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Abstract
Sufficient and necessary conditions are provided on warped product manifolds and their base
and fiber manifolds for a vector field ϕ j to be a ϕ (Ric)-vector field , that is, ∇iϕ j = μRi j

where Ri j is theRicci tensor ofM andμ is a scalar. Twowarpedproduct space-times admitting
ϕ (Ric)-vector fields are considered. Lorentzian quasi-Einstein manifolds admitting a time-
likeϕ (Ric)-vector field are shown to be eitherRicci simple or a perfect fluidGRWspace-time.
The generators of a Lorentzian generalized quasi-Einstein manifold admitting a time-like
ϕ (Ric)-vector field are eigenvectors of the Ricci tensor with zero eigenvalue.

Keywords ϕ (Ric)-vector field · Quasi-Einstein · Perfect fluid · Generalized
Robertson–Walker space-time

Mathematics Subject Classification Primary 53C21 · 53C25; Secondary 53C50 · 53C80

1 Introduction

The concept of ϕ (Ric)-vector fields was first introduced in [11] as a generalization of con-
circular vector fields. It is proved that a Riemannian manifold has a constant scalar curvature
whenever it admits a ϕ (Ric)-vector field having a constant length. Moreover, sufficient con-
dition for the the existence of a ϕ (Ric)-vector field on Riemannian manifolds admitting a
parallel Riemann curvature tensor were derived. The study is extended to conformally flat and
subprojective spaces in [12]. Four years later, the same conditions were discussed on nearly
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quasi-Einstein manifolds [22, Theorem 4]. Kırık and Zengin studied ϕ (Ric)-vector field on
quasi-Einstein manifolds in [13], on generalized quasi-Einstein( in brief GQE) manifolds in
[14] and on GQE manifolds whose Ricci tensor is pseudo-Ricci symmetric in [15].

In the presentwork, Lorentzianmanifolds admitting aϕ (Ric)-vector field are investigated.
A Lorentzian quasi-Einstein manifold having a time-like ϕ (Ric)-vector field is shown to
be either Ricci simple or a perfect fluid GRW space-time. Then, we extend this study to
generalized quasi-Einstein Lorentzian manifolds. Finally, a classification of ϕ (Ric)-vector
fields on singly warped product manifolds and consequently on generalized Robertson–
Walker (or simply GRW) space-times and standard static space-times are considered.

2 Preliminaries

In a non-Ricci flat Einstein manifold M , a ϕ (Ric)-vector field is, in some sense, a general-
ization of a concircular vector field, that is, the equations

∇iϕ j = αgi j , Ri j = βgi j

where α, β are scalars show that
∇iϕ j = μRi j (2.1)

where μ is a scalar. A vector field ϕ having property (2.1 ) is called a ϕ (Ric)-vector field.
Conversely, a ϕ (Ric)-vector field is concircular if M is Einstein. A ϕ (Ric)-vector field is
called proper if μ �= 0. Finally, ϕ is covariantly constant whenever μ = 0. The symmetry of
the Ricci tensor infers ∇iϕ j = ∇ jϕi , i.e. the corresponding 1-form of a ϕ (Ric)-vector field
is closed (see [11]). This implies that ϕ is locally gradient, i.e. ϕi = ∇iω for some function
ω. This assertion will lead us to obtain (see [11] for further details)

ϕi R
i
k = μ

2
∇k R, (2.2)

ϕi R
i
jkl = μ∇m Rm

jkl . (2.3)

The first equation with the defining property of ϕ (Ric)-vector fields show that a manifold
M has a constant scalar curvature R if it admits a ϕ (Ric)-vector field of constant length.
In [13, Theorem 2.3], the converse of this result is proved, that is, ϕ (Ric)-vector fields in
Riemannian manifolds of constant scalar curvature has a constant length.

3 On singly warped product manifolds

Thewarped productmanifoldM1× f M2 of two pseudo-Riemannianmanifolds (Mi , gi ,∇i ) ,

i = 1, 2 with pseudo-Riemannian metric tensors gi and Levi–Civita connections ∇i is the
product manifold M1 × M2 with the metric tensor g = g1 ⊕ f 2g2 defined by

g = π∗
1 (g1) ⊕ ( f ◦ π1)

2 π∗
2 (g2) ,

where πi : M1 ×M2 → Mi are two natural projections of M = M1 ×M2 onto Mi , ∗ denotes
the pull-back operator and f : M1 → (0,∞) is a smooth function (see [5,17,18,21]). f is
called the warping function. It is noted that M1 is isometric to the submanifold M1 × {y}
whereas M2 is homothetic to {x} × M2 for every x ∈ M1, y ∈ M2. A tensor on Mi and
its lift to M have the same notation. The reader is referred to [5,18] for the formulas of the
Levi–Civita connection ∇, curvature tensor R and Ricci curvature Ric of g.
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Let ϕ = ϕ1 + ϕ2 be a vector field on a singly warped product manifold (M, g,∇) where
M = M1 × f M2 furnished by g = g1 ⊕ f 2g2. Then

g (∇Xϕ, Y ) = g
(∇X1ϕ1 + ∇X1ϕ2 + ∇X2ϕ1 + ∇X2ϕ2, Y1 + Y2

)

= g1
(∇1

X1
ϕ1, Y1

) + f X1 ( f ) g2 (ϕ2, Y2) + f ϕ1 ( f ) g2 (X2, Y2)

+ f 2g2
(∇2

X2
ϕ2, Y2

) − f Y1 ( f ) g2 (X2, Y2) .

The Ricci tensor of the warped product manifold is given as follows:
Let X = X1 + X2 and Y = Y1 + Y2 be two vector fields on a singly warped product

manifold (M, g,∇) where M = M1 × f M2 and g = g1 ⊕ f 2g2. Then

(1) Ric (X1, Y1) = Ric1 (X1, Y1) − n2
f H

f (X1, Y1) , where n2 is the dimension of M2 and

H f is the Hessian of f .
(2) Ric (X1, Y2) = 0,
(3) Ric (X2, Y2) = Ric2 (X2, Y2) − f �g2 (X2, Y2) , where

f � = f � f + (n2 − 1) g1 (grad f , grad f ) .

Now we will introduce the following tensor:

D (X , Y ) = g (∇Xϕ, Y ) − μRic (X , Y ) .

It is clear that ϕ is a ϕ (Ric)-vector field with scalar μ if and only if D = 0.

Theorem 1 Let ϕ = ϕ1 + ϕ2 be a ϕ (Ric)-vector field on M1 × f M2 where ϕi ∈ X(Mi ), for
any i = 1, 2. Then, one of the following conditions holds.

(1) f is constant and consequently ϕi is a ϕi (Ric)-vector field on Mi , i = 1, 2, or
(2) ϕ2 = 0 and hence M2 is Einstein. Moreover, ϕ1 is a ϕ1 (Ric)-vector field on M1 if

H f = 0.

Proof The vector field ϕ is a ϕ (Ric)-vector field with scalar μ if and only if D = 0. Thus,

0 = D (X1, Y1)

= g1
(∇1

X1
ϕ1, Y1

) − μRic1 (X1, Y1) + μn2
f

H f (X1, Y1) ,

0 = D (X1, Y2) = f X1 ( f ) g2 (ϕ2, Y2) ,

and

0 = D (X2, Y2)

= [
f ϕ1 ( f ) + μ f �

]
g2 (X2, Y2) + f 2g2

(∇2
X2

ϕ2, Y2
) − μRic2 (X2, Y2)

where ϕ = ϕ1 + ϕ2 and ϕi ∈ X(Mi ), for any i = 1, 2. This infers f X1 ( f ) g2 (ϕ2, Y2) = 0,
that is, f is constant. The rest equations become

0 = g1
(∇1

X1
ϕ1, Y1

) − μRic1 (X1, Y1)

0 = f 2g2
(∇2

X2
ϕ2, Y2

) − μRic2 (X2, Y2) .

This completes the proof. 
�
The following result discusses the converse of the previous one.

Theorem 2 Let ϕ = ϕ1 +ϕ2 be a vector field on M1 × f M2 where ϕi ∈ X(Mi ), for i = 1, 2.
Then, ϕ is ϕ (Ric)-vector field with scalar μ if
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(1) f is constant and ϕi is a ϕi ( Ric)-vector field on Mi , for any i = 1, 2 with scalars μ

and μ

f 2
(respectively), or

(2) ϕ2 = 0 and

μRic1 (X1, Y1) = g1
(∇1

X1
ϕ1, Y1

) + μn2
f

H f (X1, Y1) ,

μRic2 (X2, Y2) = [
f ϕ1 ( f ) + μ f �

]
g2 (X2, Y2) .

Proof The tensor D vanishes if

D (X1, Y1) = g1
(∇1

X1
ϕ1, Y1

) − μRic1 (X1, Y1) + μn2
f

H f (X1, Y1) ,

D (X1, Y2) = f X1 ( f ) g2 (ϕ2, Y2) ,

D (X2, Y2) = [
f ϕ1 ( f ) + μ f �

]
g2 (X2, Y2) + f 2g2

(∇2
X2

ϕ2, Y2
) − μRic2 (X2, Y2)

vanish since it is linear in each slot. For a constant function f , it is

D (X1, Y1) = g1
(∇1

X1
ϕ1, Y1

) − μRic1 (X1, Y1) ,

D (X1, Y2) = 0,

D (X2, Y2) = f 2g2
(∇2

X2
ϕ2, Y2

) − μRic2 (X2, Y2)

and so all components of D will be zero if ϕi is a ϕi (Ric)-vector field on Mi , for any i = 1, 2
with scalars μ and μ

f 2
respectively.

Now, assume that ϕ2 = 0, one gets

D (X1, Y1) = g1
(∇1

X1
ϕ1, Y1

) − μRic1 (X1, Y1) + μn2
f

H f (X1, Y1) ,

D (X1, Y2) = 0,

D (X2, Y2) = [
f ϕ1 ( f ) + μ f �

]
g2 (X2, Y2) − μRic2 (X2, Y2) .

Thus, the conditions

μRic1 (X1, Y1) = g1
(∇1

X1
ϕ1, Y1

) + μn2
f

H f (X1, Y1) ,

μRic2 (X2, Y2) = [
f ϕ1 ( f ) + μ f �

]
g2 (X2, Y2) .

guarantee D = 0. 
�
We now define generalized Robertson–Walker space-times (GRW) and standard static

space-times (SSS-T) to characterize their ϕ (Ric)-vector fields. We begin by fixing some
notation for the rest of the paper.

Assume that (M, g) is an n−dimensionalRiemannianmanifold and I is an open connected
interval ofR.Moreover, b and f are assumed to be smooth functions on I andM, respectively
where b > 0 on I and f > 0 on M and also dt2 denotes the usual Euclidean metric tensor
on I .

Then (n + 1)-dimensional warped product manifold I × M equipped with the metric
tensor

ḡ = −dt2 ⊕ b2g

is said to be a generalized Robertson–Walker space-time and is denoted by M̄ = I ×b M .

This class of space-times can be considered as a generalization of thewell-knownRobertson–
Walker space-times (see [10,19,20]).
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Likewise,we define standard static space-times. The (n+1)-dimensional productmanifold
I × M furnished with the metric tensor

ḡ = − f 2dt2 ⊕ g

is called a standard static space-time and is denoted by M̄ = I f × M . Roughly speaking a
standard static space-time can be regarded as an extension of the Einstein static universe (see
[1–4]).

From now on, ∂
∂t ∈ X(I ) is denoted by ∂t to state related formulas and expressions in

simpler forms.

Remark 1 A vector field of the form h∂t on (I ,−dt2) is a ϕ (Ric)-vector field where h ∈
C∞(I ) if and only if ḣ = 0 on I .

The tensor D̄ is defined on M̄ as

D̄
(
X̄ , Ȳ

) = ḡ
(∇̄X̄ ϕ̄, Ȳ

) − μR̄ic
(
X̄ , Ȳ

)
.

where X̄ , Ȳ ∈ X(M̄).

Proposition 1 Let M̄ = I ×b M be an (n + 1)-dimensional generalized Robertson–Walker
space-time equipped with the metric tensor ḡ = −dt2 ⊕ b2g. If X and Y are vector fields on
M, then a vector field of the form ϕ̄ = h∂t + ϕ on (M̄, ḡ) where h ∈ C∞(I ) and ϕ ∈ X(M)

satisfies

(1) D̄ (∂t , ∂t ) = −ḣ + μnb̈
b ,

(2) D̄ (X , ∂t ) = bḃg (X , ϕ) ,

(3) D̄ (X , Y ) = [
hbḃ − μbb̈ − μ (n − 1) ḃ2

]
g (X , Y ) + b2g (∇Xϕ, Y ) − μRic (X , Y )

Theorem 3 Let ϕ̄ = h∂t + ϕ be a ϕ̄ (Ric)-vector field on a GRW space-time of the form
I ×b M with scalar μ. Then, one of the followings holds

(1) h = a for some a ∈ R where b is constant and ϕ is a ϕ (Ric)-vector field on M with
factor μ/b2,

(2) ϕ = 0 where

φ̇\ḣ = μnb̈

b
μRic (X , Y ) = [

hbḃ − μbb̈ − μ (n − 1) ḃ2
]
g (X , Y ) ,

for any vector field X and Y on M .

Example 1 Let M = I ×b R be a warped product manifold endowed with the metric tensor
g = −dt2 + b2ds2. Suppose that ϕ = ϕ1∂t + ϕ2∂s is a ϕ (Ric)-vector field on (M, g). Then

ϕ = (ζ1t + η1) ∂t + (ζ2s + η2) ∂s

if ḃ = 0 or else

ϕ = k

b
∂t .

Proposition 2 Let M̄ = I f × M, be an (n + 1)-dimensional standard static space-time
equipped with the metric tensor ḡ = − f 2dt2 ⊕ g. If X and Y are vector fields on M, then
a vector field of the form ϕ̄ = h∂t + ϕ on (M̄, ḡ) where h ∈ C∞(I ) and ϕ ∈ X(M) satisfies

123



1714 U. C. De et al.

(1) D̄ (∂t , ∂t ) = − f [ϕ( f ) + μ�( f )] − f 2ḣ
(2) D̄ (X , ∂t ) = −φ f X( f )
(3) D̄ (X , Y ) = g (∇Xϕ, Y ) − μRic (X , Y ) + μ

f H
f (X , Y )

Theorem 4 Let ϕ = h∂t + ϕ be a ϕ (Ric)-vector field on a standard static space-time of the
form I f × M with scalar μ. Then, one of the followings holds

(1) f is constant and ϕ is a ϕ (Ric)-vector field on M with scalar μ, and also h = a for
some a ∈ R,

(2) h = 0 where

ϕ( f ) = −μ�( f )

μRic (X , Y ) = g (∇Xϕ, Y ) + μ

f
H f (X , Y )

for any vector field X and Y on M .

4 On Lorentzianmanifolds

Let M be a Lorentzian manifold admitting a time-like proper ϕ (Ric)-vector field. Let M be
a quasi-Einstein manifold, i.e. the Ricci tensor is non-flat and takes the form

Ri j = agi j + buiu j , (4.1)

where a, b are scalars, b �= 0 and u is a unit covariant vector [6]. However throughout the
paper we assume that a and b are constants. Then we have

∇iϕ j = μagi j + μbuiu j . (4.2)

A contraction with ϕ j yields

ϕ j∇iϕ j = μ
[
aϕi + bui

(
ϕ j u j

)]
.

The scalar curvature R = na + εb, ε = ±1 is constant since we assume that the associated
scalars a, b are constants. Now, M has constant scalar curvature R and consequently ϕ has
a constant length, i.e.

0 = aϕi + bui
(
ϕ j u j

)
.

This equation implies either u and ϕ are orthogonal and consequently a = 0 and M is Ricci
simple, i.e. Ri j = buiu j or u is a time-like field parallel to ϕ. The later case implies

∇iϕ j = αgi j + βϕiϕ j . (4.3)

Moreover, it is
ϕ j∇iϕ j = 0 = μϕ j Ri j ,

i.e. ϕ is an eigenvector of the Ricci tensor with zero eigenvalue. Applying Chen’s simple
characterization of GRW space-times (see [7,16]), M turns out to be a GRW space-time. We
also have ui Ri j = 0 and so a = b. The Ricci curvature becomes

Ri j = a
(
gi j + uiu j

)
.
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A contraction with gi j implies a = R
n−1 , i.e.

Ri j = R

n − 1

(
gi j + uiu j

)
.

This discussion leads to the following result.

Theorem 5 A Lorentzian quasi-Einstein manifold admitting a time-like ϕ (Ric)-vector field
is Ricci simple and the Ricci tensor takes the form Ri j = buiu j or it is a perfect fluid GRW
space-time and the Ricci tensor takes the form

Ri j = R

n − 1

(
gi j + uiu j

)

where ui = ϕi√−ϕmϕm
.

Now, suppose that M is a generalized quasi-Einstein manifold, i.e. the Ricci curvature has
the form

Ri j = agi j + buiu j + cviv j , (4.4)

where a, b, c are scalars and ui , vi are two orthonormal 1-forms [8,9]. However throughout
the paper we assume that a, b and c are constants. Following the same strategy for a proper
time-like ϕ (Ric)-vector field, one can obtain

∇iϕ j = μagi j + μbuiu j + μcviv j (4.5)

and so
ϕ j∇iϕ j = μ

[
aϕi + bui

(
ϕ j u j

)
+ cvi

(
ϕ jv j

)]
.

Since we assume that the associated scalars are constants, M has constant scalar curvature
R = na + εb + εc, ε = ±1 and consequently ϕ has a constant length i.e.

0 = aϕi + bui
(
ϕ j u j

)
+ cvi

(
ϕ jv j

)
. (4.6)

Since ϕ is time-like, one of the generators, say u, must be time-like and consequently v is
space-like. Transvestind this equation twice by ui and vi , one gets

0 = (a − b)
(
uiϕi

)
(4.7)

0 = (a + c)
(
viϕi

)
(4.8)

The vector fields u and ϕ could not be orthogonal and so a = b. Thus,

0 = a
(
ϕi + ui

(
ϕ j u j

))
+ cvi

(
ϕ jv j

)

Ri j = a
(
gi j − uiu j

) + cviv j .

For a non-zero a, Eq. (4.6) shows that ϕ is a linear combination of both u and v.
From Eq. (4.8), either a = −c or v and ϕ are orthogonal. The first case implies

Ri j = a
(
gi j + uiu j − viv j

)

A contraction with gi j implies a = R
n−2 , i.e.

Ri j = R

n − 2

(
gi j + uiu j − viv j

)
.

In this case, it is clear that ui Ri j = vi Ri j = 0. The following result rises.
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Theorem 6 In a Lorentzian generalized quasi-Einstein manifold admitting a proper time-like
ϕ (Ric)-vector field, ϕ has a constant length and the generators are eigenvectors of the Ricci
tensor with zero eigenvalue and the Ricci tensor is given by

Ri j = R

n − 2

(
gi j + uiu j − viv j

)
,

provided that a is non-zero and v and ϕ are not orthogonal.
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