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Abstract

Sufficient and necessary conditions are provided on warped product manifolds and their base
and fiber manifolds for a vector field ¢; to be a ¢ (Ric)-vector field , that is, Vig; = uR;;
where R;; is the Ricci tensor of M and y is a scalar. Two warped product space-times admitting
¢ (Ric)-vector fields are considered. Lorentzian quasi-Einstein manifolds admitting a time-
like ¢ (Ric)-vector field are shown to be either Ricci simple or a perfect fluid GRW space-time.
The generators of a Lorentzian generalized quasi-Einstein manifold admitting a time-like
¢ (Ric)-vector field are eigenvectors of the Ricci tensor with zero eigenvalue.

Keywords ¢ (Ric)-vector field - Quasi-Einstein - Perfect fluid - Generalized
Robertson—Walker space-time
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1 Introduction

The concept of ¢ (Ric)-vector fields was first introduced in [11] as a generalization of con-
circular vector fields. It is proved that a Riemannian manifold has a constant scalar curvature
whenever it admits a ¢ (Ric)-vector field having a constant length. Moreover, sufficient con-
dition for the the existence of a ¢ (Ric)-vector field on Riemannian manifolds admitting a
parallel Riemann curvature tensor were derived. The study is extended to conformally flat and
subprojective spaces in [12]. Four years later, the same conditions were discussed on nearly
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quasi-Einstein manifolds [22, Theorem 4]. Kirik and Zengin studied ¢ (Ric)-vector field on
quasi-Einstein manifolds in [13], on generalized quasi-Einstein( in brief GQE) manifolds in
[14] and on GQE manifolds whose Ricci tensor is pseudo-Ricci symmetric in [15].

In the present work, Lorentzian manifolds admitting a ¢ (Ric)-vector field are investigated.
A Lorentzian quasi-Einstein manifold having a time-like ¢ (Ric)-vector field is shown to
be either Ricci simple or a perfect fluid GRW space-time. Then, we extend this study to
generalized quasi-Einstein Lorentzian manifolds. Finally, a classification of ¢ (Ric)-vector
fields on singly warped product manifolds and consequently on generalized Robertson—
Walker (or simply GRW) space-times and standard static space-times are considered.

2 Preliminaries

In a non-Ricci flat Einstein manifold M, a ¢ (Ric)-vector field is, in some sense, a general-
ization of a concircular vector field, that is, the equations

Vigj = agij, Rij = Bgij

where «, § are scalars show that
Vigj = LR;j 2.1)

where u is a scalar. A vector field ¢ having property (2.1 ) is called a ¢ (Ric)-vector field.
Conversely, a ¢ (Ric)-vector field is concircular if M is Einstein. A ¢ (Ric)-vector field is
called proper if u # 0. Finally, ¢ is covariantly constant whenever i = 0. The symmetry of
the Ricci tensor infers V;¢; = V;¢;, i.e. the corresponding 1-form of a ¢ (Ric)-vector field
is closed (see [11]). This implies that ¢ is locally gradient, i.e. ¢; = V;w for some function
w. This assertion will lead us to obtain (see [11] for further details)

M
piR} = 5 ViR, (2.2)
QiR = uVu Ry, (2.3)

The first equation with the defining property of ¢ (Ric)-vector fields show that a manifold
M has a constant scalar curvature R if it admits a ¢ (Ric)-vector field of constant length.
In [13, Theorem 2.3], the converse of this result is proved, that is, ¢ (Ric)-vector fields in
Riemannian manifolds of constant scalar curvature has a constant length.

3 On singly warped product manifolds

The warped product manifold M x y M; of two pseudo-Riemannian manifolds (M;, g;, V;) ,
i = 1, 2 with pseudo-Riemannian metric tensors g; and Levi—Civita connections V; is the
product manifold M; x M, with the metric tensor g = g1 @ f2g» defined by

g=77(g)® (fom)* 75 (),

where 7 : My x My — M, are two natural projections of M = M x M3 onto M;, * denotes
the pull-back operator and f: M| — (0, oo) is a smooth function (see [5,17,18,21]). f is
called the warping function. It is noted that M is isometric to the submanifold M; x {y}
whereas M» is homothetic to {x} x M, for every x € M|,y € M,. A tensor on M; and
its lift to M have the same notation. The reader is referred to [5,18] for the formulas of the
Levi—Civita connection V, curvature tensor R and Ricci curvature Ric of g.
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Let ¢ = @1 + @2 be a vector field on a singly warped product manifold (M, g, V) where
M = M x y M; furnished by g = g1 @ f%g>. Then

g (Vxp,Y) = g (Vx,01 + Vx, 02 + Vi, 01 + Vi, 02, Y1 + 12)
= g1 (Vx, 01 Y1) + X1 (f) 82 (92. Y2) + fo1 (f) g2 (X2, Y2)
+f%g (V)Z(Z‘PL Y2) = Y1 (f) g2 (X2, Ya).

The Ricci tensor of the warped product manifold is given as follows:
Let X = X1+ Xoand Y = Y| + Y3 be two vector fields on a singly warped product
manifold (M, g, V) where M = My x ¢ My and g = g1 ® f2g>. Then

(1) Ric(X;,Y)) = Ric' (X, Y)) — ”TQHf (X1, Y)), where n, is the dimension of M, and
HY is the Hessian of f.

(2) Ric (X1,Y2) =0,

(3) Ric (X2, Y2) = Ric? (X2, Y2) — f%g2 (X2, Y2) , where

fF=FAf 4 (n2 = 1) g1 (grad f, grad f).
Now we will introduce the following tensor:
D(X,Y)=g(Vxp,Y)— uRic(X,Y).
It is clear that ¢ is a ¢ (Ric)-vector field with scalar p if and only if D = 0.

Theorem 1 Let ¢ = @1 + @2 be a ¢ (Ric)-vector field on My x y My where ¢; € X(M;), for
any i = 1,2. Then, one of the following conditions holds.

(1) f is constant and consequently @; is a ¢; (Ric)-vector field on M;, i = 1,2, or
(2) 92 = 0 and hence Mj is Einstein. Moreover, ¢ is a @1 (Ric)-vector field on M if
H/ =0.

Proof The vector field ¢ is a ¢ (Ric)-vector field with scalar p if and only if D = 0. Thus,
0=D (X, Y1)
— g1 (Vi 01, 1) — uRic (X1, 1) + %Hf (X1, 1),
0=D (X1, Y2) = fX1(f) & (¢2,12),
and
0= D (X2, 12)
= [fo1 () + nf?] g2 (X2, Y2) + f2g2 (V%,92. Y2) — uRic? (X2, Y2)

where ¢ = @1 + @2 and ¢; € X(M;), forany i = 1, 2. This infers f X (f) g2 (2, Y2) =0,
that is, f is constant. The rest equations become

0= g1 (Vx,@1. 1) — uRic! (X1, 11)
0= f2g (V},92. Y2) — uRic? (X2, Y2) .
This completes the proof. O
The following result discusses the converse of the previous one.
Theorem 2 Let ¢ = @1 + @2 be avector field on My x y My where ¢; € X(M;), fori =1, 2.
Then, ¢ is ¢ (Ric)-vector field with scalar p if
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(1) f is constant and ¢; is a ¢; ( Ric)-vector field on M;, for any i = 1,2 with scalars |
and % (respectively), or

(2) ¢ =0and
1 _ 1 Hny g
pRic' (X1, Y1) = g1 (Vx, 1. Y1) + TH (X1, Y1),
URIC? (X2, Y2) = [fo1 (f) + nf*] g2 (X2, Ya) .
Proof The tensor D vanishes if
. uny
D (X1, Y1) = g (V1. Y1) — uRic! (X1, Y1) + 7Hf (X1, Y1),
D (X1, Y2) = fX1(f) g (92, Y2),
D (X2.Y2) = [fo1 (f) + nf] g2 (X2, Y2) + f2g2 (VE,92. Y2) — uRic? (X2, Y2)
vanish since it is linear in each slot. For a constant function f, it is
D (X1, Y1) = g1 (Vy,@1. Y1) — uRic' (X1, ¥),
D (X1,Y2) =0,
D (X2, Y2) = f2g2 (Vx,02. V2) — uRic* (X2, V2)

and so all components of D will be zero if ¢; is a ¢; (Ric)-vector field on M;, foranyi = 1,2
with scalars p and % respectively.

Now, assume that ¢, = 0, one gets
. un
D (X1, Y1) = g1 (Vi 1. Y1) — uRic' (X1, Y1) + THf (X1, Y1),

D (X1, Y2) =0,
D (X2, Y2) = [fo1 (f) + iuf*] g2 (X2, Y2) — uRic? (X2, Y2) .

Thus, the conditions
. una
uRic! (X1, Y1) = g1 (Vx, 01, Y1) + THf (X1.71),

1Ric? (X2, Y2) = [fo1 (f) + 1 f*] g2 (X2, Ya).

guarantee D = 0. O

We now define generalized Robertson—Walker space-times (GRW) and standard static
space-times (SSS-T) to characterize their ¢ (Ric)-vector fields. We begin by fixing some
notation for the rest of the paper.

Assume that (M, g) is an n—dimensional Riemannian manifold and / is an open connected
interval of R. Moreover, b and f are assumed to be smooth functions on I and M, respectively
where b > O on I and f > 0 on M and also dr? denotes the usual Euclidean metric tensor
on/.

Then (n + 1)-dimensional warped product manifold / x M equipped with the metric
tensor

g=—di’ ®b’g

is said to be a generalized Robertson—Walker space-time and is denoted by M = I x;, M.
This class of space-times can be considered as a generalization of the well-known Robertson—
Walker space-times (see [10,19,20]).
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Likewise, we define standard static space-times. The (n+ 1)-dimensional product manifold
1 x M furnished with the metric tensor

g=—f2d’a®g

is called a standard static space-time and is denoted by M = Iy x M. Roughly speaking a
standard static space-time can be regarded as an extension of the Einstein static universe (see

[1-4)).
From now on, % € X([) is denoted by 9, to state related formulas and expressions in
simpler forms.

Remark 1 A vector ﬁ_eld of the form hd; on (I, —dz?) is a ¢ (Ric)-vector field where h €
C*®(I)ifandonly if » =0 on I.

The tensor D is defined on M as
B (X.¥) = (V4¢.7) — ukic (X. V).
where X, Y € X(M).

Proposition 1 Let M = I x, M be an (n + 1)-dimensional generalized Robertson—Walker
space-time equipped with the metric tensor g = —dt% ®b%g. If X and Y are vector fields on
M., then a vector field of the form ¢ = hd; + ¢ on (M, g) where h € C*°(I) and ¢ € X(M)
satisfies

(1) D@, 0) =—h+ 42,
(2) D(X,9)=0bbg(X,¢), )
(3) D(X,Y) =[hbb — ubb — pu(n — 1) b*] g (X, Y) + b*>g (Vxe, Y) — uRic (X, Y)

Theorem 3 Let ¢ = hd, + ¢ be a ¢ (Ric)-vector field on a GRW space-time of the form
I xp M with scalar p. Then, one of the followings holds

(1) h = a for some a € R where b is constant and ¢ is a ¢ (Ric)-vector field on M with
factor /b,
(2) ¢ = 0 where
.. ,unI;
h=——r0
i = &
[Ric (X, Y) = [hbb — ubb — p (n — 1) b*] g (X, Y),

for any vector field X and Y on M.

Example 1 Let M = I X, R be a warped product manifold endowed with the metric tensor
g = —dr? + b*ds?®. Suppose that ¢ = @9, + ¢29; is a ¢ (Ric)-vector field on (M, g). Then

@ = (&1t +m1) 0 + (L2s +m2) O

if b= 0 orelse
k

= —0;.
% bt

Proposition2 Let M = Iy x M, be an (n + 1)-dimensional standard static space-time
equipped with the metric tensor g = — f 2dt_2 ® g. If X and Y are vector fields on M, then
a vector field of the form ¢ = ho; + ¢ on (M, g) where h € C°°(I) and ¢ € X(M) satisfies
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(1) D (3. 0) = —f [o(f) + uA)] — f2h
(2) D(X.d)=—pfX(f)
(3) D(X.Y) =g (Vxg,Y) — pRic (X, Y) + FH/ (X, Y)

Theorem 4 Let ¢ = hd; + ¢ be a ¢ (Ric)-vector field on a standard static space-time of the
Sform Iy x M with scalar w. Then, one of the followings holds

(1) f is constant and ¢ is a ¢ (Ric)-vector field on M with scalar ., and also h = a for
some a € R,
(2) h =0 where

o(f) = —uA(f)
uRic (X, Y) = g (Vxo, ¥) + %Hf(X, Y)

for any vector field X and Y on M.

4 On Lorentzian manifolds

Let M be a Lorentzian manifold admitting a time-like proper ¢ (Ric)-vector field. Let M be
a quasi-Einstein manifold, i.e. the Ricci tensor is non-flat and takes the form

R,’j =agij + buiuj, “4.1)

where a, b are scalars, b # 0 and u is a unit covariant vector [6]. However throughout the
paper we assume that a and b are constants. Then we have

Vipj = pagij + pnbuju;. 4.2)

A contraction with ¢/ yields
¢/Vigp; = n [awi + bu; (wjuj)]-

The scalar curvature R = na + ¢b, € = =£1 is constant since we assume that the associated
scalars a, b are constants. Now, M has constant scalar curvature R and consequently ¢ has
a constant length, i.e.

0 = aq; + bu; ((pjuj>.

This equation implies either u and ¢ are orthogonal and consequently a = 0 and M is Ricci
simple, i.e. R;; = bu;u; or u is a time-like field parallel to ¢. The later case implies

Vip; = agij + Beip;. 4.3)

Moreover, it is . '
@' Vig; =0 = pne’Rij,

i.e. ¢ is an eigenvector of the Ricci tensor with zero eigenvalue. Applying Chen’s simple
characterization of GRW space-times (see [7,16]), M turns out to be a GRW space-time. We
also have u' R;; = 0 and so a = b. The Ricci curvature becomes

Rij = a(gij +uiuj).
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. . ii - . R
A contraction with g/ implies a = =5, i.e.

R
Rij = — (8ij +uiuj).
This discussion leads to the following result.

Theorem 5 A Lorentzian quasi-Einstein manifold admitting a time-like ¢ (Ric)-vector field
is Ricci simple and the Ricci tensor takes the form R;j = bu;ju; or it is a perfect fluid GRW
space-time and the Ricci tensor takes the form
Rij = —— (g + uin)
n—1

¢
N =" Pm

Now, suppose that M is a generalized quasi-Einstein manifold, i.e. the Ricci curvature has
the form

where u; =

Rij = agij + buiuj + cvjvj, 4.4)

where a, b, ¢ are scalars and u;, v; are two orthonormal 1-forms [8,9]. However throughout
the paper we assume that a, b and c are constants. Following the same strategy for a proper
time-like ¢ (Ric)-vector field, one can obtain

Vip; = pagij + pbujuj + pcv;v; 4.5)
and so ' ' '
¢'Vig; = [acﬂi + bu; (w"uj) + cv (fﬂ"vj)] :
Since we assume that the associated scalars are constants, M has constant scalar curvature
R =na + ¢b + ec, ¢ = £1 and consequently ¢ has a constant length i.e.

0 = agp; + bu; ((pjuq,‘) + cv; (goj v_,) ) (4.6)

Since ¢ is time-like, one of the generators, say u, must be time-like and consequently v is
space-like. Transvestind this equation twice by u' and v, one gets

oz(a—m(M%) 4.7
0=(a+o (vig) 48)
The vector fields u and ¢ could not be orthogonal and so @ = b. Thus,
0=a ((pi + u; ((p-fuj)) + cv; ((p/vj)
Rij=a (g,-j — u;uj) + cvjv;.

For a non-zero a, Eq. (4.6) shows that ¢ is a linear combination of both « and v.
From Eq. (4.8), either ¢ = —c or v and ¢ are orthogonal. The first case implies

Rij = a(gij + uiuj — vivj)
A contraction with g/ implies a = £ i.e.

R

K=

(g,'j +ujuj — vivj) .

In this case, it is clear that u’ R; = Vi R; j = 0. The following result rises.
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Theorem 6 [n a Lorentzian generalized quasi-Einstein manifold admitting a proper time-like
¢ (Ric)-vector field, ¢ has a constant length and the generators are eigenvectors of the Ricci
tensor with zero eigenvalue and the Ricci tensor is given by

R
Rij = —— (gij + wiuj = vivj).

provided that a is non-zero and v and ¢ are not orthogonal.
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