introduction 1

2 Literature Review & Background 5

2.1 Basics of Neural Network . 5

2.1.1 Activation Functions . 6

2.2 Training of Neural Networks . 8

2.2.1 Forward Propagation . 9

2.2.2 Backpropagation . 10

2.3 Regularization . 11

2.4 Optimizers . 13

2.5 Convolutional Neural Networks (CNN) 16

2.5.1 Convolutional Layer . 19

2.5.2 Nonlinearity Stage . 20

2.5.3 Pooling Layer . 20

vi

CONTENTS vii

2.5.4 Fully Connected Layer . 21

2.5.5 Softmax Layer . 21

3 Energy Efficient Neural Networks 23

3.1 Introduction . 23

3.1.1 Binary Weight Networks (BWN) 24

3.1.2 Hadamard-transformed Image Networks (HIN) 25

3.1.3 Combination of Models: Binary Weight & Hadamard

Transformed Image Network (BWHIN) 28

3.2 Neural Network Architecture and Hyperparamaters 31

3.2.1 CNN Architectures . 31

3.2.2 Weight and Bias Initialization 34

3.2.3 Mini-Batch Size . 36

3.2.4 Learning Rate . 37

3.2.5 Momentum . 38

3.3 Implementation of the Architectures 39

4 Simulation and Results 42

4.1 Experiments on MNIST . 43

4.1.1 Effect of Optimizers . 44

4.1.2 Effect of Dropout . 45

CONTENTS viii

4.1.3 Effect of Activation Function on FC Layer 47

4.2 Experiments on CIFAR-10 . 48

4.3 Effect of Architectures . 50

4.4 Comparison of Energy Efficient Neural Networks 51

5 Conclusion and Future Work 53

A MNIST Results 62

A.1 Test Accuracies . 62

A.2 Training Accuracies . 62

A.3 Training and Test Losses . 62

B CIFAR-10 Results 66

List of Figures

2.1 Perceptron model. 6

2.2 Activation functions sigmoid, tangent hyperbolic and rectified lin-

ear unit. 7

2.3 An example of a neural network with one hidden layer. 9

2.4 Left: A classical neural network with 2 hidden layers. Right: A

thinned network after dropout is applied. 13

2.5 An example of 2-D convolution operation without kernel flipping [1]. 17

2.6 An example of standard CNN with its major components. 19

2.7 Examples of non-overlapping pooling. Top: Max-pooling opera-

tion. Bottom: Average-pooling operation. 21

3.1 Fast Hadamard Transform algorithm of a vector of length 8. . . . 28

3.2 Our approach to combine BWN and HIN: The architecture of

BWHIN [2]. 30

3.3 Top: Strided convolution with a stride of 2. Bottom: Convolution

with unit stride followed by downsampling. 32

ix

LIST OF FIGURES x

3.4 Effects of different learning rates [3]. 37

3.5 Sample images of MNIST database. 39

3.6 Sample images of CIFAR-10 database [4]. 40

4.1 Test accuracy results for different optimizers. 45

4.2 Test accuracy results for different dropout probabilities. 47

4.3 Test accuracy results for different activation functions at FC layer. 49

4.4 Test accuracy results for different activation functions at FC layer. 50

List of Tables

1.1 List of Abbreviations . 4

3.1 Model description of the two architectures for MNIST dataset. . . 33

3.2 Model description of the two architectures for CIFAR-10 dataset. 34

4.1 Test accuracy results (in percentage) for different optimizers. . . . 44

4.2 Test accuracy results (in percentage) for different dropout proba-

bilities. 46

4.3 Test accuracy results (in percentage) for different activation func-

tions at FC layer. 48

4.4 Test accuracy results (in percentage) for CIFAR-10 dataset. . . . 49

A.1 Test accuracy results (in percentage) for MNIST database. 63

A.2 Training accuracy results. 64

A.3 Results for training and test loss 65

B.1 Overall results for CIFAR-10 dataset. (Note that test accuracies

are in precentages.) . 67

xi

Chapter 1

Introduction

Machine learning techniques have gained widespread use on digital image process-

ing area with the revival of neural networks. Nowadays, artificial neural networks

(ANN) have various applications on image processing, such as image classifica-

tion, feature extraction, segmentation, object recognition and detection [5]. Deep

learning is a more advanced and particular form of machine learning, which en-

ables us to build complex models composed of multiple layers for large datasets.

Deep learning methods have enhanced the state-of-the-art performance in object

recognition & detection and computer vision tasks. Deep learning is also advan-

tageous for processing raw data such that it can automatically find a suitable

representation for detection or classification [6].

Convolutional neural network (CNN) is a specific deep learning architecture

for processing data which is composed of multiple arrays. Images can be a good

example of input to CNN with its 2D grid of pixels. Convolutional Neural Net-

works have become popular with the introduction of its modern version LeNet-5

for the recognition of handwritten numbers [7]. Besides, AlexNet, the winner

of ILSVRC object recognition challenge in 2012, aroused both commercial and

scientific interest in CNN and it is the main reason of the intense popularity

of CNN architectures for deep learning applications [8]. The usage of CNN in

AlexNet obtained remarkable results such that the network halved the error rate

1

of its previous competitors. Thanks to this great achievement, CNN is the most

preferred approach for most detection and recognition problems and computer

vision tasks.

Although CNNs are suitable for efficient hardware implementations such as

in GPUs or FPGAs, the training is computationally expensive due to the high

number of parameters. As a result, excessive amount of energy consumption and

memory usage make the implementation of neural networks ineffective. According

to [9], especially matrix multiplications at the layers of a neural network consume

too much energy compared to addition or activation function and becomes a

major problem for mobile devices with limited batteries. As a result, replacing

the multiplication operation becomes the main concern in order to achieve energy

efficiency.

Many solutions are proposed in order to handle the energy efficiency prob-

lem. An energy efficient `1-norm based operator is introduced in [10]. This

multiplier-less operator is first used in image processing tasks such as cancer

cell detection and licence plate recognition in [11, 12]. Multiplication-free neural

networks (MFNN) based on this operator are studied in [13–15]. This operator

achieved good performance especially at image classification on MNIST dataset

with multi-layer perceptron (MLP) models [14]. Han et al. reduces both the

computation and storage in three steps: First, the network is trained to learn

the important connections. Then, the redundant connections are discarded for a

sparser network. Finally, the remaining network is retrained [9]. Using neuromor-

phic processors with its special chip architecture is another solution for energy

efficiency [16]. In order to improve energy consumption, Sarwar et al. exploits

the error resiliency of artificial neurons and approximates the multiplication op-

eration and defines a Multiplier-less Artificial Neuron (MAN) by using Alphabet

Set Multiplier (ASM). In ASM, the multiplication is approximated as shifting and

adding in bitwise manner with some previously defined alphabets [17]. Binary

Weight Networks are energy efficient neural networks whose filters at the convo-

lutional layers are approximated as binary weights. With these binary weights,

convolution operation can be computed only with addition and subtraction [18].

There is also a computationally inexpensive method called distillation [19]. A

2

very large network or an emsemble model is first trained and transfers its knowl-

edge to a much smaller, distilled network. Using this small and compact model

is much more advantageous in mobile devices in terms of speed and memory size.

This method shows promising results at image processing tasks such as facial

expression recognition [20].

In this thesis, we investigate novel energy efficient neural networks as well as

previously studied energy efficient models. We firstly analyze the performance of

Binary Weight Network (BWN) proposed in [18], whose weights at the convolu-

tional layers are approximated to binary values, +1 or −1. As another energy

efficient network model, we modify BWN so that the network has compressed

images as inputs rather than original images. This network is called Hadamard-

transformed Image Network (HIN). In order to preserve the energy efficiency,

Hadamard transform is implemented by Fast Walsh-Hadamard Transform algo-

rithm which requires only addition or subtraction [21]. Our main contribution

is the combination of BWN and HIN models: Binary Weight and Hadamard-

transformed Image Network (BWHIN). The combination is carried out after en-

ergy efficient layers, i.e. convolutional layers with two different averaging tech-

niques. All of the energy efficient models are also examined with different CNN

architectures. One of them (ConvoPool-CNN) contains pooling layers along with

convolutional layers, while the other (All-CNN [22]) uses strided convolution in-

stead of pooling layer [22]. We analyze the performance of the models on two

famous image datasets MNIST and CIFAR-10. While working on MNIST, we

also study the effects of certain hyperparameters on the classification accuracy of

energy efficient neural networks.

This thesis includes five chapters and the outline of the thesis is as follows: In

Chapter 1, the necessity for energy saving neural networks is already explained

and related work is mentioned. Chapter 2 describes the basics of machine learning

and gives an explanation of convolutional neural network. The conventional and

our proposed models are introduced in Chapter 3 and the crucial hyper-parameter

selections are also demonstrated. Chapter 4 presents the simulations and results

based on the proposed networks and previously determined criteria. In chapter

5, thesis concludes with overall results and future work is mentioned.

3

Acronym Definition
ADAM Adaptive Momentum
ANN Artifical Neural Network
BWN Binary Weight Network
BWHIN (Combined) Binary Weight & Hadamard-transformed Image Network
CNN Convolutional Neural Network
CUDA Compute Unified Device Architecture
GPU Graphics Processing Unit
HIN Hadamard-transformed Image Network
ILSVRC ImageNet Large Scale Visual Recognition Competition
lr Learning Rate
MFNN Multiplication-Free Neural Network
MLP Multi-Layer Perceptron
NN Neural Network
ReLU Rectified Linear Unit
SGD Stochastic Gradient Descent

Table 1.1: List of Abbreviations

List of abbreviations which are commonly used in this thesis is given in Ta-

ble 1.1.

4

Chapter 2

Literature Review & Background

This chapter describes the theoretical basis of the neural networks and the train-

ing procedure in detail. Regularization methods and optimization techniques are

also described. Afterwards, one of the most popular deep learning architectures,

convolutional neural networks (CNN), are introduced to give a better understand-

ing of both deep neural networks and energy efficient network models.

2.1 Basics of Neural Network

In 1958 [23], Rosenblatt proposed the perceptron as the first neuron model for

supervised learning. This artifical model is inspired by the structure of a biological

neuron cell and is still the basis for many neural network libraries [24]. The

perceptron model is illustrated in Figure 2.1.

Input signals to this neuron k is denoted as x1, x2, . . . , xm and output signal

is yk. Weight values are represented as wk1, wk2, . . . , wkm and b is the bias term.

Perceptron sums the weighted input signal and the bias before the activation

function. Since the output of the perceptron is a linear function of input, per-

ceptron is considered as a linear classifier. A set of parameters for a neuron,

θ contains weight w and biases b. Parameters θ is updated so that the neural

5

Figure 2.1: Perceptron model.1

network can learn to achieve a task. Equation 2.1 summarizes the perceptron

model:

y = f(
m∑
j=1

(wjxj) + b) (2.1)

where f(·) is a nonlinear activation function, which is described in detail with its

examples in Section 2.1.1.

2.1.1 Activation Functions

The activation function, denoted as f(x) in Equation 2.1, is a nonlinear function

which computes the output of a neuron. There are various activation functions,

some of the most popular activation functions will be mentioned here [24].

Sigmoid, also known as logistic function, σ(x) = 1
1+e−x is a well-known activa-

tion function which was very popular in the 1980s when the neural networks are

very small [1]. The output of the sigmoid is in the range of [0, 1]. The function

saturates to 0 at large negative values and saturates to 1 at large positive values.

However, saturated values cause the vanishing gradient problem. The gradient at

1Image retrieved from [24].

6

the saturated regions are almost zero and when the input to the activation func-

tion is too large, the gradient vanishes and the neuron “dies”. Another drawback

of the sigmoid is that it is not zero-centered [25].

Later, sigmoid is replaced by tangent hyperbolic function tanh(x) = ex−e−x

ex+e−x

which has better performance than sigmoid on neural networks. Tanh is a scaled

and shifted version of sigmoid, which can be also defined as tanh(x) = 2σ(2x)−1.

The output of tanh is in the range of [−1, 1]. Unlike sigmoid, it is zero-centered

and often converges faster than the standard logistic function [26]. Nevertheless,

vanishing gradient problem still exists for tanh, since it also saturates at large

positive and negative values.

A very popular activation function in modern deep learning architectures is

rectified linear unit ReLU(x) = max(0, x); which is a piecewise linear function.

Although the exponential terms in sigmoid and tangent hyperbolic functions are

computationally expensive, ReLU can be implemented very easily with a simple

comparison. In practice, ReLU converges much faster (6 times faster) than both

sigmoid and tanh functions [8]. One of the flaws about ReLU is that it is zero for

negative values; causes the zero gradient problem. If one chooses ReLU as the

activation function, biases should be initialized with small positive numbers, such

as 0.1, so that ReLU neurons will be activated at the beginning for the inputs in

the training set. That could be the solution for the zero gradient problem.

-3 -2 -1 0 1 2 3
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3
Activation Functions

Sigmoid
Tangent Hyperbolic
Rectified Linear Unit

Figure 2.2: Activation functions sigmoid, tangent hyperbolic and rectified linear
unit.

The variants of ReLU exist, such as softplus f(x) = ln(1+ex) which is a smooth

7

approximation of ReLU, and leaky ReLU f(x) = max(0.01x, x). Although soft-

plus is differentiable for all values and has less saturating effect compared to

ReLU, it has worse results than ReLU in practice [27]. Leaky ReLU is an alter-

native to ReLU in order to fix the zero gradient problem. The function has a

small slope for negative values rather than being zero [28]. Leaky ReLU doesn’t

always give improved results over ReLU, hence one should be cautious about

using this function.

Sigmoid, tanh and ReLU functions are shown in Figure 2.2. Their performance

on energy-efficient neural networks will be investigated in Chapter 4.

2.2 Training of Neural Networks

Machine learning algorithms deal with many tasks such as classification, transla-

tion or detection. In order to solve such problems and learn a model, they first

train the samples in the training set, then they evaluate the model on the test

set which contains new and different samples from training set. Machine learning

algorithms improve the parameters θ such that the loss function between the

correct output and the predicted output is minimized. The performance of the

machine learning algorithm can be measured by its accuracy. Accuracy is deter-

mined by the proportion of the number of correct examples to the overall samples

in the test set [1].

An example of an artifical neural network is illustrated in Figure 2.3. Neural

networks involve input layer, output layer and hidden layers. While input layer

is used to feed the input data to the network, the output layer generates the final

output of the network. Hidden layers are placed between input and output layers

and their number can be increased for a deeper network. The neurons in a layer

behave like a perceptron which computes the affine transformation f(Wx + b).

Hence, such fully connected networks can be also called as multilayer perceptron

(MLP) or deep feedforward networks. The number of neurons in a layer is optional

and depends on the machine learning task.

8

Figure 2.3: An example of a neural network with one hidden layer.

Training of a feedforward neural network consist of two main stages: Feed-

forward phase and the back-propagation. The affine transformation is computed

starting from the input layer and resulting signals pass through the hidden layers

till the output layer at the forward propagation. At the output layer, a scalar cost

is generated. In the backward pass, a gradient vector is computed by the aid of

the cost function and calculates the error signals layer by layer in the backward

direction. In backprop phase, parameters of the network (weights, biases) are

successively update in the backward direction as well [24].

2.2.1 Forward Propagation

A vanilla network accepts an input x and computes the affine transformation

described in Equation 2.1 through the network in the forward direction. It

produces an output ŷ at the final layer. Let L be the number of layers and l(i)

is the layer index of the ith layer. Layer l(i) has n(l) neurons. If j represents the

number of inputs to that layer and k is the number of output units, then the

output of the first layer becomes:

v
(1)
k =

m∑
j=1

W
(1)
kj xj + b

(1)
k

y
(1)
k = f(v

(1)
k)

(2.2)

9

Output of the next hidden layers are computed similarly:

v
(l)
k =

n(l−1)∑
j=1

W
(l)
kj y

(l−1)
j + b

(l)
k

y
(l)
k = f(v

(l)
k)

(2.3)

After the feedforward activations are computed throughout the network, a

scalar cost L(θ) is calculated in order to measure the error between the predicted

output ŷ and correct output y. There are two main functions to calculate the

cost; mean squared error and cross-entropy cost function. When gradient-based

optimization techniques are used, cross-entropy function gives better results than

mean squared error in practice [1].

2.2.2 Backpropagation

Most learning algorithms use gradient-based optimization, which maximizes the

likelihood L, i.e. minimizes the negative log-likelihood (− ln(L)) by using gra-

dients. This negative log-likelihood is per-example loss and denoted as L(θ).

Thus, the objective of the gradient-based optimization becomes minimizing the

cost function. Although traditional gradient-based algorithm calculates the loss

over one sample, it is computationally more efficient to choose a minibatch from

training data and average the loss function over the samples of the minibatch.

Then the extended algorithm is called as Stochastic Gradient Descent Algorithm

(SGD).

Gradients generates a vector which contains all the partial derivatives of a

function with multiple variables. For example, if the partial derivative ∂
∂xi
f(x) is

the derivative of f(.) with respect to xi at point x, then the gradient is denoted

by ∇xf(x) and ith element of the gradient is the partial derivative ∂
∂xi
f(x) . In

order to minimize cost function, the gradient of the cost function is calculated

with respect to parameters θ. θ represents trainable parameters, mainly the

weight and the bias. Backpropagation algorithm uses these gradients to update

10

the parameters and learn the model. The objective function of a minibatch J(θ)

is calculated as:

L(θ) =
1

B
∇θ(

B∑
i=1

L(x(i),y(i),θ)) (2.4)

where B is the minibatch size. The gradient is estimated as:

g =
1

B
∇θ(

B∑
i=1

L(x(i),y(i),θ)) (2.5)

The estimated gradient is used to update the parameters in the negative di-

rection of the gradient. If the learning rate is denoted as ε, then SGD algorithm

can be summarized as:

θ ← θ − εg (2.6)

Initialization of the parameters is an important issue for the gradient-based

algorithms. This topic will be analyzed in detail in Section 3.2.2. Other gradient-

based optimizers will be also explained in Section 2.4.

2.3 Regularization

The performance of a machine learning algorithm can be understood by analyzing

two major factors: First, it should be able to make the training error small.

Second, the gap between training error and test error should be as small as

possible. If these two factors cannot be achieved, the machine learning model will

underfit or overfit, respectively. When the training error generated on the training

set is not low enough, underfitting occurs. When the model cannot obtain a small

generalization gap between the training and the test error, overfitting occurs [1].

11

As mentioned above, one of the central challenges about machine learning

field is that to reduce the test error, while possibly getting an increased value of

training error. In order to solve this problem and prevent the neural network from

overfitting, there are many strategies known as regularization. Regularization is

one of the most active research fields in machine learning and many forms of

regularization techniques are already available for deep network models [1].

In the literature, many regularization methods are proposed. Some methods

are based on limiting the capacity of the model by adding penalty term in the

loss function. When the amount of data is limited, one can create additional data

by shifting, scaling or rotating the original image and add those extra samples

to the training set as a dataset augmentation technique. In addition, one can

also add noise with infinitesimal variance to the inputs or to the weights in order

to encourage the stability of the network. One can also early stop the model

such that the algorithm stores the parameters obtained at the lowest validation

error point and the model returns these parameters when the training algorithm

is completed. Some forms of regularization combine several models as ensemble

neural networks to reduce generalization error. Unsupervised pre-training can be

also viewed as an unusual form of regularization [29]. Batch normalization is a

major breakthrough in the regularization techniques. Minibatch of the activa-

tions in the input layer or hidden layers is normalized by substracting minibatch

mean from each value in the minibatch and then dividing to the standard de-

viation of minibatch. As a result, the mean of minibatch becomes zero and its

standard deviation becomes 1. This technique not only speeds up the conver-

gence, but also makes the networks more robust to the parameter initialization

and hyperparameter selection [30].

Dropout technique proposed by [31] is a powerful and computationally low-

cost regularization technique which drops units (neurons) randomly. A visualiza-

tion of the dropout approach is presented in Figure 2.4. As seen in the figure, the

crossed units are dropped with all of its related connections. Which unit is going

to be dropped out is chosen randomly. Dropout doesn’t permanently remove a

unit from the network. During training, a unit is present with probability p and

has weight parameters w. During testing, each unit in the layer is always present

12

Figure 2.4: Left: A classical neural network with 2 hidden layers. Right: A
thinned network after dropout is applied.2

but their weights become pw. The probability of retention p can be determined

by using a validation set or can be simply set at a value between [0.5, 1]. However,

the optimum choice of p is usually closer to 1 [31].

We will use both ensemble models and dropout techniques for our algorithm.

Ensemble models and model-averaging will be investigated in detail as one of the

most crucial points in our algorithm in Section 3.1.3.

2.4 Optimizers

After the gradients are calculated in the backpropagation phase of the training,

they are used to update parameters (weights and biases for a linear model). Op-

timizers update the parameters in the negative direction of the gradient so that

the loss function is minimized. Various optimizers are introduced in the litera-

ture. Stochastic gradient descent (SGD), momentum algorithms, algorithms with

adaptive learning rates and second-order methods are major optimization tech-

niques for deep learning [1]. Gradient descent algorithm has already mentioned in

Section 2.2. When a mini-batch is built by randomly choosing a certain number

of training samples, then the gradient descent algorithm is given a new name as

stochastic gradient descent (SGD). The parameters θ are updated for SGD as

shown in the equation 2.7:

2Image retrieved from [31].

13

θ ← θ − ε(1

B
∇θ(

B∑
i=1

L(x(i),y(i),θ))) (2.7)

where ε is the learning rate, B is the minibatch size. The input samples in the

minibatch are denoted as x(i) while y(i) are their corresponding targets. SGD is

the simplest form of optimization and it is still a commonly used optimization

strategy.

Momentum algorithm is proposed as an improvement to the SGD algorithm

in terms of learning speed. Learning with SGD can be slow for some cases. In

momentum update, a variable v, is introduced in order to accelerate the learn-

ing. This variable v behaves like the velocity which indicates the speed and the

direction of the parameters. v has a hyperparameter β, which is named as mo-

mentum. Momentum hyperparameter β ∈ [0, 1) adjusts the decaying speed of

the gradients. SGD with Momentum optimizer accelerates the learning speed

1
/

(1 − β). For example, when β is chosen as 0.9, SGD with momentum algo-

rithm learns 10 times faster than SGD. Parameter update with this optimizer is

shown in equation 2.8:

v ← βv − ε(1

B
∇θ(

B∑
i=1

L(x(i),y(i),θ)))

θ ← θ + v

(2.8)

Setting the learning rate is one of the most challenging tasks in deep learning

field and it affects considerably the performance of neural network. Adaptive

learning rate methods eases this task, since they tune the learning rate for each

parameter. ADAM is an example of such optimizers. The name of the algorithm

derives from adaptive moment estimation. The parameter update with ADAM

is shown in equation 2.9 [32]:

14

g ← 1

B
∇θ(

B∑
i=1

L(x(i),y(i),θ))

t← t+ 1

m← β1m+ (1− β1)m

v ← β2v + (1− β2)g ⊗ g

m̂← m

1− βt
1

v̂ ← v

1− βt
2

θ ← θ − ε m̂√
v̂ + δ

(2.9)

After the gradient g is computed at time-step t, first moment estimate m

and the second moment estimate v initialized as zero are updated. Here, g ⊗ g
represents the elementwise multiplication. Afterwards, the moment estimates are

bias-corrected by dividing them to terms which include exponential decay rates,

β1 and β2. The parameters are updated by using corrected moment estimates

(m̂ and v̂), step size term ε and small stabilization constant δ. As Kingma and

Ba suggested in [32], the default settings are ε = 0.001, β1 = 0.9, β2 = 0.999,

δ = 10−8. ADAM is computationally efficient and it requires little tuning for

hyperparameters. It also performs well when the data is large and/or there are

lots of parameters.

Learning rate is a very crucial hyperparameter for optimizers. Decision of

using a fixed or decaying learning, choice of its initial value and selecting the

learning rate decay type have great impacts on training performance. Learning

rates and other hyperparameters such as momentum are studied in section 3.2.

There are also other optimizers such as Nesterov Momentum, AdaGrad and

RMSProp. In Nesterov Momentum, a correction factor which includes the veloc-

ity term is added while the gradient is evaluated. AdaGrad [33] and its modified

form RMSProp [34] are other adaptive learning rate methods. Since ADAM

integrates the advantages of these two methods, it can be favored in the deep

15

neural networks. Second-order methods, such as Newton’s method, are compu-

tationally expensive because it has to calculate second-order partial derivatives

in order to build Hessian matrices. We will eventually evaluate the performance

of three optimizer for energy-efficient neural networks in Chapter 4: SGD, SGD

with momentum and ADAM.

2.5 Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNN) are one of the oldest examples of deep

learning architectures, which have remarkable success at vision and signal pro-

cessing tasks [35]. First inspiration to convolutional neural networks comes from

Hubel and Wiesel’s study on the visual cortex of a cat [36]. Later, Fukushima

adapted this study to build the structure of a neural network and proposed the

first CNN-like model named as neocognitron [37]. Afterwards, LeCun et al. ap-

plied backpropagation to the handwritten zip code recognition task and success-

fully trained the convolutional neural network [38]. LeCun et al.’s another hand-

written number recognition study is a trademark in the machine learning history,

which proposed famous convolutional neural network LeNet-5 [7]. In 2012, CNNs

received great attention in deep learning area when Krizhevsky et al. won the

ImageNet contest ILSVRC (ImageNet Large Scale Visual Recognition Challenge)

by significantly improving the classification error rate from 26.2% to 15.3% [8].

Convolutional neural networks are usually used to process data with grid-like

topology. They perform well especially on images, which can be regarded as a

2D-grid of pixels. While referring CNN, one has to mention about the convolution

operation. A two-dimensional discrete convolution function is defined as [1]:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n) (2.10)

where I is the 2D input image and K is the 2-D kernel whose width and

height positions are i and j, respectively. The output S is sometimes referred as

16

Figure 2.5: An example of 2-D convolution operation without kernel flipping [1].

feature map. According to this formula, the kernel is flipped relative to input.

However, most machine learning libraries implement the convolution operation

without flipping the kernel, which is, in fact, the cross-correlation formula in

equation 2.11 and still call it convolution:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n) (2.11)

A visual representation of the convolution without flipping the kernel is shown

in 2.5.

Convolutional neural network advantages from three main concepts which

enhance the performance of a machine learning structure: sparse connectivity,

shared parameters and equivariance to translation [1]. In traditional neural net-

works, such as multi-layer perceptron (MLP), every output is affected by every

input unit. However, this is not the case for CNN. Since the kernel is much smaller

compared to the input, sparse connectivity is accomplished. This means that

a convolutional network is more efficient, since it has to deal with less parame-

ters and requires less memory usage. Parameter sharing, as the name implies,

17

means that different models or different units in the model use the same set of

parameters. While calculating the output of a layer, conventional neural networks

use each element of weight matrix to multiply an input element and same weight

value is never applied to the other input components. In a CNN, same kernel is

used at every location of the input tensor as seen in 2.5. This implies that the

network learns only one parameter set rather than learning separate sets every

time. Although using shared parameters doesn’t affect the computation time of

the training, it reduces the memory requirements significantly. The term that

a function is equivariant can be described as; if the input undergoes a change,

the output also experiences that change in the same way. Convolution operation

is equivariant to translation, i.e. shifting. CNN uses this different form of

parameter sharing effectively. For instance, an image of a car is still an image of a

car when each pixel in the image is shifted by one unit. CNN computes the same

feature of the image over different positions of the input image. Hence, a car still

can be detected even though the car is shifted. Unfortunately, convolution is not

equivariant to other image transformations such as scaling or rotation [1].

A typical architecture of convolutional neural network contains several main

layers: After input stage, convolutional layer performs convolution operations

to compute the output of the neurons at that layer. Nonlinearity stage applies

a nonlinear activation function to each element of the input of the layer. This

activation function is rectified linear unit (ReLU) in general and this layer is com-

monly called as ReLU layer. Pooling layer, also known as downsampling stage,

summarizes the input over a rectangular neighborhood according to a mathe-

matical operation such as max or average. As a result, pooling reduces the

dimensions (width and height) of the input. Fully-connected (FC) layer is the

dense layer and computes the affine transform in equation 2.1 like ordinary neural

networks. At last, the softmax layer can be set as the final layer of CNN where

the distribution of the predicted class labels is produced with a more stabilized

manner [39]. An example of typical CNN architecture is shown in Figure 2.6.

18

Figure 2.6: An example of standard CNN with its major components.

2.5.1 Convolutional Layer

A convolutional layer is the main component of the CNN and, as the name implies,

performs convolutional operation. The neurons in this layer are connected to only

a small portion of the input of this layer. This small portion is called kernel, or

the filter. During the training, the filters are updated and learned by the neural

network so that they can eventually detect some features of the image such as

edges or colors [39].

The size of the filter is an important parameter of the convolutional layer. If

the input data is an image, we can think that the input and also the neurons

in the convolutional layer are in 3 dimensions (width, height and depth). For

example, an image in the CIFAR-10 dataset has a size of 32*32*3 and the size

of a filter at the first convolutional layer may be 4*4*3. While the depth of the

filter is the same as the depth of the input of the layer, the number of filters used

in a layer determines the depth of the output of the layer. The size of the output

of a convolutional layer is calculated as shown in Equation 2.12, where N is the

width/height of the image, F is the filter size, S is the stride an P is the size of

zero-padding:

N − F + 2P

S
+ 1 (2.12)

Stride (S) is a parameter which specifies the amount of the slide of filter in

the image. In Figure 2.5, stride is S = 1. The values of stride are restricted by

input size and other parameters F & P because the result of Equation 2.12 has

to be an integer. Zero-padding term states that the input image is padded with

zeros around the border. The size of the zero padding is denoted as P . Although

19

P can be set as an integer number, many machine learning libraries use valid

padding and same padding approaches. Valid padding indicates that the image is

not zero-padded, i.e. (P = 0). Same padding ensures that the output size of the

image is the same as the input size with S = 1; the total number of zeros padded

to the image is F − 1. As stated before, the depth of the output of convolutional

layer depends on how many filters are used in that layer. For example, if the size

of the input image is 32*32*3 and 12 filters with size 4*4*3 are used with P = 1

and S = 2, then the output will be 16*16*12. (32−4+2∗1
2

+ 1 = 16)

2.5.2 Nonlinearity Stage

At nonlinear stage, a nonlinear activation function is applied to the output of the

convolutional and the fully-connected layers. This activation function performs an

elementwise operation and the size on the input to this layer is not changed. ReLU

is the most favorable function for nonlinearity stage, especially after convolutional

layers.

2.5.3 Pooling Layer

Pooling layer essentially reduces the size of the input image. As a result, the

number of parameters is decreased and it takes less time to compute in the net-

work. Pooling layer also has filter size F and stride S parameters. A common

choice for S is S = 2. F can be chosen as F = 2 or F = 3. F = 2 and S = 2 is the

common selection for the pooling layer parameters and we can reduce the number

of computations by 75% with this option. In Figure 2.7, downsampling operation

is illustrated with different methods. One should note that only width/height of

the image is reduced with the pooling operation and the depth of the image is

still the same.

There are several pooling techniques such as max-pooling, average pooling, or

L2-norm pooling. Max-pooling is highly recommended and commonly preferred

20

Figure 2.7: Examples of non-overlapping pooling. Top: Max-pooling operation.
Bottom: Average-pooling operation.

in practice, since it can make the network converge faster and improve general-

ization [40]. Pooling layer can be placed after a convolutional-ReLU layer pair or

after multiple convolutional-ReLU pairs in the architecture.

2.5.4 Fully Connected Layer

Before fully-connected (FC) layer, the output of the convolutional/pooling layer

just before FC layer is flattened. For example, the output of the previous layer

is [a*b*c], then the input to the FC layer will be [1*1*(abc)]. FC layer uses this

single vector and computes the output as regular neural networks (like Multilayer

Perceptron). The outputs of the neurons at FC layer are affected by all inputs of

FC layer; which implies that sparse connectivity no longer exists.

2.5.5 Softmax Layer

Softmax layer can be used as the output layer of the CNN and computes the soft-

max function for classification purposes. Softmax function takes a n-dimensional

vector with arbitrary real values as input and produces a n-dimensional vector

with values only in the interval of [0, 1]. Sum of the elements of output vector is

1. Softmax function produces the predicted class probabilities over n class labels

and should be used for only the output layer of the neural network architectures.

The function is shown in Equation 2.13.

21

f(x)i =
exi∑n
j=1 e

xj
(2.13)

The neural networks with softmax layer are usually trained with a log loss

function (cross-entropy). Since softmax function is differentiable, it is mostly

preferred to compute the output of the networks trained with gradient descent

based algorithms. In addition, softmax function makes easier to apply a threshold

for the decision because the output vector of the softmax layer has values only

between 0 and 1.

22

Chapter 3

Energy Efficient Neural Networks

3.1 Introduction

As stated earlier, convolutional neural networks (CNN) is a very successful exam-

ple of deep learning architecture on vision and object recognition tasks. Although

this type of deep neural network has very reliable results on object recognition and

detection, it requires large amount of energy and computational time. Especially

on mobile devices or any other small portable machines, memory limitation and

restricted battery power become a huge problem while implementing such ma-

chine learning tasks. Hence, we study different energy efficient networks in this

thesis. Firstly, we investigate the efficieny of Binary-Weight-Network (BWN)

proposed in [18] which approximates the weights to binary values. Similar to

BWN, we propose a Hadamard-transformed Image Network (HIN) which uses

the Hadamard-transformed images with binarized weights. Lastly, a combined

network is introduced and its superiority to both BWN and HIN is investigated.

While describing the algorithms, the nomenclature used in this section is as

follows: I is the input tensor, W is the weight (filter), L is the number of layers,

K is the number of filters in the lth layer of the CNN. ε is the learning rate and

β is the momentum parameter.

23

3.1.1 Binary Weight Networks (BWN)

Binary-Weight Network (BWN) is proposed in [18] as an efficient approximation

to standard convolutional neural networks. In BWNs, the filters, i.e. weights of

the CNN are approximated to binary values +1 and −1. While a conventional

convolutional neural network needs multiplication, addition and subtraction for

convolution operation, convolution with binary weights can be estimated by only

addition and subtraction.

Convolution operation can be approximated as follows:

I ∗W ≈ (I ⊕B)α (3.1)

where B is the binary weight tensor which has the same size with W and α ∈ R+

is the scaling factor such that W ≈ αB. ⊕ operation indicates convolution only

with addition and subtraction. Since the weight values are only +1 and −1,

convolution operation can be implemented in a multiplier-less manner. After

solving an optimization problem to estimate W , B and α is found as:

B = sign(W) (3.2)

α =
W TB

n
=
W T sign(W)

n
=

∑
|Wi|
n

=
1

n
||W ||`1 (3.3)

In Equation 3.3, n = c× w × h where c is the channel, h is the height and w

is the width of weight tensor W , and of B as well. Equations 3.2 and 3.3 show

that binary weight filter is simply the sign of weight values and scaling factor is

the average of absolute weight values.

While training a CNN with binary weights, the weights are only binarized in

forward pass and back propagation steps of the training. At the parameter-update

stage, the real-valued weights (not binarized) are used. Training procedure for a

BWN is demonstrated in Algorithm 1. W is the set of weight filters whereWlk is

24

the kth weight filter in the lth layer of CNN. B is the set of binary tensors where

Blk is a binary filter in this set and A is the set of positive real scalars where each

element of this set is a scaling factor.

Algorithm 1 One step parameter update during the training of a CNN with
binary weights

I is the input and Y is the target. W̃ is the binarized weight.
C(Y , Ŷ): cost function, W t: current weight, εt: current learning rate.
W t+1: updated weight, εt+1: updated learning rate.

1: Binarize the weights in each corresponding layer
2: for l from 1 to L do
3: for k from 1 to K do
4: Alk = 1

n
||W t

lk||`1
5: Blk = sign(W t

lk)

6: W̃lk = AlkBlk
7: end for
8: end for

Forward propagation with I ∗W ≈ (I ⊕B)α
9: Ŷ =BinaryForward(I,B,A)

Backward propagation with binarized weights
10: ∂C

∂W̃
=BinaryBackward(∂C

∂Ŷ
, W̃)

Update parameters with SGD (with momentum) or ADAM
11: W t+1=UpdateParameters(W t, ∂C

∂W̃
, εt)

Update learning rate
12: εt+1=UpdateLearningRate(εt, t)

One should take into account a very significant point: It is assumed that the

convolutional filters here don’t have bias terms, and this convolution approxima-

tion is only held in convolutional layers. Fully connected layers still do have bias

terms and standard multiplication.

3.1.2 Hadamard-transformed Image Networks (HIN)

Independent from this thesis, compressed domain data is also used as input in

deep learning structures. Discrete Cosine Transform (DCT) domain data as the

input data can outperform the state-of-the-art results as shown in [41]. Com-

pressed domain video frames as input to the convolutional neural networks are

25

preferred rather than RGB frames, since data decompression requires extra com-

putation time and energy. As a result; simpler implementation, effective compu-

tation and improved model accuracy are achieved. Wu et al. uses DCT because

JPEG, MPEG video coding standards are based on DCT. In this thesis, we adopt

a similar approach. We also use transform domain images and feed them into

the our CNN model. This network model is called Hadamard-transformed Image

Networks (HIN).

Before introducing the Hadamard-transformed Image Networks (HIN), we

describe Hadamard Transform first. Hadamard Transform, also called as

Hadamard-ordered Walsh-Hadamard Transform, is an image transform technique

which is also used to compress images in 1970s [42]. Transform coefficients are

only +1 and -1. Thus, Hadamard Transform can be considered as a simpler al-

ternate of other image transforms such that it can be implemented without any

multiplication and division [43].

1-D Hadamard Transform is defined with the Hadamard matrix Hm whose

size is 2m × 2m:

T = Hmg (3.4)

where g is 1-D array with 2m elements and T is the transformed array. Hm is

a real, symmetric and unitary matrix with orthonormal columns and rows such

that:

H1 =
1√
2

[
1 1

−1 1

]
,Hm = (

1√
2

)m

[
Hm−1 Hm−1

−Hm−1 Hm−1

]

1-D Hadamard Transform can also be expressed by Equation 3.5. In this

formula, g(x) is the elements of 1-D array g and bi(x) is the ith bit (from right to

left) in the binary representation of x. The scaling factor (
1√
2

)m is used to make

the Hadamard matrix orthonormal, hence it is mostly kept in the calculations.

26

T (u) = (
1√
2

)m
2m−1∑
x=0

g(x)(−1)

m−1∑
i=0

bi(x)bm−1−i(u)
(3.5)

2-D Hadamard Transform is a straightforward extension of 1-D Hadamard

Transform [44]:

T (u, v) = (
1

2
)m

2m−1∑
x=0

2m−1∑
y=0

g(x, y)(−1)

m−1∑
i=0

(bi(x)pi(u)+bi(y)pi(v))
(3.6)

In Equation 3.6, pi(u) is computed using:

p0(u) = bm−1(u)

p1(u) = bm−1(u) + bm−2(u)

...

pm−1(u) = b1(u) + b0(u)

(3.7)

2-D Hadamard Transform is separable and symmetric, hence it can be im-

plemented by using row-column or column-row passes of the corresponding 1-D

transform.

There is an algorithm called Fast Walsh-Hadamard Transform (FWTHh)

which requires less storage and is fast and efficient to compute Hadamard Trans-

form [21]. The implementation of this algorithm is so simple that it can be

achieved with only addition and subtraction which can be summarized in a but-

terfly structure. This structure is illustrated in Figure 3.1 for a vector of length

8. While the complexity of Hadamard Transform is O(N2), complexity of fast

algorithm is O(Nlog2N) where N = 2m.

As seen from above, Hadamard Transform is only for 1-D array whose length

is a power of 2 because only Hadamard matrices whose order is a power of 2

exists. If the length of the 1-D array is less than a power of 2, the array is padded

with zeros to the next greater power of two. Since 2-D Hadamard Transform is

separable, we can treat columns and rows of the 2-D array as separate 1-D arrays.

27

Figure 3.1: Fast Hadamard Transform algorithm of a vector of length 8.1

Training of HIN is quite equivalent to BWN; the only difference is that the

input images are Hadamard-transformed as explained above. Training proceeds

as explained in Algorithm 1, but at the beginning Hadamard-transformed input

data Ĩ is fed in to the network rather than ordinary input I. As in BWN,

binarized weights are used and no bias terms are defined.

3.1.3 Combination of Models: Binary Weight & Hadamard

Transformed Image Network (BWHIN)

Combination of the neural networks can improve the performance of the neural

networks by a few percent. Since combining the neural networks reduces the

test error and tends to keep the training error the same, it can be viewed as a

regularization technique. One of the popular techniques of the combination is

called “model ensembles” which combines the multiple hypotheses that explain

the same training data [1,3]. As an example of ensemble methods, several different

models are trained separately, then their predictions are averaged at test time.

This method is called “model averaging”. In model averaging, different models

will probably make different errors on the test set and if the members of the

1Image retrieved from ”Fast Walsh-Hadamard Transform - Wikipedia”

28

https://en.wikipedia.org/wiki/Fast_Walsh-Hadamard_transform

ensemble make independent errors, the ensemble will perform significantly better

than its members. Even if all models are trained on the same dataset, differences

in hyperparameters, mini-batch selections or different random initialization etc.

cause the members of ensemble to produce partially independent errors.

In model ensembles, the error made by averaging prediction of all models in

the ensemble decreases linearly with the ensemble size, i.e. the number of models

in the ensemble. However, since they need longer time and increased memory to

evaluate on test example, we try to avoid increasing the size in terms of energy

efficiency. Speaking of the energy efficiency, since we want to build the entire

model as efficient as possible, we don’t need to wait the models in the ensemble

train completely. Instead, different networks can be trained independently and

separately until some point and they can be combined with a combination layer

where locates somewhere before the output layer. Bilinear CNNs [2] is a good

example for such models. In bilinear CNN, there are two sub-networks which are

standard CNN units. After these CNN units, the image regions which extract

features are combined with a matrix dot product and then average pooled to

obtain the bilinear vector. In order to perform these operations properly, those

image regions have to be of the same size. This vector is passed through a fully-

connected and softmax layer to obtain class predictions.

Our approach to combine BWN and HIN is quite similar to Bilinear-CNN,

but simpler. After convolutional, ReLU and pooling layers, the output tensor is

reshaped for fully connected layer as a 1-D tensor. Afterwards, these same sized

1-D tensors of each sub-network will be averaged instead of dot product. Since

multiplication consumes power, dot product is avoided and averaging is preferred.

Two averaging methods are used: Simple averaging and weighted averaging. [45].

Simple averaging is the conventional averaging technique which calculates the

output by averaging the sum of outputs from each ensemble member. Weighted

averaging technique assigns a weight to each ensemble member and calculated the

output by taking these weights into account. The total weight of each ensemble

is 1. In order to implement this technique, we define a random number which

behaves like a weight. If Y Ybinary is defined as the 1-D tensor of BWN and

Y Yhadamard is the 1-D tensor of HIN, the standard averaging is shown as:

29

Figure 3.2: Our approach to combine BWN and HIN: The architecture of
BWHIN [2].

Y Ycombined = 0.5× Y Ybinary + 0.5× Y Yhadamard (3.8)

while the new averaging method can be described as:

Y Ycombined = (Wcombined × Y Ybinary) + ((1−Wcombined))× Y Yhadamard (3.9)

where Wcombined is the random number which can only take values in [0, 1]. This

random number is generated according to truncated normal distribution whose

mean is 0.5 and standard deviation is 0.25. We will also compare the performances

of these two combination methods in Chapter 4. After the averaging operation,

obtained 1-D tensor is followed by a fully connected and softmax layer. The

architecture of our combined network Binary Weight & Hadamard-Transformed

Image Network (BWHIN) is summarized in Figure 3.2. One should notice that

the combination is applied after the convolutional layers of each network, which

are energy efficient layers. With this combination model, we still want to maintain

the energy efficieny of the entire network.

30

3.2 Neural Network Architecture and Hyper-

paramaters

In order to investigate the energy efficieny of the neural networks, the neural

network architectures are formed as very simple models with small capacity as

possible. Convolutional Neural Networks are used as an efficient deep neural

networks model. Hyperparameters are chosen according to the state-of-the-art

solutions in the literature.

3.2.1 CNN Architectures

In deep neural networks (DNN), the size of the layers determines the capacity. A

model’s capacity is an important model parameter so that it controls the model’s

ability to fit a wide variety of functions. In case of low capacity, the model may

struggle to fit the training set and produce large training errors and the model

underfits. Models with high capacity can memorize aspects of the training set

which may not function properly on the test set. As a result, overfitting occurs

and a large difference is produced between training and test error [1].

In case some regularization techniques are used, it is important to choose the

number of neurons in a layer large enough so that the generalization will not be

damaged. Yet, larger number of neurons requires longer computation time as

expected. As mentioned in [46], the size of all layers can be the same, or can

be selected as a decreasing size (pyramid-like) or increasing size (upside down

pyramid). Naturally, this selection depends on the data. We will choose the

neuron numbers with an increasing manner from first convolutional layer to the

fully connected layer.

In order to implement the proposed networks and analyze their performances,

two well-known datasets, MNIST and CIFAR-10 are chosen. In addition, two dif-

ferent CNN architectures are investigated to observe the energy efficiency. First

type of architecture for MNIST database is very similar to LeNet-5 in [7] with

31

Figure 3.3: Top: Strided convolution with a stride of 2. Bottom: Convolution
with unit stride followed by downsampling.2

convolutional and pooling layers. Second architecture is built according to All-

Convolutional-Neural-Network [22] with strided convolution. Strided convolution

is that some positions of the kernel are skipped over in order to reduce the com-

putational burden while implementing the convolution operation. Strided convo-

lution is equivalent to downsampling the output of the full convolution function.

This is illustrated in Figure 3.3. The reason is to investigate the effect of the pool-

ing layer and strided convolution on energy efficiency and test accuracy. Both

neural network architectures used for MNIST are summarized in Table 3.1.

First architecture is built as [Conv-ReLU-Conv-ReLU-Pool-Conv-ReLU-Pool-

FC-Softmax] while second architecture is built as [Conv-ReLU-StridedConv-

ReLU-StridedConv-ReLU-FC-Softmax]. For 3 convolutional layers and 1 fully

connected layer, the sizes of each layer is determined as 6, 12, 24, 200; with an

increasing manner as mentioned before. These numbers are set by trial and error.

If the sizes of the layers were too low, the model would encounter with the low

capacity problems. On the other hand, the network with a big capacity would

not only overfit, also it could cause hardware problems such that the training

2Image retrieved from [1].

32

ConvPool-CNN All-CNN
Input 28*28 gray-scale image

6*6 conv. 6 ReLU 6*6 conv. 6 ReLU
5*5 conv. 12 ReLU 5*5 conv. 12 ReLU

with stride 22*2 max-pooling, stride 2
4*4 conv. 24 ReLU 4*4 conv. 24 ReLU

with stride 22*2 max-pooling, stride 2
fully connected layer with 200 neurons, dropout

10-way softmax layer

Table 3.1: Model description of the two architectures for MNIST dataset.

and/or test process would fail. Both pooling and strided convolutional opera-

tions are used to shrink the input size by a factor of two in order to reduces the

computational and statistical burden on the next layer.

Filter sizes are determined heuristically. Since 5*5 filters are used in LeNet-5,

filter sizes are selected to be close to this size. In order to preserve the input

size for conventional convolutional layers, stride is chosen as 1 and zero padding

is used accordingly. For strided convolutional layers, stride is 2 to decrease the

height and width of the image by a factor of 2. According to [39], common

choice for non-overlapping max-pooling operation is with 2*2 filters and stride 2.

This size is preferred, otherwise pooling with larger receptive fields would be too

harmful.

Architectures applied to CIFAR-10 dataset are described in Table 3.2. Since

CIFAR-10 has color images and larger images than MNIST, models with higher

capacity is preferred. Model capacity is expanded by increasing both the number

of layers and the number of neurons at the hidden layers. The architecture

with pooling layers is built as [Conv-ReLU-Conv-ReLU-Pool-Conv-ReLU-Conv-

ReLU-Pool-FC-Softmax], while all-CNN architecture is build as [Conv-ReLU-

StridedConv-ReLU-Conv-ReLU-StridedConv-ReLU-FC-Softmax]. Since we want

to preserve the energy efficieny as far as possible, we use more convolutional layers,

which can be modified as energy efficient layers, and only one fully-connected

layer. The sizes of these 4 convolutional layers and 1 fully-connected layer are

32, 32, 64, 64, 512, respectively. The number of neurons in a layer and the filter

33

ConvPool-CNN All-CNN
Input 32*32 RGB image

3*3 conv. 32 ReLU 3*3 conv. 32 ReLU
3*3 conv. 32 ReLU 3*3 conv. 32 ReLU

with stride 22*2 max-pooling, stride 2
Dropout

3*3 conv. 64 ReLU 3*3 conv. 64 ReLU
3*3 conv. 64 ReLU 3*3 conv. 64 ReLU

with stride 22*2 max-pooling, stride 2
Dropout

fully connected layer with 512 neurons, dropout
10-way softmax layer

Table 3.2: Model description of the two architectures for CIFAR-10 dataset.

sizes are selected empirically. A critical point in CIFAR-10 architectures is that

more dropout is used due to the increased capacity.

Note that the size of an image in the MNIST dataset is altered from 28*28*1 to

32*32*1 after Hadamard transform. As a result, the outputs of the BWN and HIN

will not compatible in the combined model. In order to overcome this problem

in the MNIST architectures, the filter size in the first convolutional layer whose

input is Hadamard-transformed image is modified as 5*5 and zero-padding is not

used. On the other hand, we will not have that issue for CIFAR-10 database.

Since the width & height of an image in CIFAR-10 is 32, a power of 2, the size

will remain unchanged (32*32*3) after Hadamard transform. No minor changes

in the neural network architecture will be required.

3.2.2 Weight and Bias Initialization

Parameter initialization plays an important role for the deep neural networks to

converge and achieve reasonable results in an acceptable amount of time. Espe-

cially weight initialization is still a popular and active research area because it

has an strong effect on the training of the neural network. In general, weights

are initialized as small random values while the biases are initialized to zero or

34

to small constant positive values [1].

Although biases can be initialized as zero, weights should be initialized differ-

ently to break the symmetry between different hidden units of the same layer.

In case of symmetry, if two hidden units with same activation function are con-

nected to same input and output, the model will update both of these units in

same way and these units will have the same output and compute the same gradi-

ent. Symmetry wastes the capacity, since some input patterns may be lost in the

null space of forward propagation and some gradient patterns may be lost in the

null space of back- propagation as well. Hence the weights need to be initialized

with different initial parameters [46].

The weights are usually initialized with small random numbers with uniform

or Gaussian distribution. Large initial weights result in extreme values during

forward propagation and that may cause the activation function to saturate and

makes the gradient lost completely through saturated hidden units. Small initial

weights are usually preferable due to regularization concerns. Some heuristic

initialization strategies use uniformly distributed random numbers such as

W ∼ U(− 1√
m
,

1√
m

)

for a fully connected layer with m inputs and n outputs. As suggested in [47],

Xavier initialization is another option for weight initialization:

W ∼ U(− 6√
m+ n

,
6√

m+ n
)

We prefer Xavier initialization for CIFAR-10 architectures. Since we use smaller

neural networks for MNIST database, we initialize weights for these models as:

W ∼ N (0, 0.1)

According to [48], zero-mean Gaussian with a small standard deviation around

0.1 or 0.01 works well.

The approach for initializing the biases is mostly to set them to zero. However,

biases can be initialized with small positive numbers when the ReLU nonlinearity

35

is used. This makes the ReLU initially active for most inputs so that ReLU

units can obtain some gradient and propagate. Since we use ReLU for both

convolutional layers and fully connected layers, we set the bias of all ReLU hidden

units to 0.1 rather than 0.

3.2.3 Mini-Batch Size

Mini-batch size, B is an important parameter for gradient-based training algo-

rithms. Instead of training whole samples in the training set, only a small portion

of the training set is selected to compute the gradient. On each step of the train-

ing algorithm, a minibatch of examples {x(1), . . . ,x(B)} is drawn uniformly or

randomly from the training set. Parameter update is performed based on an

average of the gradients inside each block of B examples according to equation

3.10:

θ ← θ − ε(1

B
∇θ(

B∑
i=1

L(x(i),y(i),θ))) (3.10)

where ε is the learning rate and L is the loss function. This training algorithm

is called as stochastic gradient descent algorithm (SGD) as also mentioned in

Section 2.4.

The mini-batch size B is chosen as a relatively small number compared to the

size of the training set; mostly in the range of 1 and few hundred. However, it

is crucial that mini-batch size must be kept fixed during the training [1]. When

B=1, the algorithm becomes ordinary gradient descent and when B is equal to

training set size, SGD is now standard gradient descent. As B increases, there will

be more multiply-add operations per second because these multiply-add opera-

tions will be parallelized and multiplication process will be more efficient. Never-

theless, with an increased B, it will take more time to converge, since one update

on the batch will take longer time and the number of updates per computation

time decreases. When B is a very small, more steps per epoch will be needed

36

Figure 3.4: Effects of different learning rates [3].

to train whole set and the total run time will be very high [46]. Considering all

these factors, B is chosen as 100 for all of our models.

3.2.4 Learning Rate

A crucial hyperparameter for many optimizers, perhaps the most crucial one,

is the learning rate ε, which is a positive constant determining the step size of

the gradient. According to [46], typical values for standardized learning rates

are in the interval of (10−6, 1), but one has to note that this is not the strict

range and learning rate highly depends on the parametrization of the model.

Choice of the (initial) learning rate is very critical. Loss increases with too high

learning rate and the model cannot even be trained. Too low learning rate is also

problematic, because the training is going to be so slow that the cost function will

never decrease and it may even have stuck at high values. Although the learning

rate can be chosen as a fixed number, a good learning rate should decay over

time as seen in Figure 3.4. While loss starts to decay exponentially with high

learning rates, the improvement is almost linear with lower learning rates at the

beginning. Although it is useful to have a decaying learning rate, one should be

careful about the decay rate. If the decay is too slow, it will take too much time

to achieve a reasonable and low cost. If the decay is too fast, the model will be

trained too fast, and unable to find the local minimum.

37

In order to implement the learning rate decay, there are three common meth-

ods [3]:

• Step decay: After keeping the learning rate constant for a certain number

of steps, it decreases by a certain factor according to a pre-determined rule.

For example, one may reduce the learning rate by 0.5 every 10 epochs.

These numbers vary according to the problem or model.

• Exponential decay: This decay is performed according to formula ε = ε0e
−kt

where ε0 is the initial learning rate, k is the decay rate and t is the iteration

number.

• 1/t decay: This type of decay has the mathematical formula ε = ε0/(1+kt)

where ε0 is the initial learning rate, k is the decay rate and t is the iteration

number.

An exponentially decay learning rate is used as suggested in [49], since dropout

technique can also be used to finetune the model along with an exponentially

decaying learning rate as in this paper. For MNIST database, the maximum and

minimum learning rate can be found empirically along with the decay speed k.

Our learning rate starts at 0.003 and ends at 0.0001 with a decay rate of 0.0005.

For CIFAR-10 dataset, the initial learning rate is selected as 0.0001 and the decay

rate is set to 10−6. No lower bound is specified for the learning rate used to train

CIFAR-10.

3.2.5 Momentum

As described in Section 2.4, momentum is an important hyperparameter which

accelerates the learning of gradient-based networks. The momentum hyperpa-

rameter, β which determines the exponential decay rate of the past gradients

should be a number β ∈ [0, 1). Although β can be adapted over time like learn-

ing rate, it is mostly chosen as a fixed number in the literature. In practice, β is

38

commonly chosen as 0.5, 0.9 or 0.99 [1]. Our choice of momentum used in SGD

with Momentum optimizer is 0.9 as used in AlexNet [8] and ResNet [50].

3.3 Implementation of the Architectures

The MNIST (Modified National Institute of Standards and Technology) database

of handwritten digit images is a very popular digit database for implementing

learning techniques and pattern recognition methods [51]. It contains 60,000

training images and 10,000 test images. These black and white images are with

28*28 pixels, which means that the dimensionality of each image is 784. Pixel

values of the images in this database varies from 0 to 255. Since the database

consists of digits from 0 to 9, it has 10 classes. MNIST database is preferable

since it requires less effort on preprocessing and formatting while dealing with

real-world data. Sample images from each class is shown in Figure 3.5.

Figure 3.5: Sample images of MNIST database.

CIFAR-10 (Canadian Institute for Advanced Research-10) is also a famous

dataset used for image classification tasks [4]. It consists of 50,000 training images

and 10,000 test images. These 60,000 color images with size 32*32 is collected in

39

10 classes of objects (airplane, automobile, bird, cat, deer, dog, frog, horse, ship,

truck). Each class has 6000 images and test set is generated by selecting 1000

images randomly from each class. Like in MNIST dataset, the pixel values are

in the range of [0,255]. One of the unique properties of this dataset is that the

classes are mutually exclusive. For example, “automobile” class doesn’t include

trucks or pickup trucks while “truck” class contains only big trucks, but not

pickup trucks. In Figure 3.6, sample images from each class are illustrated.

Figure 3.6: Sample images of CIFAR-10 database [4].

Tensorflow is chosen to implement all of the deep neural networks for this thesis

work. Tensorflow is an open-source software library for machine intelligence,

which is developed by Google Brain Team in Python language [52]. It is a very

flexible library so that various algorithms for deep neural network models can be

expressed easily for both research purposes and for deploying machine learning

systems into production. One of its main advantages is that it can be easily

programmed for multi-GPU and multi-node usage.

Since our main purpose is to investigate the energy efficieny of the proposed

neural network models, simple architectures are chosen and no pretraining such

as feature extraction or unsupervised learning techniques is performed. Images

in both datasets are normalized such that the pixel values are in [0, 1]. All

40

experiments are carried out on a single GPU, which is NVIDIA GeForce 940M.

Thanks to our CUDA-enabled GPU, we are able to run Tensorflow with GPU

support and we achieve faster computation.

41

Chapter 4

Simulation and Results

As previously stated in Chapter 3, six CNN models with two different archi-

tectures are trained on MNIST and CIFAR-10 database. These CNN models

include the standard CNN, previously studied BWN and our energy efficient

neural networks. The performance of the neural networks is evaluated based

on test accuracies and their performance is also compared with different spe-

cific hyperparameters. Networks trained on MNIST dataset has 10000 iterations.

Considering the mini-batch size is chosen as 100, this number of iterations cor-

responds to after the completion of 16th epoch. Since MNIST database contains

60000 training images, there are 600 iterations per epoch. Networks of CIFAR-10

dataset are trained in 150000 iterations. This means the number of epochs for

CIFAR-10 training is chosen as 300 (500 iterations per epoch). Before learning

procedure is performed, the input images are normalized such that the pixels of

the images have the values only in [0, 1]. No other data preprocessing or unsu-

pervised learning as pretraining is implemented at the beginning of the training.

Cross validation is not required for now.

Test accuracy is decided as the main criterion to analyze the models in the

following sections. Training accuracy results, training losses and test losses for

MNIST database are shown in Appendix A. Other results for CIFAR-10 dataset

42

are demonstrated in Appendix B. The abbreviations used in the tables are al-

ready explained in Table 1.1 while CNN corresponds to the standard CNN here.

BWHIN-Normal represents the combined model with standard average operation,

while BWHIN-Random is the model with our “random-average” technique.

4.1 Experiments on MNIST

Three parameters are chosen in order to examine the behavior of the networks.

These parameters are optimizers, the probability of keeping the hidden units

for dropout technique and the activation function at the Fully Connected (FC)

layer. SGD, SGD with momentum and ADAM are chosen as the optimization

algorithms. SGD is a very simple learning algorithm and it was a very popular

choice from the 1970s to late 1990s [6]. SGD with momentum is also frequently

preferred by ILSVRC winners [8,50] and it has better performance than SGD on

deep networks. ADAM is also another practical optimizer which is fairly robust

to the choice of hyperparameters [1]. As regularization technique, dropout is

chosen. In case of dropout, a neuron is kept active with a fixed probability of

p independent of other units. p can be considered as a hyperparameter and it

can be set to a number or determined by cross-validation. Although p = 0.5 is a

reasonable choice for hidden units, the optimal probability is usually closer to 1

than to 0.5 [31]. Here, we investigate no dropout case (p = 1.0), p = 0.75 and p =

0.5. Sigmoid function, tangent hyperbolic and ReLU are preferred as activation

functions at FC layer. Prior to the introduction of ReLU, sigmoid and tangent

hyperbolic functions are used by most neural networks, but nowadays ReLU is

the most popular nonlinear function [1, 6]. While evaluating the performance of

one parameter, other parameters are kept fixed. ADAM is selected as optimizer

due to its robust nature while investigating dropout and activation functions.

The probability of retention is chosen as p = 0.75 while analyzing the behavior of

optimizers and activation functions. ReLU is preferred as the activation function

due to its piecewise linearity while studying dropout and the optimizers.

43

ConvoPool-CNN
SGD SGD-momentum ADAM

Max Test
Accuracy

Last Test
Accuracy

Max Test
Accuracy

Last Test
Accuracy

Max Test
Accuracy

Last Test
Accuracy

CNN 99.26 99.17 11.35 11.35 99.48 99.41
BWN 98.46 98.36 98.92 98.79 98.88 98.75
HIN 11.35 11.35 11.35 11.35 98.32 98.23
BWHIN-NormalAvg 98.27 98.15 99.04 98.91 98.79 98.67
BWHIN-RandomAvg 98.9 98.78 98.77 98.71 98.96 98.88

(a) ConvoPool-CNN

All-CNN
SGD SGD-momentum ADAM

Max Test
Accuracy

Last Test
Accuracy

Max Test
Accuracy

Last Test
Accuracy

Max Test
Accuracy

Last Test
Accuracy

CNN 99.12 99.09 11.35 11.35 99.31 99.24
BWN 98.11 98.05 98.48 98.44 98.37 98.23
HIN 96.48 96.35 11.35 11.35 97.84 97.71
BWHIN-NormalAvg 97.24 97.13 98.47 98.38 98.4 98.23
BWHIN-RandomAvg 98.09 98.07 10.09 9.8 98.61 98.5

(b) All-CNN

Table 4.1: Test accuracy results (in percentage) for different optimizers.

4.1.1 Effect of Optimizers

The gradients computed in backpropagation stage of the training are used for

parameter update. Optimizers are the learning algorithms which have differ-

ent strategies for parameter update and acceleration techniques to speed up the

training. Optimization is still a very active research area, but for this section we

only use the common optimizers to investigate the models. SGD, SGD with mo-

mentum and ADAM are chosen. The common hyperparameters for these three

optimizers is the learning and mini-batch size which are already determined in

Chapter 3. Momentum parameter for SGD with momentum is chosen as 0.9 as

stated in Section 3.2.5. The moment estimates β1 and β2 for ADAM optimizer

are left as default Tensorflow values β1 = 0.9 and β2 = 0.999. These values are

also suggested by [32]. There is also another constant ρ required for ADAM.

This small constant is used for numerical stabilization and recommended value

ρ = 10−8 is used. Test accuracy results are reported in Table 4.1 and their

variation throughout the training is shown in Figure 4.1.

ADAM optimizer is the best choice for both architectures and most of the

models. SGD with momentum gives the best result only for BWN. As seen from

44

0 2000 4000 6000 8000 10000

Number of Iterations

0.8

0.9

1

T
es

t A
cc

ur
ac

y

Test Accuracies for All-CNN with SGD

0 2000 4000 6000 8000 10000

Number of Iterations

0.2

0.4

0.6

0.8

T
es

t A
cc

ur
ac

y

Test Accuracies for All-CNN with Momentum

0 2000 4000 6000 8000 10000

Number of Iterations

0.8

0.9

1

T
es

t A
cc

ur
ac

y

Test Accuracies for All-CNN with ADAM

CNN
BWN
HWN
BHWN-NormalAvg
BHWN-RandomAvg

0 2000 4000 6000 8000 10000

Number of Iterations

0.2

0.4

0.6

0.8

T
es

t A
cc

ur
ac

y

Test Accuracies for ConvPool-CNN with SGD

0 2000 4000 6000 8000 10000

Number of Iterations

0.2

0.4

0.6

0.8

T
es

t A
cc

ur
ac

y

Test Accuracies for ConvPool-CNN with Momentum

0 2000 4000 6000 8000 10000

Number of Iterations

0.8

0.9

1

T
es

t A
cc

ur
ac

y

Test Accuracies for ConvPool-CNN with ADAM

CNN
BWN
HWN
BHWN-NormalAvg
BHWN-RandomAvg

Figure 4.1: Test accuracy results for different optimizers.

tables and figures, SGD and SGD with momentum algorithms cannot train some

networks, especially HIN. SGD with momentum optimizer struggles to train even

the standard CNN. SGD based algorithms may be slow for these networks. The

reasons might be the learning rate or the low capacity. In order to avoid these

problems, a higher initial learning rate can be chosen or another learning rate

decay technique can be applied. Increasing the size of the hidden layers is another

option. The training failure which is caused by the SGD based algorithms also

affects the performance of combined BWHIN. If HIN cannot be trained, it may

probably affect the averaging negatively and the network may fail to perform

classification.

4.1.2 Effect of Dropout

As mentioned in Section 2.3, dropout is chosen as the regularization technique

for our models in order to reduce overfitting. Since a fully connected layer in

a CNN owns most of the parameters, individual nodes are dropped out at this

45

ConvoPool-CNN
p = 1.0 p = 0.75 p = 0.5

Max Test
Accuracy

Last Test
Accuracy

Max Test
Accuracy

Last Test
Accuracy

Max Test
Accuracy

Last Test
Accuracy

CNN 99.46 99.35 99.48 99.41 99.48 99.38
BWN 98.89 98.85 98.88 98.75 98.83 98.77
HIN 98.27 98.18 98.32 98.23 98.02 97.91
BWHIN-NormalAvg 99.01 98.85 98.79 98.67 98.66 98.61
BWHIN-RandomAvg 98.73 98.64 98.96 98.88 98.74 98.59

(a) ConvoPool-CNN

All-CNN
p = 1.0 p = 0.75 p = 0.5

Max Test
Accuracy

Last Test
Accuracy

Max Test
Accuracy

Last Test
Accuracy

Max Test
Accuracy

Last Test
Accuracy

CNN 99.2 99.13 99.31 99.24 99.3 99.15
BWN 98.43 98.38 98.37 98.23 98.49 98.36
HIN 97.73 97.65 97.84 97.71 98.01 98.01
BWHIN-NormalAvg 98.32 98.21 98.4 98.23 97.95 97.94
BWHIN-RandomAvg 98.38 98.3 98.61 98.5 98.55 98.48

(b) All-CNN

Table 4.2: Test accuracy results (in percentage) for different dropout probabilities.

layer with probability (1− p) where p is the probability of the nodes kept in the

neural network [31]. For example, if p = 1.0, none of the units in the layer will

be dropped out. If p = 0.5, only the half of the units at the layer are kept. In

Table 4.2, the results for with different p probabilities are shown. One should pay

attention that dropout is performed only at the training stage, while there is no

dropout at test time; i.e. p = 1.0 while testing. The removed nodes of the hidden

layer at the training stage has to be reinserted at the test stage. The results are

also illustrated in Figure 4.2.

Dropout technique is highly recommended in terms of energy efficiency and

its regularization effect. Considering ConvPool-CNN architecture, most networks

are more successful at classification with p = 0.75. p = 1.0 gives the best results

only for BWN and BWHIN-Normal which is affected by the training of BWN.

Considering All-CNN architecture, when p = 0.75, most networks give better

results. Only BWN and HIN has the best results for p = 0.5. Yet, both combined

network models work better than BWN and HIN when the probability of retention

is equal to 0.75. From Figure 4.2, the probabilities p = 1.0 and p = 0.75 seem

to train with high speed. However, when the table A.3 in Appendix A.3 which

shows the loss results is analyzed, it can be observed that the generalization gap

46

0 2000 4000 6000 8000 10000

Number of Iterations

0.8

0.9

1

T
es

t A
cc

ur
ac

y

Test Accuracies for All-CNN with pkeep=1.0

0 2000 4000 6000 8000 10000

Number of Iterations

0.8

0.9

1

T
es

t A
cc

ur
ac

y

Test Accuracies for All-CNN with pkeep=0.75

0 2000 4000 6000 8000 10000

Number of Iterations

0.8

0.9

1

T
es

t A
cc

ur
ac

y

Test Accuracies for All-CNN with pkeep=0.5

CNN
BWN
HWN
BHWN-NormalAvg
BHWN-RandomAvg

0 2000 4000 6000 8000 10000

Number of Iterations

0.8

0.9

1

T
es

t A
cc

ur
ac

y

Test Accuracies for ConvPool-CNN with pkeep=1.0

0 2000 4000 6000 8000 10000

Number of Iterations

0.8

0.9

1

T
es

t A
cc

ur
ac

y

Test Accuracies for ConvPool-CNN with pkeep=0.75

0 2000 4000 6000 8000 10000

Number of Iterations

0.8

0.9

1

T
es

t A
cc

ur
ac

y

Test Accuracies for ConvPool-CNN with pkeep=0.5

CNN
BWN
HWN
BHWN-NormalAvg
BHWN-RandomAvg

Figure 4.2: Test accuracy results for different dropout probabilities.

between training and test loss is higher for p = 1.0. Hence p = 0.75 is preferred

over p = 1.0. As also seen from Figure 4.2, the models with p = 0.5 has slower

training speed than the models with higher p.

4.1.3 Effect of Activation Function on FC Layer

According to our proposed architectures, there is only one fully-connected layer

before the output layer (softmax layer). Unlike the convolutional layers of the

models, no energy efficient technique is applied to the FC layer, except from

the dropout training as regularization. Hence the behavior of the activation

function at this layer should be investigated. Sigmoid, tangent hyperbolic (tanh)

and ReLU functions are used to evaluate the performance of neural networks.

Although ReLU mostly outperforms other activation functions for MLPs and

CNNs such as in [8], sigmoid and tanh are still common. The results for these

activation functions are shown in Table 4.3 and the test accuracies throughout

the training are demonstrated in Figure 4.3.

47

ConvoPool-CNN
Sigmoid Tanh ReLU

Max Test
Accuracy

Last Test
Accuracy

Max Test
Accuracy

Last Test
Accuracy

Max Test
Accuracy

Last Test
Accuracy

CNN 99.39 99.33 99.38 99.29 99.48 99.41
BWN 98.62 98.5 98.73 98.66 98.88 98.75
HIN 98.36 98.28 98.3 98.22 98.32 98.23
BWHIN-NormalAvg 98.95 98.85 98.92 98.81 98.79 98.67
BWHIN-RandomAvg 98.34 98.25 98.58 98.51 98.96 98.88

(a) ConvoPool-CNN

All-CNN
Sigmoid Tanh ReLU

Max Test
Accuracy

Last Test
Accuracy

Max Test
Accuracy

Last Test
Accuracy

Max Test
Accuracy

Last Test
Accuracy

CNN 99.12 99.09 99.33 99.26 99.31 99.24
BWN 98.11 97.95 98.41 98.3 98.37 98.23
HIN 97.71 97.64 97.61 97.55 97.84 97.71
BWHIN-NormalAvg 98.18 98.02 98.31 98.2 98.4 98.23
BWHIN-RandomAvg 98.34 98.28 98.27 98.17 98.61 98.5

(b) All-CNN

Table 4.3: Test accuracy results (in percentage) for different activation functions
at FC layer.

ReLU has the highest test accuracy for both architectures and most of the

models. As an exception, for ConvPool-CNN architecture, sigmoid function has

better classification results for HIN and BWHIN-Normal whose one of the sub-

networks is HIN. For All-CNN architecture, tangent hyperbolic gives best results

only for standard CNN and BWN. As shown in Figure 4.3, ReLU is the fastest

activation function. It is an expected result, since the definition function of ReLU

f(x) = max(0, x) only requires a comparison. On the other hand, sigmoid and

its more practical counterpart tanh have more complex computation due to the

exponential term in their formula. Hence ReLU is the best option for the energy

efficient neural networks.

4.2 Experiments on CIFAR-10

After we observe the effects of three parameters on energy efficient neural net-

works experimented on MNIST dataset, we choose the most suitable parameters

for our CIFAR-10 architectures. Thus, ReLU is chosen as the activation function

48

0 2000 4000 6000 8000 10000

Number of Iterations

0.8

0.9

1

T
es

t A
cc

ur
ac

y

Test Accuracies for All-CNN with Sigmoid

0 2000 4000 6000 8000 10000

Number of Iterations

0.8

0.9

1

T
es

t A
cc

ur
ac

y

Test Accuracies for All-CNN with Tanh

0 2000 4000 6000 8000 10000

Number of Iterations

0.8

0.9

1

T
es

t A
cc

ur
ac

y

Test Accuracies for All-CNN with ReLU

CNN
BWN
HWN
BHWN-NormalAvg
BHWN-RandomAvg

0 2000 4000 6000 8000 10000

Number of Iterations

0.8

0.9

1

T
es

t A
cc

ur
ac

y

Test Accuracies for ConvPool-CNN with Sigmoid

0 2000 4000 6000 8000 10000

Number of Iterations

0.8

0.9

1

T
es

t A
cc

ur
ac

y

Test Accuracies for ConvPool-CNN with Tanh

0 2000 4000 6000 8000 10000

Number of Iterations

0.8

0.9

1

T
es

t A
cc

ur
ac

y

Test Accuracies for ConvPool-CNN with ReLU

CNN
BWN
HWN
BHWN-NormalAvg
BHWN-RandomAvg

Figure 4.3: Test accuracy results for different activation functions at FC layer.

at the FC layer and ADAM algorithm is preferred as the optimizer. Since dropout

is strongly encouraged for energy-efficient neural networks as examined in Section

4.1.2, we use once again dropout for CIFAR-10 models, but for three times. As

illustrated in Table 3.2, the probability of retention at the convolutional layers

is chosen as p = 0.75, while p is set as p = 0.5 at the FC layer. In Table 4.4,

the results for CIFAR-10 database are demonstrated. The progress of the test

accuracies is also shown in Figure 4.4.

ConvoPool-CNN All-CNN
Max Test
Accuracy

Last Test
Accuracy

Max Test
Accuracy

Last Test
Accuracy

CNN 82.64 81.2 77.32 75.32
BWN 68.72 64.92 65.36 62.88
HIN 61.36 58.72 11.76 9.92
BWHIN-NormalAvg 72.10 69.65 67.70 66.90
BWHIN-RandomAvg 72.65 71.15 67.30 63.80

Table 4.4: Test accuracy results (in percentage) for CIFAR-10 dataset.

According to the training accuracy results in Appendix B, the energy efficient

neural networks are underfitting; HIN is not even trained for All-CNN architec-

ture. If we increase the number of iterations without making the conventional

49

CNN overfit, the test accuracy results will be higher and closer to the stan-

dard CNN. Combined model BWHIN-Random has the best result for ConvPool

architecture, while BWHIN-Normal has the best test accuracy with All-CNN ar-

chitecture. Even though HIN is not even trained, combined models achieve better

results than both BWN and HIN due to the robust nature of BWN.

0 5 10 15

Number of Iterations ×104

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
es

t A
cc

ur
ac

y

Test Accuracies of All-CNN for CIFAR-10

CNN
BWN
HWN
BHWN-Normal
BHWN-Random

0 5 10 15

Number of Iterations ×104

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
es

t A
cc

ur
ac

y
Test Accuracies of ConvPool-CNN for CIFAR-10

Figure 4.4: Test accuracy results for different activation functions at FC layer.

4.3 Effect of Architectures

Pooling layer is widely used in convolutional neural networks and its usage is

highly recommended to handle the input sizes because it summarizes the re-

sponses over a whole neighborhood by reducing the dimensionality. Hence it can

be said that pooling improves the computational efficiency [1]. As observed from

the tables in the previous sections, it’s clear that our CNN-based energy efficient

neural networks with ConvPool architecture have better classification results than

the All-CNN networks. Although networks with pooling layer have greater test

accuracies, All-CNN can be preferred over ConvPool-CNN, since they are more

energy-efficient. Here, both a convolutional layer with stride 1 and pooling layer

is replaced by a convolutional layer which has stride greater than 1. Number

of multiplications, multiplication-based operations in the convolutional layer is

50

decreased by a significant amount with strided convolution. While the down-

sampling is performed along with full convolution, a large number of values are

already computed in convolutional layer, then many of these values are discarded

with pooling operation. This is computationally wasteful; it will take more time

and use more memory than strided convolutional layer. If we take the risk of less

test accuracy in order to achieve energy efficiency, strided convolution should be

used instead of pooling.

A very important point must be stated about All-CNN. If we increase the

capacity of All-CNN by increasing the size of the layers and/or making a deeper

network, image classification can be performed without the loss of accuracy. In

some cases, it may even give better results [22].

4.4 Comparison of Energy Efficient Neural Net-

works

We proposed four energy efficient neural networks and compared them with the

conventional CNN and BWN which was already proposed in here [18]. The trade-

off of the energy efficient neural networks is that we sacrifice the classification

performance slightly in order to achieve energy efficiency.

Binary Weight Network is a very robust network to the changes of the hy-

perparameters. As seen from the tables 4.1 to 4.4, this model could train the

network for any cases. On the other hand, Hadamard-transformed Image Net-

work is slightly worse than BWN. The reason could be the slight change in the

original architecture. If Hadamard transform is applied to an image whose width

& height is not a power of 2, size of the image changes such that the width and

height is increased to the next power of 2 of their original values. Hence, if we

want to feed the Hadamard-transformed images to the network as input images,

we need to modify the architecture of the network. For example, MNIST images

have a size of 28*28*1 and they are zero-padded to the size of 32*32*1 in order to

51

perform Hadamard Transform. As a result, we change our original architecture

for MNIST such that the output of the first convolutional layer is still 28*28*1.

We modify the filter size as 5*5 and remove the zero-padding completely for the

first convolutional layer. Hence, that might be the reason why HIN has worse

performance and is a lossy network than BWN.

Combined models work as expected; they have better test accuracies than

their sub-networks BWN and HIN. Our random average method seem to work

for most cases, but for some cases it gives worse results than BWN. When the

random averaging has the lower test accuracies than BWN, the conventional

averaging is always better than both BWN and BWHIN-Random models. Hence

both averaging techniques should be tried and it should be observed which one

has better test accuracies even though the random-average works for most of

the cases. Combined models are also a good solution to the failure of one sub-

network. For example, when HIN is not trained, BWN compensates this failure

and BWN-Normal/BWN-Random gives better results than both BWN and HIN.

Hence it can be said that our combined model is also robust in case one of the

subnetworks cannot be trained.

52

Chapter 5

Conclusion and Future Work

In recent years, artificial neural networks (ANN) are used widely to compute

challenging tasks such as image classification, object detection and to solve real

world problems in computer vision, robotics, natural language processing etc.

Especially convolutional neural networks (CNN) achieve very satisfying results

for these tasks. However, the number of parameters in these deep neural networks

are so high that computers require high energy consumption and large memory

size to handle complex problems. In case of mobile devices, this hardware and

energy problem prevents us from implementing such algorithms effectively. In

this thesis, we study CNN-based enery efficient neural networks for the image

classification tasks of MNIST database. These models are BWN, HIN, BWHIN-

Normal and BWHIN-Random. Their performances are compared with different

parameters (optimizers, dropout probabilities and activation function at FC layer)

and with different image datasets. Two different architectures are also proposed

to investigate their energy efficiency, namely ConvPool-CNN and All-CNN. Their

success at classification is evaluated by the test accuracy result.

According to our experiments on MNIST, ADAM optimizer seems to be best

learning algorithm. In some cases, SGD and SGD with momentum couldn’t

train the model. As a solution, capacity of the neural networks can be increased

53

or a larger initial learning rate can be chosen. Different learning decay tech-

niques might be helpful, too. Considering the regularization techniques, dropout

is highly recommended because it is computationally inexpensive. Dropout with

the correct probability of retention p not only improves the performance of the

network, but also decreases the generalization gap between training and test loss.

The optimal probability of the nodes kept in the layer should be between [0.5, 1),

but it is suggested that it should be closer to 1.0. It is also observed that ReLU

is the best choice not only for the nonlinearity stages of the CNN, but also as the

activation function at the FC layer. Since both sigmoid and tangent hyperbolic

functions saturate and they involve computationally expensive operations like

the exponential, ReLU can be preferred with its non-saturating form and simple

implementation.

According to our observations on MNIST database, while the standard CNN

has the highest test accuracy as 99.41% for ConvPool-CNN and 99.26% test ac-

curacy for All-CNN, the best result for the energy efficient models is 98.88% and

98.5% for ConvPool-CNN and All-CNN architectures, respectively. As seen here,

energy efficiency comes with a small loss of accuracy. This is the main drawback

of the energy efficient neural networks. Both results are obtained by BWHIN-

Random model with ADAM optimizer, dropout with the probability of keeping

neurons p = 0.75 and ReLU activation at FC layer. Our CIFAR-10 architecture

is also based on these parameters and verifies the MNIST results. Conventional

CNN is almost trained in 300 epochs and has 81.20% test accuracy for ConvPool-

CNN and 75.32% for All-CNN. On the other hand, energy efficient network mod-

els have the best test accuracies as 71.15% for ConvPool-CNN and 66.90% for

All-CNN. We achieve the best results for CIFAR-10 with BWHIN-Random model

and BWHIN-Normal models, respectively. Since CIFAR-10 models have larger

capacity and more parameters than MNIST models, energy efficient models be-

come slower than expected. As a result, the difference between the results of

standard CNN and energy efficient CNN is larger. Slower training speed is an-

other disadvantage of the energy efficient network models. These problems can

be solved by increasing the number of epoch.

While comparing the architectures, ConvPool-CNN with convolutional-pooling

54

layer pair has slightly better results than All-CNN with strided convolutional

layer. However, if we want to implement a energy efficient network, All-CNN

should be chosen because it computes the convolutions with less parameters and

it requires less memory storage than ConvoPool-CNN architecture. Once again

there is a trade-off between better test accuracy results and more energy-efficient

network. Test accuracies for All-CNN can be improved by increasing the layer

size or the number of hidden layers. Considering the proposed networks, BWN

gives really good results, while HIN sometimes struggles to train the network. The

combined models BWHIN-Normal and BWHIN-Random, which are our principle

contributions, certainly improves the performance of their sub-networks BWN

and HIN. Hence as an energy efficient model, the combined model can be preferred

with its superior classification performance.

As future work, proposed energy efficient neural networks can be used for the

classification of other datasets such as CIFAR-100, Street View House Numbers

(SVHN) dataset or ImageNet. The networks can be also implemented with bigger

capacity by increasing the size of a hidden layer or with more hidden layers, i.e.

as a deeper network. Other regularization or optimization techniques could be

also investigated. Effects of data preprocessing or usage of unsupervised learning

as pretraining on energy efficient NN might be another research topic.

55

Bibliography

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT press, 2016.

[2] T.-Y. Lin, A. RoyChowdhury, and S. Maji, “Bilinear cnn models for fine-

grained visual recognition,” in Proceedings of the IEEE International Con-

ference on Computer Vision, pp. 1449–1457, 2015.

[3] F. F. Li, J. Johnson, and A. Karpathy, “Cs231n: Convolutional neural net-

works for visual recognition - neural networks part 3: Learning and evalua-

tion,” 2017. [Online; accessed 26-July-2017].

[4] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny

images,” 2009.

[5] M. Egmont-Petersen, D. de Ridder, and H. Handels, “Image processing with

neural networks—a review,” Pattern recognition, vol. 35, no. 10, pp. 2279–

2301, 2002.

[6] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,

no. 7553, pp. 436–444, 2015.

[7] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,

pp. 2278–2324, 1998.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with

deep convolutional neural networks,” in Advances in neural information pro-

cessing systems, pp. 1097–1105, 2012.

56

[9] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con-

nections for efficient neural network,” in Advances in Neural Information

Processing Systems, pp. 1135–1143, 2015.

[10] H. Tuna, I. Onaran, and A. E. Cetin, “Image description using a multiplier-

less operator,” IEEE Signal Processing Letters, vol. 16, no. 9, pp. 751–753,

2009.

[11] C. E. Akbas, A. Bozkurt, M. T. Arslan, H. Aslanoglu, and A. E. Cetin, “L1

norm based multiplication-free cosine similarity measures for big data analy-

sis,” in Computational Intelligence for Multimedia Understanding (IWCIM),

2014 International Workshop on, pp. 1–5, IEEE, 2014.

[12] A. Suhre, F. Keskin, T. Ersahin, R. Cetin-Atalay, R. Ansari, and A. E.

Cetin, “A multiplication-free framework for signal processing and applica-

tions in biomedical image analysis,” in Acoustics, Speech and Signal Pro-

cessing (ICASSP), 2013 IEEE International Conference on, pp. 1123–1127,

IEEE, 2013.

[13] C. E. Akbaş, A. Bozkurt, A. E. Çetin, R. Çetin-Atalay, and A. Üner,

“Multiplication-free neural networks,” in Signal Processing and Communica-

tions Applications Conference (SIU), 2015 23th, pp. 2416–2418, IEEE, 2015.

[14] A. Afrasiyabi, O. Yildiz, B. Nasir, F. T. Y. Vural, and A. E. Cetin, “Energy

saving additive neural network,” arXiv preprint arXiv:1702.02676, 2017.

[15] D. Badawi, E. Akhan, M. Mallah, A. Üner, R. Çetin-Atalay, and A. E. Çetin,

“Multiplication free neural network for cancer stem cell detection in h-and-e

stained liver images,” in SPIE Commercial+ Scientific Sensing and Imaging,

pp. 102110C–102110C, International Society for Optics and Photonics, 2017.

[16] S. K. Esser, P. A. Merolla, J. V. Arthur, A. S. Cassidy, R. Appuswamy,

A. Andreopoulos, D. J. Berg, J. L. McKinstry, T. Melano, D. R. Barch, et al.,

“Convolutional networks for fast, energy-efficient neuromorphic computing,”

Proceedings of the National Academy of Sciences, p. 201604850, 2016.

57

[17] S. S. Sarwar, S. Venkataramani, A. Raghunathan, and K. Roy, “Multiplier-

less artificial neurons exploiting error resiliency for energy-efficient neural

computing,” in Design, Automation & Test in Europe Conference & Exhibi-

tion (DATE), 2016, pp. 145–150, IEEE, 2016.

[18] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Imagenet

classification using binary convolutional neural networks,” in European Con-

ference on Computer Vision, pp. 525–542, Springer, 2016.

[19] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural

network,” arXiv preprint arXiv:1503.02531, 2015.

[20] İ. Çuğu, E. Şener, and E. Akbaş, “Microexpnet: An extremely small and fast

model for expression recognition from frontal face images,” arXiv preprint

arXiv:1711.07011, 2017.

[21] B. J. Fino and V. R. Algazi, “Unified matrix treatment of the fast walsh-

hadamard transform,” IEEE Transactions on Computers, vol. 25, no. 11,

pp. 1142–1146, 1976.

[22] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving

for simplicity: The all convolutional net,” arXiv preprint arXiv:1412.6806,

2014.

[23] F. Rosenblatt, “The perceptron: A probabilistic model for information stor-

age and organization in the brain.,” Psychological review, vol. 65, no. 6,

p. 386, 1958.

[24] S. S. Haykin, Neural networks and learning machines, vol. 3. Pearson, 2009.

[25] F. F. Li, J. Johnson, and A. Karpathy, “Cs231n: Convolutional neural net-

works for visual recognition - neural networks part 1: Setting up the archi-

tecture,” 2017. [Online; accessed 12-December-2017].

[26] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient backprop,” in

Neural networks: Tricks of the trade, pp. 9–50, Springer, 1998.

58

[27] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,”

in Proceedings of the Fourteenth International Conference on Artificial In-

telligence and Statistics, pp. 315–323, 2011.

[28] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve

neural network acoustic models,” in Proc. ICML, vol. 30, 2013.

[29] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S. Ben-

gio, “Why does unsupervised pre-training help deep learning?,” Journal of

Machine Learning Research, vol. 11, no. Feb, pp. 625–660, 2010.

[30] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network

training by reducing internal covariate shift,” in International Conference on

Machine Learning, pp. 448–456, 2015.

[31] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-

nov, “Dropout: a simple way to prevent neural networks from overfitting.,”

Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[32] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv

preprint arXiv:1412.6980, 2014.

[33] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for on-

line learning and stochastic optimization,” Journal of Machine Learning Re-

search, vol. 12, no. Jul, pp. 2121–2159, 2011.

[34] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient by

a running average of its recent magnitude,” COURSERA: Neural networks

for machine learning, vol. 4, no. 2, pp. 26–31, 2012.

[35] Y. Bengio et al., “Learning deep architectures for ai,” Foundations and

trends R© in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[36] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and

functional architecture in the cat’s visual cortex,” The Journal of physiology,

vol. 160, no. 1, pp. 106–154, 1962.

59

[37] K. Fukushima and S. Miyake, “Neocognitron: A self-organizing neural net-

work model for a mechanism of visual pattern recognition,” in Competition

and cooperation in neural nets, pp. 267–285, Springer, 1982.

[38] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-

bard, and L. D. Jackel, “Backpropagation applied to handwritten zip code

recognition,” Neural computation, vol. 1, no. 4, pp. 541–551, 1989.

[39] F. F. Li, J. Johnson, and A. Karpathy, “Cs231n: Convolutional neural net-

works for visual recognition - convolutional neural networks: Architectures,”

2017. [Online; accessed 24-July-2017].

[40] D. C. Ciresan, U. Meier, J. Masci, L. Maria Gambardella, and J. Schmid-

huber, “Flexible, high performance convolutional neural networks for image

classification,” in IJCAI Proceedings-International Joint Conference on Ar-

tificial Intelligence, vol. 22, p. 1237, Barcelona, Spain, 2011.

[41] C.-Y. Wu, M. Zaheer, H. Hu, R. Manmatha, A. J. Smola, and P. Krähenbühl,

“Compressed video action recognition,” arXiv preprint arXiv:1712.00636,

2017.

[42] M. Petrou and C. Petrou, Image Processing: The Fundamentals. John Wiley

& Sons.

[43] R. C. Gonzalez and R. E. Woods, Digital Image Processing. Pearson Edu-

cation, 2007.

[44] W. K. Pratt, J. Kane, and H. C. Andrews, “Hadamard transform image

coding,” Proceedings of the IEEE, vol. 57, no. 1, pp. 58–68, 1969.

[45] S. Yang and A. Browne, “Neural network ensembles: combining multiple

models for enhanced performance using a multistage approach,” Expert Sys-

tems, vol. 21, no. 5, pp. 279–288, 2004.

[46] Y. Bengio, “Practical recommendations for gradient-based training of deep

architectures,” in Neural networks: Tricks of the trade, pp. 437–478,

Springer, 2012.

60

[47] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep

feedforward neural networks,” in Proceedings of the Thirteenth International

Conference on Artificial Intelligence and Statistics, pp. 249–256, 2010.

[48] G. Hinton, “A practical guide to training restricted boltzmann machines,”

Momentum, vol. 9, no. 1, p. 926, 2010.

[49] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhut-

dinov, “Improving neural networks by preventing co-adaptation of feature

detectors,” arXiv preprint arXiv:1207.0580, 2012.

[50] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proceedings of the IEEE conference on computer vision and

pattern recognition, pp. 770–778, 2016.

[51] Y. LeCun, “The mnist database of handwritten digits,” http://yann. lecun.

com/exdb/mnist/, 1998.

[52] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin, et al., “Tensorflow: Large-scale

machine learning on heterogeneous distributed systems,” arXiv preprint

arXiv:1603.04467, 2016.

61

Appendix A

MNIST Results

A.1 Test Accuracies

Overall test accuracy results for MNIST are shown in Table A.1 on page 63.

A.2 Training Accuracies

Results for the maximum training accuracy and the last training accuracy at the

end of the iterations are shown in Table A.2 on page 64.

A.3 Training and Test Losses

Results for the training loss and the test loss at the end of the iterations are

shown in Table A.3 on page 65.

62

C
N
N

B
W

N
H
IN

B
W

H
IN

-N
o
rm

a
l

B
W

H
IN

-R
a
n
d
o
m

M
a
x

T
es
t

A
cc
u
.

L
a
st

T
es
t

A
cc
u
.

M
a
x

T
es
t

A
cc
u
.

L
a
st

T
es
t

A
cc
u
.

M
a
x

T
es
t

A
cc
u
.

L
a
st

T
es
t

A
cc
u
.

M
a
x

T
es
t

A
cc
u
.

L
a
st

T
es
t

A
cc
u
.

M
a
x

T
es
t

A
cc
u
.

L
a
st

T
es
t

A
cc
u
.

O
p
ti
m
iz
er
s

S
G
D

9
9
.2
6

9
9
.1
7

9
8
.4
6

9
8
.3
6

1
1
.3
5

1
1
.3
5

9
8
.2
7

9
8
.1
5

9
8
.9

9
8
.7
8

S
G
D
-m

o
m
en

tu
m

1
1
.3
5

1
1
.3
5

9
8
.9
2

9
8
.7
9

1
1
.3
5

1
1
.3
5

9
9
.0
4

9
8
.9
1

9
8
.7
7

9
8
.7
1

A
D
A
M

9
9
.4
8

9
9
.4
1

9
8
.8
8

9
8
.7
5

9
8
.3
2

9
8
.2
3

9
8
.7
9

9
8
.6
7

9
8
.9
6

9
8
.8
8

D
ro
p
o
u
t

1
.0

9
9
.4
6

9
9
.3
5

9
8
.8
9

9
8
.8
5

9
8
.2
7

9
8
.1
8

9
9
.0
1

9
8
.8
5

9
8
.7
3

9
8
.6
4

0
.7
5

9
9
.4
8

9
9
.4
1

9
8
.8
8

9
8
.7
5

9
8
.3
2

9
8
.2
3

9
8
.7
9

9
8
.6
7

9
8
.9
6

9
8
.8
8

0
.5

9
9
.4
8

9
9
.3
8

9
8
.8
3

9
8
.7
7

9
8
.0
2

9
7
.9
1

9
8
.6
6

9
8
.6
1

9
8
.7
4

9
8
.5
9

F
C

A
ct
iv
a
ti
o
n

S
ig
m
o
id

9
9
.3
9

9
9
.3
3

9
8
.6
2

9
8
.5

9
8
.3
6

9
8
.2
8

9
8
.9
5

9
8
.8
5

9
8
.3
4

9
8
.2
5

T
a
n
h

9
9
.3
8

9
9
.2
9

9
8
.7
3

9
8
.6
6

9
8
.3

9
8
.2
2

9
8
.9
2

9
8
.8
1

9
8
.5
8

9
8
.5
1

R
eL

U
9
9
.4
8

9
9
.4
1

9
8
.8
8

9
8
.7
5

9
8
.3
2

9
8
.2
3

9
8
.7
9

9
8
.6
7

9
8
.9
6

9
8
.8
8

(a
)
T
es
t
ac
cu

ra
cy

re
su
lt
s
fo
r
C
on

v
P
o
ol
-C

N
N

C
N
N

B
W

N
H
IN

B
W

H
IN

-N
o
rm

a
l

B
W

H
IN

-R
a
n
d
o
m

M
a
x

T
es
t

A
cc
u
.

L
a
st

T
es
t

A
cc
u
.

M
a
x

T
es
t

A
cc
u
.

L
a
st

T
es
t

A
cc
u
.

M
a
x

T
es
t

A
cc
u
.

L
a
st

T
es
t

A
cc
u
.

M
a
x

T
es
t

A
cc
u
.

L
a
st

T
es
t

A
cc
u
.

M
a
x

T
es
t

A
cc
u
.

L
a
st

T
es
t

A
cc
u
.

O
p
ti
m
iz
er
s

S
G
D

9
9
.1
2

9
9
.0
9

9
8
.1
1

9
8
.0
5

9
6
.4
8

9
6
.3
5

9
7
.2
4

9
7
.1
3

9
8
.0
9

9
8
.0
7

S
G
D
-m

o
m
en

tu
m

1
1
.3
5

1
1
.3
5

9
8
.4
8

9
8
.4
4

1
1
.3
5

1
1
.3
5

9
8
.4
7

9
8
.3
8

1
0
.0
9

9
.8

A
D
A
M

9
9
.3
1

9
9
.2
4

9
8
.3
7

9
8
.2
3

9
7
.8
4

9
7
.7
1

9
8
.4

9
8
.2
3

9
8
.6
1

9
8
.5

D
ro
p
o
u
t

1
.0

9
9
.2

9
9
.1
3

9
8
.4
3

9
8
.3
8

9
7
.7
3

9
7
.6
5

9
8
.3
2

9
8
.2
1

9
8
.3
8

9
8
.3

0
.7
5

9
9
.3
1

9
9
.2
4

9
8
.3
7

9
8
.2
3

9
7
.8
4

9
7
.7
1

9
8
.4

9
8
.2
3

9
8
.6
1

9
8
.5

0
.5

9
9
.3

9
9
.1
5

9
8
.4
9

9
8
.3
6

9
8
.0
1

9
8
.0
1

9
7
.9
5

9
7
.9
4

9
8
.5
5

9
8
.4
8

F
C

A
ct
iv
a
ti
o
n

S
ig
m
o
id

9
9
.1
2

9
9
.0
9

9
8
.1
1

9
7
.9
5

9
7
.7
1

9
7
.6
4

9
8
.1
8

9
8
.0
2

9
8
.3
4

9
8
.2
8

T
a
n
h

9
9
.3
3

9
9
.2
6

9
8
.4
1

9
8
.3

9
7
.6
1

9
7
.5
5

9
8
.3
1

9
8
.2

9
8
.2
7

9
8
.1
7

R
eL

U
9
9
.3
1

9
9
.2
4

9
8
.3
7

9
8
.2
3

9
7
.8
4

9
7
.7
1

9
8
.4

9
8
.2
3

9
8
.6
1

9
8
.5

(b
)
T
es
t
ac
cu

ra
cy

re
su
lt
s
fo
r
A
ll
-C

N
N

T
ab

le
A

.1
:

T
es

t
ac

cu
ra

cy
re

su
lt

s
(i

n
p

er
ce

n
ta

ge
)

fo
r

M
N

IS
T

d
at

ab
as

e.

63

C
N
N

B
W

N
H
IN

B
W

H
IN

-N
o
rm

a
l

B
W

H
IN

-R
a
n
d
o
m

M
a
x

T
ra
in
-

in
g

A
cc
u
.

L
a
st

T
ra
in
-

in
g

A
cc
u
.

M
a
x

T
ra
in
-

in
g

A
cc
u
.

L
a
st

T
ra
in
-

in
g

A
cc
u
.

M
a
x

T
ra
in
-

in
g

A
cc
u
.

L
a
st

T
ra
in
-

in
g

A
cc
u
.

M
a
x

T
ra
in
-

in
g

A
cc
u
.

L
a
st

T
ra
in
-

in
g

A
cc
u
.

M
a
x

T
ra
in
-

in
g

A
cc
u
.

L
a
st

T
ra
in
-

in
g

A
cc
u
.

O
p
ti
m
iz
er
s

S
G
D

1
1

1
1

0
.2
5

0
.1
4

1
0
.9
8

1
1

S
G
D
-m

o
m
en

tu
m

0
.2

0
.0
8

1
1

0
.2

0
.1
6

1
0
.9
9

1
1

A
D
A
M

1
1

1
1

1
0
.9
9

1
1

1
1

D
ro
p
o
u
t

1
.0

1
1

1
1

1
0
.9
8

1
1

1
1

0
.7
5

1
1

1
1

1
0
.9
9

1
1

1
1

0
.5

1
1

1
1

1
0
.9
9

1
1

1
1

F
C

A
ct
iv
a
ti
o
n

S
ig
m
o
id

1
1

1
1

1
1

1
1

1
1

T
a
n
h

1
1

1
1

1
0
.9
9

1
1

1
1

R
eL

U
1

1
1

1
1

0
.9
9

1
1

1
1

(a
)
T
ra
in
in
g
ac
cu

ra
cy

re
su
lt
s
fo
r
C
on

v
P
o
ol
-C

N
N

C
N
N

B
W

N
H
IN

B
W

H
IN

-N
o
rm

a
l

B
W

H
IN

-R
a
n
d
o
m

M
a
x

T
ra
in
-

in
g

A
cc
u
.

L
a
st

T
ra
in
-

in
g

A
cc
u
.

M
a
x

T
ra
in
-

in
g

A
cc
u
.

L
a
st

T
ra
in
-

in
g

A
cc
u
.

M
a
x

T
ra
in
-

in
g

A
cc
u
.

L
a
st

T
ra
in
-

in
g

A
cc
u
.

M
a
x

T
ra
in
-

in
g

A
cc
u
.

L
a
st

T
ra
in
-

in
g

A
cc
u
.

M
a
x

T
ra
in
-

in
g

A
cc
u
.

L
a
st

T
ra
in
-

in
g

A
cc
u
.

O
p
ti
m
iz
er
s

S
G
D

1
1

1
1

1
0
.9
5

1
0
.9
9

1
1

S
G
D
-m

o
m
en

tu
m

0
.2
1

0
.1
1

1
1

0
.2
2

0
.1
6

1
1

0
.1
9

0
.0
6

A
D
A
M

1
1

1
1

1
0
.9
9

1
1

1
1

D
ro
p
o
u
t

1
.0

1
1

1
1

1
1

1
1

1
1

0
.7
5

1
1

1
1

1
0
.9
9

1
1

1
1

0
.5

1
1

1
1

1
0
.9
8

1
1

1
1

F
C

A
ct
iv
a
ti
o
n

S
ig
m
o
id

1
1

1
0
.9
9

1
1

1
1

1
0
.9
8

T
a
n
h

1
1

1
1

1
0
.9
7

1
1

1
1

R
eL

U
1

1
1

1
1

0
.9
9

1
1

1
1

(b
)
T
ra
in
in
g
ac
cu

ra
cy

re
su
lt
s
fo
r
A
ll
-C

N
N

T
ab

le
A

.2
:

T
ra

in
in

g
ac

cu
ra

cy
re

su
lt

s.

64

C
N
N

B
W

N
H
IN

B
W

H
IN

-N
o
rm

a
l

B
W

H
IN

-R
a
n
d
o
m

T
ra
in
in
g

L
o
ss
.

T
es
t

L
o
ss
.

T
ra
in
in
g

L
o
ss
.

T
es
t

L
o
ss
.

T
ra
in
in
g

L
o
ss
.

T
es
t

L
o
ss
.

T
ra
in
in
g

L
o
ss
.

T
es
t

L
o
ss
.

T
ra
in
in
g

L
o
ss
.

T
es
t

L
o
ss
.

O
p
ti
m
iz
er
s

S
G
D

0
.1
9
3

2
.7
3
0
9

0
.3
3
0
6

4
.8
5
9

2
2
9
.4
6
7
8

2
3
0
.1
0
5
8

4
.8
6
7
7

5
.6
2
6

0
.8
1
9
6

3
.7
5
3
5

S
G
D
-m

o
m
en

tu
m

2
3
0
.9
0
0
7

2
3
0
.1
0
9
1

0
.7
9
3

4
.0
2
8
7

2
2
9
.3
6
7
8

2
3
0
.1
3
7
9

1
.1
5
5
7

3
.9
6
3
3

1
.2
4
8
3

5
.7
4
5
5

A
D
A
M

0
.0
0
2
4

2
.3
1
1
6

0
.0
3
7
5

4
.7
7
0
9

2
.6
5
8
6

5
.7
1
0
3

1
.0
9
2
3

3
.7
1
9
3

0
.1
5
7
9

4
.1
8
7

D
ro
p
o
u
t

1
.0

0
.0
0
1

3
.2
0
6
9

0
.0
3
2
8

5
.8
2
9
8

4
.8
1
3
8

5
.6
0
0
2

0
.8
7
7
9

4
.0
2
4
5

0
.3
5
8
1

5
.0
9
1
4

0
.7
5

0
.0
0
2
4

2
.3
1
1
6

0
.0
3
7
5

4
.7
7
0
9

2
.6
5
8
6

5
.7
1
0
3

1
.0
9
2
3

3
.7
1
9
3

0
.1
5
7
9

4
.1
8
7

0
.5

0
.0
5
2
9

2
.1
3
9
6

0
.4
9
9
8

4
.1
5
9
1

4
.4
8
3
2

6
.7
2
1
8

1
.7
4
3
8

4
.3
2
9
3

1
.7
2
3
6

4
.2
3
1
5

F
C

A
ct
iv
a
ti
o
n

S
ig
m
o
id

0
.0
6
3
3

2
.0
4
8
8

0
.4
0
3
7

4
.7
8
4
6

1
.7
6
8
1

5
.1
8
4
3

1
.1
9
1
3

3
.4
4
1
3

2
.3
2
3
6

5
.2
1
7
4

T
a
n
h

0
.0
3
8
9

2
.4
2
7
8

0
.4
6
9
1

5
.0
1
5
7

2
.2
6
7
4

5
.4
5
3
1

1
.2
2
9
6

3
.8
4
8
6

1
.1
5
5
1

4
.3
5
4
5

R
eL

U
0
.0
0
2
4

2
.3
1
1
6

0
.0
3
7
5

4
.7
7
0
9

2
.6
5
8
6

5
.7
1
0
3

1
.0
9
2
3

3
.7
1
9
3

0
.1
5
7
9

4
.1
8
7

(a
)
L
os
se
s
fo
r
C
on

v
P
o
ol
-C

N
N

C
N
N

B
W

N
H
IN

B
W

H
IN

-N
o
rm

a
l

B
W

H
IN

-R
a
n
d
o
m

T
ra
in
in
g

L
o
ss
.

T
es
t

L
o
ss
.

T
ra
in
in
g

L
o
ss
.

T
es
t

L
o
ss
.

T
ra
in
in
g

L
o
ss
.

T
es
t

L
o
ss
.

T
ra
in
in
g

L
o
ss
.

T
es
t

L
o
ss
.

T
ra
in
in
g

L
o
ss
.

T
es
t

L
o
ss
.

O
p
ti
m
iz
er
s

S
G
D

0
.1
2
8
8

3
.0
3
3
2

1
.4
8
2
2

6
.2
2
3
2

1
6
.3
2
0
4

1
1
.7
9
2
9

3
.1
0
9
6

9
.0
0
2
9

1
.2
9
7

6
.4
9
7
3

S
G
D
-m

o
m
en

tu
m

2
3
0
.1
9
0
8

2
3
0
.1
2
9
7

0
.0
7
8
4

6
.4
3
0
8

2
2
9
.5
4
5
5

2
3
0
.1
1
7
1

0
.3
4
4
2

6
.5
3
6
1

N
a
N

N
a
N

A
D
A
M

0
.0
0
1
3

3
.1
0
2
1

0
.0
2
2
8

7
.7
5
4
5

1
.6
3
4
7

7
.3
5
6
8

0
.4
4
1
6

6
.3
9
4
5

0
.0
8
5
2

7
.9
2
8
8

D
ro
p
o
u
t

1
.0

0
.0
0
3
2

5
.1
3
6
2

0
.0
1
1
6

1
0
.3
6
1
4

0
.5
2
1
1

7
.7
6
2
6

0
.2
1
3
3

8
.1
6
6
2

0
.0
1
1
1

1
1
.4
2
3
6

0
.7
5

0
.0
0
1
3

3
.1
0
2
1

0
.0
2
2
8

7
.7
5
4
5

1
.6
3
4
7

7
.3
5
6
8

0
.4
4
1
6

6
.3
9
4
5

0
.0
8
5
2

7
.9
2
8
8

0
.5

0
.0
7
9
5

2
.6
0
3
4

1
.0
0
9
7

6
.3
2
7
1

5
.4
8
9
5

6
.9
6
7
6

1
.8
2
8
1

7
.3
9
7
5

0
.8
1
1
3

6
.0
2
7

F
C

A
ct
iv
a
ti
o
n

S
ig
m
o
id

0
.0
5
7
2

2
.8
5
9
4

2
.0
6
4
8

6
.5
7
0
7

0
.5
7
5

7
.1
8
0
7

0
.5
2
7
8

6
.0
0
2
2

4
.5
5
8
2

6
.0
2
1
8

T
a
n
h

0
.0
4
3
3

2
.4
7
5
3

0
.5
7
0
2

5
.9
7
1

3
.2
7
4
9

8
.3
4
0
6

0
.3
4
4
5

5
.6
8
1
7

0
.1
2
5
6

6
.5
8
8
1

R
eL

U
0
.0
0
1
3

3
.1
0
2
1

0
.0
2
2
8

7
.7
5
4
5

1
.6
3
4
7

7
.3
5
6
8

0
.4
4
1
6

6
.3
9
4
5

0
.0
8
5
2

7
.9
2
8
8

(b
)
L
os
se
s
fo
r
A
ll
-C

N
N

T
ab

le
A

.3
:

R
es

u
lt

s
fo

r
tr

ai
n
in

g
an

d
te

st
lo

ss
.

65

Appendix B

CIFAR-10 Results

Test accuracy results, training accuracies and training & test losses for CIFAR-10

are shown in Table B.1 on page 67.

66

C
N
N

B
W

N
H
IN

B
W

H
IN

-
N
o
rm

a
l

B
W

H
IN

-
R
a
n
d
o
m

T
es
t
A
cc
u
ra
cy

M
ax

T
es
t
A
cc
u
.

8
2
.6
4

6
8
.7
2

6
1
.3
6

7
2
.1
0

7
2
.6
5

L
as
t
T
es
t
A
cc
u
.

8
1
.2
0

6
4
.9
2

5
8
.7
2

6
9
.6
5

7
1
.1
5

T
ra
in
in
g
A
cc
u
ra
cy

M
ax

T
ra
in
in
g
A
cc
u
.

1
.0
0

0
.8
9

0
.9
4

0
.9
1

0
.9
0

L
as
t
T
ra
in
in
g
A
cc
u
.

1
.0
0

0
.7
5

0
.8
7

0
.8
2

0
.8
5

L
os
s

T
ra
in
in
g
L
o
ss

0
.0
5
7
8

6
8
.7
5
2
8

4
4
.5
8
1
4

5
6
.2
9
8
7

4
8
.2
5
6
1

T
es
t
L
os
s

8
4
.5
1
4
9

1
0
1
.9
6
4
8

1
2
7
.8
4
8
2

9
2
.6
4
0
7

8
7
.4
7
6
4

(a
)
R
es
u
lt
s
fo
r
C
on

v
P
o
ol
-C

N
N

C
N
N

B
W

N
H
IN

B
W

H
IN

-
N
o
rm

a
l

B
W

H
IN

-
R
a
n
d
o
m

T
es
t
A
cc
u
ra
cy

M
ax

T
es
t
A
cc
u
.

7
7
.3
2

6
5
.3
6

1
1
.7
6

6
7
.7
0

6
7
.3
0

L
as
t
T
es
t
A
cc
u
.

7
5
.3
2

6
2
.8
8

9
.9
2

6
6
.9
0

6
3
.8
0

T
ra
in
in
g
A
cc
u
ra
cy

M
ax

T
ra
in
in
g
A
cc
u
.

1
.0
0

0
.9
9

1
.0
0

1
.0
0

0
.9
8

L
as
t
T
ra
in
in
g
A
cc
u
.

1
.0
0

0
.9
7

0
.9
8

0
.9
1

0
.9
0

L
os
s

T
ra
in
in
g
L
o
ss

0
.2
1
2
8

2
2
.3
0
7
9

1
5
.4
7
6
4

2
9
.7
0
8
3

3
2
.9
0
9
4

T
es
t
L
os
s

1
1
1
.7
0
0
5
3
1

1
1
3
.0
1
7
6

5
1
8
.2
4
8
5

1
0
4
.1
3
4
0
3
3

1
0
8
.7
2
8
1

(b
)
R
es
u
lt
s
fo
r
A
ll
-C

N
N

T
ab

le
B

.1
:

O
ve

ra
ll

re
su

lt
s

fo
r

C
IF

A
R

-1
0

d
at

as
et

.
(N

ot
e

th
at

te
st

ac
cu

ra
ci

es
ar

e
in

p
re

ce
n
ta

ge
s.

)

67

	Introduction
	Literature Review & Background
	Basics of Neural Network
	Activation Functions

	Training of Neural Networks
	Forward Propagation
	Backpropagation

	Regularization
	Optimizers
	Convolutional Neural Networks (CNN)
	Convolutional Layer
	Nonlinearity Stage
	Pooling Layer
	Fully Connected Layer
	Softmax Layer

	Energy Efficient Neural Networks
	Introduction
	Binary Weight Networks (BWN)
	Hadamard-transformed Image Networks (HIN)
	Combination of Models: Binary Weight & Hadamard Transformed Image Network (BWHIN)

	Neural Network Architecture and Hyperparamaters
	CNN Architectures
	Weight and Bias Initialization
	Mini-Batch Size
	Learning Rate
	Momentum

	Implementation of the Architectures

	Simulation and Results
	Experiments on MNIST
	Effect of Optimizers
	Effect of Dropout
	Effect of Activation Function on FC Layer

	Experiments on CIFAR-10
	Effect of Architectures
	Comparison of Energy Efficient Neural Networks

	Conclusion and Future Work
	MNIST Results
	Test Accuracies
	Training Accuracies
	Training and Test Losses

	CIFAR-10 Results

