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Ground-state properties of quasi-one-dimensional electron systems within dynamic
local-field correction: Quantum Singwi-Tosi-Land-Sjölander theory
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Dynamic local-field correction~LFC! brings a richer picture about the description of a many-body system
than the standard mean-field theories. Here we investigate the ground-state properties of a quasi-one-
dimensional electronic system using the quantum version of the Singwi-Tosi-Land-Sjo¨lander~STLS! theory
and present a critical account of its performance. The results are markedly different than those theories based
on static LFC and the random-phase approximation; an example is the static structure factor, which develops
a significant peak at low densities, signaling a developing ordered phase. An indication of growing instability
at low densities is seen onG(q,0), the static behavior of the dynamic LFC, which has an oscillatory character
with a magnitude exceeding unity, peaking exactly at 4kF . The pair-correlation function comes out as positive
for the densities considered in this work. The correlation energy and the compressibility curves are seen to be
quite close to the static STLS results. A flaw of the theory is the significantly negative values of the dynamic
structure factor around the plasmon frequencies, also the lifetime of the plasmons turns out to be negative away
from the single-pair continuum. In summary, the major shortcomings of the dynamic STLS scheme are the
violation of the compressibility sum rule~as in the static STLS case! and the misrepresentation of the plasmons
in the dynamic structure factor.@S0163-1829~99!00324-0#
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I. INTRODUCTION

Quantum confinement as in quasi-one-dimensional~Q1D!
electronic systems, increases the role played by the m
body effects. As opposed to the Tomonaga-Luttinger liq
model1,2 for the Q1D systems, Hu and Das Sarma3 showed
that in the presence of small disorder or finite temperat
the Fermi surface is restored. This finding reassured the
of Fermi-liquid models4 for characterizing Q1D systems. I
particular, random-phase approximation~RPA!4–6 and its
improvements by including the static local-field correcti
~LFC!, such as in the Singwi-Tosi-Land-Sjo¨lander ~STLS!
approach7 have been applied to Q1D systems.8–13 Consider-
ing its performance in higher-dimensional systems as w
RPA is known to be successful in one-electron propertie6

such as the self-energy and its end-products like band
renormalization and quasiparticle lifetime. Furthermore,
behavior of collective excitations~plasmons in this case! is
seen to be quantitatively reproduced by RPA,8 offering much
better agreement with experiment14 compared to its ‘‘im-
proved’’ versions including LFC. However, from othe
many-body aspects, and in particular for the pair-correlat
function, RPA gives grossly unphysical results,7 which be-
come worse as the dimensionality is reduced;15 this artifact is
directly carried over to the correlation energy results as w
In this regard, correlation energy functional of a many-bo
system happens to be an important input to the recent q
tum freezing theories,16,17 as has been demonstrated very
cently on the estimation of Wigner crystallization density
quantum wires.18 On the other hand, approaches having LF
such as STLS are successful in reproducing the p
PRB 590163-1829/99/59~23!/15019~8!/$15.00
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correlation function and correlation energy results of t
quantum Monte Carlo~QMC! simulations from high densi-
ties to moderate densities; however, low-density perf
mance is unsatisfactory,19 and the violation of the compress
ibility sum rule over all densities is another problem shar
with RPA.

A common viewpoint is the need to incorporate dynam
cal correlations to capture the full many-body physics. S
cifically, the importance of dynamical local fields is evide
from various applications such as construction of effect
electron-electron interactions20 that are relevant for Coulomb
interaction induced superconductivity, electronic energy-l
straggling of protons in the electron gas,21 determining the
plasmon lifetime, and setting up the exchange-correlat
potential in the context of time-dependent density-functio
theory.22 One of the pioneering works, offering a dynam
LFC is that of Hasegawa and Shimizu,23 where they replaced
the original STLS LFC scheme by a full quantum
mechanical framework with the use of Wigner distributio
function. Their approach directly leads to a dynamic LF
and is usually named as the quantum STLS~QSTLS! or
sometimes as the dynamic STLS. Later, Holas and Rah
reported a detailed numerical account of the QSTLS in thr
dimensional~3D! electron liquid~EL!,24 Moudgil et al. ap-
plied QSTLS to 2D EL examining the spin-density respon
as well.25 For the remaining Q1D EL, very recently we hav
investigated the performance of QSTLS, focusing mainly
the static properties.26 Our aim in the present work is to brin
the level of the current understanding about the performa
of QSTLS to those of higher dimensions.24,25 With this mo-
tivation, we give a critical account of the QSTLS in Q1D
15 019 ©1999 The American Physical Society
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15 020 PRB 59B. TANATAR AND C. BULUTAY
which we hope to be useful in the advancement of dyna
LFC schemes.

The outline of this paper is as follows. In Sec. II, we gi
the theoretical formalism of the self-consistent QSTLS eq
tions, as well as the correlation energy and compressib
expressions. In Sec. III, we present the ground-state pro
ties of the Q1D electronic systems using QSTLS theory,
casionally comparing with mainly the STLS results. In S
IV, we gather our assessment of the performance of
QSTLS for the Q1D electronic systems.

II. THEORETICAL FORMALISM

A. Self-consistent equations

The density response to a longitudinal perturbat
coupled to density is governed by the longitudinal dens
density response function,x(q,v).4 This quantity has centra
importance in characterizing a many-body system. T
density-density response function beyond the RPA fram
work is usually taken to be of the form27

x~q,v!5
x0~q,v!

12U0~q!@12G~q,v!#x0~q,v!
, ~1!

where G(q,v) is the frequency- and wave-numbe
dependent LFC, representing the Pauli and Coulomb h
around each electron within the system,x0(q,v) is the
density-density response function of the noninteracting s
tem ~here Q1D EL!, U0(q) is the bare interaction potentia
for the Q1D EL. We model the Q1D EL as obtained from t
zero-thickness 2D EL under a confining potential.28 This
yields U0(q)5(e2/e0)exK0(x) for the Coulomb interaction
between the electrons assumed to be in the lowest subb
Herex5(bq/2)2, whereb is the lateral width of the quantum
wire determined by the confining oscillator frequency, a
e0 is the background dielectric constant. The system is ch
acterized by the dimensionless density parameterr s5a/aB* ,
wherea is the average interparticle distance~i.e., n51/2a in
terms of the linear number densityn), andaB* 5e0 /(m* e2)
is the effective Bohr radius~we take \51). The single-
subband approximation, which implies that the Fermi ene
remains smaller than the intersubband energy difference
justified for r s.(p/25/2)(b/aB* ). Since we have reported re
sults for b52aB* only, in an earlier publication,26 here we
explore the dependence of various quantities on the w
parameter. In this theoretical formalism section, we use n
malized quantities for the wave number and energy, with
normalization beingkF ~Fermi wave number! and 2EF (EF
is the Fermi energy!, respectively. We include disorder e
fects into our treatment within the simple number-conserv
Mermin-Das scheme.29 Accordingly, the density-density re
sponse function of the noninteracting systemwith disorderis
given by

xg
0~q,v!5

~v1 ig!x0~q,v1 ig!

v1 ig
x0~q,v1 ig!

x0~q,0!

, ~2!
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hereg is the disorder parameter, which we take through
this work as 0.05~in units of 2EF). For the dynamic LFC,
the quantum version23 of the original STLS approach7 is
used, which is given by

G~q,iv!5
1

4E0

`

dq8
xg

0~q,q8; iv!

xg
0~q,iv!

U0~q8!

U0~q!

3@S~q1q8!2S~ uq2q8u!#. ~3!

As in the 2D counterpart,25 we work in the imaginary fre-
quency formalism to facilitate the subsequent calculations
Eq. ~3!, xg

0(q,q8; iv) is the inhomogeneous density-dens
response function given explicitly for the disorder-free ca
as

x0~q,q8; iv!5
m*

pkF

1

q
lnFv21v2~q,q8!2

v21v1~q,q8!2G , ~4!

where m* is the electron effective mass, andv6(q,q8)
5uq(16q8/2)u. For the expression ofxg

0(q,q8; iv) with dis-
order, we similarly adapt Eq.~2! of the homogeneous case
S(q) in Eq. ~3! is the static structure factor, which is relate
to the density-density response function through
fluctuation-dissipation theorem as

S~q!52
1

npE0

`

dv xg~q,iv!, ~5!

52
1

npE0

`

dv
xg

0~q,iv!

12U0~q!xg
0~q,iv!@12G~q,iv!#

.

~6!

The primary advantage of analytic continuation of the
sponse function to the complex frequency plane followed
Wick rotation of the frequency integral30 is the robust cap-
ture of the plasmon contribution, which dominates in Q1
case. However, in its present form the integrand becom
slowly converging. As a remedy, to Eq.~5!, we add and
subtract the Hartree-Fock static structure factor

SHF~q!5
1

2pE0

`

dv
1

q
lnFv21q2~12q/2!2

v21q2~11q/2!2G ~7!

with its closed form beingSHF(uqu,2)5uqu/2 andSHF(uqu
.2)51, which then results in a rapidly decaying integran

Using limv→`x0(q,q8; iv)/x0(q,iv)5 limv→`

x0(q,q8;v)/x0(q,v)5q8/q, we get

lim
v→`

G~q,iv!5G~q,i`!5G~q,`!, ~8!

5
1

4E0

`

dq8
q8

q

U0~q8!

U0~q!
@S~q1q8!2S~ uq2q8u!#. ~9!

Note thatG(q,`) formally reduces to the expression sati
fied by the STLS LFC,G(q). Furthermore, the behavior fo
largev is of the formG(q,iv)5G(q,`)1O(v22). Based
on this behavior, we computeG(q,iv) up to a large value of
v ~sayvL) and then use for a value ofv.vL the expression
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G~q,iv!.G~q,`!1S vL

v D 2

@G~q,ivL!2G~q,`!#.

~10!

Equations~3! and~5! are to be solved self-consistently. No
that G(q,iv) is real, whereas the dynamic LFC along t
real frequency axisG(q,v) is complex, which can be ob
tained from the former by the analytic continuationiv→v
1 ih.

Finally, the pair-correlation function is the Fourier tran
form of the static structure factor

g~r !512
1

2E0

`

dq cos~qr !@12S~q!#, ~11!

where, in the same spirit of normalization used through
this section, distancer above is in units of 1/kF .

B. Correlation energy and compressibility

The correlation energy is the improvement in the grou
state energy of the many-body system over the Hartree-F
estimate. The common approach is to calculate it via
coupling-constant integration.6 The alternative is Rice’s
approach,31 which has been revived recently,32,13 where the
correlation energy at a densityr s is given by

Ec~Ry* !5
p

32r s
2E

0

`

dqE
0

`

dv

3S ln$12U0~q!@12G~q,iv!#xg
0~q,iv!%

12G~q,iv!

1U0~q!xg
0~q,iv! D . ~12!

The exchange energy is given by

Ex~Ry* !52
1

4r s
E

0

`

dq F~q!@12q/2#, ~13!

whereF(q)5U0(q)/(e2/e0). Both the exchange and corre
lation energy above are in 3D effective Rydberg un
@Ry* 5m* e4/(2e0

2)#.
Isothermal compressibility is an important quantity as

challenges the approaches~including both RPA and STLS!
via the compressibility sum rule. This sum rule requires
compressibility computed in two different ways to agre6

namely, compressibility is obtained by the second deriva
of the energy and also by the long-wavelength behavio
the static dielectric function. In the former one, the inve
compressibility normalized to that of the noninteracti
Fermi gas value (k0) is given by

k0

k
511

8r s
4

p2

d2

drs
2@Ex~Ry* !1Ec~Ry* !#, ~14!

whereas the alternative expression obtained via the lo
wavelength static dielectric function, limq→0e(q,0), leads to

k0

k
511

4r s

p2 E
0

`

dq F~q!lnU22q

21qU dS~q!

dq
. ~15!
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III. RESULTS

A. Static properties

The expression forG(q,`) is formally the same as that o
the static STLS LFC,G(q). However, the expressions fo
S(q) in the static and dynamic cases are not the same, w
rendersG(q,`) andG(q) to be, in general, different due t
the self-consistent nature of the equations. In Fig. 1 we co
pare these two quantities at severalr s values for a quantum
wire of width b54 aB* . As seen, the discrepancy betwe
the two increases withr s . As the wire width increases, w
need to go to larger values ofr s to fulfill the single-subband
requirement. However, the low-density~larger s) behavior is
quite similar to the results obtained with other wid
parameters.26 S(q) results show similar characteristics, a
asserted with the self-consistency requirements~cf. Fig. 2!. It
is observed that forr s>4, S(q) develops a single broad

FIG. 1. Comparison of QSTLSG(q,`) ~solid lines! and STLS
G(q) ~dashed lines! at r s52, 4, and 6, for a quantum wire of width
b54 aB* .

FIG. 2. Comparison of static structure factor for QSTLS~solid
lines! and STLS~dashed lines! cases, atr s52, 4, and 6, for a
quantum wire of widthb54 aB* . The thin solid line is the QSTLS
result for r s56.25.
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15 022 PRB 59B. TANATAR AND C. BULUTAY
peak, which increases in magnitude; the static ST
theories,11 as well as ladder approximation calculations,33 do
not produce anS(q) with a marked peak for the same de
sities. In our case, we could achieve self-consistent solut
until r s.6.25~indicated by the thin solid line in Fig. 2!. For
r s56.25, the wave vector at whichS(q) is highly peaked
(3.4kF), is somewhat close to the first star of the recipro
lattice of a one-dimensional chain (4kF), which signals the
evolution of an ordered structure. The peak inS(q) occurs at
r s55 for b52 aB* quantum wires. This assertion is furth
supported by the recent prediction of Wigner crystallizat
densities of quantum wires,18 estimating a valuer s.5.7 for a
wire diameter of 2aB* .

We show the STLS and QSTLS pair-correlation functio
@g(r )# in Fig. 3 for r s52, 4, and 6. For the densities o
interest,g(0) remains positive~a requirement severely vio
lated by the RPA!, with the QSTLS values being gradual
higher than the STLS ones asr s increases.g(r ) exhibits
pronounced oscillatory behavior for the QSTLS case ar s
56. QMC simulations and hypernetted-chain-type more
phisticated methods could be used to explore and test
behavior here. In general, our results show similar qualita
large r s behavior for different wire widths. As would b
expected, the indication of an ordered state occurs at a la
r s value for wider quantum wires.

One of the most important figures of this work is Fig.
showingG(q,0) for severalr s values, for a quantum wire o
width b52 aB* . For all densities,G(q,0) becomes zero34 at
q52kF ~in the disorder-free limit!, which can be shown
analytically35 by considering Eq.~3! for iv50 and q
52kF . This peculiar behavior is common to the dynam
treatment of one-dimensional fermions, for the same re
was also obtained by Nagano and Singwi36 in their investi-
gation of 1D fermions interacting via a repulsived-function
potential.G(q,0) shows at least two maxima, one aroundkF
and another at 4kF , the latter having a magnitude exceedi
unity appreciably. Gasser37 attributed the 4kF instability in
Q1D systems to multipair excitations. QSTLS does not
clude multipair excitations but surprisingly still signals a 4kF

FIG. 3. Comparison of pair-correlation function for QSTL
~solid lines! and STLS~dashed lines! cases, atr s52, 4, and 6, for a
quantum wire of widthb54 aB* .
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instability, suggesting further research on this point. The o
cillations in G(q,0) grow to such an extent that forr s
.4.75 it becomes negative around 5.5kF ; this may however
be an artifact of the QSTLS. A noteworthy shortcoming o
both the static and dynamic STLS theories is that the ex
largeq behavior38 of the LFC is not reproduced. The QMC
simulations of the response functions39 in 2D and 3D EL
indicate that the static LFC is an increasing function ofq in
contrast to the constant value attained in STL
approximations.7,15,19 As shown by Holas,38 discrepancy in
the largeq behavior is basically caused by approximating th
true momentum distribution by its noninteracting counte
part.

To further test the origin of the sharp features inG(q,0)
around 2kF and 4kF , we have repeated our self-consiste
calculations using the response functions within the mea
spherical approximation~MSA!.40 In the MSA, the density-
density response function takes the form

xMSA
0 ~q,v!5

2neq

v22@eq /SHF~q!#21 ih
, ~16!

whereeq5q2/2m* . Physically, the particle-hole continuum
is approximated by a collective mode with Feynman-like e
ergy spectrumeq /SHF(q). We have found that the use o
xMSA

0 in Eq. ~3! removes the sharp features inG(q,0) around
2 kF and 4kF ~cf. Fig. 4, where the MSA result atr s51 is
indicated by the dashed line!. This shows the importance of
Fermi-liquid effects in the structure ofG(q,0).

B. Dynamic properties

The frequency dependence of the LFC is markedly diffe
ent along the imaginary (iv) and real (v) frequency axes.
Figure 5 reveals the weak frequency dependence ofG(q,iv)
at severalq values forr s51, which further justifies the use
of imaginary frequency approach in self-consistent equ
tions. The real and imaginary parts ofG(q,v) are contained
in Fig. 6, displaying oscillatory dependence along the re

FIG. 4. The zero-frequency local-field factorG(q,0) calculated
using QSTLS ~solid lines! for the indicated r s values andb
52 aB* ; MSA result ~dashed line! is also shown forr s51.
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frequency axis. The oscillatory trends in Figs. 5 and 6 are
specific to Q1D EL but were also observed in high
dimensional electronic systems24,25 and also in Bose
liquids.30 The results for two differentr s values shown in
Fig. 6 indicate that the high-frequency limit of ReG(q,v) is
density dependent. This observation is consistent with
earlier discussion ofG(q,`) in connection with the static
properties. Similar behavior is also obtained for other val
of the width parameterb.

Figure 7 shows a major flaw in the QSTLS theor
namely, the dynamic structure factor,S(q,v), that becomes
significantly negative for a single region of frequencies. T
frequency region corresponds to the plasmon contribut
which is not in the form of a Dirac delta function, but broa
ened mainly due to finite disorder introduced into our co
putation. The negative contribution persists even in the ze
disorder (g50) case; thus, we are led to conclude that t
violation of causality comes from the dynamic treatment
correlations. In the 2D counterpart,25 the authors mention
without giving a plot thatS(q,v) becomes slightly negative
similar to the 3D case for frequencies beyond the upper e
of the electron-hole continuum. However, they do not est
lish any link with the misrepresentation of the plasmon co
tribution. In any case, the negative behavior of the dyna
structure factor in higher dimensions is not significant as
the Q1D case. This is also in compliance with our expla
tion, as the role of plasmons is especially enhanced in Q
The flaw may originate from the fact that, in the QSTLS, t
dynamic nature of the LFC mainly comes from that of t
Pauli hole. Thus, this imbalance between the Pauli and C
lomb hole dynamics may be instrumental here.

In this work, we have included the disorder effects in
phenomenological way through the parameterg. We have
confined ourselves to the weak disorder limit~typically, g
&0.1EF) and have not made a systematic study of the effe
of higher values ofg. Small but finiteg renders the numeri
cal computations somewhat smooth and allows us to use
Fermi-liquid theory as argued by Hu and Das Sarma.3 The
differences between the QSTLS and static STLS results
mostly due to the dynamic nature of the local-field factors

FIG. 5. The local-field factor evaluated on the imaginary f
quency axisG(q,iv), as a function ofv ~in units of 2EF) for
severalq values atr s51. Quantum wire is of widthb52 aB* .
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FIG. 6. G(q,v) as a function ofv at r s51 ~thin lines! and r s

53 ~thick lines!; both real ~solid lines! and imaginary~dashed
lines! parts are displayed atq50.7kF ~a! and q51.2kF ~b!. The
quantum wire is of widthb52 aB* .

FIG. 7. S(q,v) ~in units of Fermi velocity! as a function ofv
~in units of 2EF) for two q values atr s51. Quantum wire is of
width b52 aB* .
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15 024 PRB 59B. TANATAR AND C. BULUTAY
particular, the frequency dependence of real and imagin
parts ofG(q,v) are largely unaffected by the small amou
of disorder included in our calculations. Disorder effects
most prominent in the long-wavelength behavior of pla
mons, which are discussed below.

C. Plasmon dispersion and damping

The zeros of the dielectric functione(q,v) determine the
plasmon excitation spectrum~i.e., dispersion!. In the case of
dynamic LFC, the plasmons have a finite lifetime even o
side the single-pair continuum. The excitation spectr
vp(q) and damping constantgp(q) are determined by solv
ing the complex-valued equation

12U0~qp!@12G~qp ,vp2 igp!#xg
0~qp ,vp2 igp!50.

~17!

The results for the plasmon dispersion are shown in Fig.
r s51, where QSTLS results fall between the RPA and ST
curves. This can be interpreted as an improvement over
STLS results, given the quantitative agreement of the R
with experiment.8,14 The finite disorder introduced into ou
computations leads to two effects: even in the RPA lev
plasmons eventually enter into the single-pair continuu
also in theq→0 region the plasmons again suffer fro
damping, as reported previously by Das Sarma and Hwan10

Both in the disordered and zero-disorder cases the plas
dispersions in the long-wavelength limit are the same for
approximations. In particular, the smallq behavior of the
plasmon dispersion is given by41

vp'
i

2t
1

1

2S 4U0~q!
2q2kF

pm
2

1

t2D 1/2

, ~18!

in the presence of disorder, wheret51/g is the relaxation
time. There exists a critical wave vector below which pla
mons cannot propagate as discussed by Das41 and recently
by Das Sarma and Hwang.10 The damping constant of th

FIG. 8. Plasmon energy~in units of 2EF) as a function ofq/kF

for QSTLS ~solid!, STLS ~dash-dotted!, and RPA~dashed! at r s

51. Disorder parameterg is taken as 0.1EF . Thin solid lines mark
the boundary of the single-pair continuum. Quantum wire is
width b52 aB* .
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QSTLS theory comes out to be negative over a wide rang
wave numbers, which rapidly switches to positive values
the dispersion curve approaches the single-pair continu
The negative damping constant region can be matched
rectly with the negative values of the dynamic structure f
tor, indicating the fact that these two unphysical results h
the same origin.

D. Correlation energy and compressibility

Correlation energy of the Q1D EL is computed usi
Rice’s approach@Eq. ~12!#. The results for the STLS and
QSTLS are shown in Fig. 9. It is seen that QSTLS leads t
larger value~in magnitude! for the correlation energy, com
pared to STLS. We have not evaluated the correlation ene
systematically for different values of the width parameterb,
but surmise that similar trends will occur in those cases
well. There have been many calculations of the correlat
energyEc for a quantum wire employing different confine
ment models.11–13 In Fig. 9 we compare our results wit
those of Gold and Calmels11 who used the same quantu
wire model to calculate the exchange-correlation energy
compressibility for different wire widths. Their results at lo
density lie below our static STLS curve, which may be d
to their simplifying sum-rule approximation. The compres
ibility of the Q1D EL is computed in two different ways
using the second derivative of the exchange-correlation
ergy @Eq. ~14!# and also using the long-wavelength limit o
the static dielectric function@Eq. ~15!#. STLS and QSTLS
give very similar results and both still violate the compre
ibility sum rule ~see Fig. 10!. It could be possible to use th
Vashishta-Singwi42 theory to obtain better agreement for th
compressibility sum rule.

IV. CONCLUSIONS

The advancement in the dielectric formulation of t
many-body problem relies on the dynamic LFC schemes
promising candidate in this respect is the QSTLS theory,
in this work we investigate its performance for the case

f

FIG. 9. Correlation energy~in 3D effective Rydbergs! as a func-
tion of r s based on QSTLS~solid! and STLS ~dashed!, for b
52 aB* . Solid circles are the results of Gold and Calmels~Ref. 11!.
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Q1D EL. It is seen that QSTLS theory presents a remarka
different and richer picture compared to other mean-fi
theories such as STLS and RPA. Notably, the static struc
factor develops a significant and narrow-width peak atr s

'6.25 forb54 aB* . This finding is also in accordance wit
Wigner crystallization estimates18 based on the quantum
freezing theory. The static limit of the dynamic LFCG(q,0)

FIG. 10. Normalized inverse compressibility based on QST
~solid! and STLS~dashed!, via the dielectric function and energ
~see text!, for b52 aB* .
-

e

o-

ys
ly
d
re

indicates an onset of a 4kF density instability, towardsr s
55 value. The origin of this instability needs further inve
tigation; however, we demonstrate the importance of
Fermi-liquid effects on the structure ofG(q,0). The correla-
tion energy in the case of QSTLS is seen to be sligh
larger, in magnitude, compared to the STLS results, wher
both approaches are very similar in the compressibility
haviors, both violating the compressibility sum rule.

A common experience established over the years
many-body physics is that a more involved approach d
not necessarily lead to better results. This view is justified
QSTLS to some extent; the major drawback here, com
from the plasmon contribution to the dynamic structure fa
tor, being reflected as negative, on the other hand, the p
mon dispersion of the QSTLS method falls in between
STLS and RPA curves. One possible culprit in the misrep
sentation of the plasmons can be the dynamic LFC, whic
mainly due to the dynamics of the Pauli hole. Other dynam
LFC schemes and also QMC simulations, which are c
rently lacking in Q1D case, will be very valuable in asse
ing the merits and flaws of the QSTLS approach.
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