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ABSTRACT 

 

MECHANISMS OF SSX GENE EXPRESSION REGULATION  

AT THE PROMOTER LEVEL 

Derya Dönertaş 

M.S. in Molecular Biology and Genetics 

Supervisor: Dr. Ali O. Güre 

July 2009, 101 pages 

 

 

Cancer Testis (CT) Antigen Genes are not transcribed in any of the adult tissues except 

spermatogonia, oogonia and trophoblasts. This tight regulation of expression is reversed resulting in 

the reactivation of CT transcription in a wide variety of cancers. CT genes are coordinately expressed 

and known to be regulated epigenetically. CT genes are reactivated in cancers by a mechanism that 

leads to the specific hypomethylation of their promoter-proximal sequences. The mechanisms 

leading to this phenomenon are unknown.            

 

The main objective of this thesis was to further unravel the mechanisms regulating CT gene 

expression at the promoter level. For this purpose, SSX4 ,a typical CT-X gene known to be under the 

control of a bidirectional promoter, was chosen as a model. We characterized the minimal critical 

sequences controlling the sense and antisense promoter and discovered a bidirectional promoter 

with overlapping promoter activities within a 40 bp region. To study how the antisense promoter 

could mediate sense promoter repression and vice versa, we used two different reporter genes for 

each of the promoters in a single construct and found that measurable antisense promoter activity 

was dramatically reduced upon the introduction of a reporter for the sense promoter.           

 

The SSX4 antisense promoter is capable of producing a noncoding transcript from the neighboring 

ornitine aminotransferase-like pseudogene in vivo. This, however, wasn’t confirmed in this study. 

The possibility of transcriptional interference or the production of a small dsRNA that could affect the 

regulation of SSX4 gene expression is discussed in the context of the data. Results from experiments 

where the down-regulation of DICER was studied as a mechanism that could influence CT gene 

expression are also discussed  
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ÖZET 

 

SSX GENİ İFADESİNİN DÜZENLENMESİNDE ROL ALAN  

PROMOTOR MERKEZLİ MEKANİZMALAR 

Derya Dönertaş 

Moleküler Biyoloji ve Genetik Yüksek Lisansı 

Tez Yöneticisi: Dr. Ali O. Güre 

Temmuz 2009, 101 sayfa 

 

Kanser Testis (KT) antijen genleri spermatogonya, oogonya ve trofoblast haricindeki yetişkin 

dokularında ifade edilmeyen genlerdir. İfade edilimdeki bu sıkı düzenleme birçok kanser türünde 

tersine dönerek KT genlerinin yeniden ifade edilmesine yol açar. KT genleri eşgüdümlü olarak ifade 

edilir ve ifadeleri epigenetik etmenler tarafından düzenlenir. KT genlerinin kanserlerde yeniden ifade 

edilmesinin altında yatan neden promotor bölgelerinin özel olarak hipometilasyona uğramasıdır. Bu 

olaya yol açan mekanizmalar bilinmemektedir. 

 

Bu tezin asıl amacı KT geni ifadesinin düzenlenmesinde rol alan promotor merkezli mekanizmaları 

açığa çıkartmaktı. Bu amaçla tipik bir KT geni olan ve çift taraflı bir promotora sahip olduğu bilinen 

SSX4 geni model olarak seçildi. Bu bağlamda, anlamlı (sense) ve anlamsız (antisense) promotor 

aktivitelerinden sorumlu en küçük DNA dizilerini karakterize ettik ve 40 baz çiftini kapsayan bir 

bölgede çift yönlü ve örtüşen bir promotor ortaya çıkardık. Anlamsız promotor aktivitesinin anlamlı 

promotor aktivitesini nasıl baskıladığını anlayabilmek için, bir vektör yapısında her iki promotor için 

farklı birer haberci gen kullandık. Ölçülebilen anlamsız promotor aktivitesinin, vektör yapısına anlamlı 

promotorun aktivitesini ölçen haberci genini eklediğimizde önemli ölçüde azaldığını gözlemledik.   

 

Canlı dokularda SSX4 geninin anlamsız promotor aktivitesi, komşu ornitine aminotransferaza benzer 

yalancı-gen bölgesi üzerinden bir kodlamayan transkript ifade edebilme kapasitesine sahiptir fakat bu 

transkript ifadesi bu çalışmada onaylanamamıştır. Yazılım karışması ya da küçük çift dizili RNA 

(dsRNA) oluşumunun SSX4 geni ifadesinin düzenlenmesindeki muhtemel etkileri, bulunan veriler 

bağlamında ele alınmış ve tartışılmıştır. Ayrıca, DICER geninin bağlı olduğu mekanizmaların KT genleri 

ifadesinin düzenlenmesine etkisi, DICER geninin azaltarak düzenlendiği deneylerin sonuçları 

üzerinden tartışılmıştır.   
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1. INTRODUCTION 

 

1.1 Epigenetic Regulation of Gene Expression 

 

1.1.1 DNA Methylation 

 
Epigenetics refers to heritable phenotypic alterations in the absence of DNA sequence changes. DNA 

methylation is one of the extensively studied epigenetic alterations. In eukaryotes, ranging from 

plants to humans, DNA methylation is found exclusively at cytosine residues. In mammals, cytosines 

can be methylated only if they are followed by a guanine residue (CpG). CpG methylation is vital for 

organisms (mice that lack DNA Methyltransferases (DNMT) do not live) (Li E, 1992). In mammalian 

systems the genomic DNA methylation is found throughout the genome with the exception of short 

unmethylated regions called CpG islands, which contain larger than expected rate of CpG residues 

over a span of more than 500 nucleotides (Suzuki MM, 2008; Takai D, 2002). DNA methylation 

generally associated with suppression of transcription as well as with cellular processes like genomic 

imprinting, X chromosome inactivation, gene- and tissue-specific expression (Bernstein BE, 2007). 

DNA methylation is a dynamic, yet heritable trait enabling long-term memory of transcription rates. 

Three DNA Methyltransferases act on CpGs in mammals: Dnmt1 as the maintenance 

methyltransferase which acts on hemi-methylated DNA during DNA replication (Bestor T, 1988), 

Dnmt3a and Dnmt3b as de novo methyltransferases playing both collaborative and unique roles 

mostly in development (Okano M, 1999). 

 

DNA methylation analysis can be performed by sequencing or restriction digestion preceded by 

sodium bisulfite treatment (COBRA assay: COmbined Bisulfite Restriction Analysis) (Frommer M, 

1992) More recently developed techniques enable, genome-wide analysis of methylation status by 

microarray hybridization or high-throughput sequencing of bisulfite treated DNA samples.  

 

1.1.2 Histone Modifications 

 

Histone modifications that result in alterations of gene expression are also major epigenetic 

mechanisms. Nucleosome is the basic structural unit that consists of four core histones – H2A, H2B, 

H3 and H4 – around which 147 bp DNA is wrapped. Another histone protein, H1, is called the linker 

histone brings the nucleosomes closer into a more compact 30 nm fiber structure. The core histones 

have critical roles in epigenetic regulation of gene expression. N-terminal and C-terminal tails of the 
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histone proteins can be covalently modified by lysine acetylation, lysine and arginine mono-, di- and 

tri-methylation, serine and threonine phosphorylation, lysine ubiquitination, lysine sumoylation and 

proline isomerization (Kouzarides T, 2007). Specific combinations of these modifications are thought 

to constitute a “histone code”. The histone code determines the euchromatic/heterochromatic 

regions of the DNA (Barski A, 2007),  regulates biological processes like transcription, replication and 

repair through recruitment of chromatin remodeling complexes and confers a long-term memory of 

the transcriptional state, which have roles in development and differentiation (Jenuwein T, 2001).  

 

Histone modifications are usually analyzed by chromatin immunoprecipitation (ChIP) using 

antibodies specifically recognizing modified residues. The generation of histone maps of human, 

mouse and yeast have been successfully performed by high throughput assays based on hybridizing 

ChIP samples on arrays (ChIP on chip) or by massively parallel signature sequencing of ChIP samples 

(ChIP-Seq) (Barski A, 2007)  

 

1.1.3 Chromatin Remodeling 

 

Another important concept in the epigenetic regulation of gene expression is chromatin remodeling. 

The most important complexes involved in chromatin remodeling are Polycomb (PcG) and Trithorax 

(trxG) Complexes which are initially found in D.melanogaster Hox gene repressors and activators 

respectively (Schuettengruber B, 2007). There are two classes of PcG proteins; Class II is directly 

involved in repression of transcription while class I is methyltransferase complexes that maintain the 

repressed state (Levine SS, 2004). PcG proteins are recruited to target genes’ polycomb response 

elements (PREs) via sequence-specific DNA-binding factors and/or by specific histone modifications 

such as H3K27me3. PREs are typically several kilobases long and also are bound by the trxG proteins 

(Schuettengruber B, 2007). There are also the ATP-dependent chromatin remodelers SWI/SNF (a 

TrxG complex), NuRD/Mi-2/CHD and INO80 families which have been found to play different roles in 

chromatin remodeling (Saha A, 2006). 

 

All these epigenetic events are interconnected: Methylated DNA binding proteins can be recruited to 

the cytosine methylated DNA along with histone deacetylases (Nan X, 1998) and/or nucleosome 

modifiers as a complex (Zhang Y, 1999). Covalent modifications of histones are found to occur 

coupled chromatin remodeling by ATP-dependent remodeling machinery, which supports the notion 

that DNA cytosine methylation, histone modification, and nucleosomal remodeling are intimately 

linked (Jones PA, Baylin SB 2007)  
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1.2 Cancer Epigenomics 

 

For decades, scientists have been engaged in dissecting the origins of human cancer in genetics, and 

now with an explosion of data, it has been realized that genetics and epigenetics cooperate at all 

stages of cancer development. A very well known epigenetic event in human cancers is the 

transcriptional silencing of tumour suppressor genes by CpG-island-promoter hypermethylation 

which dates back to 1989 when it is discovered in Retinoblastoma gene (Greger V, 1989) and 

becomes widely accepted when p16INK4a was also shown to be inactivated by hypermethylation 

(Gonzalez-Zulueta M, 1995; Herman JG, 1995). Today, 100-400 CpG islands are estimated to be 

hypermethylated in a given tumor (Esteller M, 2007). Along with DNA methylation alteration, global 

histone modifications are also seen in many cancers. For instance, loss of acetylation at lysine 16 and 

trimethylation at lysine 20 of histone H4 are common hallmarks of human cancer (Fraga MF, 2005) 

A second kind of alteration of DNA methylation common in human cancers is “global” or “genome-

wide” hypomethylation, defined as an overall decrease in methylcytosine content of up to 70% 

compared with the level in normal somatic cells (Ehrlich M, 2002). Retrotransposon sequences of the 

LINE (long interspersed nuclear element) and SINE (short interspersed nuclear element) classes, as 

well as classical satellites are major targets of methylation in normal circumstances, but they become 

demethylated to various degrees in cancer cells (Hoffmann MJ, 2005). Global hypomethylation levels 

show variation both within and between the cancer types. Global hypomethylation appears to be an 

early event for colon and breast cancer as well as chronic lymphocytic leukemia.  For other cancers 

like hepatocellular carcinoma, the degree of hypomethylation seems to increase with stage or 

histological grade but it is almost ubiquitous in metastases (Wilson AS, 2007). Along global 

hypomethylation, region specific hypomethylation of single copy genes also occurs, as exemplified by 

cancer testis antigen genes.  The mechanisms underlying DNA hypomethylation are still under study. 

It has been suggested that the global hypomethylation can be a result of methyl group metabolism (a 

decrease in the methyl donor substrate S-adenosylmethionine (SAM)), a defect in DNA modifying 

enzymes like DNMTs or a defect in chromatin remodeling enzymes which can affect DNA methylation 

(Hoffmann MJ, 2005). However, we find it difficult to reconcile these explanations with gene specific 

hypomethylation. It has been suggested that functional selection during the random 

hypomethylation can result in gene-specific hypomethylation; however, given the fact that most of 

the cancer testis antigen genes do not have similar functions, we find it hard to support this 

hypothesis. Another possibility is that noncoding endogenous antisense RNAs might be playing a role 

in this type of hypomethylation, which was demonstrated for some cases (Imamura T, 2004). The 

mechanisms by which DNA hypomethylation occurs in cancer cells still needs further research. 
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1.3 Eukaryotic promoters 

1.3.1 General Information  

 

The RNA polymerase II core promoter comprises the sequences that direct the initiation of 

transcription. In the classical view, for the transcription of mRNAs, RNA Polymerase II recruitment to 

DNA is a major step that is facilitated by the general transcription factors (GTFs), including TFIIB, 

TFIID, TFIIE, TFIIF and TFIIH which is termed initiation; followed by promoter escape, abortive 

transcription, elongation and finally transcription termination. Transcriptional activators/ repressors 

binding to several proximal and distal control regions and the “histone code” can facilitate or repress 

transcription (Koch F, 2008).  

 

In fact, mammalian promoters can be separated into two classes. The classic view of the promoters 

constitute one class that have a TATA box and other elements such as BRE (TFIIB recognition 

element), Inr (Initiator), MTE (motif ten element), DPE (downstream core promoter element). These 

elements are not universal and each is present in only a subset of core promoters. These elements 

are recognized by the factors that will eventually recruit transcription machinery. The other type of 

promoters can be characterized as being CpG rich, lacking the TATA Box and having multiple 

transcription start sites distributed over a broad region (Juven-Gershon T, 2008). Recently in the 

largest TSS identification study to date, using CAGE technology (as part of the ENCODE 

project(Encyclopedia Of DNA Elements)), the TATA-box promoter architecture was found to 

represent only a minority of mammalian promoters in mouse and humans and this kind of promoter 

is commonly associated with tissue-specific genes (Carninci P, 2006). This finding was later confirmed 

by the results of different technologies in the context of The ENCODE Project Consortium 2007. 

 

1.3.2 ENCODE Findings and Their Importance 

 

The ENCODE project was initiated in September 2003, and aimed to identify all functional elements 

in the human genome by using various technologies in a number of laboratories. The project started 

with two components - a pilot phase and a technology development phase. In the pilot phase, 1% of 

the genome that was randomly selected was analyzed in detail. An initial finding emerging from the 

ENCODE consortium was that a vast amount of DNA, not annotated as known genes, was transcribed 

and, therefore, named transcriptionally active regions (TARs). Most of these RNAs were not found to 

encode for a protein and were therefore, considered as non-coding RNAs (ncRNAs). Except those 

that are evolutionary and/or structural conserved, we know very little about ncRNAs or their roles 
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inside the cell. We now know thanks to ENCODE that most of the genome is actually transcribed. 

Various unannotated TSSs were identified by ENCODE as well as the fact that the location of 

sequences that have a role in regulation of gene expression are very dispersed and in some cases can 

be located within the first exon, intron or the entire body of the gene or actually reside closer to 

another gene. Additionally, a significant fraction (up to 20%) of pseudogenes was found to be 

transcriptionally active contributing to TARs. 

 

1.3.3 Bidirectional Promoters 

 

Some of the non-TATA box containing, high GC containing, more evolvable promoters are 

bidirectional (Juven-Gershon T, 2008). This annotation refers to regions where two transcripts with 

opposite orientations occur simultaneously, or when a single promoter initiates two transcripts that 

might or might not overlap. In a genome wide study, it has been found that 10% of all genes are 

bidirectional genes controlled by bidirectional promoters. Many of the bidirectional transcript pairs 

are coexpressed but some are antiregulated.  By transient transfection experiments using reporter 

genes, more than half of all human promoters were found not to exhibit strong directionality in 

transcript initiation and that the regulatory elements for the transcription in both directions are 

shared (Trinklein ND, 2004). It has been suggested that these nucleosome-free promoters are sites 

for cryptic noncoding RNA transcription which might have a regulatory function. (Neil H, 2009)  

 

1.4.Cancer Testis Antigens 

 

1.4.1 General Information 

 

Cancer testis (CT) antigen genes are normally expressed mainly in germ cells but in no other adult 

tissues, with rare exception of trophoblast. This gene expression pattern is disrupted in malignancies 

leading to CT expression in various types of cancers. Since the protein products of these genes are 

generally immunogenic, they are considered as potential biomarkers and targets for immunotherapy 

(Scanlan MJ, 2002). The first CT antigens were found in the early 1900s by T-cell epitope cloning. By 

this method MAGE-1 (van der Bruggen P, 1991 and Traversari C, 1992), BAGE (Boël P, 1995) and 

GAGE (Van den Eynde B, 1995) antigens were identified. With the development of SEREX (Serological 

screening of expression libraries) technique many other CT antigens were identified such as SSX-2 

(Türeci O, 1998) and NY-ESO-1 (Chen YT, 1997). Subsequently, in silico approaches led to the 

identification of most other CT antigen genes such as SSX4 (Gure AO, 2002). The CT antigen genes 
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were found to be members of multigene families and mostly localized to the X chromosome. 

Currently more than 70 CT gene families that are testis-restricted and immunogenic are known that 

have varied properties, localizations and expression profiles (Almeida LG, 2009). All of the data about 

the gene, gene expression, protein, protein expression, immunogenic response and pubmed links of 

the known CTs are combined and stored in a recent database, Ctpedia, which can be accessed from 

the website of Ludwig Institute for Cancer Research ( http://www.cta.lncc.br/index.php). 

 

There are certain characteristics of CT antigens. Their expression is restricted to gametogenic tissues 

and cancer, the coding genes of the antigens frequently map to chromosome X, they exist as 

multigene families and they are immunogenic in cancer patients.  Their expression is  heterogenous 

in cancers, they are activated by DNMT inhibitors and/or histone deacetylase inhibitors in vitro and 

their  expression seems to be  associated with tumor progression and with tumors of high 

metastastic potential (Scanlan MJ, 2002). Subsequent to the discovery of the immunogenic CT 

antigen genes, several other genes were coined with the same designation. However, it seems that 

those CT antigen genes that reside on the X chromosome are distinct from those on somatic 

chromosomes and are thus referred to as CT-X genes (Simpson AJ, 2005). Non-X chromosome CT 

genes do not necessarily code for immunogenic proteins, they are not composed of large families 

with highly homologous members and their expression pattern is not as restricted as that of CT-X 

genes. While CT-X gene expression is primarily found in spermatogonia and oogonia, non-X CT gene 

expression is frequently absent in these cells and present in gametes of later stages (Simpson AJ, 

2005). 

 

1.4.2 Function and Conservation 

 

The biological functions of many of the CT antigens are not known although some exceptional CT 

antigens have been found to have roles during meiosis like OY-TES-1 (Baba T, 1994), CT-15/Fertilinβ 

(Vidaeus CM, 1997) and SCP-1 (Meuwissen RL, 1992). Unlike other CT antigens that are mostly 

expressed in spermatogonia, both OY-TES-1 and CT15/Fertilinβ are expressed in late stage sperm and 

they are not localized in the X chromosome. Among the major CT gene families, only some MAGE 

orthologs have defined functions. Mouse MAGE3-B4 plays role in germ cell development; mouse 

necdin binds to E2F1 and negatively regulates G1 to S progression. MAGE-A4 binds to the Gankyrin or 

p28 protein and inhibits the adhesion-independent growth of Gankyrin-overexpressed cells (Xiao J, 

2004). Recently MAGE-A3/6 was identified as a novel target of fibroblast growth factor 2-IIIb (FGFR2-

IIIb) signaling in thyroid cancer cells (Kondo T, 2007). Other functional CT genes are BORIS and CAGE. 

BORIS (brother of the regulator of imprinted sites) is the paralog of the abundant transcription factor 
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CTCF, and has been proposed to play role in CT-regulation according to the three studies showing 

BORIS and CTCF binding to NY-ESO-1 and MAGE-A1 promoters, resulting in derepression of both 

antigens (Vatolin S, 2005; Hong JA, 2005 and Kang Y, 2007) Some other CT antigens have some 

functional domains that may be an indication of their potential role but still these functions need to 

be explored.  Along with the unknown functions, CT genes are almost exclusively specific to primates, 

with few exceptions. Human CT genes have orthologs in primates, especially in great apes and they 

are generally located on the same chromosomes (Stevenson BJ, 2007).  

 

1.4.3 Regulation of Expression 

 

All typical cancer testis genes located on the X chromosome are expressed only in the spermatogonia 

of the adult human but in no other tissue. Attempts to identify additional CT antigen genes based on 

the hypothesis that they should be expressed in the testis resulted in the discovery of genes that 

were classified as testis-restricted, tissue-restricted (expressed in ≤2 of 13 non-gametogenic tissues 

tested), differentially expressed (expressed in 3-6 non-gametogenic tissues, among 13 tested) and 

ubiquitously expressed (Scanlan MJ, 2004). These are clearly very different than CT-X genes as 

explained above. The initially-discovered, major CT gene families fall in the testis- and tissue-

restricted groups and the rest of this work will focus on only these genes. We use the CT abbreviation 

in this context.  

 

CT genes are reactivated heterogenously in a wide variety of cancers with the broadest distribution 

in germ cell tumors, melanomas and lung carcinomas, various adenocarcinomas and 

chondrosarcomas (Hofmann O, 2008) No genetic mutations have been found in these genes that can 

be the cause of this reactivation . The first clue about the regulation of CT antigens emerged as the 

upregulation of the expression of the MAGE-1 tumor antigen (later designated MAGE-A1) upon 

induction with the demethylating agent 5-aza-2'-deoxycytidine (Weber J, 1994) DNA demethylation 

as a reactivation mechanism for MAGE-A1 was confirmed soon after (De Smet C, 1996). Along with 

MAGE-A1, other CT antigens (De Smet C, 1999; Sigalotti, 2002; LimJH, 2005) were also found to be 

regulated by DNA methylation, supporting the idea that CT genes are coordinately expressed which 

was subsequently demonstrated (Gure AO, 2005). This, in turn, supported the idea that CT gene 

expression could be governed by common epigenetic mechanisms (Scanlan MJ, 2002). In another 

experiment HCT-116 cancer cell lines lacking DNMT genes were used to assess the expression of 

MAGE-A1, NY-ESO-1, and XAGE1. The results showed that the genetic knockout of both DNMT1 and 

DNMT3b could robustly induce CT antigen gene expression; whereas individual DNMT1 or DNMT3b 

knockout had a modest or negligible effect (for XAGE they were found to act independently). This is 
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another indicative of DNA methylation as a major mechanism in the regulation of CT gene expression 

(James SR, 2006). Along with the DNA methylation, it was found that histone acetylation plays a 

secondary role as trichostatin A was able to significantly upregulate 5-aza-2’-deoxycytidine induced 

MAGE or SSX gene expression (Wischnewski F, 2006; Gure AO, 2002). Interestingly, most CT genes 

are known to harbor CpG islands. We currently know that although most of the CpG islands from 

other genes are hypomethylated in the adult tissue, promoters of CT genes are hypermethylated in 

the normal adult tissue except testis and become hypomethylated in malignancies. The mechanism 

of hypomethylation of CT genes might be related to global DNA hypomethylation observed in cancer 

cells (De Smet, 1996; Kaneda A, 2004). But it has been shown that in tumor cells expressing MAGE-

A1, the 5' region is significantly less methylated than the other parts of the gene showing a promoter 

specific hypomethylation rather than an artifact of global hypomethylation (De Smet C, 2004). It was 

suggested that site-specific hypomethylation of MAGE-A1 in tumor cells relies on a transient process 

of demethylation followed by a persistent local inhibition of remethylation due to the presence of 

transcription (De Smet C, 2004). 

 

Another insight for the regulation of expression of CT antigens comes from experiments where the 

effect of BORIS protein (brother of the regulator of imprinted sites, a homologue of CTCF) on CT gene 

expression was studied. During spermatogenesis, expression of BORIS is restricted to germ cells, and 

coincides with a marked decrease in CTCF expression, erasure of methylation patterns, and up-

regulation of CT genes (Loukinov DI, 2002). In one study, conditional expression of BORIS was shown 

to activate expression of CT antigen genes, and activation of BORIS expression following 5-aza-2’-

deoxycytidine treatment occurred hours prior to transcriptional activation of other CT genes. 

Furthermore, downregulation of BORIS by RNA interference prior to 5-aza-2’-deoxycytidine 

treatment reduced the capacity of 5-aza-2’-deoxycytidine to activate MAGE-A1 expression suggesting 

a role for BORIS in the regulation of CT gene expression (Vatolin S, 2005). BORIS was also shown to 

bind directly to the MAGE-A1 and NY-ESO-1 promoters and to displace CTCF at these loci (Vatolin S, 

2005; Hong JA, 2005).  

 

1.4.4 Promoters of Cancer Testis Antigens 

 

CT genes have in common a TATAless promoter, which is heavily methylated and thus silent in 

normal tissues.  The first promoter analysis of a CT gene was performed in 1995 with MAGE-A1 gene. 

Two inverted Ets motifs were found to drive 90% of the activity of the MAGE-A1 promoter. When 

episomally expressed, the MAGE-A1 promoter was transcriptionally active even in tumor cells which 

did not express MAGE-A1 gene (De Smet C, 1995; Scanlan MJ, 2002). This indicated that in tumor cell 
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lines that do not express MAGE-A1, transcription factors capable of inducing MAGE-A1 promoter 

activity are present but that the gene is insensitive to their action. 

 

1.4.5 SSX Gene Family 

 

Synovial sarcoma X-translocation (SSX) genes were first identified as fusion counterparts to SYT in in 

t(X;18)(p11.2;q11.2) chromosomal translocation that is present in 70% of synovial sarcomas (Clark J, 

1994). The first found member of the SSX as a CT antigen (HOM-MEL-40) by SEREX was SSX2 (Sahin 

U,1995; Türeci O, 1996). By genome homology searches all 9 members of the SSX family together 

with 10 pseudogenes were identified (Gure AO, 1997). Like most of the other cancer testis antigens, 

SSX also mapped to X chromosome, in particular to the OATL1 and 2 regions on Xp11.2 (Clark J, 1994) 

SSX family members have high homology ranging from 89 to 95% at the nucleotide level and 77 to 

91% at the amino acid level (Gure AO, 1997). The 10 SSX genes listed by Ctpedia include; SSX1, SSX2, 

SSX2B, SSX3, SSX4, SSX4B, SSX5, SSX6, SSX7 and SSX9. There are 2 SSX2 and 2 SSX4 genes located tail 

to tail and head to head orientation, respectively (Gure AO, 2002). Normal testis tissue expresses 

SSX1, 2, 3, 4, 5 and 7 but not 6, 8 or 9. SSX6 expression, however, can be induced by TSA in some 

tumor cell lines (Gure AO, 2002). SSX proteins appear to be transcriptional regulators, whose actions 

are mediated primarily through association with or recruitment of Polycomb group repressors by the 

SSX-RD domain, mapped to the C-terminal of SSX proteins (Ladanyi M, 2001). LIM homeobox protein 

LHX4 was identified among the proteins that interact with the SSX C-terminal repression domain (de 

Bruijn DR, 2008). 

 

SSX4 and SSX4B are nearly identical copies that are positioned in a head to head manner in the 

Xp11.23 (Figure 1.1). There are two splice variants of SSX4 (Gure AO, 2002).  

 

 

 

FIGURE 1.1 SSX4 in the genomic context 

 

SSX4 has a testis selective expression pattern. It has been shown to be expressed in a percent of 

hematologic malignacies, brain cancer, hepatocellular carcinoma, non small cell lung carcinoma, 

melanoma, ovarian carcinoma and synovial sarcoma (Ctpedia). 
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1.5 Small RNA Mediated Epigenetic Regulation 

 

The first small RNA, lin‑4, was discovered in 1993 by genetic screens in nematode worms (Lee RC, 

1993; Wightman B, 1993). After this discovery, with the help of new technologies like deep-

sequencing and strong computational predictions, the number and types of small RNAs increased 

extensively. The known functions of small RNAs range from heterochromatin formation to mRNA 

destabilization and translational control (Chu CY, 2007; Filipowicz W, 2008) and they are involved in 

almost every biological process, including developmental timing, cell differentiation, cell 

proliferation, cell death, metabolic control, transposon silencing and antiviral defense. 

  

The distinguishing patterns of well known eukaryotic small RNAs are their limited size (~20–30 

nucleotides (nt)) and their association with Argonaute (Ago) family proteins that lie in the heart of 

small RNA pathways. Ago proteins bind various <32nt small RNAs which guide the Argonaute 

complexes to their regulatory targets. The Ago family proteins can be grouped into two clades:  the 

Ago subfamily and the Piwi subfamily. At least three classes of small RNAs are encoded in our 

genome, based on their biogenesis mechanism and the type of Ago protein that they are associated 

with: microRNAs (miRNAs), endogenous small interfering RNAs (endosiRNAs or esiRNAs) and 

Piwi‑interacting RNAs (piRNAs).  Although these are the three main small RNAs that we know for 

sure, numerous other small RNAs are being discovered in the light of the recent developments (Kim 

VN, 2009). 

 

1.5.1 miRNAs 

 

The best understood among the three small RNA classes are miRNAs which are single‑stranded RNAs 

(ssRNAs) of ~22 nt in length and generated from endogenous hairpin shaped transcripts (Kim VN, 

2005) Two RNase III-type proteins, Drosha and Dicer, are known to be critical for miRNA biogenesis. 

Mature miRNAs are then loaded into the RNA-induced silencing complex (RISC) whose core 

component is a protein belonging to the Ago family. The miRNAs guide the RISC complex to its target 

mRNA by basepairing with the 3′-untranslated region (3’UTR) of the target mRNA which typically 

leads to translational repression and exonucleolytic mRNA decay (Kim VN, 2009). Although the vast 

majority of miRNAs seem to act exclusively in the cytoplasm and mediate mRNA degradation or 

translational arrest (Filipowicz W, 2008), some plant miRNAs may act directly in promoting DNA 

methylation (Bao N, 2004). Furthermore, recent studies have described promoter-directed human 

miRNAs that can lead to repressive chromatin modifications and transcriptional gene silencing 
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(Gonzalez S, 2008; Kim DH, 2008). Over one third of human genes are predicted to be directly 

targeted by miRNAs according to computational analysis (Kim VN, 2009). 

 

1.5.2 piRNAs 

 

piRNAs were originally discovered during small RNA profiling studies of D. melanogaster 

development  (Aravin AA 2001, 2003). piRNAs are endogenous, germ cell‑specific small RNAs, 

generally longer than miRNAs (24–29 nt). Most of the piRNAs correspond to intergenic repetitive 

elements including transposons, thus initally named repeat‑associated small interfering RNAs 

(rasiRNAs) (Aravin AA, 2003). The name piRNAs was coined after the interaction of Piwi subgroup 

proteins with these small RNAs was demonstrated.  piRNAs are highly abundant in germ cells and at 

least some of them are involved in transposon silencing through heterochromatin formation or RNA 

destabilization (Kim VN, 2009). Intriguingly, the biogenesis of piRNAs does not depend on Dicer 

(Vagin VV, 2006) and occurs in a so called “ping-pong” mechanism in which formation of 5′ terminus 

within piRNA precursors is guided by piRNAs originating from transcripts of the other strand in 

concert with the Slicer activity of PIWI. Along with the fact that Aub and AGO3 (members of PIWI 

family) exhibited Slicer activity in vitro, this mechanism relies on the observation that Aub- and Piwi-

associated piRNAs show a strong preference for uracil at their 5′ ends while AGO3-associated piRNAs 

show a strong preference for adenine at nucleotide 10 and AGO3- and Aub-associated piRNAs 

revealed pairs of RNAs showing complementarities in their first 10 nucleotides (Gunawardane LS, 

2007). piRNAs have been identified in D. melanogaster, C. elegans and mammals, but seem to be 

absent in fungi and plants.  

 

1.5.3 EndosiRNAs and Other Small RNAs 

 

The first endosiRNAs were detected in plants and C. elegans and found to be products of RNA-

dependent RNA polymerase (RdRP). A mammalian counterpart to RdRP has not been identified yet, 

and thus, these small RNAs were thought to be absent in mammalian cells. However, recently 

endosiRNAs have been shown to be ubiquitously present among higher eukaryote cells. The first 

mammalian endosiRNAs to be reported correspond to the long interspersed nuclear element (L1) 

retrotransposon and were detected in cultured human cells (Yang N, 2006). Full-length L1 contains 

both sense and antisense promoters in its 5′ UTR that could, in principle, drive bidirectional 

transcription of L1, producing overlapping complementary transcripts that can be processed into 
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siRNAs by Dicer. However, the precise mechanism by which transposons trigger siRNA production in 

mammals remains unknown (Yang N, 2006). 

 

More recently, deep sequencing of small RNAs in D. melanogaster somatic tissue, cultured cells and 

ovaries has revealed a population of small RNAs (~21 nt long) that could readily be distinguished 

from miRNAs and piRNA as explained below. These small RNAs were found to be derived from 

transposon transcripts, sense–antisense transcript pairs and long stem‑loop structures, Figure 1.2 

(Babiarz JE, 2008; Okamura K, 2008; Kawamura Y, 2008; Czech B, 2008 ; Ghildiyal M, 2008; Chung WJ, 

2008; Okamura K, 2008 )  

 

 

Okamura K, Lai EC. Nat Rev Mol Cell Biol. 2008 

 

FIGURE 1.2 The substrates for endosiRNA production in flies and mouse. Four classes of siRNA are 

shown: TE-siRNA, generated by overlapping transcripts corresponding to a transposable element, 

generated either in cis or trans; cis-NAT-siRNA, generated by overlapping transcripts that result due 

to the simultaneous activity a bidirectional RNA PolII promoter; trans-NAT-siRNAs, that result from 

mRNA homology forming in trans; hairpin RNAs (hpRNA) that generate siRNAs 

 

The precise structure of the double-stranded RNA substrates of siRNAs derived from transposable 

elements is unknown, but hundreds or thousands of transposable elements are inferred to directly 

generate siRNAs. siRNAs derived from cis-natural antisense transcripts (cis-NATs) involve 

bidirectional transcription across the same genomic DNA, and can be convergent, divergent or 

involve annotated introns and/or internal exons. Trans-NAT dsRNAs form between transcripts that 

are produced from distinct genomic locations, and usually comprise an mRNA and an antisense-
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transcribed pseudogene. siRNAs that are derived from hairpin RNA (hpRNAs) are long, inverted 

repeat transcripts whose double-stranded segment is typically much longer than that of miRNA 

precursors.  

  

EndosiRNA production is Dicer dependent, Drosha independent and they are associated specifically 

with Ago2 in Drosophila (Kawamura Y, 2008; Czech B, 2008). Suppression of retrotransposons (and 

also some mRNAs) by endosiRNAs in Drosophila were observed mostly in the germ cells, and 

particularly in oocytes. This tissue specificity might relate to the fact that, other cell types may 

possibly invoke an interferon response to the dsRNAs produced intracellularly (Okamura K, Lai EC, 

2008). EndosiRNAs have also been identified in mouse oocytes. As in flies, mouse endosiRNAs  are 21 

nucleotides, Dicer-dependent and derived from a variety of genomic sources (Tam OH, 2008 ; 

Watanabe T, 2008) A subset of mouse oocyte endosiRNAs map to regions of protein-coding genes 

that are capable of pairing to their cognate pseudogenes, and to regions of pseudogenes that are 

capable of forming inverted repeat structures which strengthens the theory that  some pseudogene 

sequences may be under evolutionary selection to retain the ability to produce antisense transcripts 

that can pair with their cognate genes to produce endosiRNAs (Sasidharan R, 2008). 

 

There are also promoter associated dsRNAs that have been shown to induce transcriptional gene 

silencing in DNA methylation dependent manner in plants (RNA dependent DNA Methylation) 

(Wassenegger M, 1994). Gene silencing by promoter associated dsRNAs has also been observed in 

human cells but in the absence of DNA methylation (Morris KV, 2004; Park CW, 2004; Ting HA, 2005). 

Along with endosiRNAs, synthethic antigene RNAs (agRNAs) complementary to the transcription sites 

of the genes, are also potent inhibitors (Janowski BA, 2005) or activators of gene expression (Li LC, 

2006; Janowski BA, 2007). The agRNAs use AGO proteins and  target antisense transcripts transcribed 

from the transcription start sites and bring different protein complexes to the transcription start sites 

(Schwartz JC, 2008).  

 

1.5.4 Small RNA-mediated Control of Transposons 

The PIWI-clade proteins and their associated piRNAs have important roles in the control of 

transposons in the germline — and possibly somatic cells — of D. melanogaster and mammals 

(Aravin AA, 2007). Three groups of data suggest that endosiRNAs are also a part of transposon 

regulation. First, in plants, viroids that possess host homologous sequences in their genomes cause 

fully methylation of the homologous sequences in the host (Wassenegger, 1994). Second, RNA 

viruses which contain homologous sequences to the host elicited the same effect (Jones L , 1998; 
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Wang MB, 2001) and lastly, the introduction of an inverted repeat containing transgene triggers 

methylation of both the transgene and the homologous sequences elsewhere in the genome of 

Arabidopsis thaliana (Mette MF, 2000). There are certain theories as to how dsRNAs that regulate 

transposon expression may arise. It is thought that such RNA should be similar to a read-through 

transcript from a single promoter that results in an inverted repeat thus producing an RNA hairpin or 

cryptic antisense promoters that confer bidirectional transcription.  

There exists large amounts of data about small RNA mediated transcriptional silencing and chromatin 

remodeling; mostly in plants or fungi. In Drosophila, it is known that the role of the PIWI protein in 

repeat-induced gene silencing and heterochromatin assembly seems to involve a direct association 

between PIWI and HP1 (Brower-Toland B, 2007) There are adaptor proteins that bind to the 

Argonaute family of proteins and to chromatin or other DNA associated molecules. A mammalian 

counterpart to these adaptor proteins, however, has not been determined to date (Moazed D, 2009). 

 

1.6 Long Noncoding RNAs (ncRNAs) 

 

Although the current literature seems to be mostly focused on small RNAs, there are increasing 

numbers of reports describing long transcripts (longer than ~200 nucleotides) that are noncoding but 

yet functional in gene regulation. The transcription of these long ncRNAs is not random but strictly 

regulated. When compared with mRNAs, sequence conservation is low among most ncRNAs. One 

reason for this could be that process rather than the product of transcription has a functional 

consequence (Mercer TR, 2009). Functions of such ncRNAs are being identified and include roles in 

high order chromosomal dynamics, telomere biology and subcellular structural organization (Amaral 

PP, 2008). Although ncRNA mediated gene expression regulation would be expected to occur in 

trans, it does affect expression of neighboring genes. This cis-effect-like trans-regulation is referred 

to as transvection (Mercer TR, 2009) 

 

Recently some examples have been found indicating the ability of long ncRNAs to regulate gene 

expression at the level of chromatin modification, transcription and post-transcriptional processing. 

Long ncRNAs can mediate epigenetic changes by recruiting chromatin remodelling complexes to 

specific genomic loci. For example, one of the ncRNAs expressed from human homeobox (Hox) loci, 

silences transcription across 40 kb of the HOXD locus in trans by inducing a repressive chromatin 

state by recruitment of the Polycomb chromatin remodelling complex PRC2 (Rin JL, 2007) For the 

transcriptional regulation, long ncRNAs can recruit RNA binding proteins and integrate them to the 

the transcriptional programme as in the case of CyclinD1. Long ncRNA recruits RNA binding protein 
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TLS which in turn inhibits the histone acetyltransferase activities of CReB binding protein and p300 

and thus inhibits CyclinD1 expression (Wang X, 2008). With recruiting and affecting different proteins 

into the transcriptional programme, long ncRNAs can also activate transcription. Furthermore 

ncRNAs can basepair with mRNAs in a highly specific manner and regulate various steps in the post-

transcriptional processing of mRNAs, including their splicing, editing, transport, translation and 

degradation (Mercer TR, 2009).  

 

There is an increasing interest in the potential involvement of ncRNAs in disease etiology. For 

example, an antisense ncRNA transcribed from the p15 tumor suppressor locus induces local changes 

primarily of histone modifications, thereby regulating p15 expression. Thus, this ncRNA is potentially 

involved in oncogenesis as its expression is inversely correlated with that of p15 in leukemia. In this 

particular example, it is important to note that the effect of the noncoding antisense RNA was: 1. 

Dicer independent; 2.Its continued presence was not required for heterochromatinization, 

suggesting the sufficiency of a temporary presence for long lasting epigenetic alteration (Yu W, 

2008). 
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2. MATERIALS & METHODS 

 

2.1 Cell lines and Tissue Culture  

 

2.1.1 Growth and Passage of the cell lines 

 

The lung cancer cell line SK-LC-17, and two colon cancer cell lines, HCT 116 (ATCC  #CCL-247 ) and HT-

29 (ATCC  #HTB-38) were grown in RPMI medium (GIBCO # 22400089) supplemented with 10% Fetal 

Bovine Serum (GIBCO  #10106151), 1% Penicillin/Streptomycin (GIBCO  #15070063) and 1% Non-

essential Aminoacids (GIBCO  #11140035 in 5% CO2 at 37°C. Cell culture medium was changed every 

two to four days. For subculturing, cells were washed with 1X PBS (see recipes) which was prepared 

and filtered before use. Trypsin-0.25%EDTA (GIBCO #25200056) was used to detach the cells. Cells 

were split at a dilution of 1:2 to 1:5 depending on the conditions of the cells. Media and aliquoted 

trypsin were kept at 4°C, Trypsin-0.25%EDTA was kept at -20°C and all solutions were warmed in 

37°C water bath before use. 

 

2.1.2 Long Term Storage of Cells (freezing)  

 

For long term storage in liquid nitrogen, exponentially growing cells were harvested and centrifuged 

at 1300 rpm for 3 minutes at 4°C. Cells were counted and resuspended in freezing medium 

(10%DMSO, 20%FBS and 70%RPMI) at a concentration of approximately 3X106 cells/ml. The 

suspension was aliquoted into 1 ml per cryotube and incubated at -20°C for a few hours, followed by 

-70°C for overnight, and finally placed in liquid nitrogen.  

 

2.1.3 Thawing cells 

 

The cryotube containing cells stored in liquid nitrogen was placed into an ice bucket immediately. 

The cryotube was then transferred into a 37°C water bath until only a small piece of ice remained 

visible. The cell suspension was then diluted into 5 ml of RPMI by decanting and not by pippetting 

and centrifuged for 3 minutes at 1300 rpm. Cells were resuspended in 5 ml of medium and seeded 

into a 25 cm3 flask. Cells were incubated overnight in the incubator and were passaged next day. 
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2.2. Commonly Used Methods    

 

2.2.1 RNA Extraction 

 

RNA extraction was performed using TRI-Reagent (MRC #TR 118) according to the protocol given by 

manufacturer. Briefly, cells that were grown in 75cm3 flasks were collected by trypsinization and 

centrifuged at 1300 rpm for 3 minutes at 4°C. Media was removed and cells were homogenized in 

1ml TRI-Reagent. 200µl chloroform was added, vortexed for 15 seconds and the mixture was 

centrifuged 15 minutes at 13000rpm. The supernatant was collected and 500µl Isopropanol was 

added. The mixture was centrifuged 10 minutes at 14000 rpm and washed once with 75% and twice 

with 100% Ethanol. The pellet was dissolved in 250µl DNase-RNase free water and its concentration 

was read by NanoDrop ND-1000 Fullspectrum UV/Vis Spectrophotometer (Thermo Fisher Scientific). 

RNAse/DNAase free tubes and tips were used throughout the procedure. 

 

2.2.2 DNase treatment of RNA 

 

For DNase treatment of RNA, DNA-free ™Kit (Applied Biosystems #AM1906) was used. 1µl of rDNaseI 

was used per 10µg of RNA in 50µl including 10X DNaseI Buffer and incubated at 37°C for 30 minutes. 

For some of the samples that were known to be contaminated by genomic DNA an additional 1µl of 

rDNaseI was added to the mixture after this step and incubated for a further 30 minutes. 5µL of 

DNase Inactivation Reagent was added, vortexed and incubated at room temperature for 2 minutes 

by mixing occasionally. The sample was then centrifuged at 10000g for 1.5 minutes and the 

supernatant, including RNA, was transferred to another tube. The final concentration was 200ng/µl. 

RNAse/DNAase free tubes and tips were used throughout the procedure. 

 

2.2.3 cDNA synthesis 

 

cDNA synthesis was performed by DyNAmo™ cDNA Synthesis Kit (Finnzymes #F- 470S) according to 

manufacturer’s instructions. During cDNA synthesis random hexamers were used to be able to detect 

noncoding RNAs. 
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2.2.4 5-aza-2'-deoxycytidine treatment 

 

5-aza-2'-deoxycytidine (Sigma A3656) was used to treat cells at a concentration of 5mg/ml final per 

day for 4 days. The drug was prepared at a concentration of 5 mg/ml and stored at -70°C in aliquots 

of 10µl.   

 

 

2.2.5 Agarose Gel Electrophoresis 

  

Agarose gels were prepared by completely dissolving agarose in 1x TAE electrophoresis buffer at a 

percentage of 1.5% in microwave and ethidium bromide was added to final concentration of 30 

μg/ml. 20µl of samples were mixed with 5X DNA loading buffer and loaded onto gels for the PCR 

products. The gel was run in 1x TAE at 90V for 45minutes.  

 

 

2.2.6 Restriction Enzyme Digestions 

 

 The restriction enzyme digestions were performed in 20µl to 50µl reaction volumes with appropriate 

buffer at 37°C overnight. 

 

 

2.2.7 Ligation Reactions 

 

For ligation reactions, T4 DNA ligase (Promega # M1804) was used. For ligation reactions the 

necessary amounts of vector and insert were calculated by the following formula with 3:1insert to 

vector ratio and for 100 ng of vector. 

 

 

 

Ligation reactions were typically incubated at 16°C, overnight and additionally for 3 hours at 4°C. 
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2.2.8 Transformation  

 

For transformation, E.coli DH5α strain was used. Competent bacteria were prepared by the calcium 

chloride method and competent cells were stocked at -70°C in 150µl aliquots. For transformation, 50 

to 100ng of ligation products were incubated with thawed competent cells on ice for 30 minutes.  

Cells were then incubated at 42°C for 30 seconds and immediately placed on ice again and incubated 

for 2-3 minutes. 850µl of LB was then added and the cells were grown in a 37°C shaker (220rpm) for 

one hour. Cells were centrifuged at 13000 rpm for 20 seconds, and resuspended in 100µl LB which 

was then plated by the spread plate technique on an LB-agar plate containing the selective antibiotic 

and was incubated overnight at 37°C. pGL3 plasmid is resistant to ampicillin, pTurboRFP-PRL plasmid 

is resistant to kanamycin and pSicoR PGK Puro is resistant to Ampicillin. 

 

2.2.9 Purification of plasmid DNA 

 

Purification of plasmid DNA was performed using the QIAprep Spin Miniprep Kit (Qiagen #27106) or 

home-made method of plasmid purification for miniprep. Briefly, 1.5 ml of overnight culture of a 

single colony was centrifuged at 13000rpm for 1 minute. Cells were resuspended in 100µl of solution 

P1 (recipes) and then 200µl P2 and 150µl P3 were added respectively. The mixture was centrifuged 

at 13000rpm for 10 minutes and the supernatant was transferred to a clean tube. The DNA was 

extracted by 100% EtOH and washed with 75% EtOH and dissolved in 50µl DNase-RNase free water. 

For the large scale plasmid DNA purification (maxiprep) the same home-made protocol was used 

with the appropriate amount of the solutions adjusted to maxiprep 

 

2.3 Analysis of OATL transcript 

  

The PCR primers used to detect OATL transcripts are listed in Table1. Primer Tms were calculated 

according to the following formula: Tm = 69.3°C + 0.41 (%GC) - 535/n, where n is primer length. For 

PCR reactions DyNAzyme II HS DNA polymerase (Finnzymes #F-504), dNTP mix (Finnzymes #F-560), 

forward and reverse primers at final concentrations of 0.03 U/μl, 250 μM and 500 nM, respectively 

were used in a total volume of 20µl. GAPDH primers were used as a positive control for testing RNA 

integrity and cDNA amplification. PCR was carried out under the conditions of 94°C for 10 min 

followed by 35 cycles of 94°C for 60s, 60 s at the appropriate melting temperature, 72°C for 60s, with 

a final extension at 72°C for 10 min, in an Applied Biosystems 9700 PCR machine.  
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2.4 Mapping the SSX4 minimal promoters in the sense and antisense orientations 

 

2.4.1 Promoter Construct Generation 1: Insert Amplification by PCR  

 

Individual promoter fragments were amplified by PCR to generate products that would then be 

cloned into the luciferase reporter vector pGL3. The primers used for forward (sense) promoter 

analysis are listed in Table2 and the primers used for the reverse (antisense) promoter analysis are 

listed in Table3. 

 

PCR with the appropriate primers were performed with 10 ng of a construct containing the SSX4 

promoter region corresponding to -2000 to +1 in reference to the transcription start site as a 

template. Two PCR reactions for each fragment were performed and all of the PCR products were 

loaded to 1.5% agarose gel and run as explained before (Figure S1). The fragments were isolated 

from gel using QIAGEN Gel Extraction Kit (QIAGEN # 28706) according to the manufacturer’s 

instructions. 

 

2.4.2 Promoter Construct Generation 2: Vectors for luciferase experiments 

pGL3-Basic (Promega #E1751) vector was used for the promoter activity analyses. The vector lacks 

eukaryotic promoter and enhancer sequences that control the firefly luciferase gene so that the 

expression of luciferase depends on the putative promoter that can be cloned within the MCS 

immediately upstream the luciferase ORF. The pGL3-Basic vector lacking an insert cotransfected with 

the pRL-TK (Promega E2241) vector was used as an internal control reporter. pRL-TK contains herpes 

simplex virus thymidine kinase (HSV-TK) promoter 5’ to Renilla luciferase to provide low to moderate 

levels of Renilla luciferase expression in co-transfected mammalian cells.  

2.4.3 Promoter Construct Generation 3: Restriction Enzyme Digestion and Ligation 

 

XhoI (New England Biolabs #R0146L), HindIII (New England Biolabs # R0104L) restriction enzymes 

were used to double digest both the vector and the PCR fragments using NEB Buffer4 (Figure S2). 

Ligation reactions were performed as explained in section 2.6  
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2.4.4 Promoter Construct Generation 4: Vector construction  

 

For the fine mapping of the minimal forward promoter pGL3-SSX4A3.3, pGL3-SSX4A3.31, pGL3-

SSX4A3.32, pGL3-SSX4A3.33, pGL3-SSX4A3.34, pGL3-SSX4A3.35, pGL3-SSX4A3.36, pGL3-SSX4A3.37 

constructs were prepared. For the fine mapping of the minimal reverse promoter, pGL3-SSX4A3.3R, 

pGL3-SSX4A3.31R, pGL3-SSX4A3.32R, pGL3-SSX4A3.33R, pGL3-SSX4A3.34R constructs were 

prepared. (Figure 4.2 and Figure 4.4) To control the integrity of the constructs, XhoI and HindIII 

double digestions were performed to excise the fragments (Figure S3). 

             

2.4.5 Transient Transfection of the Reporter Constructs 

 

For transfection experiments LipofectamineTM 2000 (Invitrogen #11668-019) was used. For luciferase 

reporter experiments, cells were plated in a 24-well culture plate according to the manifacturer’s 

instructions. 0.8 µg pGL3 vector containing the promoter fragment to be tested was diluted in 50µl 

OPTI-MEM along with 20ng pRL-TK.  In a separate tube 1.6µl of Lipofectamine 2000 was diluted in 

50µl of OPTI-MEM to achieve 1:2 DNA:Lipofectamine ratio and incubated for 5 minutes in room 

temperature.  Diluted DNA and Lipofectamine solutions were then mixed gently and incubated 30 

minutes at room temperature. Meanwhile the growth medium of the cells to be transfected was 

replaced with 500µl OPTI-MEM serum free medium. The 100µl DNA-Lipofectamine mixture was then 

added to the cells and mixed by rocking the plate back and forth. After 5 hours of incubation at 37°C 

in a CO2 incubator, OPTI-MEM was replaced by RPMI1640 and cells were left for incubation for 

another 19 hours and collected for luciferase analysis.  

 

2.4.6 Luciferase Reporter Assay System  

 

The Dual-Luciferase® Reporter Assay System from Promega (Cat# E1910) was used for these 

experiments. Upon delivery of the system The Luciferase Assay Substrate (LARII) was reconstituted 

according to manufacturer’s instructions and divided into 1ml aliquots and stored at -70°C. Before 

each use, the necessary amount of LARII was thawed at room temperature in a water bath. Passive 

Lysis Buffer (PLB) and Stop & Glo® Reagent 1X working solutions were prepared just before use from 

5X and 50X concentrates respectively, according to the manufacturer’s instructions. The assays for 

firefly luciferase activity and Renilla luciferase activity were performed sequentially using one well of 

a 96 well opaque plate and by using The Reporter Microplate Luminometer (Turner Biosystems). 

After lysing the cells with 100µl PLB the day after the transfection, 10µl from the lysate was used for 
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the measurement. First 50µl of LARII was added and the luminescence was read immediately. Then 

50µl Stop & Glo® Reagent was added, mixed by pippeting and Renilla luciferase activity was 

determined by reading the luminescence immediately again. All the samples were read one by one to 

avoid any decrease in the luminescence. Luciferase activities were acquired as RLU (relative 

luciferase unit), corrected by renilla luciferase activity, adjusted to pGL3-Control activity, and 

expressed in fold of pGL3-Basic activity +/- standard error of the mean. 

 

2.5. Analysis of bidirectional SSX4 promoter activity by flow cytometry and 

fluorescent microscopy 

 

2.5.1 Vectors used 

 

pTurboRFP_PRL vector was purchased from Evrogen (#FP235). This is a promoterless vector encoding 

red fluorescent protein TurboRFP that can be used as an in vivo reporter of gene expression (Figure 

2.1). 

 

FIGURE 2.1 Map of pTurboRFP_PRL construct 

 

pHygEGFP vector (Clontech #6014-1) was used as a control that expresses high levels of Green 

Flourescent Protein(GFP). pHygEGFP expresses a fusion of the hygromycin resistance gene with 

enhanced green fluorescent protein (EGFP) under control of the strong immediate early promoter of 

human cytomegalovirus (CMV) (Figure 2.2) 
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FIGURE 2.2 Map of pHygEGFP that expresses Hyg-EGFP under control of the strong immediate early 

promoter of human cytomegalovirus (CMV) 

 

2.5.2 Reporter constructs 

 

2.5.2.1 pCMV-TRFP (TurboRFP under the control of CMV Promoter) 

 

The BglII/KpnI restricted CMV promoter from pHygEGFP was cloned into the same site of pTurboRFP-

PRL to generate pCMV-TRFP that expresses TRFP under the control of the strong immediate-early 

promoter of human cytomegalovirus (CMV) (Figure S6)  The map of the resulting construct can be 

seen in Figure 2.3. The vector was used as a control to measure TRFP.  

 

FIGURE 2.3 Map of pCMV-TRFP construct that expresses high levels of TRFP under the control of 

strong immediate-early promoter of human cytomegalovirus (CMV) 
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2.5.2.2 pSSX4P-TRFP (TurboRFP under the control of SSX4 Promoter) 

 

XhoI and HindIII restricted SSX4 minimal promoter from pGL3-SSX4A3.3 was cloned into the same 

site of pTurboRFP-PRL to generate pSS4P-TRFP (Figure S7). The integrity of the construct was tested 

by XhoI and HindIII double digestion (FigureS8). The map of the resulting construct can be seen in 

Figure 2.4. This results in the vector where TRFP is under the control of the SSX4 promoter in the 

sense orientation. 

 

FIGURE 2.4. Map of pSSX4P-TRFP vector where TRFP is under the control of the SSX4 sense promoter 

 

2.5.2.3 pSSX4PI-TRFP (TurboRFP under the control of inverted SSX4 Promoter) 

 

XhoI and HindIII restricted inverted SSX4 promoter from the previous construct pGL3-SSX4A3.3R was 

cloned into the same site of pTurboRFP-PRL resulting in a vector with TRFP under the control of the 

SSX4 promoter in the antisense orientation(Figure S7). The integrity of the construct was tested by 

XhoI and HindIII double digestion (FigureS8). The map of the resulting construct can be seen in Figure 

2.5 
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FIGURE 2.5 Map of pSSX4PI-TRFP vector where TRFP is under the control of the SSX4 antisense 

promoter 

 

2.5.2.4 pGFP-SSX4PI-TRFP and pGFPI-SSX4PI-TRFP  

 

pSSX4PI-TRFP was digested with BglII and treated with Arctic Phosphatase to prevent self ligation 

(Figure S9). pHygEGFP vector was digested with BamHI to excise HygEGFP (Figure S10) which was 

inserted into the BglII site of pSSX4PI-TRFP so that HygEGFP was either in the sense (pGFP-SSX4-

TRFP) or antisense (pGFPI-SSX4-TRFP) orientation (Figures 2.6.a and 2.6.b). The orientation of 

HygEGFP was confirmed by both NheI&XhoI and PvuI&XhoI double digestions (Figure S11). The 

constructs with the antisense GFP were used as a control. 

 

FIGURE 2.6.a. Map of pGFP-SSX4-TRFP vector in which HygEGFP expression is under control of SSX4 

sense promoter and TRFP expression is under control of SSX4 antisense promoter 
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FIGURE 2.6.b. Map of pGFPI-SSX4-TRFP vector in which orientation of HEGFP is reversed. TRFP 

expression is under control of SSX4 antisense promoter.  

 

2.5.3 Flow cytometry 

Flow cytometry was performed in a BD FACSCalibur system. SK-LC-17 cells were transiently 

transfected with either pHygEGFP, pCMV-TRFP, pSSX4P-TRFP, pSSX4PI-TRFP, pGFPI-SSX4PI-TRFP or 

pGFP-SSX4PI-TRFP. Two days after the transfection, the cells were harvested by trypsinization and 

resuspended in 1X cold PBS. After resuspension, the cells were kept on ice and in the dark 

throughout the procedure. pHygEGFP and pCMV-TRFP constructs were used to adjust the instrument 

settings so that false positives for FL-1(GFP) and FL-2(RFP) were kept at a minimum. After the correct 

adjustments 200000 transiently transfected SK-LC-17 cells were used for the reading and the results 

were gated and evaluated accordingly.  

 

2.5.4 Fluorescent Microscopy 

 

For fluorescent microscopy analysis, SK-LC-17 cells that were seeded on slides and transiently 

transfected with pHygEGFP, pCMV-TRFP, pSSX4P-TRFP, pSSX4PI-TRFP, pGFPI-SSX4PI-TRFP and pGFP-

SSX4PI-TRFP were collected two days after the transfection, washed two times with 1X PBS and fixed 

with cold methanol for 10 minutes, followed by two more washes PBS and observed under a Zeiss 

fluorescent microscope. 

 

To observe nuclei, cells were stained with DAPI and a permeabilization step was added to the 

procedure. Following fixation, cells were incubated with permeabilization solution for 30 minutes 

and washed 2 times with 1X PBS before DAPI staining and fluorescence microscopy. 
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2.6. DICER Knock down experiment by shDICER plasmids  

 

2.6.1 Vectors used 

 

pSicoR human Dicer1 (Evrogen Plasmid#14763), pSicoR human Dicer2 (Evrogen Plasmid#14764), 

pSicoR human Dicer3 (Evrogen Plasmid#14765) were purchased from Addgene and were used 

previously as described (Kumar MS, 2007) 

 

2.6.2 Generating stable clones 

 

pSicoR vectors were transfected into SK-LC-17 cells as described in the section 4.5 but using a 6-well 

plate format.  The day after the transfection, cells were trypsinized and reseeded in 15 cm3 dishes in 

1:2, 1:5 and 1:10 dilutions. Clone selection was initiated the following day by adding 0.25µg/µl 

puromycin to the cells. Cell death was obvious after 24 hours and resistant colonies were found to 

appear at day 7 to 10 (Optimization of selection dosage was performed independently). Individual 

colonies were picked under the microscope and transferred with a micropipette into a single well of 

a 96-well plate. Growing colonies were transferred 75 cm3 dishes. RNA samples were collected as 

explained in section 2.1. 

 

2.6.3 Real-Time PCR Analysis of DICER1  

 

The primers that were used to detect DICER expression are shown in Table 4. For real-time PCR 

analysis, efficiency of DICER1 primers were determined (Appendix B) after plotting the efficiency 

curve (Figure S5). For the analysis, 1:5 diluted SK-LC-17 cDNA was used. 2 housekeeping genes, 

GAPDH and 18S rRNA were used as internal controls. Real-time PCR experiments were carried out in 

a Bio-Rad iCycler under the conditions of 94°C for 10 min followed by 35 cycles of 94°C for 60s, 60°C 

for 60 s, 72°C for 60s, with a final extension at 72°C for 10 min followed by melting curve analyses. 

SyBR Green dye (DyNAmo HS SYBR Green qPCR Kit, Finnzymes #F-410L) was used to quantitate the 

PCR product. Genes were normalized according to delta-delta Ct method (Appendix B) 

 

 

 

 



28 
 

2.7 Bioinformatic Analyses 

 

2.7.1 Promoter Analysis 

 

Promoter Analysis of SSX4 and NY-ESO-1 was performed by Genomatix Software Gene2Promoter 

Database. The predicted promoters for SSX4 and NY-ESO-1 were retrieved from this database and 

analyzed in detail. 

  

2.7.2 Noncoding RNA Analysis 

 

Noncoding RNA sequences were compared with sequences between the SSX4-A2 to A4 in various 

noncoding RNA databases using the BLAST algorithm. These databases include “Noncoding RNA 

database” ((http://biobases.ibch.poznan.pl/ncRNA/) and “Mammalian Noncoding RNA Database“ 

((http://research.imb.uq.edu.au/rnadb/default.aspx). The latter includes all the noncoding RNAs 

found to date by different methods and offers a very convenient BLAST option along with the UCSC 

track. 

 

2.7.3 Microarray Analysis 

 

The microarray data has been retrieved from Geo Accession Number: GSE6427 and analyzed by 

GENESPRING according to the “Analyzing Agilent Two Color Expression Data” section of GENESPRING 

manual. The data were then specifically filtered for CT genes. 

 

 

 

 

 

 

 

 

 

 

 

http://biobases.ibch.poznan.pl/ncRNA/
http://research.imb.uq.edu.au/rnadb/default.aspx
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2.8 RECIPES 

 

 

50X TAE    242g Tris, 57.1 glacial CH3COOH, 37.2G Na2EDTA.2H2O in 1lt 

     Working solution 1X diluted 

     pH: 8,5     

 

Luria Bertani Broth (LB)   10g tryptone, 10g NaCl, 10g Bacto Yeast Extract in 1lt 

     15g Bactoagar is added for LB agar plates 

 

10X PBS    80g NaCl, 2g KCl, 17.8g Na2HPO4.2H2O, 2.4g KH2PO4 in 1lt 

     Working solution 1X diluted  

     pH: 7,4 

 

Solution P1    50mM Glucose, 25mM Tris-HCl(pH: 8,0) 

 10mM EDTA (pH: 8,0) 

 

Solution P2    0.2N NaOH, 1%SDS (from stock of 10%SDS) 

     Prepare fresh 

 

Solution P3    60ml 5M Potassium Acetate, 11.5ml glacial acetic acid, 

     28.5ml deionized water 

 

Permeabilization Solution  10ml 2%BSA, 10ml 1X PBS, 50µl Tween-20 
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2.9 TABLES 

 

TABLE 1. OATL and GAPDH PCR primers 

 

Primer Sequence  Tm  Amplicon length 

SSX4/OATL-A2 5’-GTCCCTGGATCTTGGGTTAAAC 59.53 750 bp 

SSX4/OATL-B2 5’-GTAATTGTGCGCACCACACTTAC 60.30 

SSX7/OATL-A 5’-AACAGATTTTTAACCCAAGATCCAGG 62.40 184 bp 

SSX7/OATL-B 5’-GGAGGGCCTTGGACTGTTTTTTCAGTA 67.70 

OATL-B4 5’-CGCAAATGTGCTAGTTTGGAA 59.71 175 bp 

OATL-A4 5’-CTGAGGACCACCCACTTTGT 58.43 

GAPDH-F 5’-GGCTGAGAACGGGAAGCTTGTCAT 67.48 150 bp 

GAPDH-R 5’-CAGCCTTCTCCATGGTGGTGAAGA 67.39 

 

 

TABLE 2. PCR primers for SSX4 promoter mapping (sense orientation) 

 

Name of the primer Sequence of the primer Tm 

SSX4 A3.3 XhoI* 5’-ATATTTCTCGAGCTGATGGCGCCTGAGG 72.16 

SSX4 A3.31 XhoI* 5’-ATATTTCTCGAGACCACCCACTTTGTCGCACA 71.80 

SSX4 A3.32 XhoI* 5’-ATATTTCTCGAGCTGGAGGAGGCGACAACATT 71.80 

SSX4 A3.33 XhoI* 5’-ATATTTCTCGAGCTGCAATGTCACTGCCCAAG 71.80 

SSX4 A3.34 XhoI* 5’-ATATTTCTCGAGGATGATGGACCAATCAGGGC 69.24 

SSX4 A3.35 XhoI* 5’-ATATTTCTCGAGAGTGAACTCCATCTGGCCAA 70.52 

SSX4 A3.36 XhoI* 5’-ATATTTCTCGAGGTCAGAACAGTAGGCGGAAC 71.80 

SSX4 A3.37 XhoI* 5’-ATATTTCTCGAGGAACAAGGGAAGCTGATGTG 69.24 

SSX4 B4 HindIII** 5’-CACACAAAGCTTCCTAGAGCCTGGACTGACAGACG 73.93 

 

*XhoI site CTCGAG (with the additional ATATTT sequence for restriction enzyme digestion) 

**HindIII site AAGCTT (with the additional CACACA sequence for restriction enzyme digestion) 
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TABLE 3. PCR Primers for SSX4 Promoter Mapping (Antisense Orientation) 

 

Primer Sequence  Tm 

SSX4 A3.3 HindIII** 5’-CACACAAAGCTTCTGATGGCGCCTGAGG 72.16 

SSX4 A3.31 HindIII** 5’-CACACAAAGCTTACCACCCACTTTGTCGCACA 71.80 

SSX4 A3.32 HindIII** 5’-CACACAAAGCTTCTGGAGGAGGCGACAACATT 71.80 

SSX4 A3.33 HindIII** 5’-CACACAAAGCTTCTGCAATGTCACTGCCCAAG 71.80 

SSX4 A3.34 HindIII** 5’-CACACAAAGCTTGATGATGGACCAATCAGGGC 69.24 

SSX4 B4 XhoI * 5’- ATATTTCTCGAGCCTAGAGCCTGGACTGACAGACG 72.76 

 

*XhoI site CTCGAG (with the additional ATATTT sequence for restriction enzyme digestion) 

**HindIII site AAGCTT (with the additional CACACA sequence for restriction enzyme digestion) 

 

 

TABLE 4. Quantitative RT-PCR Primers for DICER1 

 

Primer Name Sequence  Tm Amplicon size 

DICER1_FW 5’-GAAGCTGGCAAACAAGATCC 58.31 236 bp 

DICER1_R 5’-GTGGGCAAATCAAAACGAACC 62.25 
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3. PRELIMINARY DATA AND RATIONALE 

 

SSX4 gene was identified in 1997 (Gure AO, 1997). Since SSX4 is a typical CT gene with frequent 

expression in tumors (Tureci O, 1998), and co-expressed with other CT genes (Gure AO, 2005), it was 

chosen as a model to decipher the mechanisms relevant to CT gene expression in cancer. Subsequent 

to the characterization of the gene, its transcription start site(s), as well as promoter and enhancer 

regions were identified, and DNA methylation levels of the promoter-proximal regions were studied 

in context of its expression (unpublished data) The rationale of this thesis is based on these data. 

These earlier results that eventually lead to the hypothesis of this thesis are summarized below. 

 

3.1 General architecture of the SSX4 promoter 

 

 

 

FIGURE 3.1. The general architecture of SSX4 promoter. Previously identified functional regions are 

shown in boxes. Sequences with promoter activity are depicted in yellow.  Exon1 and 2 are shown as 

a single block in red. Ornithine Aminotransferase Like (OATL) sequences are in green. An L1 repeat 

(depicted in grey) disrupts the OATL sequence. Alu repeats at the 5’ of the promoter are shown in 

blue. Primers used for generating reporter construct (A1-4 [forward], B [reverse]) and the major 

transcription start site (TSS) is indicated.    

 

All SSX genes (SSX1-9) share common promoter architecture as depicted in Figure 3.1. The previously 

characterized SSX4 promoter was defined by generating luciferase reporter constructs with the 

primers shown in Figures 3.1 and 3.2. 5’ to the promoter an OATL pseudogene, corresponding to the 

exon2 and part of the exon3 of the ornithine aminotransferase gene, followed by Alu repeats and 

finally by CT repeats exists (Figure 3.1).  
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3.2 Characterization of the SSX4 minimal promoter 

 

Experiments aiming the characterization of the SSX4 promoter utilized those primers shown in 

Figures 3.1 and 3.2.  As can be seen in Figure 3.2, the choise of “forward” primers was based on the 

inclusion of individual structural elements that possibly could affect SSX4 promoter activity. An initial 

set of luciferase reporter experiments utilizing constructs generated by the A1, -2, 3 and -4 forward 

primers with the B reverse primers as tested in the melanoma cell line SK-MEL-37 indicated that the 

minimal promoter had to be within A4 and B, and that the elements 5’ to the promoter had 

repressive activity (Figure 3.3). Generating shorter constructs with A4.1, -4.2, -4.3, or -4.4 in 

combinations also resulted in loss of promoter activity (data not shown). However, using A3.3 

primers in combination with A4 (in reverse orientation) resulted in maximum promoter activity in the 

same cell line (Figure 3.3). Interestingly reversing this construct such that the same promoter 

sequence was in antisense orientation in reference to the reporter, resulted in low, albeit significant 

promoter activity (Figure 3.3).  

 

FIGURE 3.2. Sequence of the SSX4 promoter-proximal region. Exons 1 and 2 (containing the 

translation initiation codon) are in yellow. OATL pseudogene sequences in blue. Primers used for 

reporter vector construction are shown in boxes. Primers used for the initial experiments are in red 

characters, those used to define the minimal promoter are in blue and pink. The right and left arms 

of the 8 Alu repeats are in bold and italics, respectively. 
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FIGURE 3.3. Luciferase activity of SSX4 promoter-reporter constructs. SSX4 gene architecture is 

shown on top. The corresponding reporter constructs contain the indicated portion of the promoter 

and the luciferase reporter (grey box). The A3.3-m/Ex-less reporter vector contains SSX4 promoter 

sequences between primers A3.3 and A4. The A3.3-m/Ex-less(R) vector has the same sequences but 

in antisense orientation. Luciferase activity of individual vectors is shown on the right as relative 

luciferase units.  
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3.3 Promoter activity of various SSX genes in different cell lines 

 

 

 

FIGURE 3.4. Luciferase activity of SSX4 and SSX7 promoter constucts in SK-LC-17 (left) and Detroit 

551 (right).  Vectors are identical to those described in Figures 3.2 and 3.3. Promoter activity is 

shown as relative luciferase units on the Y axis. 

 

It was of interest to compare SSX promoter activity among different SSX genes, since their sequences 

are almost identical. To test for such potential differences, reporter constructs were generated from 

promoter sequences of the SSX7 gene corresponding to A1-B, A2-B and A3.3-A3 sequences of SSX4, 

and tested for reporter activity. SSX7 has been shown to be expressed in testis, but its expression is 

absent from all other normal and cancer tissues and cell lines including SK-LC-17 (Güre AO, 2002 & 

unpublished data not shown). As shown in Figure 3.4, luciferase activity of the reporter constructs 

with promoter sequences of SSX4 and SSX7 were indistinguishable. This experiment was performed 

in two cell lines: SK-LC-17 and the untransformed fibroblastoid cell line Detroit 551 (Figure 3.4). SK-

LC-17 does express most CT genes including SSX1, -2, -3, -4 and 5 readily, whereas Detroit 551 has no 

detectable expression of any CT gene (data not shown). 

 

In summary, the SSX4 and -7 promoters show reproducible and ubiquitous activity when part of 

episomal vectors, in contrast to their strict regulation in vivo. The two promoters also share a 

minimal promoter region that functions bidirectionally, and also various repressive elements that, 

nevertheless, do not block SSX promoter activity fully when part of the same reporter construct. 
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3.4. Characterization of repressive elements of the SSX4 promoter 

 

 

 

FIGURE 3.5 Analysis of the repressive element 5' to the minimal promoter. The repressive element 

(A2-A3.3) containing the OATL  sequence and the L1 repeat was eliminated or replaced with various  

other sequences, including GAPDH (red) and the IFN -MAR element  (purple), in the sense or anti-

sense orientation. 

 

Since the above described experiments identified the A3.3-A4 region as the minimal promoter, and 

the presence of repressive elements, to characterize the nature of this repressive element a second 

set of constructs, all sharing the A4 site as their most 3’ end were constructed. The most repressive 

element in the SSX4 promoter (A2-A3.3) was then replaced with various sequences to test for a 

change in repression. Summary of these experiments are shown in Figure 3.5. These experiments 

demonstrated that reversing the orientation of the repressive sequence, or replacing it with one that 

contained a matrix-associating region (MAR) did not change repression significantly. In fact, cloning a 

house-keeping gene’s (GAPDH) coding regions in either orientation could reconstitute the repressive 

effect as well. This suggested that the presence of “any” sequence, or the presence of a transcript 

spanning these regions itself could be related to the transcriptional control of the promoter. 
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3.5 Characterization of the transcription start sites of the bidirectional SSX4 

promoter in vivo 

 

To test for the presence of a transcript initiated in either orientation from the SSX4 promoter, 5’RACE 

analyses that could detect trancripts generated in either orientation were performed. Transcripts 

corresponding to 4 minor and 1 major transcription start sites were identified in the sense 

orientation. In addition, an antisense transcript originating within the minimal promoter was also 

identified (Figure 3.6).  

 

 

FIGURE 3.6. Transcription Start Sites identified by RACE analysis 

 

The minor TSSs are depicted in black and the major TSS is depicted in bright red. The TSS of the OATL 

transcript can be seen in brown. Green sequences are Alu repeats and blue sequences are OATL 

sequences. The first ATG of the SSX4 gene is shown in a red circle.  
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3.6 Objectives and Rationale 

 

The main objective in our research is to understand the mechanisms underlying the regulation of 

cancer-testis antigen gene expression. Previous data showed that CT antigen gene regulation has an 

epigenetic component. Specifically, CT gene promoter proximal sequences are consistently 

hypermethylated in normal tissues other than testis and become hypomethylated in cancer (Scanlan 

MJ, 2002). Similarly, TSA or other histone deacetylase inhibitors have consistently shown to induce 

CT gene expression (Scanlan MJ, 2002). Although hypomethylation phenomena, either global or gene 

specific, is known for years, the mechanisms underlying this process are not known. Although repeat 

regions are typical targets of tumorigenesis-associated hypomethylation, they are extremely difficult 

to study due to the fact that their genes and transcripts are so numerous. Although cancer testis 

antigens are generally known for their immunogenicity in cancer, they are also ideal tools to study 

the mechanisms of hypomethylation since they are individual genes.  

 

The first promoter analysis of a CT gene was performed in 1995 with MAGE-A1 gene and MAGE-A1 

promoter was transcriptionally active in tumor cells that did not express the MAGE-A1 gene (De Smet 

C, 1995). Considering that CT antigens are coordinately expressed (Gure AO, 2005), this observation 

should be valid for other CT genes as supported by our results with SSX4 and SSX7 promoter 

constructs (Figure 3.4). This suggests the ubiquitous presence of transcription factors acting on these 

promoters and that the genes are epigenetically regulated. We hypothesized that the mechanism 

involved in the epigenetic regulation of CT antigen genes partially be contained with the promoter 

itself. Previous data demonstrated a bidirectional promoter (see Figure 3.3) and a repressive 

regulatory mechanism that could be under the control of antisense promoter activity. To further 

understand the structure of the bidirectional promoter, we wanted to characterize the critical 

sequences responsible for the promoter activity in each direction within the minimal promoter. We 

then wanted to test if the SSX4 promoter could generate sense and antisense transcripts 

simultaneously and whether these could result in the generation of an intra-promoter dsRNA 

molecule. If SSX4 gene expression regulation is related to the generation of a ncRNA by the 

bidirectional promoter, then we wanted to determine whether this was a DICER-dependent event. 

We also aimed a bioinformatic search in hope of identifying structural similarities among CT-gene 

promoters that could possibly explain a pattern of similar behaviour within this group of genes. 
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4. RESULTS 

 

4.1 Mapping the Bidirectional Elements of the SSX4 Basal Promoter  

 

Earlier experiments had mapped the minimal SSX4 promoter to sequences -232 to -38, with 

reference to the major TSS. To characterize the minimal elements necessary for transcription in both 

the sense and antisense orientations, I designed reporter constructs containing various subregions of 

the SSX4 minimal promoter as shown in Figure 4.1 and tested their reporter activity when transiently 

transfected into the cell line SK-LC-17. 

 

 

 

FIGURE 4.1 Sub-regions within the SSX4 promoter that were individually analyzed for promoter 

activity. Oligonucleotide primers corresponding to various sites within the minimal promoter are 

shown as colored boxes. 

 

4.1.1 Mapping SSX4 promoter elements responsible for transcription in the sense orientation 

 

I generated the deletion constructs shown in Figure 4.2 by PCR to identify the important elements in 

the sense promoter using the primers shown in Table 2. The resulting constructs were pGL3-

SSX4A3.3, pGL3-SSX4A3.31, pGL3-SSX4A3.32, pGL3-SSX4A3.33, pGL3-SSX4A3.34, pGL3-SSX4A3.35, 

pGL3-SSX4A3.36, pGL3-SSX4A3.37, where the designation refers to forward primer used for PCR. All 

constructs shared the same reverse primer (A4). Resulting PCR fragments were cloned into the pGL3-

Basic plasmid and then assayed for their ability to transcribe luciferase gene. The relative luciferase 

units obtained from the constructs are shown as fold difference in Figure 4.3. 
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FIGURE 4.2. Sense promoter mapping constructs. The SSX4 minimal promoter (A3.3 to A4, 194bp) is 

shown on top. Mapping constructs share in common the most 3’ region of the minimal promoter 

(A4), and are 177bp (A3.31 to A4), 150 bp (A3.32 to A4), 130 (A3.33 to A4), 110 bp (A3.34 to A4), 86 

bp (A3.35 to A4), 60 bp (A3.36 to A4) and 44 bp (A3.37 to A4).  

 

 

 

FIGURE 4.3 Promoter activity in the sense orientation of A3.3-A4 sub-fragments. Bars represent 

relative luciferase units.  The average values obtained from three experiments are shown. 
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Data presented in Figure 4.3 shows that the luciferase reporter activity of SSX4 sense promoter loses 

about 20% of its activity upon the eliminating A3.3 and A3.31 sequences but decreases to about 30% 

of its total activity if the A3.32 sequence is missing from the construct as well. Additional sequences 

within which scarce promoter activity reside in were A3.34 and A3.35. In summary, the major 

promoter activity in the sense orientation resides within the A3.32 sequences, with lesser activity in 

A3, A3.34 and A3.35. 

 

4.1.2 Mapping SSX4 promoter elements responsible for transcription in the antisense orientation 

 

I generated a second group of constructs shown in Figure 4.4 by PCR to identify the important 

elements in the antisense promoter shown in Table 3. The resulting constructs were pGL3-

SSX4A3.3R, pGL3-SSX4A3.31R, pGL3-SSX4A3.32R, pGL3-SSX4A3.33R and pGL3-SSX4A3, where the 

designation refers to the forward primer used for PCR. All constructs shared the same reverse primer 

(A4). The letter R designates that these sequences are in antisense orientation (reverse). The PCR 

fragments were cloned into the pGL3-Basic plasmid to test their promoter activity. 

 

 

 

 

 

FIGURE 4.4 Antisense promoter mapping constructs. Mapping constructs share in common the most 

5’ region of the minimal promoter (A4) and are 177bp (A4 to A3.31), 150 bp (A4 to A3.32), 130 (A4 to 

A3.33), and 110 bp (A4 to A3.34) in length. 
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Since the SSX4 promoter activity in antisense orientation is lower compared to that in sense (Figure 

3.4), I hypothesized that the promoter activity would more likely reside close to the 3’ end of the 

inverted promoter. Therefore, constructs prepared for these experiments were designed to maintain 

5’ sequences, while gradually eliminating 3’ sequences (Figure 4.4). The constructs were then 

assayed for their ability to transcribe the luciferase reporter gene. The relative luciferase units 

obtained from the constructs are shown as fold difference in Figure 4.5.  

 

 

 
 
 

FIGURE 4.5. Promoter activity in the antisense orientation of A3.3-A4 sub-fragments. The average of 

three experiments is shown. 

 

As hypothesized, the promoter activity of SSX4 antisense promoter was found to reside mostly in 3’ 

regions (Figure 4.5). Antisense promoter activity was not significantly affected by the lack of A3.3 or 

A3.31, in fact there was a slight gain of activity when sequences within A3.3 region were lost. The 

loss of A3.32 decreased the activity of the antisense promoter about 20% but less than 25% of the 

promoter activity remained if A3.33 sequences were eliminated (Figure 4.5). In summary, the major 

promoter element for anti-sense transcription from the SSX4 minimal promoter resides within A3.33 

sequences with minor activity in A3.32. 
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4.1.3 Overlapping promoter elements direct transcription in opposite orientations 

 

As a result of these experiments, the sequences that show promoter activity can be summarized as 

shown in Figure 4.6  

 
 
 

FIGURE 4.6. Summary of all results from sense and antisense promoter mapping experiments. The 

major promoter activity in the sense orientation resides within sequences within the A3.32 primer. 

Additional minor promoter activity is observed for A3.34 and -35 regions. Antisense transcription is 

primarily dependent on the A3.33  

 

Our data shows that the SSX4 minimal promoter is clearly a bidirectional promoter with overlapping 

promoter activities within the same region. The main sense promoter activity and main antisense 

promoter activity actually resides in a 40 bp sequence. Thus it is likely that the SSX4 sense and 

antisense promoters interfere with eachother’s promoter activity. Thus these experiments identified 

specific sequences that are primarily responsible for SSX4 promoter activity in both directions.   

 

4.2 OATL Transcript Analysis 

 

SSX4 promoter is found to be a bidirectional promoter that shows a promoter activity both for the 

SSX4 transcript and the putative OATL transcript that would contain sequences from the OATL 

pseudogene (Figure 4.7).  
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FIGURE 4.7 The two most active promoters in sense and antisense orientation upstream the SSX4 

coding regions (red) are shown in context of the genomic DNA within which the promoter resides (in 

yellow). OATL pseudogene sequnces are in green, the L1 repeat in grey and the Alu repeat region in 

blue. 

 

Considering that the antisense promoter is active in vivo, we expected to find an antisense transcript 

initiating from the SSX4 promoter that would correspond to OATL pseudogene sequences.  A very 

short transcript of this nature had previously been identified by RACE analysis (Figure 3.6 and 4.8). 

 

  

 

FIGURE 4.8. OATL transcript identified by 5’RACE analysis. The transcript is highlighted in blue. Primer 

sequences used to construct the promoter reporter constructs are shown in blue font color and the 

name of the primers are shown in red. 

 

I wanted to generate PCR primers by which I could determine and quantify the OATL transcript, 

which I hypothesized would be longer than that identified by RACE analysis. Such primers could then 

be used to test if the OATL transcript co-existed with the SSX4 mRNA and whether their transcription 

would occur in a mutually exclusive fashion. OATL sequences are highly conserved among other SSX 

genes (Figure 4.9). Therefore, the OATL sequences can only be distinguished by a few base pair 

differences that need to be considered if an OATL transcript initiating from a specific SSX gene is to 
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be amplified. The conservation between the OATL sequences of SSX4, SSX7, SSX9, SSX2, SSX3 and 

OAT is summarized in FIGURE 4.9 

 

 

 

FIGURE 4.9 Homology of OATL sequences within the 5’ regions of SSX2, -3, -4, -7 and -9 and to that of 

the Ornitine aminotransferase (OAT) mRNA are shown. There are two copies of SSX2, therefore, two 

OATL sequences are shown. Residues shared by all genes are highlighted by an asterisk. The 

sequence stretch unique to SSX4 corresponds to the LINE1 element. 

 

The SSX4 OATL is disrupted by a LINE1 insertion. This repeat element is not present within OATL 

sequences of SSX genes other than SSX4 and therefore, seems to be a recent evolutionary event. 
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4.2.1 Detection of the SSX4/OATL transcript 

 

Since SSX4 was the most intensely studied among this family of genes and since I already identified 

the minimal promoter element that could generate an OATL transcript from the SSX4 promoter 

(SSX4/OATL transcript), I decided to focus on the SSX4-SSX4/OATL transcript pair to study their 

combined regulation. I thus, designed primers (OATLA2-OATLB2) for SSX4/OATL such that the 3’ end 

of the primer would be uniquely complementary to the OATL sequence of SSX4 (Figure 4.10).  

 

 

 

FIGURE 4.10. OATLA2 (forward) and OATLB2 (reverse) primers in the context of homologous OATL 

sequences. OATLA2 was designed to contain a cytidine at its 3’ end (top of figure). OATLB2 contained 

cytidine at its 3’ end (bottom of figure); to ensure amplification of the specific sequence. 

 

The OATLA2 and -B2 primers were designed to amplify sequences immediately upstream of the A3.3 

primer site since these sequences corresponded to the 5’ region of the SSX4/OATL transcript 

previously identified RACE (Figure 4.8). And, since the antisense SSX4 promoter was found to be 

contained primarily within sequences 3’ to A3.3 (Figure 4.6).  
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FIGURE 4.11 OATLA2-OATLB2 primers in context of the SSX4 promoter region. OATLA2 and OATLB2 

primers are highlighted in yellow. Primers used to construct reporter vectors are shown in blue 

letters and their designations are in red. The SSX4 minimal promoter is between the primers A3.3 

and A4. 

 

I hypothesized that this transcript would be uninterrupted; therefore, all the samples to be tested 

were treated with DNase prior to cDNA generation and genomic DNA contamination was assessed by 

reverse transcriptase-lacking controls. The quality and specificity of the primers were tested for their 

ability to specifically amplify the SSX4 reporter constructs (Figure 3.3) that possess SSX4-specific 

OATL sequences, and not those constructs containing SSX7 promoter regions that contain SSX7-

specific OATL sequences (Figure 4.10). As expected, only when SSX4-A1 construct was used as the 

template, PCR amplification was observed using OATLA2-OATLB2 primer pair (Figure S12). To detect 

the OATL transcript specific for SSX4, different cell lines and conditions were used. SK-LC-17 cell line, 

which is known to express a high level of SSX4, was used in case the bidirectional promoter is active 

and working in both directions. HT29 cell line which does not express SSX4 unless it is treated with 

demethylating agent 5-aza-2'-deoxycytidine was also tested as this reagent would be expected to 

lead to the dereppression of the SSX4 promoter, possibly affecting the antisense promoter as well. 

However, we were unable to detect the presence of a SSX4/OATL transcript by these primers in any 

of the cell lines and/or conditions tested.  
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4.2.2 Detection of the SSX7/OATL transcript  

 

SSX7 gene expression is seen in testis but SSX7 gene remains silent even in SSX4 gene expressing 

cancer cell lines. One possible explanation for this observation is that in tumors lacking SSX7 

expression might be transcribing SSX7/OATL instead. In this manner, I wanted to design primers 

(SSX7/OATLA-SSX7/OATLB) to the OATL transcript specific for SSX7 (SSX7/OATL). In both SSX7/OATLA 

and SSX7/OATLB primers, the 3’ end of the primer is uniquely complementary to OATL sequence of 

SSX7 (Figure 4.12).   

 

 

 

FIGURE 4.12 SSX7/OATLA (forward) and SSX7/OATLB (reverse) primers in the context of homologous 

OATL sequences. SSX7/OATLA was designed to contain an adenine at its 3’ end (top of figure). 

SSX7/OATLB contained a thymidine at its 3’ end (bottom of figure); to ensure amplification of the 

specific sequence.   

 

The quality and specificity of the primers were tested using the same methodology as described for 

OATLA2 & -B2 primers. As expected, the primers only gave a product when the SSX7 construct was 
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used as the template but not when SSX4 was used. To detect the OATL transcript specific for SSX7, 

the same cell lines and conditions (SK-LC-17, HT29 and 5-aza-2'-deoxycytidine treated HT29) were 

used. However, no transcript could be detected in any of the cell lines or conditions tested.  

 

4.2.3 Detection of a universal OATL transcript  

 

Since we could not detect the SSX4/OATL transcript using the OATLA2-OATLB2 primer pair, a new 

primer pair that could amplify any SSX/OATL transcript was designed. I thought that a reason the 

OATLA2, -B2 primer was not able to amplify a product was possibly that the target RNA was shorter. 

The new primer pair was, therefore, designed to yield a shorter product (Figure 4.13 and 4.14).  

 

 

 

FIGURE 4.13 OATLA4 (forward) and  OATLB4 (reverse) primers in the context of homologous OATL 

sequences. OATLA4 and OATLB4 are highlighted in green 
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FIGURE 4.14 OATLA4-OATLB4 primers in the context of SSX4 promoter region. OATLA2 and OATLB2 

are highlighted in yellow. 

 

The quality of the primers were tested by using the luciferase reporter construct SSX4-A1 (Figure 3.3) 

which possesses OATL sequences of SSX4 and SSX7-A1 which possesses OATL sequences of SSX7 as 

templates. As expected, PCR amplification is detected in both templates. The same cell lines and 

conditions (SK-LC-17, HT29 and 5-aza-2'-deoxycytidine treated HT29) were used but the transcript 

could not be detected in any of the cell lines or conditions tested.  

 

4.2.4 Detection of OATL transcripts using bioinformatics as a tool 

 

Transcripts deposited into noncoding RNA (ncRNA) databases were searched for a transcript 

corresponding to the OATL sequences. These databases offer BLAST algorithms to compare putative 

ncRNAs with verified ncRNAs. One of these databases is the noncoding RNA database 

(http://biobases.ibch.poznan.pl/ncRNA/). The database includes over 30,000 individual sequences 

from 99 species of Bacteria, Archaea and Eukaryota. Sequences between the SSX4-A2 to -A4 were 

used to search for homologous ncRNAs using the BLAST algorithm, but no human ncRNA matched to 

these sequences. 

 

http://biobases.ibch.poznan.pl/ncRNA/


51 
 

Another database I used was mammalian ncRNA database (RNAdb)  

(http://research.imb.uq.edu.au/rnadb/default.aspx). This database includes sequences and 

annotations for tens of thousands of ncRNAs including microRNAs, small nucleolar RNAs, larger 

mRNA-like ncRNAs, PIWI-interacting RNAs, ncRNAs identified from the latest rounds of large-scale 

cDNA sequencing projects, putative antisense transcripts, as well as ncRNAs predicted on the basis of 

structural features and alignments. Sequences homologous to sequences between the SSX4-A2 to -

A4 were searched by using the BLAST algorithm but no human ncRNA matched these sequences. I 

also searched for the presence of ncRNAs in the vicinity of the SSX4 and SSX3 gene by the UCSC BED 

files. I was not able to identify any ncRNA transcripts in the vicinity of the SSX genes using this 

approach either. 

 

 

 

FIGURE 4.15. UCSC Browser showing UCSC genes and RNAdb Antisense ncRNA in the location 

chrX:48,090,0807-48,137,729. USCS genes are shown in blue in the second row. In this region of X 

chromosome SSX3 (another SSX gene family member) and SSX4 genes reside. The ncRNAs found in 

the database normally shown in green in the first row but the track is empty indicating that no 

ncRNA in the database corresponds to the 5’ sequences of SSX4 or SSX3.  
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4.3. Analysis of bidirectional SSX4 promoter activity by flow cytometry and 

fluorescent microscopy 

 

Although our reporter construct analysis of promoter activity revealed a bidirectional SSX4 promoter, 

we were not able to identify an OATL transcript and were, therefore, unable to determine whether 

the promoters are antiregulated so that when the sense promoter is active, antisense promoter is 

not active or vice versa, or whether they were co-regulated so that when the promoter is active as a 

whole, both sense and antisense promoter activity would be observed and when the promoter is not 

active no promoter activity would be seen. We, therefore, hypothesized that the antisense 

transcription could contribute to the regulation of sense promoter expression. This contribution may 

stem from “transcriptional interference“ where the regulation of one promoter depends on the 

transcription from other promoter or a possible dsRNA from the activity of both of the promoters 

simultaneously. To test these possibilities, we generated a bi-reporter construct in which the activity 

of SSX4 minimal promoter is assessed both in the sense and antisense direction with the help of two 

different reporter genes. To assess the sense promoter activity, we used Enhanced Green 

Flourescent Protein (EGFP) and to assess the antisense promoter activity we have used Turbo Red 

Flourescent Protein (TRFP). Since TRFP is a more powerful reporter than the EGFP, it was chosen as 

the reporter of the weaker antisense promoter.  

 

The generation of the bi-reporter system utilized two controls. The first contruct is pHygEGFP in 

which the EGFP is under the control of the strong immediate early promoter of human 

cytomegalovirus (CMV). The second control construct is generated in our laboratory, pCMV-TRFP, in 

which TRFP is under the control of strong immediate early promoter of human cytomegalovirus 

(CMV) (Figure 2.3). These two controls are used not only to assess the integrity of EGFP and TRFP but 

for calibration purposes, mosly of flow cytometry. The basic plasmid that has been used in the 

generation of SSX4 promoter constructs was pTurboRFP-PRL. This plasmid does not contain a 

promoter sequence and enables evaluation of the promoter activity by ligating the promoter of 

interest into the multiple cloning site of the plasmid. pSSX4P-TRFP and pSSX4PI-TRFP constructs were 

generated  for testing SSX4 promoter activity in the sense and antisense orientation respectively 

(Figures 2.2 and 2.3), and served as quality control experiments as well. An additional reporter vector 

was generated by inserting the HygEGFP reporter downstream the SSX4 promoter of pSSX4PI-TRFP, 

generating pHEGFP-SSX4PI-TRFP (Figure 2.6a) that was suitable to test both promoter activities 

simultaneously. A control of this vector that contains the EGFP in antisense is shown in Figure 2.6b.   
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4.3.1 Flow Cytometry 

 

For flow cytometry analysis SK-LC-17 cell line was used. Maximum excitation and emission values of 

TurboRFP protein are 553 nm and 574 nm respectively. Maximum excitation and emission values of 

EGFP protein are 488 nm and 509 nm respectively. Accordingly, two different lasers were used to 

detect GFP and RFP. The first laser (FL1) is used to detect EGFP and the second laser (FL2) has been 

used to detect TRFP. The calibration for compensation between these lasers was performed by using 

pHygEGFP and pCMV-TRFP to minimize autofluorescense. After the calibration according to the cell 

line and dual-fluorescence, 200.000 cells were read and gated for further analysis. 

 

FIGURE 4.16 Flow cytometry results of untransfected SK-LC-17 cells. The upper left quadrant,  lower 

right quadrant and upper right quadrant refers to GFP positive cells, RFP positive cells and double 

positive cells respectively.The percentages and the details of the reading can be observed in the 

table.  

 

 

FIGURE 4.17 Flow cytometry results of pHygEGFP transfected SK-LC-17 cells. The upper left quadrant, 

lower right quadrant and upper right quadrant refers to GFP positive cells, RFP positive cells and 

double positive cells respectively.The percentages and the details of the reading can be observed in 

the table. 



54 
 

 

 

 

FIGURE 4.18 Flow cytometry results of pCMV-TRFP transfected SK-LC-17 cells. The upper left 

quadrant, lower right quadrant and upper right quadrant refers to GFP positive cells, RFP positive 

cells and double positive cells respectively.The percentages and the details of the reading can be 

observed in the table. 

 

 

 

 

FIGURE 4.19 Flow cytometry results of pSSX4P-TRFP transfected SK-LC-17 cells. The upper left 

quadrant, lower right quadrant and upper right quadrant refers to GFP positive cells, RFP positive 

cells and double positive cells respectively.The percentages and the details of the reading can be 

observed in the table 
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FIGURE 4.20 Flow cytometry results of pSSX4PI-TRFP transfected SK-LC-17 cells. The upper left 

quadrant, lower right quadrant and upper right quadrant refers to GFP positive cells, RFP positive 

cells and double positive cells respectively.The percentages and the details of the reading can be 

observed in the table 

 

 

 

FIGURE 4.21 Flow cytometry results of pGFPI-SSX4PI-TRFP transfected SK-LC-17 cells. The upper left 

quadrant, lower right quadrant and upper right quadrant refers to GFP positive cells, RFP positive 

cells and double positive cells respectively.The percentages and the details of the reading can be 

observed in the table 

 

 



56 
 

 

 

FIGURE 4.22 Flow cytometry results of pGFP-SSX4PI-TRFP transfected SK-LC-17 cells. The upper left 

quadrant, lower right quadrant and upper right quadrant refers to GFP positive cells, RFP positive 

cells and double positive cells respectively.The percentages and the details of the reading can be 

observed in the table 

 

 

These results show that both EGFP and TRFP are expressed under the control of CMV promoter and 

that the transfection efficiencies for these constructs are 30 to 45% (Figure 4.17 and 4.18). TurboRFP 

is expressed under the control of both the SSX4 sense (Figure 4.19) as well as the antisense promoter 

(Figure 4.20). As expected, the antisense promoter activity is lower than the sense promoter activity. 

When we compare the fluorescence that our double reporter constructs show, we can clearly see 

that EGFP is expressed in the pGFP-SSX4PI-TRFP construct concomitant to the loss of TRFP 

transcription (Figure 4.22). The EGFP expression is significantly less in the control pGFPI-SSX4PI-TRFP 

construct where the direction of EGFP is reversed (Figure 4.21). Interestingly when we compare the 

results for pSSX4PI-TRFP and pGFP-SSX4PI-TRFP constructs, we can see that although the antisense 

promoter is capable of expressing TRFP when there is no other reporter gene in the construct, upon 

the addition of EGFP sequence (under the control of sense SSX4 promoter), TRFP expression is 

abolished.  
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4.3.2 Fluorescent Microscopy 

 

Fluorescent microscopy is a very convenient method to observe the changes in fluorescence 

activities. In our case, the aim for using fluorescent microscopy experiments was to investigate the 

activities of sense and antisense promoter in a single cell basis enabling us to observe if both of the 

promoters are active in one cell simultaneously; and if they are active to observe the localizations of 

the activities. Unfortunately, the low sensitivity of the microscopy prevented us from observing low 

promoter activities conferred by SSX4 promoter. Only EGFP and TRFP expression under CMV 

promoter were detectable under the microscopy considering that CMV promoter is a far more 

powerful promoter than SSX4 promoter. 

 

 

 

FIGURE 4.23 Fluorescent microscopy images of pHygEGFP transfected SK-LC-17 cells. To visualize the 

cells, nuclei are stained with DAPI (upper left) (4OX) 
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FIGURE 4.24 Images from light and fluorescence microscopy of pHygEGFP or pCMV-TRFP transfected 

SK-LC-17 cells. Light and fluorescence microscopy images were taken from the same samples. 

 

Although the signals from other constructs were barely detectable, we could observe a low level of 

EGFP expression in the pGFP-SSX4PI-TRFP transfected SK-LC-17 cells. 

 

 

 

FIGURE 4.25 Fluorescent microscopy images of pGFP-SSX4PI-TRFP transfected SK-LC-17 cells. The red 

rectangular indicates a GFP positive cell.  
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4.4 Search for bidirectional promoter by using bioinformatics as a tool 

 

Bioinformatics emerge to be a very powerful tool for promoter based analysis. Along with many 

other tools, bioinformatics enable us to predict the promoters of genes by offering promoter 

prediction tools. For the promoter prediction, I chose the Genomatix Software. For the prediction of 

SSX4 promoter, -2107 to +875 bp of transcription start site of the SSX4 gene was used. This sequence 

was given to the Genomatix Software and three potential promoters were identified by this analysis. 

Two of them are in the sense strand of SSX4 and one of them is in the antisense strand. The 

predicted promoter regions regarding the A3, A3.3 and A4 primers are shown in Figure 4.26. Note 

that the SSX4 minimal promoter sequence is between A3.3 and A4 primers. 
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FIGURE 4.26. Predicted SSX4 promoters by Genomatix Software. Predicted sense strand promoters 

are highlighted in yellow and predicted antisense promoter is highlighted in gray. The first exon of 

the SSX4 gene is depicted in red font. (NCBI NM_005636)  

 

Besides being located inside the transcripted sequences and exons of SSX4 gene, the first predicted 

sense promoter by Genomatix do not include SSX4 minimal promoter (A3.3 to A4) which was verified 

by luciferase reporter experiments and thus this predicted promoter will be ignored. The second 

predicted sense promoter actually includes SSX4 minimal promoter (A3.3 to A4). Also the genomatix 

software accurately predicts the antisense SSX4 promoter activity. This shows us that the promoter 

prediction tool of the Genomatix software can be considered as a strong promoter prediction tool. 

This tool can be used to predict the promoters of other CT genes and investigate the possibility that 

promoters of other CT genes are also bidirectional. The first CT to be investigated is the NY-ESO-1 

gene since it is a very well known example of classic CT-X genes. Similar to the case with SSX4, the 

promoter prediction software of Genomatix predicted two promoters for NY-ESO-1. There is one 

sense and one antisense orientation (Figure 4.27). Thus, it seems like the promoter of NY-ESO-1 can 

be bidirectional like SSX4 promoter. This possibility should be confirmed by gene reporter systems. 
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FIGURE 4.27. Predicted NY-ESO-1 promoters by Genomatix Software. Predicted sense strand 

promoter is highlighted in yellow and predicted antisense promoter is highlighted in gray. The 5’UTR 

and the first exon of the gene is depicted in red font (NCBI NM_001327)  
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4.5 Investigating the Role of DICER1 in Regulation CT gene expression 

  

DICER1 plays a vital role in most of the small RNA pathways we know. If small RNAs can have a role in 

the regulation of CT antigen expression, DICER1 may have a role. To test this possibility, we have 

planned to stably knock down DICER1 with the shRNA plasmids and investigate its effect on 

regulation of CT antigen expression. 

 

pSicoR human Dicer1, pSicoR human Dicer2, pSicoR human Dicer3 plasmids were used to transfect 

the SK-LC-17 cells and stable clones were generated in the search for a DICER1 knockdown. These 

plasmids were used before with human cancer call lines and DICER1 knockdown clones were 

generated (Kumar MS, 2008), however, lentiviral infection, rather than transfection was usedin those 

experiments. Since DICER1 is required for the generation of its target small interfering RNAs, an 

incomplete knock down is expected. Kumar MS, 2008 used U20S osteosarcoma cells to infect with 

these plasmids and, thus, reported and DICER1 knock down in this cell line.  

 

In our experiments, we transfected SK-LC-17 cells with these plasmids and generated stable clones 

but we were unable to find a clone in which DICER1 expression was downregulated as tested by 

Quantitative Real Time PCR to assess the mRNA levels of DICER1 (Table S2). 

 

4.5.1 Investigating the effect of DICER on regulation of CT gene expression using bioinformatics as 

a tool  

 

From NCBI GEO Database microarray data of the gene expression changes in human colorectal cell 

line HCT116 DICER Exon5 knockout cells have been acquired (Geo Accession Number: GSE6427). In 

this experiment Agilent-012391 Whole Human Genome Oligo Microarray G4112A platform has been 

used (Geo Accession Number: GPL1708). This data is from a two color microarray which is typically 

hybridized with cDNA prepared from two samples to be compared (control wild type HCT116 cells 

and HCT116 DICER Exon5 knockout cells in this case). The samples are labeled with two different 

fluorophores:  Cy3, which has a fluorescence emission wavelength of 570 nm (corresponding to the 

green part of the light spectrum), and Cy5 with a fluorescence emission wavelength of 670 nm 

(corresponding to the red part of the light spectrum). These two Cy-labelled cDNA samples are mixed 

and hybridized to a single microarray that is then scanned in a microarray scanner to visualize 

fluorescence of the two fluorophores after excitation with a laser beam of a defined wavelength. 

Relative intensities of each fluorophore are then used in ratio-based analysis to identify up-regulated 
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and down-regulated genes.  The data includes two samples, one of which is a dye –swap to prevent 

the dye bias in experiment.   

 

The gene expression analysis has been performed according to the GENESPRING Manual “Analyzing 

Agilent Two Color Expression Data”. The data files were imported and specifically filtered for CT 

genes. The dye swap data have also been analyzed and filtered for CT genes. Genes that were up or 

down regulated in this analysis are shown in Figure 4.28 and Figure 4.29 .  

 

Gene Symbol Common Name Fold change(Cy3 vs Cy5) Regulation(Cy3 vs Cy5) 

MAGEE2 NM_138703 1,0723215 down 

MAGEA12 NM_005367 1,1644258 down 

SSX2 NM_175698 1,1867114 down 

GAGE3 U19144 1,0351098 up 

MAGEA6 NM_175868 1,187928 down 

MAGEB2 NM_002364 1,059612 up 

MAGEC1 NM_005462 1,0034466 down 

MAGEC2 NM_016249 1,1625254 down 

SSX3 NM_175711 1,1043183 down 

MAGEA4 NM_002362 1,1130652 down 

XAGE2 NM_130777 1,1039978 up 

MAGED1 AF217963 1,1688178 down 

SPANXA1 NM_013453 1,3766248 up 

MAGEA9 NM_005365 1,4973171 down 

MAGEC3 NM_138702 1,1367828 down 

SSX4 NM_005636 1,1232446 down 

MAGED1 NM_00100533 1,0754699 down 

MAGED2 NM_201222 1,2406985 up 

GAGE1 BC036094 1,3426495 down 

MAGEA5 NM_021049 1,0328555 up 

MAGEA8 NM_005364 1,2241 down 

MAGEH1 NM_014061 1,1698048 down 

XAGE3 NM_130776 1,4699597 up 

SSX5 NM_021015 1,0430244 down 

MAGEA10 NM_001011543 1,2618699 down 

MAGEE1 NM_020932 1,0413634 up 

MAGEA11 NM_005366 1,0641445 down 

MAGEA10 ENS00000370323 1,0306301 down 

MAGEL2 AJ243531 1,0356313 down 

MAGEB1 NM_002363 1,180184 down 

MAGED2 NM_201222 1,3382381 up 

MAGEF1 NM_022149 1,2466332 down 

MAGEA1 NM_004988 1,1318392 down 

 
FIGURE 4.28 . GENESPRING analysis of the GSE6427 data filtered for CT genes 
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Gene Symbol Common Name Fold change(Cy3 vs Cy5) Regulation(Cy3 vs Cy5) 

MAGEE2 NM_138703 1,2440244 Down 

MAGEA12 NM_005367 1,1792434 Up 

SSX2 NM_175698 1,0615646 Down 

GAGE3 U19144 1,1805035 Up 

MAGEA6 NM_175868 1,17695 Up 

MAGEB2 NM_002364 1,0937167 Down 

MAGEC1 NM_005462 1,0580491 Down 

MAGEC2 NM_016249 1,3717254 Down 

SSX3 NM_175711 1,0832577 Up 

MAGEA4 NM_002362 1,2823062 Up 

XAGE2 NM_130777 1,242939 Up 

MAGED1 AF217963 1,1033945 Down 

MAGEA9 NM_005365 2,1945105 Down 

MAGEC3 NM_138702 1,2561129 Down 

SSX4 NM_005636 1,2788457 Down 

MAGED1 NM_00100533 1,0690029 Up 

MAGED2 NM_201222 1,1642103 Down 

GAGE1 BC036094 1,2351307 Up 

MAGEA5 NM_021049 1,2821825 Up 

MAGEA8 NM_005364 1,0614607 Down 

MAGEH1 NM_014061 1,2153622 Down 

SSX5 NM_021015 1,1192068 Up 

MAGEA10 NM_001011543 1,107301 Down 

MAGEE1 NM_020932 1,1391786 Up 

MAGEA11 NM_005366 1,4328613 Down 

MAGEA10 ENS00000370323 1,276002 Down 

MAGEL2 AJ243531 1,2093933 Down 

MAGEB1 NM_002363 1,086816 Up 

MAGED2 NM_201222 1,1140487 Down 

MAGEF1 NM_022149 1,3169265 Up 

MAGEA1 NM_004988 1,1839479 Up 

NTN4 NM_021229 1,099939 Down 

 
 
FIGURE 4.29 . GENESPRING analysis of dye-swap GSE6427 data filtered for CT genes 

 

We hypothesized that if the deregulation of a small-RNA based mechanism led to the upregulation of 

CT genes in cancer, and if DICER had a role in maintaining this suppressive effect, that the loss of 

DICER protein could lead to the coordinate upregulation of CT gene expression. However, as can be 

seen from Figures 4.28 and 4.29, the knock-out of DICER does not result in a difference of CT gene 

expression larger than 1.5 fold (with the exception of MAGE-A9) and the effect is in both directions, 

suggesting non-specificity. Based on this analysis, it can be suggested that DICER knockout does not 

have an apparent effect on CT gene expression in HCT116 human colorectal cell line.  
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5. DISCUSSION AND FUTURE PERSPECTIVES 

The main objective in this study was to characterize the SSX4 promoter in detail to understand the 

mechanisms underlying the regulation of CT antigen gene expression. Although it is clear that the 

mechanisms regulating CT gene expression (in a coordinate fashion) are primarily epigenetic in 

nature, the “initial signal” that initiates those events leading to the gene-specific epigenetic silencing 

of these genes is unknown. The primary hypothesis that led to all of the experiments contained 

within this thesis is that, the SSX4 promoter itself, is the initiator of the epigenetic silencing of the 

gene under normal conditions. The hypothesis is based on the fact that transcriptional activity of the 

antisense promoter interferes with the sense promoter, possibly involving the generation of a dsRNA 

molecule during the process. Very recently, noncoding RNAs are being studied for their role in 

regulating mammalian gene expression. By performing those experiments detailed in this thesis, 

several mechanisms that could lead to a better understanding of how the convergent bidirectional 

SSX4 promoter were tested or uncovered.  

 

5.1 Mapping of the SSX4 Promoter 

 

To characterize the bidirectional SSX4 promoter in detail, we identified the minimal sequences 

responsible for the sense and antisense transcription by using the luciferase reporter system. Two 

very short streches of DNA (~40bp) are responsible for most of the sense or the antisense 

transcriptional activity in the SSX4 promoter. There are other examples of such short sequences 

which are capable of transcribing both in the sense and antisense directions (Trinklein ND, 2004). The 

functions and working principles of these bidirectional promoters are not known exactly but mostly 

they seem to differ depending on the nature of the promoter. In fact, functionality of the 

bidirectional promoter can be affected by an antisense RNA which can mediate regulation of sense 

promoter or steric interference of RNA Polymerase may lead to inhibition of transcription in the 

sense or antisense promoter. Since we characterized the SSX4 promoter thoroughly (at 20 bps 

intervals), we believe that dissecting the promoters into shorter sequences is unlikely to reveal extra 

information. Instead, inhibiting the antisense promoter activity by site directed mutagenesis directed 

to A3.33 primer sequence might reveal a direct effect of the antisense promoter on the activity of 

the sense promoter. The mutant promoter could be tested as part of the luciferase constructs 

described. We would expect that this would lead to the derepression of the sense transcription by 

A2-A3.3 sequences.  
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We used two approaches to study the activity of the bidirectional promoter. By luciferase reporter 

experiments we were able to show that the antisense activity of the promoter is about 2/5th of that 

of the sense promoter. Previous experiments where the whole promoter was tested had revealed 

this ratio to be 1/10. However, the fluorescence ratios as tested by our EGFP/TRFP construct show 

that in this system the antisense promoter has an activity that is at most 1-2% of the sense promoter. 

In other words, we can observe TRFP expression under the control of antisense promoter alone but 

when the EGFP reporter is cloned under the control of sense promoter in the same construct, TRFP 

expression is dramatically reduced (Figure 4.22 vs. Figure 4.24). Previous data had shown that an 

additional but nonspecific stretch of DNA added 3’ to the antisense promoter would result in the 

inhibition of the sense promoter. Our data with the double fluorescent constructs show that this is 

true for the sense promoter as well: the activity of the antisense promoter is inhibited more than 

90% by the addition of a reporter sequence 3’ to the sense promoter. Therefore, it is possible that 

the mechanism of the corepression observed between the promoters in opposite direction is either 

dependent on the ability of the promoter to recruit RNA polymerase, or its ability to generate a 

transcript that has a function only if it is of a certain length or both. A third possibility is that the 

promoters, working simultaneously or in turns, lead to the generation of a dsRNA molecule 

 

The loss of TRFP in the pGFP-SSX4PI-TRFP construct could be a result of transcriptional interference. 

The transcriptional interference is known to be asymmetric - a strong promoter (aggressive) reduces 

the expression level of a weak promoter (sensitive) as in our case, and the act of transcription itself 

rather than the sequence of the transcribed RNA is important. Transcriptional interference has been 

demonstrated convincingly before, by using viral promoters using the viral lytic promoter pR and the 

lysogenic promoter pL. When these two promoters were arranged face to face with their start sites 

62 bp apart, pR activity was found to decrease pL activity 5.6 fold; however, pL activity did not affect 

pR driven transcription in this system (Callen BP, 2004). In this context, transcription from pR 

interferes with the transcription from pL. The situation is very similar to our observation but with 

mammalian promoters. There are a couple of theories for the reason under this transcriptional 

interference. One of the theories argues that this interference is a result of basic RNA Polymerase II 

activity and it can be caused by steric hindrance or sequestering of transcriptional machinery in these 

promoters that prevents the activity of other. Another argument supports that the interference is 

caused by the effect of movement of RNA Polymerase from the strong promoter toward the weak 

promoter. In this process the RNA Polymerases can collide head to head causing the weakly bound 

one to fall off from DNA. Another argument states that antisense transcribed DNA can be important. 

In the case of SSX4, we know that if an antisense transcript is functional in the regulation of the 

promoter, that this is independent of the sequence content of the transcript (Figure 3.5). However, 
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since dsRNA that forms as a result of convergent bidirectional promoters may tether one elongating 

RNA Polymerase to the other and lead to topological stress that result in transcriptional interference 

(Callen BP, 2004), this also can be a possible explanation of what we observe for SSX4. Another effect 

of the movement of RNA Polymerase II can be the elongation of RNA Polymerase II from the strong 

promoter over the weak promoter disrupting the initiation intermediates residing on the weak 

promoter. This theory presumes that the weak promoter is slower in both promoter escape and 

elongation. This would then cause open complexes of RNA Polymerase II to wait in the weak 

promoter for the escape while the RNA Polymerase II from the strong promoter has already begun 

elongation. In an experimental system with pR and pL these possibilities were tested and it was 

shown that the major cause of the interference in the experimental system is a sitting duck 

mechanism, in which pR convergent transcription over pL negatively affects promoter initiation 

intermediates that are present at pL (Callen BP,2004).  This type of transcriptional interference is also 

found to contribute significantly to the HIV latency as viral integration into the actively transcribed 

host genes led to transcriptional interference caused by the elongating RNA polymerase II 

transcribing through the viral promoter (Lenasi T, 2008). Another example to transcriptional 

interference is demonstrated by the tissue specific epigenetic repression of one of two promoters of 

the enzyme folylpoly-γ-glutamate synthetase that then results in the derepression of a weaker 

downstream promoter which avoids methylation (Racanelli AC, 2008).   

 

However, mechanisms other than transcriptional interference may lead to the inhibition of antisense 

SSX4 promoter since transcript identified by the 5’RACE experiments previously conducted do not 

overlap (Figure 3.6). In this case there can be a mechanism that forces the promoter to choose 

between the sense and antisense activities. If this is the case, the sense promoter being the stronger 

promoter would probably be chosen.  

 

Another possibility is that the sense transcription may inhibit the antisense transcription by a 

feedback mechanism. Although this hypothesis is not supported by literature, the possibility could 

also be assessed by interfering with the sense transcript (by using a very early stop signal) and 

observing the effect on the antisense transcription. The opposite experiment, early termination of 

antisense transcript, would also be expected to have a result, given that both promoters are active 

for SSX4. 

 

The exact mechanism of the transcriptional interference in our system where the sense promoter 

activity inhibits the activity of antisense promoter, which is normally active, could be any of these 

theories. Further experiments with different constructs to test the exact mechanism can be 
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constructed like the ones with the viral promoters but certain points need to be kept in mind. One is 

the validity of these in vitro experiments in in vivo conditions. Although this transcriptional 

interference seems to reside in the SSX4 promoter, we cannot know the actual situation in the cells 

when many other different parameters are added like higher order chromatin conformation or 

histone code around the promoter. Another important point to consider is that these promoters are 

rather weak promoters and the minor changes in the promoter activities are really hard to observe. 

In fact, this reporter system may not be appropriate for detecting the changes in the weak promoters 

like SSX4 antisense promoter. It may be useful to try other reporter systems to understand the 

principles of this promoter. Since luciferase reporter systems seem to be the most effective reporter 

systems up to date, new double reporter systems can be constructed using the luciferase system. In 

the future, I believe a double reporter construct with Renilla and firefly luciferase could be useful 

since the commercial luciferase assay systems are designed to allow high-throughput analysis of 

mammalian cells containing genes for firefly and luciferases. Understanding the working principle of 

this bidirectional promoter can give us further explanations about the regulation of gene expression 

of CTs. 

 

Another important point about this promoter based regulation is whether other CT antigens also 

have bidirectional promoters or not. From bioinformatics analysis, NY-ESO-1 seems to have a 

bidirectional promoter like SSX4 but preliminary data about MAGEA1 indicates no antisense 

promoter in MAGEA1 promoter. It would be interesting to construct reporter vectors for promoters 

derived from other CT genes to test for the presence of bidirectional promoters in those genes. 

 

5.2 RNA Based Silencing Mechanisms and the Role of DICER in the Regulation of CT Gene 

Expression 

 

The RNA world is expanding day by day by emergence of new type of functional RNAs. There are also 

many more so called nonfunctional RNAs that we do not know the function for now. In this huge 

world, different RNAs are responsible for regulating the expression of different genes or gene groups. 

We are just beginning to understand the transcriptional nature of the genome or the so called 

transcriptome, described recently. The traditional view of many transcriptional processes is changing 

rapidly as genome-wide studies increase. We know much about the RNA and its role in the 

transcriptional regulation but I believe that this is just the tip of an iceberg. 
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The possible role of noncoding RNAs in the regulation of CT antigens emerged from the analysis of 

bidirectional promoter of SSX4 gene during this study. The fact that sense and antisense promoter 

regions are convergent raised the idea that transcription from this promoter may lead to dsRNA 

biogenesis.  

 
 
Figure 5.1 Endogenous small interfering RNAs can be produced by bidirectional transcription. From: 
Okamura K, Nat Rev Mol Cell Biol. 2008 
 

These dsRNAs may have a regulatory role on the SSX4 gene expression. These dsRNAs are supposedly 

belong to endosiRNA small RNAs and DICER1 has been thought to have a role in the biogenesis of 

endosiRNAs. 

 

Another clue that CT genes can be regulated by small RNAs come from similar expression and 

methylation patterns of LINE1 repeats and CT genes. The expression of active repeat elements is 

normally restricted to a specific period during germ cell development, when active retrotransposition 

can take place. In adult tissues, expression of repeats is inhibited by DNA methylation but they are 

reactivated in a wide variety of cancers, like CTs, especially in metastasis (Boo YJ, 2007). The reason 

for this reactivation is thought to be global hypomethylation of the genomic DNA, observed during 

the course of cancer progression. Reexpression of repeats is thought to contribute to cancer 

progression by causing genomic instability (Hoffmann MJ, 2005). Indeed, CT genes might be regarded 

as repeats since they are in gene families with 90% or more homology. 

 

Data supporting the fact that repeat sequences and CT genes were similarly regulated came from the 

methylation analysis of L1 repeats and SSX4.  
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Figure 5.2. Methylation analysis of genomic DNA in cancer cell lines. The top part of the figure shows 

Southern analyses of genomic DNA digested by MspI(M) and HpaII(H), probed by a universal SSX 

probe (left) or a labeled L1 repeat (right). The SSX gene expression rates as determined by RT-PCR for 

cell lines are shown on the bottom of the figure (Gure AO, unpublished data) 

 

The probes used in Figure 5.2 are for the SSX genes that can detect SSX 1,2,3,4,5 and L1 probe that 

can possibly hybridize to all L1 repeat sequences in the cell. Genomic DNA from different cancer cell 

lines was cleaved by MspI and HpaII. MspI and HpaII recognize the same sites (CCGG) but HpaII 

digests the sequence only when it is unmethylated whereas MspI is insensitive to methylation. As a 

result, these data suggest that when the SSX4 gene is hypomethylated (the gene expression is 

higher), L1 repeats are also hypomethylated coordinately. This may suggest that L1 repeats and CT 

genes can be regulated by the same mechanism. Of course another explanation may be that they 

both are affected from the global hypomethylation but a promoter specific hypomethylation is seen 

in the MAGEA1 promoter (De Smet C, 2004) and possibly in all other CTs. It is difficult to precisely 

study only one LINE-1 sequence in the human genome since the sequence similarity among these 

sequences makes the design of specific primers difficult to test for methylation. Yet they are not 

identical and therefore, it is surprising that they should behave in an identical manner with respect to 

DNA methylation. Another similarity between L1 repeats and CT antigens is that the LINE-1 promoter 

of intact elements is equally active in different cell types as well as in tumor and normal cells from 

the same tissue (Steinhoff C, 2003). This results show similarity with the activity of the MAGEA1 and 

SSX4 promoter in tumor cells where the MAGE A1 or SSX4 gene is not expressed. (De Smet C, 1995 

and Figure 3.3) Furthermore the promoters of active L1 repeats are also bidirectional.  
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Figure 5.3 Illustration of sense and antisense promoters of an active L1 repeat. Taken from Harris S 

Soifer & John J Rossi Small interfering RNAs to the rescue: blocking L1 retrotransposition 

 

Endogenous L1-derived siRNAs, are triggers for RNAi, and are naturally present in human cells (Yang 

N, 2006). It has been suggested that simultaneous bidirectional transcription from the L1 antisense 

promoter (ASP) and L1 sense promoter (SP) can give rise to L1 doublestranded RNAs (dsRNAs) which 

then could serve as a substrate for processing into siRNAs by DICER (Figure 5.3). To understand the 

picture completely, we also have to be aware of the other ways for cell to produce dsRNA and their 

association with CT genes. 

  

 

 
Figure 5.4 Endogenous small interfering RNAs. Taken from Okamura K, Lai EC. Nat Rev Mol Cell Biol. 
2008 
 

Figure 5.4 summarizes the known mechanisms by which the cells can generate dsRNA. The number 

of cases identified to date in flies and mice is indicated on the most right side of the figure. 

Transposable element siRNAs (TE-siRNAs) have been found extensively in both fly and mice. 

Considering the similarities in the expression patterns of LINE-1 repeats and CT antigens, CT-

endosiRNAs might also exist in this context. Another event that generates dsRNA does so by Trans-

NAT dsRNAs formed between transcripts that are produced from distinct genomic locations that are 
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generally comprised of an mRNA and an antisense-transcribed pseudogene. Trans-NAT dsRNAs can 

also be possible for CT antigens given the high homology between different members of CT antigen 

gene families. For example any SSX gene family member transcript can base pair with the transcript 

of another SSX gene family member if one of them is an antisense transcript generated by a cryptic 

ptomoter. Furthermore, another dsRNA producing mechanism based on the generation of hairpin 

RNA (hpRNA) could be the case for CT antigen genes. Most of the CT-X antigen genes are found to be 

organized into large inverted repeats and transcription through these genes can produce large stem-

loop structures which then could serve as a substrate for endosiRNA production. As can be seen, 

regulation of CT antigen gene expression by endosiRNAs is very likely to occur in the cellular context.  

 

EndosiRNA pathway is known to depend on Dicer activity; thus, we decided to knockdown human 

DICER1 and see its effect on the expression patterns of CT genes. 

 

However, when we tried to investigate the effect of DICER1 on the regulation of expression of CT 

antigen genes using previously generated microarray data of HCT116 DICER Exon5 knockout cells 

(Ting AH, 2008), we did not observe any differences in CT gene expression among parental and 

knockout cells (Figure4.28 and Figure 4.29). This suggests that CT gene expression may be DICER-

independent. To eliminate the possible role of DICER in the regulation of CT gene expression, this 

result has to be confirmed. Furthermore, there can be a DICER dependent mechanism working on 

the regulation of CT antigens in a different cell line and in different conditions. 

 

We were unable to knockdown DICER1 in SK-LC-17 cells (section 4.4). Although we had a couple of 

clones, we were unable to detect any decrease in DICER1 expression in Quantitative Real Time PCR. 

Different interpretations may explain this phenomenon. First of all, we have compared the DICER 

levels of clones with the parental SK-LC-17 but we needed to compare it with scrambled shRNA 

transfected SK-LC-17 cells as a control. The DICER1 shRNA constructs have been purchased but shLuc 

(control shRNA that codes for shRNA against firefly luciferase) construct could not be prepared 

because of the time constraints. Another reason could be the methodology that we have used. 

Although we have purchased the shDICER1 constructs and they have been reported to silence 

DICER1 successfully in mammalian cell lines previously (Kumar MS, 2007), the used method for 

introducing these plasmids into cells was lentiviral transduction which is a more effective way than 

transfection. Although shRNA constructs can be transfected, the obligation of a high efficiency 

transduction can be a DICER1 specific requirement since in this case DICER1 is also necessary for its 

own knockdown. Interestingly, knockdown of DICER1 by siRNA did not result in a biologically 

important increase in expression of endogenous active L1s. However when an active L1 is introduced 
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HeLa cells where DICER1 expression was reduced, a cell-based assay showed a strong increase in 

retrotransposition activity (Yang N, 2006) which suggests that cells rely on the RNAi machinery to 

take action against only active L1s, rather than using RNAi to maintain L1s in a transcriptionally silent 

state. This scene could also be true for the CT genes and RNAi machinery can become active only 

after CT genes are activated by hypomethylation. Another consideration about the DICER1 

knockdown is that the cell may be sensitive to DICER knockdown. We have to take into account that 

loss of DICER1 or miRNA-associated Argonaute proteins is nearly always lethal in animals, and such 

mutants show severe developmental defects in both plants and animals. We do not know the effect 

of DICER1 knockdown on the cells that we are working on and it is possible that some cells can be 

more sensitive to DICER1 levels than others. There is also an interesting finding about the HCT116 

DICER1 Exon5 knockout cells (Ting AH, 2008): reexpression of DICER seemed to be lethal. This may be 

an indication that DICER function in these cells is rendered redundant by the over activity of another 

mechanism and reexpression of DICER may lead to an overdose which leads to death of these cells. 

The compensation of DICER loss by other mechanisms may also explain the lack of change in the 

gene expression profiles for CT antigens (Figure4.28 and Figure 4.29).  

 

I believe that small RNA pathways have roles in regulation of CT gene expression and knocking down 

DICER1 is a wise way to control the effect of DICER1 in CT gene expression. For this purpose, DICER1 

knockdown experiments should be performed in different cell lines (known expressCT genes at 

different levels [strong, weak, none]) by using pSicoRshLuc construct as a control and by using 

lentiviral transduction system instead of regular transfection. This experiment would show us if the 

regulation of CT gene expression is DICER1 dependent or not and even a negative result would be 

very informative since only then we can eliminate the possible role of DICER1 dependent small RNA 

pathways on the regulation of CT gene expression.  

 

Also I believe more experiments should be performed to investigate the similarities of LINE-1 repeats 

and CT antigen gene expression patterns. If  they are found to be coordinately expressed, known 

data about the LINE-1 expression and regulation of expression could be used to uncover the 

unknowns of CT antigens and vice versa.  

 

5.3 Analysis of OATL transcript 

 

The proof that SSX4 promoter actually can work bidirectionally in vivo is the OATL transcript. This 

transcript has been found once by 5’RACE but despite several attempts with different primers and 

conditions, we were unable to detect this transcript. 
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There can be several different reasons for these results. First, if there is an OATL transcript, it has to 

be a very scarce RNA considering that the SSX4 RNA is also not very abundant even in SK-LC-17 and 

that the antisense promoter activity is several fold weaker than the sense promoter activity. The 

detection of this transcript may not be possible with RT-PCR since most of the RNAs can be lost 

during the harsh RNA isolation procedures and also some RNA may be lost during the cDNA 

synthesis. For these reasons, new primers can be designed specifically for the transcript found by 

5’RACE to extend sequence information in both orientations, since that portion has been detected 

before. Secondly, the cDNA synthesis can be performed by using primers specific to the OATL 

sequence to increase sensitivity. PCR with nested primers can be done to detect even very low 

amounts of transcript.  

 

However, noncoding RNAs are very hard to detect by regular PCR techniques since these RNAs are 

not as stable as mRNAs, since they might not have polyA tails, they might not be transcibed fully and 

they are not transported to the cytoplasm. These RNAs are mostly degraded by cell’s exonucleolytic 

RNA exosome. Recently, by silencing a core component of human 3′ to 5′ exoribonucleolytic exosome 

new noncoding transcipts called promoter upstream transcripts (PROMPTs) have been identified. 

These transcripts are produced ~0.5 to 2.5 kilobases upstream of active transcription start sites 

(Preker P, 2008). Inhibiting the RNA exosome can reveal low-abundant transcripts by eliminating RNA 

degradation which may help us to detect our OATL transcript. 

 

There are specific techniques for detecting noncoding RNAs. One of them is of course northern blot 

analysis. For the detection of the OATL transcript, northern blot analysis can be a very informative 

technique to use. A probe corresponding to the RACE found OATL transcript can be designed and 

used in the analysis. By this analysis the size of the OATL transcript can also be inferred. Northern 

blot analysis is still the most common technique used to investigate small RNAs and different probes 

corresponding to different sequences of promoter may provide us a map of transcripts around the 

SSX4 promoter. Another recent technique that is used for the detection of ncRNAs is cap analysis 

gene expression (CAGE), which is based on preparation and sequencing of concatamers of DNA tags 

derived from the initial 20 nucleotides of the 5′ ends of mRNAs. This technique allows us to detect all 

RNA Pol II transcripts including ncRNAs (they are also 5’ capped) and can be used for high-throughput 

analysis. This technique is quite sensitive and can be used to detect the OATL transcripts. By using 

CAGE analysis overlapping bidirectional promoters have been identified where there are at least two 

TSSs on opposite strands within 40bps and bidirectional promoters have been proven to function as 

an origin of natural dsRNAs (Kawaji H, 2008). 
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All in all, the possible role of SSX4 promoter in the regulation of expression of SSX4 gene was 

investigated in this study. Bidirectional and convergent nature of SSX4 promoter has been described 

in detail by addressing the individual sequences responsible for sense and antisense transcriptional 

activity. Preliminary data about the bidirectionality of other CT genes have been collected. A model 

system for testing both the sense and antisense promoter activities has been constructed and a 

possible transcriptional interference between sense and antisense promoters has been identified 

which might have a role in the regulation of SSX4 gene expression. Further experiments, detailed 

above, should be performed to fully understand the nature of the promoter and its relevance to CT 

gene expression.  
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APPENDIX A. GENERATION OF SSX4 SENSE AND ANTISENSE PROMOTER MAPPING 
CONSTRUCTS  
 
 
Agarose gel photos of PCR amplification using the primers indicated.  
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
FIGURE S1. PCR products obtained by the denoted primer pairs 
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PCR products of the given primers were excised and eluted from the gel. All of the PCR primers are 

intact and working as can be seen in the figures. The PCR products were restricted with XhoI and 

HindIII and run on 1.5% agarose gel again. 

 
 
 

 
 
 
 
 

 
 
 
 

 
 
 
FIGURE S2. XhoI and HindIII restricted PCR products from FIGURE S1 
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These XhoI and HindIII restricted sequences have been ligated to the same site of pGL3 plasmid. 

After transformation the resulted constructs have been cut with XhoI and HindIII to excise the 

promoter fragment from the pGL3 construct for control. 

 

 
 
 
 

 
 
 
 
 
 
FIGURE S3. Control XhoI and HindIII restriction enzyme digestions for mapping of SSX4 promoter 
constructs 
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APPENDIX B. DICER1 QUANTITATIVE REAL TIME PCR EXPERIMENTS 

 

B1. Efficiency of the Primers 

 

To calculate the efficiency of primers 10-fold dilutions of SK-LC-17 cDNA has been used. Samples 

were analyzed using SyBr Green Dye, run on 1.5% agarose gel (Figure S4) and the efficiency graphs 

were plotted (Figure S5). 

 

TABLE S1 Detailed Quantitative Real Time PCR results for the efficiency of DICER1 primers 

 

  1st READ 2nd READ Average 

LC17 DICER1 1:1 19,40 20,1 19,75 

LC17 DICER1 1:10 22,30 22,4 22,35 

LC17 DICER1 1:100 27,30 27,1 27,20 

LC17 DICER1 1:1000 29,40 30,5 29,95 

LC17 DICER1 1:10000 33,30 35,2 34,25 

 

 

 

 

FIGURE S4 Agarose gel photo of the SK-LC-17 cell cDNA dilutions using DICER1primers. The cDNA 

dilutions are 1:1, 1:10, 1:100, 1:1000 and 1:10000 depicted in the gel photo. 

 

 



94 
 

 

 

FIGURE S5 Efficiency graph of DICER1 primers.  

 

The efficiency can be calculated from the formula:  

 

Efficiency (E) = D (1/m) 

 

Where D is fold-dilution of cDNA  

             m is the slope of the trend line of data 

 

Efficiency = 10-3.66 = 1,876 

 

DICER1 mRNA levels in the shDICER clones 

 

The calculations have been performed by delta CT method.  

 

Q (sample quantity) =  E (efficiency of the primer of interest)deltaCt 

 

The fold change differences relative to the parental cell line has been calculated as follows 

 

EDICER (Ct parental -Ct clone)/Ereferencegene
(Ct parental -Ct clone) 
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B2. Results 

 

Two different reference genes have been used; GAPDH (E=1.9) and 18SrRNA (E=2.0) (the efficiencies 

of the reference genes were calculated before, MSc Thesis, Bulut A) and the DICER1 levels in the 

pSicoR-PGK-shDICER clones were calculated relative to the DICER1 levels in the parental SK-LC-17 

cells.  

 

TABLE S2. Quantitative Real Time PCR Results for pSicoR-PGK-shDICER constructs 

 

DICER             

  1st read 2nd read 3rd read Average Q Fold change 

Parental SK-LC-17 23,8 24,6 23,5 23,97     

Clone 1.11 25,3 25,5 25,9 25,57 0,36 1,60 

Clone 2.1 26,1 25,8 25,9 25,93 0,28 1,78 

Clone 2.5 24,5 24,3 24,4 24,40 0,76 1,90 

Clone 2.9 24,5 25,5 25 25,00 0,52 1,92 

Clone 2.21 26 25,8 26,2 26,00 0,27 2,40 

Clone 3.3 24,5 24,9 24,6 24,67 0,64 2,47 

Clone 3.8 24,8 24,4 24,1 24,43 0,74 2,48 

Clone 3.9 25,2 24,9   25,05 0,50 2,67 

Clone 3.23 24,1 24,2 23,9 24,07 0,94 2,68 

18SRNA         Q   

Parental SK-LC-17 8,9 8,9 8,3 8,70     

Clone 1.11 15,7 16,2 15,9 15,93 0,01   

Clone 2.1 14,3 14,9 14,6 14,60 0,02   

Clone 2.5 12,2 13,3 13 12,83 0,06   

Clone 2.9 12,9 12,8 13,3 13,00 0,05   

Clone 2.21 10,6 10,7 11,2 10,83 0,23   

Clone 3.3 9,8 10,3 9,9 10,00 0,41   

Clone 3.8 9,4 9,9 10,2 9,83 0,46   

Clone 3.9 9,3 9,2 9,6 9,37 0,63   

Clone 3.23 8,8 8,8 9,3 8,97 0,83   
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DICER             

  1st read 2nd read 3rd read Average Q Fold Change 

Parental SK-LC-17 26,10 26,70 26,30 26,37     

Clone 1.11 29,80 27,80 27,60 28,40 0,27 1,36 

Clone 2.1 27,00 28,60 28,00 27,87 0,38 1,35 

Clone 2.5 26,70 26,40 27,60 26,90 0,71 1,34 

Clone 2.9 25,90 25,90 26,90 26,23 1,09 1,28 

Clone 2.21 26,70 26,90 26,90 26,83 0,74 1,47 

Clone 3.3 25,50 24,90 25,20 25,20 2,11 1,42 

Clone 3.8 25,30 24,60 25,10 25,00 2,40 1,34 

Clone 3.9 25,60 25,20 25,10 25,30 1,98 1,39 

Clone 3.23 24,90 24,40 24,20 24,50 3,31 1,45 

              

GAPDH         Q   

Parental SK-LC-17 18,40 18,50 18,50 18,47     

Clone 1.11 21,20 20,60 21,00 20,93 0,21   

Clone 2.1 20,80 20,30 20,70 20,60 0,25   

Clone 2.5 19,90 20,00 20,20 20,03 0,37   

Clone 2.9 20,80 20,30 20,40 20,50 0,24   

Clone 2.21 18,50 18,30 17,90 18,23 1,16   

Clone 3.3 17,70 17,80 17,70 17,73 1,60   

Clone 3.8 18,80 18,70 18,50 18,67 0,88   

Clone 3.9 18,40 18,30 18,10 18,27 1,14   

Clone 3.23 16,80 17,20 16,60 16,87 2,79   
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DICER             

  1st Read 

2nd 

Read 3rd Read   Q 

Fold 

change 

Parental SK-LC-17 25,80 25,70 24,90 25,47     

Clone 1.11 29,80 27,80 27,60 28,40 0,13 1,38 

Clone 2.1 27,00 28,60 28,00 27,87 0,19 1,59 

Clone 2.5 26,70 26,40 27,60 26,90 0,37 2,09 

Clone 2.9 25,90 25,90 26,90 26,23 0,59 4,59 

Clone 2.21 26,70 26,90 26,90 26,83 0,39 0,63 

Clone 3.3 25,50 24,90 25,20 25,20 1,20 1,38 

Clone 3.8 25,30 24,60 25,10 25,00 1,38 3,03 

Clone 3.9 25,60 25,20 25,10 25,30 1,12 1,87 

Clone 3.23 24,90 24,40 24,20 24,50 1,95 1,23 

              

GAPDH         Q   

Parental SK-LC-17 17,50 17,70 17,40 17,53     

Clone 1.11 21,20 20,60 21,00 20,93 0,09   

Clone 2.1 20,80 20,30 20,70 20,60 0,12   

Clone 2.5 19,90 20,00 20,20 20,03 0,18   

Clone 2.9 20,80 20,30 20,40 20,50 0,13   

Clone 2.21 18,50 18,30 17,90 18,23 0,62   

Clone 3.3 17,70 17,80 17,70 17,73 0,87   

Clone 3.8 18,80 18,70 18,50 18,67 0,46   

Clone 3.9 18,40 18,30 18,10 18,27 0,60   

Clone 3.23 16,80 17,20 16,60 16,87 1,59   
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APPENDIX C. GENERATION OF DOUBLE REPORTER CONSTRUCTS 

 

Vectors constructed in the analysis of bidirectional SSX4 promoter activity by flow cytometry and 

fluorescent miscoscopy. 

 

C1. pCMV-TRFP 

 

BglII/KpnI restricted CMV promoter cloned into the same site of pTurboRFP-PRL. 

 

  

 

FIGURE S6. BglII and KpnI double digetsed pTurboRFP_PRL, pHygEGFP anf immediate early promoter 

of human cytomegalovirus (CMV). 

 

C2. pSSX4P-TRFP and pSSX4PI-TRFP construct (TurboRFP under the control of SSX4 Promoter) 

 

SSX4 promoter has been amplified by PCR by using primers A3.3 and A4. SSX4 Inverse promoter has 

been amplified by PCR by using primers A4 and A3.33. The PCR amplifications ar followed by XhoI 

and HindIII restriction enzymes double digestion. 
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FIGURE S7. PCR amplified SSX4 sense and antisense promoter using the primers indicated and XhoI 

and HindIII double digested same PCR products. 

 

XhoI and HindIII digested PCR products have been ligated to the same site of pTurboRFP-PRL. To  

control the resulting constructs XhoI and HindIII double digestions have been performed to excise 

the promoter fragment from the pTurboRFP-PRL construct. Also a control double digestion was 

performed to excise the same sequence from pGL3-SSX4-A3.3 construct.  

 

 

 

FIGURE S8. XhoI and HindIII double digested pSSX4P-TRFP and pSSX4PI-TRFP and excised fragments 

of sense and antisense SSX4 promoters.   Control XhoI and HindIII double digested pGL3-SSX4A3.3 

can also be seen in this gel photo. 
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C3. pGFP-SSX4PI-TRFP constructs 

 

pHygEGFP vector is restricted with BamHI to excise HygEGFP from the construct. 

 

 

FIGURE S9. BamHI restricted pHygEGFP and excised HygEGFP are seen in this gel photo. 

 

pTurboRFP-PRL construct was digested with BglII and treated with Arctic Phosphatase to prevent self 

ligation. 

 

 

FIGURE S10. BglII restricted pTurboRFP-PRL is seen in this gel photo. 

 

BamHI digested HygEGFP is ligated into BglII sites of pSSX4PI-TRFP construct. The direction of the 

HygEGFP was confirmed by NheI&XhoI double digestion. After NheI and XhoI double digestion if the 

orientation of the HygEGFP is correct, expected band size is 475 bp.  

 

 

 

FIGURE S11. After NheI and XhoI double digested consructs showing the correctly oriented HygEGFP 

showing the expected digestion product of 475 bp . 

 

Accordingly, the direction of HygEGFP in constructs 3,5,7 are correct and they are named as pGFP-

SSX4PI-TRFP. On the other hand, the 1st, 4th and 6th constructs are named as pGFPI-SSX4PI-TRFP 

and used as control constructs. 
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FIGURE S12. Control PCR of OATLA2/B2 primer pair to show that SSX4/OATL is specifically amplified. 


