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Dynamic local-field correctiofLFC) brings a richer picture about the description of a many-body system
than the standard mean-field theories. Here we investigate the ground-state properties of a quasi-one-
dimensional electronic system using the quantum version of the Singwi-Tosi-Laleh@o(STLS) theory
and present a critical account of its performance. The results are markedly different than those theories based
on static LFC and the random-phase approximation; an example is the static structure factor, which develops
a significant peak at low densities, signaling a developing ordered phase. An indication of growing instability
at low densities is seen dB(q,0), the static behavior of the dynamic LFC, which has an oscillatory character
with a magnitude exceeding unity, peaking exactly gt 4The pair-correlation function comes out as positive
for the densities considered in this work. The correlation energy and the compressibility curves are seen to be
quite close to the static STLS results. A flaw of the theory is the significantly negative values of the dynamic
structure factor around the plasmon frequencies, also the lifetime of the plasmons turns out to be negative away
from the single-pair continuum. In summary, the major shortcomings of the dynamic STLS scheme are the
violation of the compressibility sum rul@s in the static STLS casand the misrepresentation of the plasmons
in the dynamic structure factofS0163-182@9)00324-0

I. INTRODUCTION correlation function and correlation energy results of the
guantum Monte Carl¢QMC) simulations from high densi-
Quantum confinement as in quasi-one-dimensi¢QdD)  ties to moderate densities; however, low-density perfor-
electronic systems, increases the role played by the manynance is unsatisfactory,and the violation of the compress-
body effects. As opposed to the Tomonaga-Luttinger liquidbility sum rule over all densities is another problem shared
modef? for the Q1D systems, Hu and Das Safnshowed  with RPA.
that in the presence of small disorder or finite temperature A common viewpoint is the need to incorporate dynami-
the Fermi surface is restored. This finding reassured the usel correlations to capture the full many-body physics. Spe-
of Fermi-liquid model$ for characterizing Q1D systems. In cifically, the importance of dynamical local fields is evident
particular, random-phase approximatié6RPA)*~® and its from various applications such as construction of effective
improvements by including the static local-field correctionelectron-electron interactioffthat are relevant for Coulomb
(LFC), such as in the Singwi-Tosi-Land-$mder (STLS interaction induced superconductivity, electronic energy-loss
approach have been applied to Q1D systefnd® Consider-  straggling of protons in the electron gsgetermining the
ing its performance in higher-dimensional systems as wellplasmon lifetime, and setting up the exchange-correlation
RPA is known to be successful in one-electron propefties,potential in the context of time-dependent density-functional
such as the self-energy and its end-products like band-gapeory?? One of the pioneering works, offering a dynamic
renormalization and quasiparticle lifetime. Furthermore, theLFC is that of Hasegawa and ShimiZiwhere they replaced
behavior of collective excitationgplasmons in this cages  the original STLS LFC scheme by a full quantum-
seen to be quantitatively reproduced by RP#ffering much  mechanical framework with the use of Wigner distribution
better agreement with experim&htompared to its “im-  function. Their approach directly leads to a dynamic LFC
proved” versions including LFC. However, from other and is usually named as the quantum STIGESTLS or
many-body aspects, and in particular for the pair-correlatiorsometimes as the dynamic STLS. Later, Holas and Rahman
function, RPA gives grossly unphysical resultehich be-  reported a detailed numerical account of the QSTLS in three-
come worse as the dimensionality is reduethis artifactis  dimensional(3D) electron liquid(EL),%* Moudgil et al. ap-
directly carried over to the correlation energy results as wellplied QSTLS to 2D EL examining the spin-density response
In this regard, correlation energy functional of a many-bodyas well?® For the remaining Q1D EL, very recently we have
system happens to be an important input to the recent quaimvestigated the performance of QSTLS, focusing mainly on
tum freezing theorie¥!” as has been demonstrated very re-the static propertie€ Our aim in the present work is to bring
cently on the estimation of Wigner crystallization density inthe level of the current understanding about the performance
quantum wires® On the other hand, approaches having LFCof QSTLS to those of higher dimensioffs>> With this mo-
such as STLS are successful in reproducing the pairtivation, we give a critical account of the QSTLS in Q1D,
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which we hope to be useful in the advancement of dynamidere y is the disorder parameter, which we take throughout

LFC schemes. this work as 0.05in units of 2E;). For the dynamic LFC,
The outline of this paper is as follows. In Sec. Il, we give the quantum versidii of the original STLS approaéhis

the theoretical formalism of the self-consistent QSTLS equaused, which is given by

tions, as well as the correlation energy and compressibility

expressions. In Sec. lll, we present the ground-state proper- _ 1= Xg(q,q’;iw) u®aq’)
ties of the Q1D electronic systems using QSTLS theory, oc- G(g,iw)= ZJ dg'——5— o
casionally comparing with mainly the STLS results. In Sec. 0 X0 @) C)

IV, we gather our assessment of the performance of the "_ _q
QSTLS for the Q1D electronic systems. X[Sata)=Sla=a'hl. ®
As in the 2D counterpaf® we work in the imaginary fre-
guency formalism to facilitate the subsequent calculations. In
Il. THEORETICAL FORMALISM Eq. (3), x)(0,9’;iw) is the inhomogeneous density-density
A. Self-consistent equations response function given explicitly for the disorder-free case

as
The density response to a longitudinal perturbation

coupled to density is governed by the longitudinal density- m* 1 [+ (q,q)2
density response functiog(q, ).* This quantity has central x%(0,9"iw)= Jn ﬁl 4
importance in characterizing a many-body system. The 7Ke 0| 0 +wi(q,9")

\(/jv%rrflgggsz:lt;/ traeksepno?osigugccttkl‘c;nf:% ond the RPA frame\'/vhere m* is the electron effective mass, anadl.(q,q’)

=|g(1=q’/2)|. For the expression qf(;(q,q’;iw) with dis-
order, we similarly adapt Eq2) of the homogeneous case.

) x°(q,) @ S(q) in Eq. (3) is the static structure factor, which is related
x(q,@)= 0 0 ) 1 to the density-density response function through the
1-UNQ)[1-G(a,0)]x"(q,0) fluctuation-dissipation theorem as

where G(q,w) is the frequency- and wave-number- 1 (~ )

dependent LFC, representing the Pauli and Coulomb holes S(4) =~ ﬁfo do x,(q,i ), ®)
around each electron within the systew®(q,») is the

density-density response function of the noninteracting sys-

e o] 0 i
tem (here Q1D EL, U%(q) is the bare interaction potential __ 1 do X,(d,iw) .
for the Q1D EL. We model the Q1D EL as obtained from the nmlo  1-U%q)xYq,iw)[1-G(q,iw)]
zero-thickness 2D EL under a confining potentfalThis (6)

yields U%(q) = (€% e5) €*Ko(x) for the Coulomb interaction
between the electrons assumed to be in the lowest subba
Herex=(bq/2)?, whereb is the lateral width of the quantum
wire determined by the confining oscillator frequency, an
€, is the background dielectric constant. The system is cha
acterized by the dimensionless density paramegera/aj ,
wherea is the average interparticle distange.,n=1/2a in
terms of the linear number density, anda} = e,/(m* €?)
is the effective Bohr radiugwe take#=1). The single- 1 (= 1
subband approximation, which implies that the Fermi energy Su(q) = _f dw=In
remains smaller than the intersubband energy difference, is 2mJo q
o 5/ *r e
justified for rs>*(7-r/2 2).(b/aB). Slpce we.ha\{eﬁgeported re- \vith its closed form beingue(|al <2)=|ql/2 and S| g
sults forb=2a only, in an ear!|er pubhcap_o » here we. >2)=1, which then results in a rapidly decaying integrand.
explore the dependence of various quantities on the widt Using lim, ..x%(0,9":i ©)/x%(q,i @) = lim
parameter. In this theoretical formalism section, we use nor- %q.q": )/ x°(q, ) :‘”ﬁ‘; wé ét ’ o=
malized quantities for the wave number and energy, with thel 99X AT, a/a. 9
normalization beindg (Fermi wave numberand ZEg (Eg ; CoN o) = o
is the Fermi energy respectively. We include disorder ef- al)|_>mwG(q,|w) G(q.1=)=G(a,), ®
fects into our treatment within the simple number-conserving
Mermin-Das schem&. Accordingly, the density-density re- 1fw q’ U%q")
dq'—

n-Bhe primary advantage of analytic continuation of the re-
sponse function to the complex frequency plane followed by
dWick rotation of the frequency integrilis the robust cap-
fure of the plasmon contribution, which dominates in Q1D
case. However, in its present form the integrand becomes
slowly converging. As a remedy, to E¢5), we add and
subtract the Hartree-Fock static structure factor

w?+9%(1—q/2)?

_ 7
w?+0q3(1+9q/2)? @)

sponse function of the noninteracting systeith disorderis ==

q [S(a+a")—=S(la—a'D]. (9
given by 4Jo a u%q)
Note thatG(q,«) formally reduces to the expression satis-
(0+iy)x%(q,0+iy) fied by the STLS LFCG(q). Furthermore, the behavior for
0 = ! H H — -2
X4, 0) 5 o (2)  largew is of the formG(q,i w)=G(q,*) + O(w?). Based
w+i YM on this behavior, we comput®(q,i w) up to a large value of

x°(q,0) w (sayw,) and then use for a value af> w, the expression
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1.0 11—t

—_—

G(g,iw)=G(q,»)+

. 2 .
;) [G(0,iw )—G(q,»)].
(10

Equationg3) and(5) are to be solved self-consistently. Note
that G(q,iw) is real, whereas the dynamic LFC along the

/
—

0.8

real frequency axiss(q,w) is complex, which can be ob- ? 0.6
tained from the former by the analytic continuation— w S
+in. )

0.4

Finally, the pair-correlation function is the Fourier trans-

form of the static structure factor b=4a}
1(= 0.2 i
g(r)=1—§fo dgcogqr)[1-S(a)], 11 ]
e ]
where, in the same spirit of normalization used throughout o.oo 2 4 6 8 10
this section, distance above is in units of K. a/k;

FIG. 1. Comparison of QSTL&(q,») (solid lineg and STLS
G(q) (dashed lingsatrs=2, 4, and 6, for a quantum wire of width
The correlation energy is the improvement in the groundb=4 a3 .
state energy of the many-body system over the Hartree-Fock

B. Correlation energy and compressibility

estimate. The common approach is to calculate it via the . RESULTS
coupling-constant integratich.The alternative is Rice’s ) )
approach’* which has been revived recent§*3 where the A. Static properties
correlation energy at a density is given by The expression foB(q,=) is formally the same as that of
the static STLS LFCG(q). However, the expressions for
EJ(Ry*)= m fmdqfxdw S(q) in the static and dynamic cases are not the same, which
¢ 32r§ 0 0 rendersG(q,«) andG(q) to be, in general, different due to
0 ) o . the self-consistent nature of the equations. In Fig. 1 we com-
o ( In{1-U"(q)[1-G(q,iw)]x(q,iw)} pare these two quantities at severalalues for a quantum
1-G(q,iw) wire of width b=4af . As seen, the discrepancy between

the two increases withg. As the wire width increases, we
0 Ofp i need to go to larger values of to fulfill the single-subband
U (q)XY(q’Iw))' (12 requirement. However, the low-densitarger ) behavior is
quite similar to the results obtained with other width
parameteré® S(q) results show similar characteristics, as
1 (= asserted with the self-consistency requiremécefts-ig. 2). It
EX(Ry*):_Efo dq F(q)[1—q/2], (13) is observed that for;=4, S(q) develops a single broad
S

The exchange energy is given by

whereF(q) =U°(q)/(e% o). Both the exchange and corre- L6 T
lation energy above are in 3D effective Rydberg units
[Ry* =m*e*/(2€3)].

Isothermal compressibility is an important quantity as it
challenges the approachéacluding both RPA and STLS
via the compressibility sum rule. This sum rule requires the
compressibility computed in two different ways to agPee;
namely, compressibility is obtained by the second derivative
of the energy and also by the long-wavelength behavior of
the static dielectric function. In the former one, the inverse 05
compressibility normalized to that of the noninteracting | // il
Fermi gas value £°) is given by B /) r,=6,6.25 -

1.0 —

S(q)
L)
NN

N

K° 8ri d? I ]

7:1+?d—r§[Ex(Ry*)+Ec(Ry*)]. (14 N A T T

4
whereas the alternative expression obtained via the long- ke

wavelength static dielectric function, Iy oe(q.0), leads to FIG. 2. Comparison of static structure factor for QST(s8lid

ds(q) lineg and STLS(dashed linescases, ars=2, 4, and 6, for a
_q. (15)  quantum wire of widttb=4 aj . The thin solid line is the QSTLS
dq result forr=6.25.

Kk° 4rg (=
—=1+—2f dg F(g)In
K 0

v

2—q
2+q




15022 B. TANATAR AND C. BULUTAY PRB 59

G(.0)

=]

FIG. 3. Comparison of pair-correlation function for QSTLS
(solid lineg and STLS(dashed linescases, ats=2, 4, and 6, for a
quantum wire of widttb=4 aj .

FIG. 4. The zero-frequency local-field fact@i(q,0) calculated
using QSTLS(solid lineg for the indicatedrg values andb
=2 ag ; MSA result(dashed lingis also shown forg=1.

peak, which increases in magnitude; the static STLSnstability, suggesting further research on this point. The os-
theories'! as well as ladder approximation calculatidfglo  cillations in G(g,0) grow to such an extent that farg

not produce arg(qg) with a marked peak for the same den- =4.75 it becomes negative around I&:5 this may however
sities. In our case, we could achieve self-consistent solutionise an artifact of the QSTLS. A noteworthy shortcoming of
until r¢=6.25(indicated by the thin solid line in Fig.)2For  both the static and dynamic STLS theories is that the exact
r<=6.25, the wave vector at whicB(q) is highly peaked large q behavio?® of the LFC is not reproduced. The QMC
(3.4kg), is somewhat close to the first star of the reciprocalsimulations of the response functidhsn 2D and 3D EL
lattice of a one-dimensional chain K4), which signals the indicate that the static LFC is an increasing functiorgaf
evolution of an ordered structure. The pealS{g) occurs at contrast to the constant value attained in STLS
r¢=>5 for b=2a% quantum wires. This assertion is further approximations:*>*° As shown by Holas? discrepancy in
supported by the recent prediction of Wigner crystallizationthe largeq behavior is basically caused by approximating the
densities of quantum wire§ estimating a value;~5.7 fora  true momentum distribution by its noninteracting counter-
wire diameter of 2 . part.

We show the STLS and QSTLS pair-correlation functions ~ To further test the origin of the sharp featuresGiiq,0)
[g(r)] in Fig. 3 forr,=2, 4, and 6. For the densities of around Xg and &g, we have repeated our self-consistent
interest,g(0) remains positivéa requirement severely vio- calculations using the response functions within the mean-
lated by the RPA with the QSTLS values being gradually SPherical approximatiofMSA).* In the MSA, the density-
higher than the STLS ones as increasesg(r) exhibits ~ density response function takes the form
pronounced oscillatory behavior for the QSTLS case at
=6. QMC simulations and hypernetted-chain-type more so- 0 2ne,
phisticated methods could be used to explore and test the Xmsa(d, w) = 2 e 2,
behavior here. In general, our results show similar qualitative "~ [eq/Sup(a)]"+im
large r ¢ behavior for different wire widths. As would be \yhere e;=q%/2m* . Physically, the particle-hole continuum

expected, the indication of an ordered state occurs at a larggf approximated by a collective mode with Feynman-like en-
rs value for wider quantum wires. ergy spectrumey/Sy(q). We have found that the use of

One of the most important figures of this work is Fig. 4, X&SA in Eq. (3) removes the sharp features@{q,0) around

showingG(q,0) for severat values, for a quantum wire of 5 ke and 4k (cf. Fig. 4, where the MSA result at=1 is

width b=2ag . For all densities(q,0) becomes zefbat  jndicated by the dashed lineThis shows the importance of
g=2kg (in the disorder-free limjt which can be shown Fermi-liquid effects in the structure &(q,0).

analytically’® by considering Eq.(3) for iw=0 and q
=2Kkg. This peculiar behavior is common to the dynamic
treatment of one-dimensional fermions, for the same result
was also obtained by Nagano and Sintjvim their investi- The frequency dependence of the LFC is markedly differ-
gation of 1D fermions interacting via a repulsigefunction  ent along the imaginaryi &) and real @) frequency axes.
potential.G(q,0) shows at least two maxima, one arolkpd Figure 5 reveals the weak frequency dependencg(of i w)

and another atk, the latter having a magnitude exceeding at several values forr =1, which further justifies the use
unity appreciably. Gass&rattributed the % instability in  of imaginary frequency approach in self-consistent equa-
Q1D systems to multipair excitations. QSTLS does not in-tions. The real and imaginary parts 6{q, ) are contained
clude multipair excitations but surprisingly still signalsig4 in Fig. 6, displaying oscillatory dependence along the real

(16)

B. Dynamic properties
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q=22k;
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FIG. 5. The local-field factor evaluated on the imaginary fre-
quency axisG(q,iw), as a function ofw (in units of 2E;) for
severalq values afr ;= 1. Quantum wire is of widtth=2 af .

frequency axis. The oscillatory trends in Figs. 5 and 6 are not
specific to Q1D EL but were also observed in higher-
dimensional electronic systefi€® and also in Bose
liquids3° The results for two different values shown in
Fig. 6 indicate that the high-frequency limit of B€q, w) is
density dependent. This observation is consistent with our
earlier discussion of5(g,e) in connection with the static
properties. Similar behavior is also obtained for other values
of the width parametelb.

Figure 7 shows a major flaw in the QSTLS theory,
namely, the dynamic structure fact®(q, ), that becomes
significantly negative for a single region of frequencies. This
frequency region corresponds to the plasmon contribution,
which is not in the form of a Dirac delta function, but broad-
ened mainly due to finite disorder introduced into our com-

correlations. In the 2D counterp&rtthe authors mention
without giving a plot thatS(q, w) becomes slightly negative
similar to the 3D case for frequencies beyond the upper edg
of the electron-hole continuum. However, they do not estab:
lish any link with the misrepresentation of the plasmon con-
tribution. In any case, the negative behavior of the dynamic
structure factor in higher dimensions is not significant as in
the Q1D case. This is also in compliance with our explana-
tion, as the role of plasmons is especially enhanced in Q1D
The flaw may originate from the fact that, in the QSTLS, the
dynamic nature of the LFC mainly comes from that of the
Pauli hole. Thus, this imbalance between the Pauli and Cou
lomb hole dynamics may be instrumental here.

In this work, we have included the disorder effects in a
phenomenological way through the parameterWe have
confined ourselves to the weak disorder lirttigpically, y
=<0.1E;) and have not made a systematic study of the effect:
of higher values ofy. Small but finitey renders the numeri-

cal computations somewhat smooth and allows us to use the

Fermi-liquid theory as argued by Hu and Das SafnTde

G(q.w)

G(q.w)

1.0

1.0

-0.5
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(2)

q=0.7k,

1 2 3
w/2E,

4
w/2E,

FIG. 6. G(g,w) as a function ofw atrs=1 (thin liney andr
putation. The negative contribution persists even in the zero=3 (thick lines; both real (solid lines and imaginary(dashed
disorder (y=0) case; thus, we are led to conclude that thig!"eS parts are displayed &}=0.7 (a) and q=1.2 (b). The
violation of causality comes from the dynamic treatment ofduantum wire is of widttb=2ag .

“F

-1.6
0

2

25

FIG. 7. S(g,) (in units of Fermi velocity as a function ofw
differences between the QSTLS and static STLS results ar@n units of 2E¢) for two q values atr¢=1. Quantum wire is of
mostly due to the dynamic nature of the local-field factors. Inwidth b=2 a}; .
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C Y ] -0.04 |- —
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q/kr ry
FIG. 8. Plasmon energ§n units of 2£;) as a function ofy/Ke _ FIG. 9. Correlation energgin 3_D effective Rydbergsas a func-
for QSTLS (solid), STLS (dash-dottel] and RPA(dashedi atr  ton gf rs t_)asgd on QSTLYsolid) and STLS(dashed, for b
= 1. Disorder parametey is taken as 0B . Thin solid lines mark =2 ag - Solid circles are the results of Gold and Calmef. 11.
the boundary of the single-pair continuum. Quantum wire is of
width b=2 a}; . QSTLS theory comes out to be negative over a wide range of

wave numbers, which rapidly switches to positive values as
particular, the frequency dependence of real and imaginarthe dispersion curve approaches the single-pair continuum.
parts ofG(qg,w) are largely unaffected by the small amount The negative damping constant region can be matched di-
of disorder included in our calculations. Disorder effects arerectly with the negative values of the dynamic structure fac-
most prominent in the long-wavelength behavior of plas-tor, indicating the fact that these two unphysical results have

mons, which are discussed below. the same origin.
C. Plasmon dispersion and damping D. Correlation energy and compressibility
The zeros of the dielectric functios(q, w) determine the Correlation energy of the Q1D EL is computed using

plasmon excitation spectrutne., dispersioh In the case of Rjce’s approacHEq. (12)]. The results for the STLS and
dynamic LFC, the plasmons have a finite lifetime even outQSTLS are shown in Fig. 9. It is seen that QSTLS leads to a
side the single-pair continuum. The excitation spectrumarger value(in magnitude for the correlation energy, com-
wp(q) and damping constant,(q) are determined by solv- pared to STLS. We have not evaluated the correlation energy

ing the complex-valued equation systematically for different values of the width parameiger
0 . 0 i but surmise that similar trends will occur in those cases as
1-U(qp)[1-G(dp,@wp=i¥p) Ix,(dp,@p—17,)=0. well. There have been many calculations of the correlation

17 energyE, for a quantum wire employing different confine-

The results for the plasmon dispersion are shown in Fig. 8 dhent models:~* In Fig. 9 we compare our results with
r=1, where QSTLS results fall between the RPA and STLghose of Gold and Calmefswho used the same quantum
curves. This can be interpreted as an improvement over th&iré model to calculate the exchange-correlation energy and
STLS results, given the quantitative agreement of the Rp,@ompressbmty for d|fferer_1t wire widths. Thellr results at low
with experimenf* The finite disorder introduced into our density lie below our static STLS curve, which may be due
computations leads to two effects: even in the RPA levelf0 their simplifying sum-rule approximation. The compress-
plasmons eventually enter into the single-pair continuum!Pility of the Q1D EL is computed in two different ways:
also in theq—0 region the plasmons again suffer from USiNg the second derlvat|v_e of the exchange-correlgthn en-
damping, as reported previously by Das Sarma and Hfang. €9y [EQ. (14)] and also using the long-wavelength limit of
Both in the disordered and zero-disorder cases the plasmdfie Static dielectric functiofiEq. (15)]. STLS and QSTLS
dispersions in the long-wavelength limit are the same for all@ive very similar results and both still violate the compress-
approximations. In particular, the smajl behavior of the Pility sum rule(see Fig. 101 It could be possible to use the
plasmon dispersion is given Hy Vashlshta_-S_l_ngvf}? theory to obtain better agreement for the
compressibility sum rule.

I 20%e 11 18
o= T\ 2] 18 IV. CONCLUSIONS
in the presence of disorder, where=1/vy is the relaxation The advancement in the dielectric formulation of the

time. There exists a critical wave vector below which plas-many-body problem relies on the dynamic LFC schemes. A
mons cannot propagate as discussed by*Daisd recently  promising candidate in this respect is the QSTLS theory, and
by Das Sarma and Hwarl§.The damping constant of the in this work we investigate its performance for the case of
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indicates an onset of ak4 density instability, towards

=5 value. The origin of this instability needs further inves-
tigation; however, we demonstrate the importance of the
Fermi-liquid effects on the structure &f(q,0). The correla-
tion energy in the case of QSTLS is seen to be slightly
larger, in magnitude, compared to the STLS results, whereas
both approaches are very similar in the compressibility be-
haviors, both violating the compressibility sum rule.

A common experience established over the years in
many-body physics is that a more involved approach does
not necessarily lead to better results. This view is justified by
QSTLS to some extent; the major drawback here, comes
from the plasmon contribution to the dynamic structure fac-
tor, being reflected as negative, on the other hand, the plas-
mon dispersion of the QSTLS method falls in between the
STLS and RPA curves. One possible culprit in the misrepre-
sentation of the plasmons can be the dynamic LFC, which is
mainly due to the dynamics of the Pauli hole. Other dynamic
LFC schemes and also QMC simulations, which are cur-
rently lacking in Q1D case, will be very valuable in assess-
ing the merits and flaws of the QSTLS approach.

FIG. 10. Normalized inverse compressibility based on QSTLS
(solid) and STLS(dashed via the dielectric function and energy
(see text, for b=2aj .

Q1D EL. Itis seen that QSTLS theory presents a remarkably
different and richer picture compared to other mean-field
theories such as STLS and RPA. Notably, the static structure This work was supported by the Scientific and Technical
factor develops a significant and narrow-width peakrat Research Council of TurkeyTUBITAK) under Grant No.
~6.25 forb=4ag . This finding is also in accordance with TBAG-1662. In the course of this work, C.B. was supported
Wigner crystallization estimat&s based on the quantum by TUBITAK-NATO. We thank Professor G. Senatore for
freezing theory. The static limit of the dynamic LE&q,0)  fruitful discussions.
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