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ABSTRACT 

 

JOINT TEST FOR STRUCTURAL MODEL SPECIFICATION 

Yüksel, Serkan 

M.A., Department of Economics 

Supervisor: Assistant Professor Taner Yiğit 

 

September 2006 

 

 Aim of this thesis is to propose a test statistic that can test for true 

structural model in time series. Main concern of the thesis is to suggest a test 

statistic, which has joint null of unit root and no structural break (difference 

stationary model). When joint null hypothesis is rejected, source of deviation from 

the null model may be structural break or (and) stationarity. Sources of the 

deviation correspond to different structural models: Pure stationary model, trend-

break stationary model and trend-break with unit root model. The thesis suggests a 

test statistic that can discriminate null model from alternative models and more 

importantly, one alternative model from another. The test statistic that is proposed 

in the thesis is able to detect specific source of deviation from the null model. By 

doing so, we can determine the true structure model in time series. The thesis 
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compares power properties of the test statistic that is proposed with the most 

favorable test in the literature. Simulation results indicate the power dominance 

over the test statistics in the literature. Moreover, we are able to specify true 

alternative model.  

 

Key Words: Unit root, Structural Break, Joint Hypothesis Testing, Monte Carlo 

Simulations 
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ÖZET 

 

YAPISAL MODEL BELİRLENMESİ İÇİN BİRLEŞİK TEST 

Yüksel, Serkan 

Master, İktisat Bölümü 

Tez Yöneticisi: Yrd. Doç. Taner Yiğit 

 

Eylül 2006 

 

 Bu tezin amacı, zaman serilerinde yapısal modelin belirlenmesini sağlayabilecek 

bir test istatistiği önermektir. Bu amaç doğultusunda, boş hipotez olarak birim kök 

ve yapısal kırılmanın olmadığı (ilk fark durağan modeli) model belirlenmiştir.  Bu 

boş hipotezin reddedilmesi durumunda, boş hipotezden sapmaya neden olan 

alternatifler durağan yapı veya (ve) yapısal kırılmadır. Sapmaya neden olan yapılar 

ise: Durağan model, yapısal kırılmalı durağan model ve yapısal kırılmalı birim kök 

modelleridir. Bu tezde boş hipotez altındaki modeli alternatif hipotezlerden 

ayırabilecek ve daha da önemlisi alternatif modelleri birbirinden ayırabilecek bir 

test istatistiği geliştirilmiştir. Böylece, zaman serilerinde doğru modelin sınanmasını 

sağlacak bir test istatistiği oluşturulmuştur. Ayrıca, geliştirilen test istatistiği ile 

literatürdeki en başarılı test istatistiği Monte Karlo simülasyonlarıyla 

karşılaştırılmış ve bu tezde geliştirilen test istatistiğinin daha başarılı olduğu 



 vi 

gözlenmiştir. Bu durum, geliştirilen test istatistiğinin kullanımsal geçerliliğine işaret 

etmektedir. 

 

Anahtar Sözcükler: Birim Kök, Yapısal Kırılma, Birleşik Hipotez Testi, Mote Karlo 

Simülasyonları 
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CHAPTER 1 

 

 INTRODUCTION 

 

 

 

Time series analysis has been dealt with the properties of the many 

macroeconomic and financial time series. Main concern of the researches in the 

time series is the question that: how macroeconomic and financial time series 

move over time? A major ongoing debate started after Nelson and Plosser (1982) 

try to characterize the dynamic properties of macroeconomic and financial time 

series. Nelson and Plosser (1982) have claimed that, shocks hitting the economy 

have a permanent effect rather than temporary effect and the long run movement in 

the time series is altered by these permanent shocks. Using some statistical 

techniques that are proposed by Dickey and Fuller (1981), Nelson and Plosser 

(1982) have found that time series contains unit autoregressive root. Nelson and 

Plosser (1982) claim that time series follow a difference stationary model. 

Difference stationary model characterization of the macroeconomic variables 

indicates that, long run movement of the time series do not fluctuate around a 
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steady state long run value but rather the movement is totally altered by the shocks 

that are hitting the economy. Then implications of the difference stationary model 

interrogate the steady state assumptions in the economics. Since justification of the 

difference stationary model deters underlying principles of economics, the research 

that is proposed by Nelson and Plosser (1982) has stimulated much interest.  

 Some researchers have challenged the characterization of the time series as a 

difference stationary framework which is suggested by Nelson and Plosser (1982). 

In particular, Rappaport and Reichlin (1989) and Perron (1989) argue that, log 

output is stationary around broken time trend whereas the date of break is the years 

of Great Depression. In brief, Perron (1989) shows that, Nelson and Plosser have 

failed to account for trend break in the GNP and they have accounted this one time 

innovation shift as long lasting rather than it was in fact one time innovation.  If 

years of the Great Depression are specified as the time that structural change has 

occurred, then the unit root hypothesis is rejected in favor of the trend-break 

alternative. Perron (1989) claims that, the reason for failure to reject the unit root 

hypothesis is a consequence of misspecification in the trend function, especially a 

one time structural break in trend function. Perron (1989) has proven that, when in 

fact the trend break model is the true structure of the time series, unspecified 

structural break raises spurious evidence for unit root hypothesis. If trend-break 

alternative is not specified in the test procedure, unit root hypothesis cannot be 

rejected. After Perron (1989) made a critic of Nelson and Plosser, literature has 

been developed with the attempts to understand the true nature of time series: 

difference stationary model versus trend break stationary models. 

  These attempts and empirical findings are important for many reasons. First of 
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all, if the trend stationary model is correct, then some studies as Cochrane (1988) 

and Cogley (1990) have put too much importance to the innovations in GNP. Non 

rejection of the unit root hypothesis is counter evidence against business-cycle 

hypothesis. When structural break is not accounted, then false empirical inferences 

may arise from the spurious conclusion of the unit root behavior. Cointegration 

analysis is based on the presumption that the time series follow a unit root pattern. 

In fact, if time series follow trend-break stationary pattern rather than difference 

stationary, then empirical relevance of the literature in econometrics on unit root 

and cointegration is brought into question.  

 Trend-break alternative model that is presented by Perron (1989) has been 

criticized for two reasons. First, Perron (1989) determines break date by 

presumption that, date of break coincides with years of Great Depression. Break 

date is specified prior to any knowledge up on data. The assumption that break 

date is known a priori was criticized by many authors. Christiano (1992) shows 

that the pretest examination of data can make important difference on Perron’s 

conclusion. Christiano (1992) stated that, break date selection affects critical 

values of the test statistic which makes non rejection of the trend break stationary 

model dependent on the selection of the break date. Christiano states that, reliable 

test should consider break date as unknown a priori. The method that is suggested 

by Christiano (1992) relies on the standard sampling theory. The date of break is 

chosen independent of prior information about data. Also Banerjee, Lumsdaine, 

Stock (1992), Zivot and Andrews (1992) Perron and Vogelsang (1992) argue that 

the choice of break should be treated as unknown. Extensions of the trend break 

alternative model have been proposed by many authors. Specifically, Zivot and 
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Andrews (1992), Banerjee, Lumsdaine, Stock (1992), Perron and Vogelsang 

(1992), Perron (1997), Vogelsang and Perron (1998) adopted Perron’s (1989) 

methodology for each possible break-date in the sample, which yields a sequence 

of the statistics that is in interest. Some algorithm that maximizes evidence against 

null hypothesis can be constructed from the sequence of the statistics, to determine 

break date.   

Second criticism is based on the selection of the alternative form of trend 

break model. If the date of break is treated to be unknown, then the form of the 

break is also unknown. Then the determination of the form of break in alternative 

hypothesis becomes important. Sen (2003) notes that, if the alternative form of 

structural break does not coincide with the true form of break that time series 

follow, then test statistic will fail to reject difference stationary model because of 

wrong specification of the alternative hypothesis. Test for difference stationary 

model versus trend break stationary model should take into account all possible 

form of breaks in order to avoid specification errors that Perron has highlighted. 

Sen (2003) suggests that alternative form of break should be most general in order 

to avoid misspecifications. Alternative break forms that Perron has considered are: 

break in the mean of trend function (Crash Model), break in the slope of trend 

function (Changing Growth Model) and break in both mean and slope of trend 

function (Mixed Model). Sen (2003) has proposed a joint null hypothesis of unit 

root and no break in both mean and slope of trend function.  Sen (2003) used the 

maximal F statistics that is proposed by Murray (1998) and Murray and Zivot 

(1998). Test is sequentially computed over range of possible break dates so 

maximum F test is also independent of break date specification. Then, joint null 
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hypothesis corresponds to the difference stationary model. Non rejection of the 

null hypothesis indicates the appropriateness of the difference stationary model for 

time series. Joint null hypothesis incorporates with possible trend breaks of both 

types. Non rejection is not sourced by the unaccounted trend breaks because the 

null hypothesis includes restriction of no structural break with any possible form. 

Joint null hypothesis is not only unit root test but also test for no structural break 

pattern in the time series.  

However, when joint null hypothesis is rejected, alternative hypothesis is 

too general to specify a structural form for time series. In other words, rejection of 

the test statistics does not provide us enough inference on the alternative 

hypothesis to conclude specific structural form. Since the null hypothesis is the 

joint mixture of unit root and no structural break, null hypothesis is too restrictive, 

when test is rejected, alternative may involve three model specifications according 

to source of deviation from the null model. According to source of deviation from 

the null model, there exist three alternative models: 1) Pure stationary model: 

Stationary and no break alternative. 2) Trend break stationary model: Stationary 

with some form of break. 3) Trend break model with unit root pattern: unit root 

behavior with structural break.  

In our study, we aim to propose a test statistic that can exactly determine 

the specific structural model that time series pertain. We suggest a test statistic that 

can discriminate null model from these three alternatives. Moreover, our test 

statistic is able to discriminate one alternative from another. Additional to the 

difference stationary and trend break stationary models, we specify pure stationary 

model and trend break with unit root pattern model. Additional models are 
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alternatives to the difference stationary null model. Additional alternative models 

are not covered in the literature. According to source of deviation from alternative, 

we specify two additional alternative models. When time series follow additional 

structure models, existence of their structure increases evidence against difference 

stationary model; they can be specified as alternatives to the difference stationary 

model.  Secondly, we aim to propose a test statistic which has joint null of unit 

root and no structural break where break date is not determined a priori and break 

date is not affected by the unit root property of the time series.    

 Our test is motivated from the methodology that is suggested by Andrews 

(1992) and Andrews and Ploberger (1994). We use combination of the F 

maximum and the J test that has been proposed by Park (1989) and Park and Choi 

(1991).  From the methodology of Vogelsang (1998), we utilize the property that J 

statistic converges to zero for stationary behavior of the time series and J statistic 

converges to a constant for unit root pattern. We adjust F max statistics with J 

value in order to determine one specific alternative hypothesis when joint null is 

rejected. By doing so, we can suggest a test statistic that can differentiate three 

different alternative structural models. Using joint null hypothesis of unit root and 

no structural break allow us to present a test statistics that can both test for unit 

root and structural break. We use similar methodology to Vogelsang (1998, 2003). 

But, rather than using only joint null of no break of both types; we propose joint 

null of unit root and no structural break. We are able to specify difference 

stationary model in the null hypothesis. The test statistic that we propose does not 

only test for unit root and (or) structural break, null and alternative hypotheses 

correspond to different structural models of time series. Moreover inclusion of unit 
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root pattern in to the test statistic reduces the possible source of size and power 

distortions. Appendix section shows that our test statistic has better power 

properties than the test statistics in the literature. 

 Rest of the study is organized as follows. Chapter 2 consists of the literature 

survey and various comments on unit root hypothesis and structural break. Various 

model specifications and various test statistics that are presented in the literature 

are included in this section. Chapter 2 consists of various attempts to specify unit 

root or (and) structural break forms. Chapter ends up with the assessment of the 

literature and the shortcomings of the tests in the literature. Reason for inability to 

specify a structural model for time series has been discussed. Chapter 3 gives a 

detailed methodology of the test statistic that is presented in this study. Chapter 4 

includes power and size Monte Carlo Simulations with comparison to the previous 

most powerful test. Chapter 5 concludes and includes the arguments for further 

research. 
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CHAPTER 2  

 

LITERATURE SURVEY 

 

 

 

In this section, the literature survey of the research is presented. First the 

literature on unit root hypothesis is discussed. Joint hypothesis test includes testing 

for unit root. Preliminary discussion of unit root hypothesis will clarify the 

developments in the joint test. Literature on unit root hypothesis has extended with 

testing for unit root with a linear time trend in the model. Secondly, trend break 

literature is included into agenda. Evolution of the trend break test into the joint 

hypothesis test holds particular importance for model specification of the time 

series. Literature of this evolutionary process has been presented in this research.  

Other part of the joint test is the test for structural break. Structural break literature 

is also summarized in this research. Literature has been discussed by the virtue of 

extensions to the hypothesis testing on the question of the true behavior of time 

series. This discussion has been concluded by the open questions that we aim to 

answer in this research.   
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2.1 LITERATURE ON UNIT ROOT HYPOTHESIS TESTING 

 

 Unit root hypothesis is particularly important in terms of the well established 

properties of the long-run equilibrium in economics. Therefore testing for unit root 

hypothesis has been one of the important areas of macro-econometrics. Unit root 

representation of the time series has been firstly presented by Dickey and Fuller 

(1979). In their seminal article, brief introduction to unit root autoregressive time 

series has been presented.  

 To follow their article, let T  observations  1, ,
T

Y YK   be generated by the 

model 1t t t
Y Yα ε−= + , where 

t
ε  is a sequence of independent normal random 

variables with zero mean and variance 2

εσ  and t  is time script. Properties of the 

regression estimator of  α  are obtained under the assumption that 1α ≤ . Because 

when 1α > , time series is not stationary and the variance of the time series grows 

exponentially as t  increases. Hence asymptotic distribution derivation may not be 

feasible. The time series with 1α =  is sometimes called as random walk. The null 

hypothesis of unit root ( 1α = ) holds interest in economic applications. The class 

of models presented in Dickey and Fuller (1979) are: 

 1t t t
Y Yα ε−= +         (2.1a) 

 0 1t t t
Y Yµ α ε−= + +        (2.1b) 

 0 2 1t t t
Y t Yµ µ α ε−= + + +       (2.1c) 

T-statistics for models are: 
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 2 1/ 2

1 1
ˆˆ ( 1)(  )se cτ α −= −        (2.2a) 

 2 1/ 2

2 2
ˆˆ ( 1)(  )se cµτ α −= −       (2.2b) 

 2 1/ 2

3 3
ˆˆ ( 1)(  )

t
se cτ α −= −        (2.2c) 

For 1,2,3k =  2

k
se  is the corresponding regression residual mean square from the 

models. Also 
k

c  is lower-right element of 
k

u  where 1 1( )
t

u Y −= , 2 1(1, )
t

u Y −= , 

3 1(1, , )
t

u t Y −= . Limit distributions and their representations are shown in the 

Dickey and Fuller (1979).  

 After Box and Jenkins (1970) and Box and Pierce (1962) used the test of 

autocorrelation function of the deviations from fitted model, unit root testing 

proposed by Dickey and Fuller (1970) has  been the  test  of   appropriateness of 

the time series model. Non-rejection of the unit root null hypothesis is taken as an 

evidence for unit root behavior of the time series. Unit root pattern implies that, 

time series possess difference stationary model. First difference of the time series 

follow a stationary pattern. Then, time series have steady state values so that 

analysis of time series is feasible. 

Autoregressive time series with unit root has taken much interest after 

Dickey (1976), Evans and Savin (1981, 1984) made forefront research. Random 

walk characterization such as 
t t

Y ε∆ =  where 2~ (0, )
t

iidε σ , is a strong 

assumption. Hall (1978) showed the convenience and importance of the random 

walk hypothesis. Philips (1987) allows for more general weakly dependent and 

heterogeneous distribution theory for the random walk and allow for more general 

ARMA (1, 1) errors with single unit root. Philips (1987) notes that, the 
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representation in (2.1a) can be a stochastic process generated as 0t t
Y S Y= +  in 

terms of partial sums, 
1

T

t t

t

S ε
=

=∑  for the innovation sequence {
t

ε } and initial 

condition 0Y .  Initial condition 0Y  can have specific distribution so that 1α ≥  

alternative has been covered. Limiting distribution of the standardized sums is 

presented in second chapter of Philips’s paper. From Dickey and Fuller (1970), 

OLS estimator of α in (2.1a) and t-statistic is: 

 1 2 2

1 1 1

1 1

ˆ( 1) { ( )}/{ }
T T

t t t tT T y y y T yα − −

− − −− = −∑ ∑     (2.3a) 

 2 1/ 2

1

1

ˆ( ) ( 1) /
T

tt y sα α−= −∑    2 1 2

1

1

ˆ( )
T

t ts T y yα−

−= −∑     (2.3b) 

Philips derives new unit root test by defining new transformation estimator Zα  for 

ˆ( 1)T α −  and transformation regression test statistic 
t

Z  instead of regression t-

statistic such as: 

 2 2 2 2

1

1

ˆ( 1) (1/ 2)( ) /( )
T

T tZ T s s T yα α −

ε −= − − − ∑     (2.4a) 

 2 1/ 2 2 2 2 2 1/ 2 1

1 1

1 1

ˆ( ) ( 1) / (1/ 2)( )[ ( ) ]
T T

t t T T T tZ y s s s s T yα − −

− ε −= − − −∑ ∑  (2.4b) 

2

T
s  and 2

sε  are estimates of variance of errors ( 2

εσ ) and variance of α  ( 2σ ). These 

parameters should be estimated consistently. Philips showed that; 

 2 1 2

1

1

( )
T

t ts T y y
−

ε −= −∑        (2.5a) 

 2 1 1

1 1 1

2
T L T

T t t L

t

s T T
τ τ

− 2 −

τ −
= = +

= ε − ε ε∑ ∑∑      (2.5b) 
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are consistent estimates of 2

εσ  and 2σ . Philips (1987) has proposed an alternative 

unit root test to Dickey and Fuller’s t-test. Theory of the research relies on the 

weak convergence. Characterization of the limiting distributions (2.3a) and (2.3b) 

are rather simple in terms of functionals of Brownian Motions.  

 Philip’s unit root test transformation is related to the model (2.1a) 

corresponding to the class of models defined by Dickey and Fuller. But the models 

with drift and trend have not been covered in Philips (1987). This gap in the 

literature of unit root has been filled by Philips and Perron (1988).  Two more 

models that correspond to the class of Dickey and Fuller are introduced by Phillips 

and Perron (1988). The models are: 

 0 1t t t
Y Yµ α −= + + ε        (2.6) 

 0 2 1( (1/ 2) )
t t t

Y t T Yµ µ α −= + − + + ε      (2.7)  

Then, regression t-statistics are: 

 2

ˆ 1

1

ˆ ˆ( ){ ( ) }/
T

t tt y y sα α α −= − −∑      (2.8) 

 1/ 2

3( ) /(  )t s cα α α= −
%

% %        (2.9) 

Here, ŝ  and s%  are the standard errors of regressions of (2.6) and (2.7) as before. 

3c  is lower right element of 3 1
1(1, ( ), )

2 t
u t T Y −= − .  

Philips and Perron (1989) cite the importance of the innovations in the 

limiting distributions. When innovations are non-orthogonal and 2 2

εσ ≠ σ , the 

Dickey and Fuller t test does not have the asymptotic size. Limiting distributions 

depend the nuisance parameters 2σ  and 2

εσ . As denoted in Philips (1987), 



 13 

elimination of nuisance parameter is a result of having 2

T
s  rather than 

t t
yε = ∆ .  

Extended models (2.6) and (2.7) accommodate with a fitted drift and a time 

trend so that they may be used to discriminate between unit root (difference 

stationarity) and stationarity around a deterministic trend. These extended models 

have better power compared to the previous no drift and no trend model. When 

many time series are simulated to be stationary about deterministic trend, 

percentage of the simulations that are rejected increase with extended model 

specification. The conclusion that Philips and Perron (1987) have reached made an 

influence on research. Many researchers suspect that unit root test is affected by 

inclusion of trend function into the model. When trend function is not included 

into the model, misspecification of trend parameter increases the evidence for non-

stationary behavior and unit root hypothesis is not rejected erroneously. From the 

Monte Carlo simulations of the Perron and Philips (1987), one can claim that, 

maintenance of the trend parameter may affect the results of unit root tests. 

Theoretical literate have been developed with modifications of the unit root tests 

with trend function specified alternatives whereas empirical application of unit 

root hypothesis has attracted more attention. There is good summary of the 

research on this topic by Campbell and Perron (1991).   

 

2.2 STRUCTURAL MODEL SPECIFICATION – DIFFERENCE 

STATIONARY MODELS VERSUS TREND STATIONARY MODELS 

 

 Wide application of the unit root test put less importance to the structural 



 14 

model specification of the time series. After Nelson and Plosser’s stimulating 

paper, one of the areas of interest in economics has been the application of unit 

root testing. The view that most economic time series are characterized by unit 

root behavior has become prevalent. Until Perron (1989) highlighted the 

importance of the structural model specification, literature has been developed on 

the empirical area of the unit root testing. After Philips and Perron’s research, 

maintenance of trend functions in the models have not been considered seriously. 

However, Perron (1989) indicated that when true data generation has a one time 

change in trend function, unit root tests fail to reject the trend stationary model. 

Perron (1989) characterize unit root test with the trend break model alternative. 

Different characterizations of the trend break alternatives are presented in Perron’s 

research. Perron has not only considered trend extended model, but also specified 

alternative trend-break stationary models. Then testing for unit root is enlarged to 

structural model specification with trend-break alternative. When unit root 

hypothesis is rejected in favor of the trend-break alternative, there is evidence for 

trend-break stationary model. Therefore unit root test has played the role for 

determining difference stationary versus trend-break stationary model 

specification. According to Perron, standard Dickey and Fuller (1979) unit root 

test cannot reject the unit root hypothesis, when in fact true data generation 

mechanism is that of trend break stationary. Spurious conclusion of the unit root 

testing may lead to incorrect empirical inference. Perron (1989) showed that even 

asymptotically stationary fluctuations of trend break model cannot be rejected.  

 Perron extends the analysis of Philip’s to a more general case which allows 

for one time change in the trend function. When Philips has considered trend 
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extended model, null hypothesis was unit root and alternative hypothesis was trend 

stationary model. Perron has allowed a break in the trend function which has three 

alternative forms. Null hypothesis of unit root has been considered for different 

three forms: 

 Model (A) 0 1( )
t B t t t

y dD T yµ −= + + + ε     (2.10a) 

 Model (B) 0 1 2 0( )
t t t t

y y DUµ µ µ−= + + − + ε    (2.10b)  

 Model (C) 0 1 2 0( ) ( )
t B t t t

y y dD T DUµ µ µ−= + + + − + ε   (2.10c) 

Here in these representations, ( ) 1
B t

D T =  if 1
B

t T= +  and 0 otherwise; 1
t

DU =  if 

B
t T>  and 0 otherwise. ( ) ( )

t t
A L B L vε = , ~ (0, )

t
v iid

2σ . ( )A L  and ( )B L  are 

'p th  and 'q th  order polynomials in the lag operator L.  Corresponding alternative 

hypotheses are: 

 Model (A) 0 2 0( )
t t t

y t DUµ β µ µ= + + − + ε    (2.11a) 

 Model (B) 0 1 2 0( )
t t t

y t DTµ β β β= + + − + ε    (2.11b) 

  Model (C) 0 1 2 0 2 1( ) ( )
t t t t

y t DU DTµ β µ µ β β= + + − + − + ε  (2.11c) 

Here in these representations, 
B

DT t T= −  if 
B

t T>  and 0 otherwise. 
B

T  is the 

break date. Perron (1989) has considered three alternative forms of breaks. First, it 

is crash model (Model (A)) which allows for one time change in the intercept of 

the trend. Second is changing growth model (Model (B)) which allows for one 

time change in slope of trend function. Third is mixed model (Model (C)) which 

allows a change in both intercept and slope of the trend function. Perron states, 

when structural break alternative included into specification of the time series, the 

unit root hypothesis can be rejected in favor of the trend-break alternative.  Basic 
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Dickey Fuller unit root test gives false results due to omitted variable of trend 

function or misspecification of the trend with breaks. When breaks have not been 

taken into account, residuals increase so that unit root null cannot be rejected. 

However, if data is separated into sub-periods at the time of break, critical values 

of t-statistic decrease significantly so that unit root hypothesis is rejected. 

 Perron’s analysis is important because of the statement: unaccounted 

structural breaks lead to spurious results of non-rejection of the unit root test. 

Estimation of nuisance parameter is highly affected by the trend behavior. 

Moreover, Perron has presented alternative representation of the time series such 

as trend-break stationary model. Perron suggests specification of the unit root test 

from these models: 

 

 0 1

1

( )
k

A A A A

t t B t t i t i t

i

y DU t dD T y c yµ θ β α − −
=

= + + + + + ∆ + ε∑   (2.12a)  

 0 1

1

k
B B B B B

t t t i t i t

i

y DU t DT y c yµ θ β γ α − −
=

= + + + + + ∆ + ε∑   (2.12b) 

 0 1

1

( )
k

C C C C C C

t t B t t i t i t

i

y DU t DT d D T y c yµ θ β γ α − −
=

= + + + + + + ∆ + ε∑  (2.12c) 

t i
y −∆  is included to reduce the autoregressive effect on nuisance parameter. Lag 

length k is selected by information criteria. The null hypothesis of unit root 

imposes restrictions 1,  0,  0α β γ= = =  for representations in (2.14a-c). For the 

alternative models, asymptotic distributions of the t-statistics ,  ,  A B Ct t t
α α α

 have 

been derived. (For i=A, B, C)   

 By specifying date of break as the years of Great Depression and Oil Crisis 



 17 

years, Perron uses same data set of Nelson and Plosser applying to his 

methodology. Perron finds evidence against unit root hypothesis. When alternative 

model is set up as a trend break model with specified break dates, unit root 

hypothesis is rejected.  

 Rappaport and Reichlin (1989) confirmed the Perron’s conclusion. Rappaport 

and Reichlin noted that when alternative model is specified as segmented trend 

model rather than just trend stationary model, test statistic support segmented trend 

model. Both conclusions of Perron and Rappaport and Reichlin indicate that, 

difference stationary model cannot be approved by unit root test without putting 

trend-break into the test procedure. Empirical findings of Nelson and Plosser, Stulz 

and Wasserfallen (1985), Campbell and Mankiw (1987, 1988), Cochrane (1988), 

Hall (1987), Gould and Nelson (1974), Blanchard and Summers (1986) are 

brought into question. 

 After Perron has proven the spurious nature of the unit root test when 

alternative model is not specified as trend-break model, various questions have 

arisen in the literature. First of all, in Perron’s analysis, choice of the break date 

depends on visual inspection of the data. Determining break date without any 

diagnostic tests has been attacked by many authors. Christiano (1992) argues that, 

the date of break should not be chosen independent of the test procedure. When 

break date is exogenous to the testing procedure, then critical values are higher 

according to true size. Hence, rejection of the null hypothesis in favor of the 

alternative may be also spurious.  

 0 1

0

k
i

t j t j t

j

y dt t y c yµ θ β α − −
=

∆ = + + + + ∆ + ε∑     (2.13) 
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In equation (2.13), Perron’s modified augmented Dickey and Fuller test which has 

null hypothesis of 0α β θ γ= = = = .  Perron suggests comparing the t-statistic on 

,  tαα  with critical values tabulated in his article where break date has been 

determined without pre-test of the data. Christiano suggests a methodology which 

allows for the selection of the break date as a function of the data being tested. He 

extends Perron’s analysis testing the same null hypothesis with F statistics for 

t T∀ ∈  with corresponding null hypothesis. Maximum value of F test will indicate 

the break date from the sequence of F statistics for t T∀ ∈ .   

 Secondly, Christiano suggests that, the lag length parameter k  should also be 

selected with a methodology. Level of the lag truncation parameter k  should be 

parallel to the significance of the parameter 
k

c . From maximum possible value of 

k , the latest insignificant value of k  according to diagnostic tests should be 

excluded. Choosing appropriate level of *
k  depends on the information criteria. 

Reason to include additional *
k  extra parameters *k

c  is to get rid of the possible 

autocorrelation as explained before. According to Christiano, Perron’s conclusion 

is a consequence of choosing break date a priori. When   lag length parameter and 

break date are selected by data dependent methods, Christiano found contradictory 

evidence to trend stationarity model in GNP. 

 Perron and Vogelsang (1992) suggest another unit root test that is robust to 

the date of break specification.  They have tested unit root hypothesis in the 

presence of mean break with application to the purchasing power parity 

hypothesis. According to Perron and Vogelsang (1992), assuming that date of 

break is known a priori is inappropriate. Their trend break alternative is crash 
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model (Model A), corresponding to the Perron (1989). For one time change in the 

level at time 
B

T such that 1
B

T T< < . They have parameterized the null hypothesis 

of unit root such that: 1( )
t B t t t

y D T yα −= + + ε . ( ) 1
B t

D T =  if 1
B

t T= +  and 0 

otherwise. Assumption on 
t

ε  is consistent with the previous literature. Under the 

mean break alternative: 

 0 ( )
t B t t

y D Tµ= + + ε        (2.14) 

They use t statistic for 1α =  in the following regression, which nests the null and 

alternative hypotheses: 

 1

1 0

( )
k k

t i t i t t i ty w D TB y yα− − −= + + ∆ + ε∑ ∑     (2.15) 

They have suggested another method to choose date of break. 
B

T  is chosen such 

that ( , , )
B

t i T kα  is minimized for i=A, B, C models and [0, max]k k∈ . maxk is the 

upper bound of lag length. The selection of k  was made with objective of getting 

the autocorrelation variance properties of the fitted residuals to resemble the 

assumptions made in the bootstrap simulations in the paper. As a result,  4k =  is 

the lag length that is chosen by Perron and Vogelsang (1992). When break occurs 

at time 
B

T , it increases the absolute value of t-statistics for null of 1α = . Hence, 

the mean break date is determined when evidence against the null hypothesis is 

maximized. So for t-test 
B

T is determined from algorithm: (1, )inf ( , , )
BT T B

t i T kα∈ .   

 The method that is presented by Vogelsang and Perron is similar to the 

previous methods in which the date of break is specified according to date when 

evidence against null hypothesis is maximized. They apply their methodology to 

test for purchasing power parity hypothesis to find evidence for trend stationary 
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model when mean break is utilized.  

 Another paper on this topic is proposed by Zivot and Andrews (1992). In their 

research they have cited the method proposed by Christiano (1992). Zivot and 

Andrews (1992) made critics of Christiano because of determining break dates 

solely by bootstrap methods. Zivot and Andrews (1992) used t-min statistic to 

determine date of break. Similar to Christiano (1992), Zivot and Andrews (1992) 

concluded that Perron’s unit root tests are biased towards rejecting the unit root. 

But the break dates found by Zivot and Andrews are different from the break dates 

found by Perron. Unit root hypothesis is not rejected for some series of Nelson and 

Plosser (1982).  Only nominal GNP, industrial production series are found to be 

trend stationary. However inability to reject the null hypothesis of unit root should 

not be taken as an evidence for accepting the null. Rejection indicates the 

inappropriateness of the null hypothesis against the alternative hypothesis. 

Specification of the alternative hypothesis is also important. Main reason for 

contradicting evidence in various papers is to specify different alternative forms of 

break. Perron and Vogelsang have considered crash model alternative whereas 

Christiano and Zivot and Andrews have specified mixed model alternative. 

Question of the break date specification should be incorporated with specification 

of the alternative form of break. In more general sense, when difference stationary 

versus trend-break stationary model is tested, alternative form of the trend-break 

plays important role. 

 More general attempt to determine unit root hypothesis and trend-break 

alternative has been given by Banerjee, Lumsdaine and Stock (1992). Different 

from previous literature, Banerjee, Lumsdaine and Stock (1992) tried to make unit 
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root test and structural break tests together with general form. When date of break 

is assumed to be unknown, then existence of the trend-break should be tested. 

They perform a test that incorporates both unit root hypothesis and trend-break 

hypothesis in the null hypothesis. By doing so, they are able to specify the possible 

form of trend-break in the null hypothesis. Rejection of the null does not only 

indicates inappropriateness of the unit root null but also inappropriateness of the 

no trend-break restriction.  

In order to test for unit root and structural break, sequential test is 

suggested. Sequential test has advantage of testing unit root with trend where 

alternative is trend-break for specific type of break. They consider both Crash 

Model alternative and Changing Growth Model alternative. Another advantage of 

the test is to have a joint null hypothesis. Also more than one algorithm is 

presented to choose break date. As an extension, recursive and rolling tests are 

suggested for unit root testing. But those tests do not incorporate with structural 

break test. Model is:  

 0 1 1 2 1 1( ) ( )
t B t t L t

y T t y L yµ µ τ µ α β− − −= + + + + ∆ + ε    (2.16) 

1( )
B

Tτ  captures the possibility of  a trend-break. For Crash Model (Case (A)), 

1( ) 1( )
B B

T t Tτ = > . For Changing Growth Model (Case (B)), 

1( ) ( )( )
B B B

T t T t Tτ = − > . Testing for 1 0µ =  corresponds to structural break test for 

both case A and B. However under the null hypothesis joint null is 1 0,  1µ α= = . 

A transformation regression  
t

Z  for set of variables and transformed parameter 

vector θ  are defined. The estimator of the test statistic computed over T 
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observations for 0 0 0, 1,...,k k k T k= + −  where 0 0k Tλ= . 0λ  is the trimming value 

of initial fraction of T. The stochastic process constructed from the sequential 

estimators and Wald test statistic is: 

 1

1 1 1

1 1

( ) ( ( ) ( ) ') ( ( ) )
T T

t t t tZ T Z T Z T yθ λ λ λ λ−

− − −= ∑ ∑          (2.17) 

 1 1 2

1 1

1

( ) {[ ( ) ][ ( ( ) ( ) ) '] [ ( ) ]}/ ( )
T

T t tF R r R Z T Z T R R r qλ θ λ λ θ σ λ− −

− −= − −∑  (2.18) 

where 2 1 2

1

1

( ) ( 4) ( ( ) )
T

t tT q m y Zλ θ λ−

−σ = − − − −∑ .  

( )
T

F λ  is computed for every 0 0( ,1 )λ λ λ∈ − . If any break of specified form exists, 

then it increases the ( )
T

F λ  statistics. Maximum value of the ( )
T

F λ  is the best 

candidate from the sequence of the ( )
T

F λ  statistics. 
B

T Tλ=  is the break date 

such that ( ) max ( )
BT T

F Fλ λ= . Test statistic is denoted as ( )MAX

T
F λ . ( )MAX

T
F λ  is a 

Wald type test which also tests for existence of break. Banerjee, Lumsdaine and 

Stock (1992) have used Wald type ( )MAX

T
F λ  test by utilizing the nature of the 

Wald test which allows testing for more than one parameter. Unit root and specific 

break type are tested together. By doing so, date of break is also determined by 

data dependent methods. Also, Banerjee, Lumsdaine and Stock (1992) compare 

various tests that take place in the literature. They propose Monte Carlo 

simulations to compare power properties of these various statistics. Monte Carlo 

simulations of Banerjee, Lumsdaine and Stock (1992) indicated that, sequential 

Wald type test is more accurate to detect break dates. Moreover ( )MAX

T
F λ  statistic 

has power superiority over other test statistics. Their simulation results confirms 
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Perron’s conclusion. Basic Dickey and Fuller t-test fails to reject unit root when in 

fact data generation process contains trend-break stationarity. According to 

Banerjee, Lumsdaine and Stock (1992), Christiano failed to reject unit root 

hypothesis because of using bootstrapped critical values. When they apply their 

methodology to the growth rates, they have concluded that some countries’ GNP 

follows unit root. 

 DeLong etc. all. (1992) tested for I(1) versus trend-break stationary model 

with joint test. They have inverted unit root hypothesis to the joint hypothesis with 

null hypothesis 21,  0α µ= =  with consistent notation with Banerjee, Lumsdaine 

and Stock (1992). DeLong etc.all. (1992) develop a similar test which has size 

adjusted power for nuisance parameter, they have analyzed the power results of the 

joint test concerning dependent variables α  and 0 0( ) /y µ− σ . They have reached 

the conclusion that unit root tests have low power against plausible trend stationary 

alternatives. Moreover, there are some cases unit root hypothesis is rejected in 

favor of the trend-break alternative and trend-break alternative is rejected in favor 

of the unit root alternative. This results does suggest that inferences of the test of 

integration is fragile and also using more restricted null of unit root with no breaks 

works better with this nature of fragility. Nature of the test affects results. When no 

break restriction is put in null hypothesis, form of the break that is specified in the 

null hypothesis is also important. But those papers have put limited effort to 

research on the null of unit root with general form of no structural break. DeLong 

etc. all. (1992) only concluded that it is premature to accept difference stationary 

model with basic unit root tests. 
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2.3 PARAMETER SHIFT LITERATURE 

 

 Banerjee, Lumsdaine and Stock (1992) shifted the unit root testing against 

trend-break alternative to more general joint test. When joint null is 21,  0α µ= = , 

testing this null hypothesis is a kind of test for structural break. Trend break test is 

a distinct form of structural break. In order to understand model specification 

literature, it is of partial interest to understand structural break literature.   

Before Banerjee, Lumsdaine and Stock (1992), structural break test is 

accounted for only change in parameters and it’s linkage to the macroeconomic 

time series was not that much appealing in empirical literature. Structural break 

literature begins with Chow (1960) test for breaks in the regression. Main concern 

of the Chow (1960) was to asses the test of equality between set of coefficients in 

two linear regressions. By residual based test, regime stability or regime change 

has been concerned. Let 1 1 1 1y X β= + ε  and let m  additional observations specified 

by the regression 2 2 2 2y X β= + ε . Test of equality between parameters has null 

hypothesis 0 1 2:H β β β= =  such that y X β= + ε . Test depends: 

 1

2 2 1 2 2 2 1 2 2 1 1 1 1
ˆ ( ' ) 'd y X X X X X X Xβ β β −= − = − + ε − ε   (2.19) 

2 / var( )d d  will be distributed by (1, )F n p−  for n  observations and p regressors. 

This test is based on the prediction interval for one new observation. The sum of 

squares of the residuals under null hypothesis will be equal to the sum of squares 

of the residuals under alternative plus sum square deviations between two sets of 
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estimates of y .  Idea of the Chow Test is to obtain sum of squares of residuals 

under the assumption of equality between parameters and the sum squares without 

assumption of equality. The ratio of the difference between these two sums to the 

latter sum, adjusted for the corresponding degrees of freedom will be distributed as 

the (1, )F n p−  ratio under the null hypothesis. This test is the basic version of the 

Wald test. As a matter of fact, when null hypothesis is  21,  0α µ= = , 2 0µ =  part 

of the null hypothesis tests for equality of parameters before and after the possible 

break date. 

 Another structural break test is proposed by Quandt (1959). Idea is to test for 

break in time *
t  from T  observations. Possible structural break date *

t  has been 

chosen to minimize 1 2
ˆ ˆ ˆ( ) /t T t Tλ −= σ σ σ .  1σ̂  and 2σ̂  are estimated variance from first 

and second regressions which are given below and ˆ Tσ  is the aggregated estimated 

variance. Model  is presented in Quandt (1959) as:  

 1 1i i i
y a b x u= + +  for 1,...,i t=  

 2 2i i i
y a b x u= + +  for 1,...,i t T= +  

 More popular test for structural change is introduced by Brown, Durbin 

and Evans (1975) abbreviated as CUSUM test. CUSUM test is named for 

cumulative sum of residuals. CUSUM test is often under critics for its low power 

so that CUSUM squares test has been developed. Whole literature of CUSUM test 

is beyond the scope of this research and reader is referenced to Kramer etc. all 

(1988) for a detailed discussion. CUSUM test cannot specify form of the break. 

Only information test brings is the location of the break.  

Bai and Perron (1998) have considered more general form of structural 
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break allowing for multiple breaks, occurring at unknown dates. Also, they have 

constructed another test statistics null of L  breaks versus alternative 1L +  breaks. 

Multiple structural breaks are treated to be unknown variables to be estimated.  In 

Bai and Perron (1998), there is an example with three regimes. In this specific 

example they reach important results. When one of the breaks dominates 

(parameter shift is highly significant), sum of squared residuals is reduced. The 

reduction is highest when dominating break is correctly identified. They have 

further examined the relative importance of the dominating break. They have 

generated a data which has several breaks but one of the breaks has highest 

parameter value shift relative to the other breaks. When dominating break date 

correctly specified, test statistic finds evidence for only one dominating break 

rather than multiple breaks. This result is also found by Chong (1994).  

These results indicate that when one of the breaks is consistent break point 

which is dominant, correct specification of this break date allows greatest 

reduction in the sum squared residuals. So specification of this dominant break 

holds greater importance than finding all break points. Hence, literature is 

concentrated on the single break rather than multiple breaks. Presenting a test 

statistic that has high power to detect possible univariate break holds greater 

importance than multiple break concept. One exceptional research has been 

conducted by Bai, Lumsdaine and Stock (1998). Bai, Lumsdaine and Stock (1998) 

extended multivariate techniques for determining break dates precisely. If one 

interested in mean shift at multivariate models, Bai, Lumsdaine and Stock (1998) 

proposed pseudo-F test which is an extensions of Andrews’ (1994) exp_ F  
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statistics. Also some relationship between structural break and cointegration 

analysis has been presented in the paper. Following their methodology, there is 

evidence for break in the mean growth of consumption at the years of late 1960’s 

and 1980’s. For further discussion, reader is referenced to their research.  

 

 

 

 

2.4 UNIT ROOT HYPOTHESIS AND STRUCTURAL BREAK 

 

 After Banerjee, Lumsdaine and Stock (1992) put unit root and trend break 

hypotheses together, researchers have tried to characterize joint hypothesis with 

various considerations. Attempts can be summarized in two sections. One family 

of the research consists of the investigation of the suitable test statistic which has 

persistent power properties and other family of the research consists of alternative 

break form specifications for joint test.  

 Sen (2001) has considered the F-test under the trend-break stationary 

alternative. He considers both alternatives of trend break (corresponding to 

changing growth model in Perron) and trend and mean break in trend function 

(corresponding to mixed model in Perron). Sen (2001) analyzed Perron’s argument 

by considering the behavior of F-statistic. Sen (2001) reconsiders trend-break 

alternative by proposing a test that has joint null of unit root and no structural 

break. Sen utilized the joint test when true data generation process is trend-break 
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stationary Sen (2001) replied the Perron’s conclusion that 
T

τ  test in (2.2c) has 

tendency to accept unit root hypothesis when true data generation process in fact 

trend-break stationary. Sen (2001) reconsiders Dickey and Fuller F-statistic for 

joint hypotheses  02 0: 0,  1H µ β α= = =  and 03 : 0,  1H β α= =  in (2.16). 

Corresponding null hypotheses are random walk and random walk with drift. F-

statistics is calculated for 02H  and 03H  denoted as 2φ  and 3φ .  

Sen concludes that, under changing growth model alternative, when true 

data generation process is trend-break stationary, regardless of the parameter value 

or magnitude of break, 2φ  statistic can reject unit root hypothesis while 3φ  statistic 

may fail to reject unit root hypothesis when magnitude of break is small.   

 Analysis of Sen (2001) holds particular importance for alternative break form 

specification. When changing growth model is suitable alternative, both 2 3,  φ φ  

statistics reject unit root hypothesis. However if mixed model is true form of the 

data generation process, behavior of 2φ  and 3φ  depends on the parameter value of 

the mean break and trend break value. 3φ  statistic may fail to reject unit root 

hypothesis in some cases. Sen’s analysis indicates that alternative model definition 

may lead to false inferences. Perron notes that, when trend-break is not accounted, 

unit root tests fail to reject unit root null hypothesis. However, Sen (2001) extends 

this statement. When alternative form of the break is misspecified, then unit root 

test still fails to reject unit root hypothesis.  

 Perron highlights the importance of the selection of the truncation lag on the 

outcome of the test. Test is performed using the t-statistic for the null hypothesis  
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0 : 1H α =  in the model (C). 

 Second method to choose lag truncation parameter is taken from Said and 

Dickey (1984). From maximum value of k , maxk is specified and autoregression 

with  maxk and max 1k −  lags were estimated. F-test of maxk versus max 1k −  

iterated until F-test is insignificant for maxk c− versus max 1k c− − . *
k  is 

determined as * maxk k c= −  which is the lag truncation value determined by these 

two procedures. Lag truncation selection holds particular importance according to 

Perron. Because selection of *
k  may lead to size and power distortions.  In 

application, Perron uses the suggested methodologies to select *
k . By doing so, 

Perron has reached same conclusion in his previous work. Contradicting results of 

Christiano (1992) are explained to be consequence of lacking an appropriate 

procedure to select *
k . Perron suggested that fixing k  to some arbitrary value can 

lead to serious size distortions and power losses due to fact that, actual correlation 

structure of the data is not only unknown but also it is likely to be different for 

various time series. In application, Perron found that  *
k  level is different across 

countries. Using a fixed *
k  in time series has important effect on the results of the 

test statistic.  

 Assessment of the researches that are conducted by Perron (1997), Christiano 

(1992), Banerjee, Lumsdaine and Stock (1992) prompt the literature into attempts 

to present a test statistic which directly assumes that break date and the lag 

truncation level are unknown. From the beginning of the trend-break stationary 

literature, testing for trend-break condemned with the proper mechanism to 

establish break date specification. Source of power distortions in the test statistics 
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are thought to be caused by inappropriate break date specification. After literature 

has overcome the break date specification problem, area of research turned back to 

the question of appropriate trend-break modification.   

Whenever dispute over power properties of the test statistics evaded from 

break date specification, question of the appropriate trend function hypothesis has 

come into agenda again. Turning back to the Banerjee, Lumsdaine and Stock 

(1992), joint test has been conducted for specific trend-break model from the three 

models presented by Perron. Regardless of specifying trend-break in the null 

hypothesis or alternative hypothesis, there is no serious treatment to determine 

trend function and power properties due to trend function. Vogelsang (1998) tried 

to fill this gap in the literature. Vogelsang examined the test for trend function 

hypothesis where errors follows I(1) or I(0) pattern.  Alternatively, Vogelsang 

considered structural break test rather than joint test. Alternative treatment of trend 

function hypothesis is an attempt to make a test of structural break in the presence 

of I(1) or I(0) errors.  The test proposed is robust to unit root behavior of the time 

series. Also statistics are asymptotically invariant to nuisance parameter. For 

difference stationary model, transformation of taking difference has been 

suspected by Perron. So test of structural break should incorporate with unit root or 

stationary behavior of the time series. Correct specification of trend function is 

required for reliable test statistic.  

 In order to represent in more general form, let ( ) '
t t

y f t uβ= +  where 

1 1t t t t
u uα η θη− −= + + . This assumption is general enough to permit polynomial 

trends possibly with a finite number of structural breaks. By forming partial sums 
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of { }
t

y , model can be transformed to ( ) '
t t

Z g t Sβ= +  where 
1

( ) ( )
t

j

g t f j
=

=∑  and 

1

t

t j

j

Z y
=

=∑ . When 
t

u  is I(1), 
t

Z  has I(0) innovations. In canonical form 

1Y X uβ= + , 2Z X Sβ= +  where { }
t

Y y= , { }
t

Z Z= , { }
t

u u= . { }
t

S S= , 

1 { ( ) '}X f t= , 2 { ( ) '}X g t=  are ( )T k×  matrices. Let β̂  OLS estimate of β  from 

the first form and *β  OLS estimate from second form. 

 ( ) '
m

i

t i t

i j

y f t t uβ γ
=

= + +∑  and 
1

( ) '
m

i

t i t

i j

z g t t Sβ γ
= +

= + +∑   (2.20) 

 Let 1 ( )
T

J m  denote standard OLS Wald statistics normalized by 1T −  for testing the 

joint null hypothesis 1 ... 0
j j m

γ γ γ+= = = =  and let 2 ( )
T

J m  corresponding Wald 

type statistic test for the joint null  1 2 ... 0
j j m

γ γ γ+ += = = = .  1 ( )
T

J m  is the unit root 

statistics proposed by Park and Choi (1988) as explained before. When errors are 

I(0), 1 ( )
T

J m  converges to zero. When errors are I(1), 1 ( )
T

J m  has a non-degenerate 

limiting distribution. m  is maximum polynomial length which is determined 

solely on heuristic evidence. Consider testing the null hypothesis for β : 

 0 :H R rβ =  versus :
A

H R rβ ≠  

Where R  is a ( )q k×  matrix of constants; r is a ( 1)q ×  matrix of q  restrictions.  

Vogelsang proposes several test statistics for this null hypothesis such as:  

 1 1 1 1 2

1 1
ˆ ˆ( )[ ( ' ) '] ( ) /T yT W T R r R X X R R r sβ β− − − −= − −    (2.21a) 

 * 1 1 * 2

2 2( ) '[ ( ' ) '] ( ) /( exp( ( )))
T z T

PS R r R X X R R r s bJ mβ β− −= − −  (2.21b)  

 1 1 1 2

1 1
ˆ ˆ( ) '[ ( ' ) '] ( ) /( 100 exp( ( )))T z TPSW R r R X X R R r T s bJ mβ β− − −= − −  (2.21c) 
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Here b is a constant. Statistics are normalized 1T −  Wald type tests. 100 included in 

the last test for numerical fashion. 

 
T

PS  and 
T

PSW  statistics are designed to have power when the errors are 

stationary. 1
( )

T
J m  statistic is included to make tests statistics robust to I(1) errors. 

Equality between the critical values of I(0) and I(1) errors is sustained by utilizing 

a parametric constant b. Inclusion of b does not affect the size or power of the 

statistics. Suppose that b=0, then 1
( )

T
J m  test has no effect so 

T
PS  and 

T
PSW  

statistics have non-degenerate limiting distributions for both I(1) and I(0) errors. 

When b is some positive number, the 1
( )

T
J m  statistic smooth out the 

discontinuities of  
T

PS  and 
T

PSW  statistics by taking  large values for I(1) errors 

and small values for I(0) errors. Therefore, the b’s can be chosen to vanish the 

differences between I(0) and I(1) errors. Then, distributions of 
T

PS  and 
T

PSW  

statistics come close to each other.  

 Choice of m  depends up on Monte Carlo simulations and Vogelsang (1998) 

suggested that power is maximized when 9m = . Vogelsang (1998) applies the test 

methodology to GNP growth rates. When 1q =  statistics become Wald type t-

statistics and these statistics have indicated considerable evidence for a shift in the 

slope function of many series. Limiting distributions and consistency conditions 

are established in Vogelsang (1998).  

 Vogelsang and Perron (1998) have considered the test for unit root allowing a 

break in the trend function at unknown time. This paper was extension to 

Vogelsang and Peron (1992). Previously in the literature, various researches 
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considered innovation outlier and additive outlier models for the type of break 

occurring. Innovation model (IO) assumes that break occurs with gradual whereas 

additive outlier (AO) assumes that break occurs suddenly. This paper also uses AO 

framework. Break date endogenous choice has been made by concerning t-min 

statistic whose procedure and methodology have been explained before. Following 

Perron and Vogelsang’s (1992) notation, the unit root statistics are asymptotically 

invariant to a mean shift under the null hypothesis, but this invariance property 

does not hold in finite samples. Effects of mean and slope changes on the limiting 

distributions are analyzed. Vogelsang and Perron (1998) brought many extensions 

to their previous work. Also one another extension is to model time series which 

has trend break under the null hypothesis of unit root. This extension adds 

literature the case that time series follow unit root pattern and trend-break behavior 

together. Asymptotic invariance of the statistic on to a mean shift under unit root 

has been explored. But this invariance does not hold for slope change.  

 Innovation outlier model presented in Vogelsang and Perron (1992) is a two 

step procedure. First series are detrended, and then the detrended regressions are 

estimated by OLS. Details are represented before in the literature. Extensions of 

outlier model consist of the null hypotheses: 

 *

1
( )[ ]

t t t t
y y L DUβ ϕ γ−= + + + ε      (2.22a) 

 *

1
( )[ ]

t t t t
y y L DTβ ϕ θ−= + + + ε      (2.22b) 

 *

1
( )[ ]

t t t t t
y y L DT DUβ ϕ θ γ−= + + + + ε     (2.22c) 

IO model is applicable to the cases where it is more reasonable to view the break 

as occurring more slowly over time. In principle, the dynamic path of adjustment 
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of the shift could take any form so IO model is capable of defining shocks to the 

innovation process. But immediate and long run impact of the structural break is 

different in IO framework. Immediate impact is a shift in the slope is γ , while the 

long run impact is given by *( )Lϕ γ . Under the corresponding alternative 

hypotheses 
t

y  is given by: 

 ( )[ ]
t t t

y t L DUµ β ϕ θ= + + + ε      (2.23a) 

 ( )[ ]
t t t

y t L DTµ β ϕ γ= + + + ε       (2.23b) 

 ( )[ ]
t t t t

y t L DU DTµ β ϕ θ γ= + + + + ε     (2.23c) 

In general, unit root hypothesis 1,  0α θ γ= = =  in these three regressions. 
B

T  and 

k  selected as the same as in previous work of Perron and Vogelsang. Also power 

simulations of  t-min test in the Vogelsang and Perron (1992) has been replied in 

Vogelsang and Perron (1998). 

 In Vogelsang and Perron (1998), it is argued that dependence upon θ  and γ  

can be made precise. It can be shown (as shown in Perron and Vogelsang (1992)) 

that all of the statistics are asymptotically invariant to θ . But when 0γ ≠ , the tests 

have asymptotic size less than the asymptotic level. A way to avoid this potential 

power loss is to first perform a pretest for shift in slope that is valid for both unit 

root and stationary errors. But as indicated in Vogelsang and Perron (1992), any 

time a pretest is conducted, the size of the ultimate test is likely to be distorted and 

detailed investigation is leaved for future research. So, before the future research is 

conducted on unit root and slope break hypothesis, one should keep in mind that; 

AO framework provide reliable tests with size that is variant to large shifts in 
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intercept and slope.  

 Role of the error variance in power results has been researched by Vogelsang 

(1999) in which source of non-monotonic power is tried to be covered. Following 

from the early beginning of structural break literature, Vogelsang (1997) noted the 

tests for structural change in the trend function of a dynamic time series can have 

non-monotonic power functions. As distance between the null hypothesis and 

alternative hypothesis increases, power is decreasing in some ranges. Undetected 

shifts in trend bias the estimates and tests of dynamic parameters that may be of 

interest. From the literature of break in trend function, Bai (1994) noted that λ̂  

(date of break estimated) converges to the true break point at rate T, and this result 

holds for serially correlated errors that are stationary linear process. But this is not 

the case when errors are I(1) as shown in Vogelsang and Perron (1998).  Unit root 

pattern and structural break tests mainly suffer from substantial power losses. It is 

shown that a wide variety of tests can have non-monotonic power functions, 

indicating that non-monotonic power is a serious problem in practice. Second, 

sources of non-monotonic power are uncovered in the literature. Here, the statistics 

are analyzed in a unified framework that allows direct comparisons. The statistics 

are expressed as a function of weighted Wald statistics. Since Wald statistics are 

scaled by estimates of variance parameters, their power functions are very 

sensitive to the behavior of the variance estimates. By examining the behavior of 

the Wald statistics and the weights, as the null and the alternative grow apart, two 

sources of non-monotonic power are pinpointed. If estimates of variance are not 

invariant to the shift parameter, non-monotonic power can result. The second 
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source is the inclusion (or misspecification) of the lagged dependent variable. 

   Vogelsang considers testing for mean shift in regression,  

 
t t t

y DU uµ θ= + + .      (2.24) 

 In similar notation we have:  
1t t t

u uα −= + ε  and  1( )
t B

DU t T= >  with 

2
~ (0, )

t
iidε σ .  In order to test for structural break in the mean, it is necessary to 

estimate nuisance parameter associated with { }
t

u . Variance estimate of ,  θ γ  are 

functions of 2 2 2
/(1 )ω αε= σ −  where 2ω  is proportional to the spectral density of  

{ }
t

u  evaluated at frequency zero. 2ω  is estimated parametrically using estimates 

of α and 2

εσ . In Vogelsang non-monotonic estimation is: 

  
1

2 1

1 1

ˆ ˆ ˆ[ ( / ) ]
T jT

np t t j

j T t

K j L T u uω
−−

−

+

=− + =

= ∑ ∑       (2.25) 

ˆ{ }
j

u  is OLS residuals from regression imposing 0θ =  and (.)k  is kernel function, 

L  is lag truncation parameter. Formally, alternative representation of equation 

(2.24) has been given by Perron (1989): 

 * *

1t t t t
y DU yµ θ α −= + + + ε       (2.26) 

* (1 )µ µ α= − , * (1 )θ θ α= − , *γ γα= .  However the presence of 
1t

y −  in regression 

has important consequences for power of some statistics. Following Wald type 

statistics that is proposed by Andrews and Ploberger (1994) for testing 0γ = , OLS 

estimate variance of { }
t

u  is replaced by 2

npω : 

 2 2 2

1 1

ˆˆˆ( ) ( ) /( )
B

T T

B t np t

t T t T

WS T y DUω
= + = +

= ∑ ∑      (2.27) 

ˆ
t

y  and ˆ
t

DU  are residuals from the regression of 
t

y  and 
t

DU  on constant and 
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2ˆ
npω . Define Wald statistic in the case where the parameter ω  is assumed to be 

known. This exact Wald statistic is defined as: 

 2 2 2

1 1

ˆˆˆ( ) ( ) /( )
B

T T
e

B t t

t T t T

WS T y DUω
= + = +

= ∑ ∑      (2.28) 

2 2ˆ( ) ( / ) ( )e

B np BWS T WS Tω ω= . Then the statistic is expressed as functions of 

weighted ( )
e

B
WS T . Vogelsang (1999) expresses the Wald type statistics that is 

proposed by Andrews and Ploberger (1994) as a test which is functions of 

weighted Wald statistics.   

 Other statistics considered in the Vogelsang (1999) are the statistics that are 

proposed by Vogelsang (1998). To summarize them again; let 
1

ˆ
T

t t

j

z y
=

=∑  and 

1

t

t j

j

S u
=

=∑ .Then (2.24) becomes: 

 
t t

Z t DT Sµ γ= + +       (2.29) 

Define * inf ( )
BT BJ J T∈Λ= , ( )

B
J T  is the standard Wald statistic divided by T for 

testing 
1 9

... 0β β= = =  in the regression 
9

1

i

t t i t

i

y DU t uµ θ β
=

= + + +∑ . The *
J  is 

related to the class of unit root statistics proposed by Park and Choi (1988) as 

before. Represent ed as in compact notation * 2 2

1

( ) 100exp( ) ( )
T

i B i i B

j

c T b J T S T
−

=

= ∑ . 

1,2i =  for different values of b.  The weighted Wald test statistics of interest are 

defined as: 

 1 2 2

1

1 1

ˆˆ( ) /[( ) ( )]
B B B

T T

t t B

T t T t T

MPSW T y DU c T
−

∈Λ = + = +

= ∑ ∑ ∑    (2.30a) 
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 2 2

2

1 1

ˆˆsup( ) /[( ) ( )]
B B B

T T

t t B
T t T t T

SPSW y DU c T
∈Λ = + = +

= ∑ ∑     (2.30b) 

 In the first statistics, power decrease for an increase in θ . Source of non-

monotonic power is explained to be the estimate of variance parameters. 

(Requirement an estimate of 2ω ) As θ  increases, ( )
e

B
WS T  also increases on 

average, regardless of 
B

T . The increase is larger the closer 
B

T  to the true break 

date. But statistics (2.30a) and (2.30b) have the property that 2ω  need not be 

estimated to carry out the test. (See Vogelsang (1998) for details)  This suggest 

that as long as the weights are not decreasing in θ , then the statistics will be, on 

average, increasing in θ  and power will be monotonic. Therefore power can be 

non-monotonic because weights are decreasing on average as θ  increases. This 

result simply reiterates the fact that power of the statistic is sensitive to the model 

in which variance estimated. Trend break models are suspected to have wrong 

specification of the break type. Then, specification of break type in the alternative 

becomes crucial for power results. 

 In order to compare power properties, Vogelsang uses Monte Carlo 

simulations for the tests (2.30a), (2.30b) and various eight statistics developed in 

the literature. Only MPSW  and SPSW  statistics seem to have monotonic power 

property. Also those two statistics have considerable power advantage. Because 

when errors are I(1), other statistics diverge and their power decreases 

significantly.  

 Role of 
1t

y −  is important. From the result Perron (1989)  and Vogelsang 

(1999), one can claim that, ignoring a mean shift in the autoregression biases the 
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estimate of α  towards 1, and estimated model appears to be I(1) without mean 

shift. Wrong date of shift may lead to some other bias as well. Those biases can 

cause non-monotonic power of statistics that are functions of estimate obtained 

from regression using wrong shift dates. 2ω  should be estimated under the 

alternative. But if the alternative form of break is not identified correctly, source of 

non-monotonicity still exists. This highlights the fact that alternative form 

determination is important issue in structural break literature. 

 Alternative form specification leads to power loses. To analyze this result, 

first attempt has been made by Yang (2001) who suspects the misspecification in 

regression rather than the alternative hypothesis in interest. Yang (2001) has 

considered the asymptotic distortion of regression misspecification on the 

Sup_Wald test which is proposed by Andrews (1994). He adopts the idea of 

drifting data generation process which is introduced by Davidson and MacKinnon 

(1985, 1987). Then only source for dependence is possible breaks. The size of the 

Sup_Wald statistic is distorted by regression misspecification. 

 Vogelsang ‘s (2001) working paper deals with the test statistics that are 

proposed to test  for shifts in the trend function of univariate time series. The test is 

valid in the presence of general forms of serial correlation in the errors. The tests 

are valid for both I(0) and I(1) errors. The tests are designed to detect a single 

break at an unknown time. A priori knowledge about innovations if they are I(0) or 

I(1) is not required. Partial sums of innovations play central role in testing so 

subjective choices like lag length, information criteria, kernel or truncation lag can 

be completely avoided. Approaches of Andrews (1993) and Andrews and 
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Ploberger (1994) are applied. The importance of uncovering instability of 

parameters in time series is well known. Failure to account for structural change in 

parameters can lead to inconsistent parameter estimates and biased forecasts. 

Models are extensions of the previous work of Vogelsang (1998). Test for trend 

break extended to all cases that are presented by Perron (1989). Power properties 

of the tests are presented in the working paper.  

 Sen (2003) has proposed his paper claiming that form of the break 

specification is the main reason for power distortions.  Previously in the literature, 

it is argued that selection of the break date must not correlate with data. This 

argument extended the statement: choice of the alternative form must be general. If 

one assumes that location of the break is unknown, it is most likely that form of 

the break will be unknown.  So turning back to the Perron’s argument, unit root 

hypothesis should be tested for difference stationary model where alternative form 

is correctly specified. According to Sen (2003), one must proceed with the break 

specification according to the most general mixed model in order to prevent 

misspecification of the true alternative form. (Both slope and mean break denoted 

as mixed model). In addition, one may expect power distortions if the form of the 

break is wrongly specified. (For example, if one imposes the crash model where in 

fact changing growth model or mixed model is appropriate. On the other hand, if 

the crash model is the correct form then its use will yield superior power compared 

to mixed model.) Test statistic and the model specification is in similar fashion to 

Perron’s notation. Sen slightly adjusts the equations (2.11a-c) for models A, B and 

C. Alternative hypotheses are consistent with Perron’s IO framework.   

 Null hypothesis is; 
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1 1

( )
t t t

y y L vµ ϕ−= + +        (2.31) 

To test for unit root in the IO framework the following methodology has been 

suggested; specify an interval 
0 0

[ ,1 ] (0,1)λ λΛ = − ⊆  that is believed to contain the 

true break fraction. For each possible λ ∈ Λ , Sen (2003) estimate the regression 

that nests the null and the appropriate alternative following the same methodology 

of PAlgorithm to determine date of break is followed by Vogelsang (1998) and 

Zivot and Andrews (1992). Also ˆ( ) ( )
DF DF i

t i t λ=  is used to compare to other 

statistics, where ˆ ( ,  ,  )
i

i A B Cλ =  is the break date maximizes the Wald statistic 

[ ]
T

F Tλ  for null hypothesis as suggested by Banerjee, Lumsdaine and Stock 

(1992).  

 According to Sen (2003), correct specification of the alternative holds as 

much importance as the break date specification. Most general robust alternative of 

mixed model can increase likelihood, since; it is the most general form. Also 

mixed alternative model has admissible power advantage compared to other 

mistaken forms.    

 Sen (2003) puts together unit root hypothesis and structural break test. Sen 

considers Sup_Wald statistic that is proposed by Murray (1998) and Murray and 

Zivot (1998). Joint null hypothesis is unit root with no breaks. (Neither slope nor 

mean break) ( )
B

F T  statistic for joint null hypothesis,  

 
0 2

: 1,  0
j

H α µ µ1= = =       (2.32) 

is calculated as: 

 1 1 2

1

ˆ ˆ( ) ( ( ) )[ ( ( ) ( ) ') '] ( ( ) ) / ( )
T

T B B t B t B B BF T R T r R x T x T R R T r q Tµ µ− −= − − σ∑  (2.33) 
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ˆ ( )
B

Tµ  is the ordinary least squares estimator of 
0 1 2 3 1

( , , , , , ,..., )
k

c cµ µ µ µ µ α= . 

1 1
( ) (1, , , , , ,..., )

t B t t t t t k
x T DU t DT y y y− − −= ∆ ∆ ,  (0,0,1)r = . 

1 2

1

ˆ ˆ( ) ( 5 ) [ ( ) ]
T

B t t B BT T k y x T Tσ µ−= − − − ( )∑     (2.34) 

( )R rµ −  corresponds to the restrictions imposed on the parameter vector µ  by the 

joint null 
0

H . 

 

k

k

k

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

R

 
 

=  
 
 

       (2.35) 

Where 0 '
k

 is the zero row matrix with rank k . The sequence of the F  statistics 

0

{ ( )} B

B T

T T T

T B T
F T

λ

λ0

=

= −
 is used to calculate the maximum F statistic for 0

J
H  as 

max

... ( )
BT T T T T T BF Max F Tλ λ0 0∈ −= . Power of three t-min and  ˆ( ) ( )

DF DF i
t i t λ=  and max

T
F  

statistics are compared. Sen (2003) concluded that max

T
F  statistic has the best 

power compared to the other statistics. Sen’s research is a kind of extension to 

Vogelsang (1998). Rather than trying to present a test statistic robust to I(1) and 

I(0) errors, unit root behavior is endogenously tested in the joint test. Moreover, 

joint test is put as the most general joint null. According to Sen (2003), joint test is 

the most reliable test with significant power advantage. 
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2.7 ASSESMENT OF LITERATURE AND OPEN QUESTIONS 

 

 Literature of unit root hypothesis and structural break intersects at the research 

for model specification in time series. True nature of the time series behavior can 

be understand by hypothesis testing of the joint null hypothesis, 

0 2: 1,  0j
H α µ µ1= = = .  (In Sen’s notation) Because this hypothesis nests 

difference stationary model testing and trend stationary model testing together. 

Since Perron suggested that misspecification for trend function leads to spurious 

results, literature has been developing by the research on alternative form 

specification. Sen (2003) claims that, if one specifies wrong alternative, joint test 

will also give wrong inferences. In order to avoid model misspecification, one 

should use general alternative. But important unanswered question arise from the 

fact that, when joint null rejected in favor of the alternative, we cannot reach 

specific conclusion of the time series in interest. Joint null puts three restrictions, 

so that there are three sources, which can lead to the rejection of the null. It is 

unambiguous without further investigation. 

 Second point is that, when purpose is to search for validity of trend stationary 

model, it cannot be set apart from unit root tests. Nuisance parameter (estimate of 

variance) is affected by innovations. When innovations follow I(1) behavior, test 

results will be different as shown by Vogelsang. Vogelsang attempted to bring this 

fact into research. Vogelsang developed a structural break test when innovations 

are I(1) or I(0).A priori we cannot know the true nature of the innovations. When 
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1t t t
u u −= + ε  where 2~ (0, )

t
iidε σ  then 

t t t
y x uβ= +  has unit root so 

t
y  is I(1). 

Then first we need to test for unit root. But turning back to Perron we know that 

unit root tests can give false results because of possible trend breaks. Hence, 

structural break tests should incorporate with unit root test. 

 Moreover, we found particular evidence for the fact that, when unit root 

behavior is not taken into account for structural break tests, then tests have 

tendency to reject no structural break null because of the increase in critical values 

due to unit root behavior. Perron’s conclusion is two sided. When trend break is 

not taken into account, tests fail to reject unit root null hypothesis; but also when 

unit root is not taken into account, tests fail to reject the no break null hypothesis. 

Later research of Vogelsang includes a test that is robust to I(1) or I(0) 

innovations. But test is lack of conclusion for model specification. True break 

date- if exists- can be specified; but from the test results, we cannot conclude if the 

times series posses unit root behavior or not. These avoid us to determine the true 

structure of time series even we can test for structural break. 

 Alternative form is also important to find true break dates. Literature consists 

of contradicting evidence for break dates. Highly potential source for these 

inconveniences is wrong alternative specification. There are two main alternatives 

for break for trend function: 1TD tβ β0= + .  Both or one of them may have shift. 

However omitted shift in the parameters will increase the innovation so that result 

of the test statistic may find wrong break date. 

 More generally, literature has developed on the question of the true structural 

nature of the time series. Does time series follow difference stationary model or 
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trend break stationary? Even if we have joint null hypothesis 1 31,  0α µ µ= = =  so 

that null model is difference stationary, it is not sure that alternative is trend break 

stationary. It is possible that 1α <  and 1 3 0µ µ= =  so that time series is just 

stationary. When difference stationary null is rejected it does not indicate that 

trend break model is true nature. Moreover there is another possibility that 

1 31,  0 or 0α µ µ= ≠ ≠ . This is the case that time series follow unit root with trend 

break. Though there are four different possible structural models, they are 

compressed to two cases. A test statistic that can determine one of the four 

possible models will not suffer from misspecifications so we expect this statistic to 

be able to detect true date of break with true form of breaks (or break) if break 

exists. 
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CHAPTER 3  

 

 TEST STATISITIC AND METHODOLOGY 

 

 

 

3.1 MOTIVATION 

 In this section, we briefly discuss the motivation of the test statistic suggested 

in this work. Assessments of the literature address one important question: Is it 

possible to present a test statistic that can conclude true structure of the time 

series? Our aim is to present a test statistic that allows us to perceive one specific 

pattern of the time series in question rather than just concluding possible 

combinations of many patterns. Null and alternative hypotheses should correspond 

to different patterns of the time series. Also, for the null hypothesis of difference 

stationary model, test statistic should also involve no structural break in the null 

hypothesis as Perron (1989) highlighted the biases arising from using a test 

statistic with unaccounted trend breaks. Moreover, all possible forms of breaks 

should be included in the null hypothesis in order to get rid of the biases arising 

from misspecification of the alternative break form. When the form of the break is 

assumed to be unknown, all possible forms of break should be included in the null 
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hypothesis. On the other hand, if a structural break test is conducted with no break 

null hypothesis, test statistic is under effect of unit root property of the time series. 

Once unit root property is unknown, then structural break test can be biased by the 

source of unit root property. Hence, the test conducted here composes both unit 

root test and structural break test together. By presenting such a test, estimated 

break date (if exist) will not suffer from biases. 

Motivation is utilized by presenting a test statistic for joint null hypothesis 

in (2.32). The null hypothesis includes both possible form of trend breaks, since 

non-rejection is not biased by any form of break, it indicates unit root pattern 

without break in the trend function. But when the joint null is rejected, it can not 

be taken as an evidence for trend break stationary model. Deviation from the null 

hypothesis has two main sources: Stationarity and structural break (mean break 

and (or) slope break in trend function-generalized as structural break). When both 

sources are specified in the null hypothesis, deviation from the null hypothesis in 

the test statistic can be caused by the combination of these sources. Rejection of 

the null hypothesis cannot specify one correct combination of these sources. In 

other words, only one alternative hypothesis is too general to determine true nature 

of the time series when joint null hypothesis is rejected. Then three possible 

alternatives are: Pure stationary time series without any form of break, stationary 

time series with trend break of some form and unit root behavior of time series 

with trend break of some form. These three alternatives are condemned to trend-

break stationary model in the literature. We want to propose a test statistic that can 

differentiate these three alternatives. 

 Moreover, if specified alternative hypothesis is not correct form of break, 
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there are serious power and size distortions as shown in Vogelsang (1998) and Sen 

(2003). This situation casts a doubt on the estimated date of breaks when a test is 

conducted with one specific alternative. Researchers reach contradicting results on 

same data set by estimating different break dates with different alternative 

specifications.  

The test presented here nests all three alternatives. Test will be able to 

decide true form of break with accomplished date of break estimation. Literature 

has been developing with attempts to suggest a test statistic for difference 

stationary versus trend-break stationary test which has desired power properties 

without size distortions; we also aim to propose a test that has desired power 

properties without size distortions. 

 

3.2 MODEL AND ASSUMPTIONS 

 Time series in interest is assumed to be generated by the following model: 

 0 1 2 3 1

1

( ) ( )
k

t B B t i t i t

i

y DU T t DT T y c y uµ µ µ µ α − −
=

= + + + + + ∆ +∑  (3.2) 

t
y is the time series that is conceived. 

t
y  is regressed on drift, mean break dummy, 

time trend, slope break dummy, its first lag and k ’th period difference of the 
t

y  . 

The error 
t

u  is specified to be an ARMA (1, 1) process defined as; 

( ) ( )
t t

A L u B L= ε  where ~ . . .(0, )
t

i i d
2ε σ  under assumption 1. ( )A L  and ( )B L  are 

lag polynomial operators of order 1 and 1 where ( )A L  component of 
t

u  represents 

autoregression structure and ( )B L  represents moving average component.   

Throughout, 
B

T  denotes the date of break which is assumed to be unknown.  
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( ) 1( )
B B

DU T t T= >  and ( ) 1( )( )
B B B

DT T t T t T= > −  with 1(.)  is indicator function. 

Before the date of break, indicator functions ( )
B

DU T  and ( )
B

DT T  are equal to 

zero and after the date of break ( )
B

DU T and ( )
B

DT T  are 1. 

The model that we consider in this section is driven by the sequence of 

error term }
t

{ε . Similar to Perron (1989) and Philips and Perron (1988), classic 

assumption for { }
t

ε  is:  

ASSUMPTION 1: 

 i) ( ) 0
t

E ε =  for all t .       (3.1a) 

ii) sup ( ) e

t t
E

β +ε < ∞  for some β > 2  and any 0e > .   (3.1b)  

iii) as T → ∞ , 1 2lim ( )TE T Sε

2 −σ =  exists and 02

εσ > , where 1,...,t T
S = ε ε  

(3.1c) 

Assumption 1 is classic assumption which implies that a functional limit theorem 

applies to the partial sums of { }
t

ε  so that asymptotic distribution of the test 

statistic exists. Here t  is time script such as 1,...,t T= . (.)E  is expectation 

operator.  In this univariate set up, we assume that there is possible one time trend-

break. Trend break is allowed to take three different forms. Break in the mean or 

(and) break in the slope of trend function. Trend break alternatives correspond to 

three forms that are represented in Perron (1989). Both segments of the trend 

functions are joined at time 
B

T . Change is presumed to occur gradually which 

corresponds to the IO model that is suggested by Perron (1989). In IO framework, 

effect of the break is sudden so that trend function changes its regime at the date of 

break. 
t i

y −∆  is included into regression in order to eliminate possible correlation in 
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the regression. Our representation is consistent with general mixed model (Model 

C) in Peron (1989) and Sen (2003).  

 The parameters µ1  and µ3  are the magnitude of the change in mean and slope 

of trend function. Since break date is assumed to be unknown, selection of the date 

depends on the test methodology. 
B

T  is selected from the sequence of the statistic 

for every possible break date,  testing for the joint null hypothesis. Following 

Banerjee, Lumsdaine and Stock (1992), 
B

T  is the date that maximizes evidence 

against the joint null hypothesis. Details of the break date selection procedure are 

presented in the literature survey section. 

 Vogelsang (1992) suggested a data dependent method to chose lag truncation 

parameter k . More specifically, let selected value of k  be *
k , such that; the 

coefficient on the last lag in an autoregression of order *
k  is significant and the 

last coefficient on the last lag in an autoregression of order greater than *
k  is 

insignificant, from the possible maximum order maxk . The significance of the 

coefficient is assessed using %5 critical values based on a standard normal 

distribution. Here in this study, we follow the same methodology to select lag 

length. After *
k  has been determined, the test statistic is conducted. 

 Model specification consists of both types of breaks covered in the literature. 

Sen (2003) suggested that, wrong specification of the structural break type may 

lead to serious power distortions of the statistics. For example; if data generation 

process is stationary with break in the slope of the trend function, test statistic 

cannot reject the wrong null hypothesis of unit root because of specifying 

alternative hypothesis as mean break in the trend function. Also inaccurate 
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specification of the break date estimation is a consequence of wrong specification 

of the break type. By including all types of breaks that is covered in the literature, 

we avoid the possible omitted variable biases. Sen (2003) suggest that, if true data 

generation process contains only one of the break types there will be power 

distortions. But compared to omitted break case, this distortion will be limited. 

Time trend is included into model, because we want to cover all possible 

alternative hypotheses. When time trend is placed into model, we can cover all the 

trend-break stationary alternative hypotheses. 

 

   

3.3 TEST STATISTIC 

 The primary focus of the test statistic is to test for joint null hypothesis, 

1 31,  0α µ µ= = = . Test statistic presented here is very similar to the test proposed 

by Vogelsang (1998, 2003). Actually, this test statistic is an extension to the 

T
PSW  statistic in (2.21c). Vogelsang proposes the test in order to test for 

1 3 0µ µ= =  and rather than including 1t
y −  in model, unit root pattern is included in 

the errors. Then, unit root hypothesis is not tested. Test statistic’s critical values 

are parametrically determined for different error patterns. Moreover, null 

hypothesis corresponds to no structural break. Test statistic does not give further 

information about the structural model of time series. In this extension, we want to 

fill these gaps in the literature. 

 Before we describe the test statistic, some preliminary notation is 

introduced. 
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Now let 1j
t

−  be the highest order polynomial of time in ( )f t  in the regression: 

 1( ) '
m

i

t i t t

i j

y f t t yβ γ α −
=

= + + + ε∑      (3.3) 

( )
T

J m  denote standard OLS Wald statistic testing for the null hypothesis : 

1 3 ... 0
m

γ γ γ γ2= = = = =       (3.4) 

 in (3.3). ( )
T

J m  corresponds to the family of unit root statistics that is presented by 

Park and Choi (1988) and Park (1990). This test statistic test for unit root with 

polynomial trend fit in the model. ( )
T

J m  is included into the test statistic to utilize 

the respond of the ( )
T

J m  to the unit root pattern. For a detailed discussion of the 

use of ( )
T

J m  statistic, reader is referenced to the Vogelsang (1998). Similar to the  

T
PSW  statistic, for the joint null hypothesis, test statistic is calculated as: 

1 1

1

2

ˆ ˆ[ ( ) ]{ ( ( ) ( ) ') '} [ ( ) ]

_ ( )
( )exp[ ( )]

T

B t B t B B

t
B

B T

R T r R x T x T R R T r

adj F T
q T J m

µ µ− −

=

− −

=
σ

∑
 

 (3.5)  

ˆ ( )
B

Tµ  is the OLS estimator of the 1( , , , , , ,..., )
k

c cµ µ µ µ µ α0 1 2 3= , 

1 1( ) (1, ( ), , ( ), , ,..., )
B B B t t t k

x T DU T t DT T y y y− − −= ∆ ∆ , (0,0,1) 'r = , 

1 2

1

ˆ ˆ( ) ( 5 ) [ ( ) ( )]
T

B t t B B

t

T T k y x T Tµ−

=

σ = − − −∑ . ˆ( )R rµ −  corresponds to the restrictions 

imposed on the parameter vector µ  under the joint null hypothesis. 

k

k

k

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

R

 
 

=  
 
 

. Where 0 '
k

 is the zero row matrix with rank k .   
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_ ( )
B

adj F T  statistic is a combination of classic max ( )
B

F T  statistic 

presented in Murray (1998), Murray and Zivot (1998), Sen (2003) and Choi and 

Park (1988), Park (1989). The sequence of the _ ( )
B

adj F T  statistic 

0

0

{ _ ( )} B T T

B T

T

B T
adj F T λ

λ

= −

=
 is used to determine break date. Algorithm is suggested by 

Vogelsang (1992), Banerjee, Lumsdaine and Stock (1992), Andrews (1992), 

Andrews and Ploberger (1994). Test is conducted for all possible break 

dates 0 0[ , ]
B

T T T Tλ λ∈ −  where trimming value is 0λ . Discussion of trimming 

value takes place in Banerjee, Lumsdaine and Stock (1992), Perron (1992, 1997). 

We use trimming value 0 0.15λ =  that is suggested by Sen (2003). By using sub-

sample of the all data, break date assumed not to be at the ends of the sample. As 

discussed in Banerjee, Lumsdaine and Stock (1992), the choice of 0λ  entails a 

trade-off between needing enough observations in the shortest regressions to 

support the Gaussian approximation and wanting to capture possible breaks early 

and late at the sample. The date C

B
T  at which the sequence of the statistic 

0

0

{ _ ( )} B T T

B T

T

B T
adj F T λ

λ

= −

=
 is maximized is determined to be the break date from the all 

possible break dates 0 0[ , ]
B

T T T Tλ λ∈ − . So test statistic is 

0 0 0[ , 1..., ]( _ ( )) _ ( )
B

C

B T T T T T Badj F T Max adj F Tλ λ λ∈ + −= . 

  Crucial important extension in our statistic is to adjust max ( )
B

F T  statistic 

with ( )
T

J m  statistic. Discussion of the ( )
T

J m  statistic takes place in Vogelsang 

(1994, 1998, 2003, and 2004). The argument is developed by Andrews (1992), 

Andrews and Zivot (1994). The test statistic is optimal in the sense that, test 
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statistic is not under effect of nuisance parameter 2 / 2

εσ σ  so that central limit 

theorem can be applied to create critical values after Monte Carlo simulations. 

Vogelsang has generalized a structural break test statistic by adjusting max ( )
B

F T  

with ( )
T

J m . However unit root behavior in Vogelsang (1998) is exogenous. Test 

is robust to I(1) and I(0) errors but the question of I(0) versus I(1) is not included 

in the test statistics. This situation cast a doubt on the test estimated break dates 

which may be distorted from the unit root behavior. Moreover, as discussed 

before, test can not conclude the true form of the time series; trend stationary or 

difference stationary models. 

 Vogelsang uses ( )
T B

J T  statistic because  ( )
T B

J T  converges to zero when 

errors are I(0) and ( )
T B

J T  has non-degenerate limiting distribution. When errors 

follow I(0) pattern, then test statistic is just Wald type maxF  statistic same as in 

Sen (2003). Asymptotic derivations are shown in Vogelsang (1998) for both I(1) 

and I(0) errors. Vogelsang uses some parametric adjustment to bring both 

distributions’ critical values equal; parameter “b” in 
t

PSW  statistic (2.21c). 

Though  ( )
T B

J T  is not added for a statistical test, it can be used as an statistic to 

make an adjustment in Wald type test.  We  aim to utilize nature of the ( )
T B

J T  

statistic in our test statistic. When ( ) 0
T B

J T ≠ , null hypothesis presented in  (3.4) 

corresponds to the unit root hypothesis with trend. Alternative hypothesis 

corresponds to the higher order polynomial fit of the trend. 

( )
y j

T

j

RSS RSS
J m

RSS

−
=       (3.6) 
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Where 
y

RSS -the residual sum is squares- under null hypothesis (3.4). 
j

RSS  is the 

sum of squares for higher polynomial trend fit. Number m  has been determined by 

practical appropriateness. Vogelsang (1998, 2003) has shown that 9m =  

maximizes power of the test statistics. We also found evidence that 9m =  

performs better. When 9m >  has been determined some loss of power has been 

observed. Simulations are available up on request.  

 ( )
T

J m  test that is presented in Ouliaris, Park and Philips (1988), Park (1989, 

1990), can be considered as another unit root test which has specific polynomial 

trend fit alternative. Purpose to adjust max ( )
B

F T  with ( )
T

J m  statistic is to utilize 

the sharp difference of statistical value in the ( )
T

J m  for I(1) and I(0) behavior of 

the time series.  As noted before, when 
t

y  is stationary, then ( )
T

J m  converges to 

zero rapidly. However, when 
t

y follows unit root pattern, then ( )
t

J m  jumps to a 

positive number. This sharp difference help us to distinguish I(1) versus I(0) 

pattern in the time series.  

 When 1α < , then ( )
T

J m  converges to zero. So that, test statistic (3.5) get 

closer  to (2.33). Hence, if time series is stationary our test will be same as in Sen 

(2003). Sen (2003) presented that max ( )
B

F T  statistic does not suffer from size 

distortions. So that under the null hypothesis our test does not suffer from size 

distortions.  But if 1α = , _ ( )C

B
adj F T  is different than max ( )

B
F T  which is 

weighted by factor 1exp[ ( )]
T

J m
− .  

We have: 

 *_ ( ) max ( ) ( ( ) )C

B B B CV
adj F T F T D F T=     (3.7) 
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Where ( ( ) )
B CV

D F T  is an indicator function. When max ( ) ( )
B B CV

F T F T≤ , 

( ( ) )
B CV

D F T  is equal to 1; else if max ( ) ( )
B B CV

F T F T> , ( ( ) )
B CV

D F T  is equal to 

1exp[ ( )]
T

J m
− .    Indicator function utilizes the weighting effect only if the joint 

null hypothesis of difference stationary model is rejected by max ( )
B

F T  statistic. 

( )
B CV

F T  is %5 critical value of max ( )
B

F T  which is derived by Sen (2003), 

Murray (1998) and Murray and Zivot (1998). Hence, when max ( ) ( )
B B CV

F T F T≤ , 

*_ ( ) max ( )C

B B
adj F T F T= . We have two step test statistic. When joint null of unit 

root and no break is rejected, difference stationary model is rejected in favor of the 

one of the alternative hypotheses. In order to differentiate alternative hypotheses, 

we need to be sure that first joint null is rejected. When joint null and three 

alternatives (stationary and no trend break model, stationary with some type of 

trend break model, unit root and trend break model) have been considered all 

together, serious power distortions arises from the inclusion of null hypothesis into 

consideration. By construction two step test methodology we can discriminate 

different alternatives without size distortions. Reason for such situation is that, 

( )
T

J m  increases rapidly with unit root pattern and any type of trend break or any 

regime change in trend function. ( )
T

J m  value exponentially decreases the value of 

(3.5) so that any type of the break and unit root decreases our test statistic. When 

stationary without break is the true nature of the time series, ( )
T

J m  decreases 

according to parameter value of α . But max ( )
B

F T  increases as α  decreases as 

the data generation process deviates from the joint null hypothesis.  
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Figure 3.1- Various alternative Hypotheses 

 

  

Let 3 1 3:  0 or (and) 0
A

H α µ µ=1, ≠ ≠ , 2 1 3:  0 or (and) 0
A

H α µ µ<1, ≠ ≠  

and 1 1 3:  0
A

H α µ µ< 1, = =  as shown in figure 1. These alternative hypotheses 

correspond to different structural models. 3A
H  is trend-break unit root model, 2A

H  

is trend-break stationary model and 1A
H  is pure stationary model. Under the null 

hypothesis, *_ ( )C

B
adj F T   statistic has its asymptotic distribution.  

When alternative hypothesis 1A
H  is the true data generation process, with 

stationary and no break alternative, test statistic has higher value since ( ) 0
T

J m → .  

( )
T

J m  statistic looses its domination. As ( ) 0
T

J m → , exp[ ( )] 1
T

J m → . when 
t

y  is 

stationary and max ( )
B

F T  is higher than ( )
B CV

F T  so then (3.5) has higher value 

than its critical value. Our test statistic discriminates the pure stationary alternative 

from other alternatives by the property of ( )
T

J m  statistic. Under 1A
H , weighting 

function does not have any affect so only source for rejection is the deviation from 

the null hypothesis is stationarity (α <1). Under 1A
H , max ( )

B
F T  has higher value 
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than its critical value. In this case, our test statistic has significantly higher values. 

When true data generation process is 2A
H , due to structural break, ( )

T
J m  

deviates from its null value and jumps to a positive constant. Weighting factor 

1exp[ ( )]
T

J m
−   decreases the value of *_ ( )C

B
adj F T . Both structural break and 

stationarity are the sources of deviation from the null hypothesis.  Though 

structural break and stationarity increases the value of max ( )
B

F T  statistic, 

dominance of weighting factor decreases *_ ( )C

B
adj F T  value. ( )

T
J m  statistic 

jumps to a positive constant due to structural break. Weighting function has some 

positive constant.  

When source of deviation is only structural break, weighting factor 

decreases test value more. Under the 3A
H , test statistic has lowest value when both 

trend break and unit root pattern exists. Though max ( )
B

F T  increases as a 

deviation from the null hypothesis, decrease in the ( )
T

J m  statistic dominates the 

*_ ( )C

B
adj F T  value. Both unit root pattern and structural break increases ( )

T
J m  

value. Hence, weighting factor decreases test value sharply.  If we reconsider 

figure 1 with indicator function: 
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Figure 3.2-Critical Values 

 

 

When null hypothesis is rejected, *_ ( ) max ( ) exp( ( ))C

B B T
adj F T F T J m= . 

( )
T

J m  is left-scaled test in _ ( )C

B
adj F T , and the test statistic is affected by  break 

and unit root behavior by an increase 
y

RSS  in (3.6). For stationary and no break 

alternative, *_ ( )C

B
adj F T  increases by the source of deviation from joint null as α  

decrease, max ( )
B

F T  increases and ( )
T

J m  converges to zero rapidly. Under  1A
H , 

test statistics is bounded above since 0α =  is the case that deviation from the joint 

null is maximized. When data generation process is under 2A
H ,  *_ ( )C

B
adj F T  

decrease from the joint null value of ( )
B CV

F T  by the source of deviation of 

stationarity and structural break. Under 1A
H  alternative test statistic has higher 

value than its null value; under 2A
H  alternative, test statistic has lower value than 

its null value. By utilizing the opposite directional value for the source of deviation 

from the null hypothesis, we can parametrically find a threshold critical value 

which discriminates 1A
H  and 2A

H .   Denoted as 1CV is the threshold critical value 
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between 1A
H  and 2A

H .  Choice of 1CV  was made on the basis of power since 

there does not appear an analytical method of maximizing power for infinite 

parametric space for breaks.  

When data generation process shifts from the stationary and trend-break 

alternative ( 2A
H ) to unit root and trend-break alternative ( 3A

H ), the *_ ( )C

B
adj F T  

statistic decreases further. Only source of deviation from the null hypothesis is the 

trend-break. Data generation process holds I(1) property. Hence, ( )
T

J m  value 

jumps to a higher positive constant due to both unit root property and structural 

break, under 3A
H  alternative test statistic has lowest values. max ( )

B
F T  increases 

due to trend-break, but dominating increase in ( )
T

J m  due to both unit root and 

structural break decreases *_ ( )C

B
adj F T  further. Hence under 3A

H , values of  

*_ ( )C

B
adj F T  is reduced more.  Then, we can find another threshold value ( 2CV ) 

to discriminate alternatives 2A
H  and 3A

H . 2CV  is determined on the same basis 

of 1CV .  

 Limiting distributions of the statistic *_ ( )C

B
adj F T  under the null hypothesis 

is expressed as functional of standard Brownian motions by Vogelsang (1998). 

Reader is referenced for asymptotic results and the proofs of the functional 

convergences to the Vogelsang (1998). (Null hypothesis is expressed as 

1 3 0µ µ= =  under 1α =  in the second theorem of the paper by Vogelsang. So 

exogenously limiting distribution is derived under joint null so there is no change 

for asymptotical results. We left investigation for further research. ) 

Critical values of the ( )
T

J m  statistic are presented in Table 3.1 and critical 
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values of  *_ ( )C

B
adj F T  are presented in Table 3.2. Critical values are derived for 

5000 replications of Monte Carlo simulations under the joint null hypothesis. 

9m =  is taken for maximum value. Lag length is taken zero for critical values. 

Critical values are derived for finite sample sizes are: 50,100,150,250T = . 

100T =  critical value will be used for Monte Carlo simulations in chapter 4. 
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CHAPTER 4 

 

 

 

MONTE CARLO SIMULATIONS 

 

In this chapter, we present finite sample size and power simulations for 

*_ ( )C

B
adj F T  statistics. In order to compare test statistics performance, we also 

include the test statistics that are presented in Sen (2003) and Vogelsang (1998). 

Simulations show that *_ ( )C

B
adj F T  statistic has better power results. To stay 

consistent with literature, we follow the experimental data generation process that 

is suggested by Vogelsang and Perron (1998) and Sen (2003). Time series are 

assumed to be generated by the data: 

2

1 3[1 ( ) ] (1 )[ ( ) ( ) ]t B B tL L y L DU T DT Tα ρ ρ ψ µ µ− + + = + + + ε  (4.1) 

Where 1,...,t T= . (4.1) is general enough to include errors following ARMA (1, 1) 

errors. In (4.1) ρ  is AR (1) parameter and ψ  is MA (1) component.  As discussed 

before, the presentation of (4.1) is equivalent to IO model presented in Perron and 

Vogelsang (1992).  For the size simulations joint null hypothesis 
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1 31,  0α µ µ= = =  is imposed into (4.1) then the data generation becomes 

2[ ] (1 )
t t

L L y Lρ ρ ψ+ = + ε . This is the same as ( ) ( )
t t

A L y B L∆ = ε  in time series 

presented in (3.2). *
k  is determined by the procedure explained above. However 

our simulations indicate that when *
k =0, results are identical. The sample sizes for 

simulations are set to be 50,100,150,250T =  in order to analyze size distortions in 

detail. The following combinations of , ρ ψ  are used: 

( ) {(0,0), (0.6,0), ( 0.6,0), (0,0.5), (0, 0.5)}ρ ψ, = − − . Parameter values in the 

combinations are the same combinations that were in the literature. Under different 

trimming values 0λ  finite sample results are replicated. 0 {0.15,0.10,0.5}λ ∈ . Only 

0 0.15λ =  is presented in tabulations. Trimming value determination does not 

affect general results. Other trimming value results are available up on request. 

For the power simulations, the break date is specified to be in the middle of 

the data generation process. Initial value of the data generation process 0 0y = . For 

three alternative hypotheses, we consider the combinations of the parameters 

3 ,  α µ µ1,  for the parameter space as: 

1,0.95,0.9,0.8,0.7 , {0,1,2,4,6,8,10}α µ1= { } = , {0,0.1,0.2,0.3,04,0.5}µ3 = . For 

the case that 1A
H  is the true data generation process, we simulate finite sample 

power for 0.95,0.9,0.8,0.7α = { }  and 0µ µ1 3= = . For the case that 2A
H  is true 

data generation process we simulate combinations of  0.95,0.9,0.8,0.7α = { } , 

{0,1,2, 4,6,8,10}µ1 =  and {0,0.1,0.2,0.3,04,0.5}µ3 =  excluding the cases 

0.95,0.9,0.8,0.7α = { }  with 1 3 0µ µ= = . When 3A
H  is true data generation 
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process, we consider combinations of the parameters 1α = , {0,1,2, 4,6,8,10}µ1 =  

and {0,0.1,0.2,0.3,04,0.5}µ3 =  excluding the case 1 31,  0α µ µ= = =  which 

corresponds to the joint null hypothesis. Parameters in the simulations are selected 

from the early literature in order to confer the better comparison. For every case, 

5.000 replications were generated with (0,1)N  random numbers which are 

generated by the same seed. Also first 300 generations are dropped from the 

sample. 

 

4.1 SIMULATIONS IN GENERAL 

Simulations are considered for null hypothesis and three alternatives. In the 

literature, Monte Carlo simulations are condemned to size and power simulations. 

Size simulation shows the rejection rate of the null hypothesis when true data 

generation process follow null model which corresponds to difference stationary 

model. Critical value for the size simulation is the %5 critical value under the null 

hypothesis. In the previous literature, power simulations only show the ability of 

the test statistic to reject null hypothesis under alternative data generation process. 

Data generation processes of 1A
H , 2A

H  and 3A
H  are considered together. So, 

power results of the test statistics only indicate the power of the test statistic to 

reject wrong null hypothesis. There is no further information for the true structure 

of the time series. 

 In this research, we consider various alternative data generation processes 

in order to show the ability of our test statistic to reject wrong null hypothesis and 

ability of our test statistic to conclude true alternative data generation process 
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which corresponds to different structural model. Then, our power simulations have 

three alternative hypotheses. We aim to visualize the rejection rate of the test 

statistic in favor of the three alternatives. Power of the test statistic is not only high 

rejection rate but also rejection of the null hypothesis in favor of the true 

alternative model in the data generation process. In the power simulation results 

tables, all three alternative hypotheses considered. Rejection rate of the test 

statistic in favor of the one specific alternative has been shown. For detailed 

parameter space, reader is referenced to the appendix section.  

   

 

 

4.2 FINITE SAMPLE SIZE SIMULATIONS 

Table 4.2 Finite Sample Size of max ( )
B

F T  and 
*_ ( )C

B
adj F T  

( )ρ ψ,

  

 

 0,.0   .6,.0 

                  

-.6,.0  .0,.5 

                 

.0,-.5 

              

.6,.5   

        

.6,-.5  .6,.5 

max ( )
B

F T

  0.05 

 

0.069 

  

0.051 

 

0.086 

 

0.412 * * * 

_ ( )
B

adj F T

  

 

0.050 

 

0.073 

 

0.053  0.18 

  

0.397   0.08 0.05 0.53 

  

Table 4.2 shows that, when ( ) (0,0)ρ ψ, = , so that errors follow similar 

normal distribution, *_ ( )C

B
adj F T  does not suffer from size distortions. Sen 

(2003) has indicated that negative moving average component creates a size 

distortion. This size distortion even increased in the *_ ( )C

B
adj F T  statistic because 

*_ ( )C

B
adj F T  statistic has tendency to reject joint null hypothesis when true data 
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generation process deviates from the null. *_ ( )C

B
adj F T  statistic penalizes any 

change in trend function. When we consider more cases which have not been 

covered in the literature, we see that size distortion of negative component of 

moving average component depends on the autoregressive component.   

Table 4.2.2 shows that, when sample size has been increased, max ( )
B

F T  

statistic over rejects the null hypothesis for ARMA (1, 1) errors. Tendency to 

reject null hypothesis is imported to the performance of the *_ ( )C

B
adj F T  

statistics. The rejection mostly favors 1A
H . Nature of the ARMA (1, 1) errors is 

beyond of the aim of this research so left the inspection for further research. 

 

 

 

4.3 FINITE SAMPLE POWER SIMULATIONS WHEN 1A
H  IS TRUE DGP 

Table 4.3.1 Finite Sample Power of 
*_ ( )C

B
adj F T , max ( )

B
F T , ( )

T
J m  

1 0, 0   µ µ3= =

   

 

_ ( )C

B
adj F T

   

 

max ( )
B

F T

 

 

( )
T

J m

 

               ρ ψ α

 
3A

H

 2A
H  1A

H      

  0       0    0.95 
0,0

0 37,80 62,20 5,70 9,30 

  0       0      0.9 
0,0

0 14,20 85,80 7,80 20,70 

  0       0      0.8 
0,0

0 0,60 99,40 23,40 56,80 

  0       0      0.7 
0,0

0 0,00 
100,0

0 55,20 86,30 

  0       0      0.6 
0,0

0 0,00 
100,0

0 86,00 97,40 
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 Power simulations are categorized in three alternatives. When data generation 

process is specified as 1A
H  which is stationary and no break alternative, power 

simulations are presented in Table 4.3. 

Table 4.3.1 implicates the stationary and no break data generation 

processes. Null hypothesis of  ( )
T

J m  statistics is unit root.  ( )
T

J m  statitics is 

included in order to show the consistency of the Perron’s (1989) argument for 

( )
T

J m  statistic in power simulations. Table 4.3.1 shows that, *_ ( )C

B
adj F T  

statistic concludes true alternative form with better power than the max ( )
B

F T  

statistic for every case. When true data generation process is stationary without 

break *_ ( )C

B
adj F T  statistic rejects the joint null hypothesis in favor of the true 

alternative 1A
H . This situation holds even the case that; true data generation 

process is near unit root. ( For 0.95α = ). For ( ) (0.6,0)ρ ψ, = , power of the test 

statistic is distorted. Both  *_ ( )C

B
adj F T  and max ( )

B
F T  statistics fait to reject 

null hypothesis though data generation process is stationary without break. When 

AR component of ARMA (1, 1) error is included into the data generation process, 

positive AR component increases spurious evidence for the null hypothesis. 

Hence, the test statistics fail to reject the joint null hypothesis. This situation is 

reversed for negative AR component. For ( ) ( 0.6,0)ρ ψ, = − , Table 4.2.3 shows 

that *_ ( )C

B
adj F T  statistic can reject false null in favor of the true alternative. Also 

max ( )
B

F T  statistic does not suffer from power distortions. Effect of MA 

component is similar to the AR component. Tables present the similar results. In 

summary, when 1A
H  is true, *_ ( )C

B
adj F T  statistic has desired property such that 
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it can conclude true alternative with high power. 

 

 

 

4.4 FINITE SAMPLE POWER SIMULATIONS WHEN 2A
H  IS TRUE DGP 

Table 4.4.11  Finite Sample Power of 
*_ ( )C

B
adj F T , max ( )

B
F T , ( )

T
J m  

 

( ) (0,0)ρ ψ, =    

 
*_ ( )C

B
adj F T

   

 

max ( )
B

F T

 

 

( )
T

J m

 

 

1               µ µ α3

 

 

3A
H

  2A
H  

 

1A
H

     

  0       0.1    0.8 0,00 99,90 0,10 14,70 
100,0

0 

  0       0.2    0.8 0,00 100,00 0,00 23,10 
100,0

0 

  0       0.3    0.8 0,00 100,00 0,00 44,20 
100,0

0 

  0       0.4    0.8 7,20 92,80 0,00 76,40 
100,0

0 

  1       0       0.8 0,00 6,30 
93,7

0 15,60 
100,0

0 

  1       0.1    0.8 0,00 100,00 0,00 20,70 
100,0

0 

  1       0.2    0.8 0,00 100,00 0,00 36,10 
100,0

0 

  1       0.3    0.8 0,10 99,90 0,00 60,50 
100,0

0 

  1       0.4    0.8 4,20 95,80 0,00 85,80 
100,0

0 

  2       0       0.8 0,00 37,20 62,8 36,50 
100,0

0 

  2       0.1    0.8 0,00 99,90 0,10 43,00 
100,0

0 

  2       0.2    0.8 0,00 100,00 0,00 66,90 
100,0

0 

  2       0.3    0.8 0,00 100,00 0,00 85,80 
100,0

0 

  2       0.4    0.8 1,30 98,70 0,00 92,30 
100,0

0 
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Second family of the alternative is the 2A
H . When data generation process 

designed to be stationary around broken trend function, it is observed that, the 

power of the  *_ ( )C

B
adj F T  statistic has been affected by the level values of the 

shift parameters of 1µ  and µ3 - Especially when data generation process follows a 

near unit root pattern. This data generation process is not included in the literature. 

However we are suspicious to differentiate a unit root behavior from trend break. 

In order to do that, we set a small deviation from unit root behavior when break is 

presented in data generation process. Table 4.4.1 indicates that, when true data 

generation process follow near unit root pattern,   *_ ( )C

B
adj F T  test statistic may 

conclude wrong alternative. Especially in the cases that, a high break in the slope 

of trend is presented. Slope break shifts the test statistic leftwards in figure 1, but 

near unit root pattern with highly persistent trend break increases the effect of this 

shift more than the indication of stationary break alternative. But rejection rates 

also show that even small mean break can be detected by *_ ( )C

B
adj F T  statistic 

where max ( )
B

F T  statistic fail to reject null hypothesis.   

However, when 0.9α =  even for a high trend break *_ ( )C

B
adj F T  statistic 

concludes true alternative hypothesis which is presented in Table 4.4.2. But this 

situation is not general. For the case that slope break is high, mean break is low 

and α  is close to 1, the test statistic favors 3A
H . Power of the test statistic grows 

with the break values of µ1  and 3µ .   This is the desired property that a test 

statistic should hold. However, most of the test statistics in the literature is lack of 

this property. We consider low break values. If *_ ( )C

B
adj F T  performs good under 
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these scenarios, *_ ( )C

B
adj F T  will have better power properties for higher values 

of break. For high α  and small breaks, max ( )
B

F T  statistic sometimes fails to 

reject false null hypothesis. However, in the same case, *_ ( )C

B
adj F T  has high 

rejection rate but only weakness that test statistic suffers is the conclusion of 

wrong alternative.  

We investigate analysis in detailed context by searching various values of 

parameters. For 0.9α =  high trend break dominates the test statistic and 

*_ ( )C

B
adj F T  favors unit root and trend break alternative. Table 4.4.2 shows that 

for 10.9,  0.5,  {0,1,2,3,4}α µ µ3= = =  joint null is rejected in favor of the 3A
H .  

Trend slope break plays the role of unit root behavior in the errors only if the mean 

break is dominated by slope break. This result is consistent with Sen (2003). It is 

observed that when α decreases to 0.8, regardless of the magnitude of the break 

*_ ( )C

B
adj F T  statistic has high power in true alternative. (Table 4.5.1) This shows 

that, only under high α  value,  *_ ( )C

B
adj F T  statistic has disadvantage of 

concluding wrong alternative.  

Another implication arises from Table 4.4.2 is that, when small mean break 

is presented in the data generation process, *_ ( )C

B
adj F T  fails to reject no break 

pattern. In other words, small mean break is not detected by test statistic, so that, 

*_ ( )C

B
adj F T  rejects the null hypothesis in favor of the 1A

H .  Even in these small 

mean break cases, max ( )
B

F T  fails to reject the joint null. Not only break is not 

detected but also stationary behavior of the time series is falsified. Also inability of 

the *_ ( )C

B
adj F T  statistic is limited. For the case that 3 1,  0α µ µ1= 0.9, = =  
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rejection rate is 53.9 percent. This rate decreases to 7.9 percent in max ( )
B

F T   

statistics. (Table 4.3.2) When value of mean break increases and 

1 32,  0α µ µ= 0.9, = = , rejection rate of *_ ( )C

B
adj F T  statistic increases to 92.6 

percent whereas max ( )
B

F T  has 47.3 percent rejection rate. *_ ( )C

B
adj F T  statistic 

loses power when slope break jumps to significant level such that 

1 3 2,  0.5α µ µ= 0.9, = =  and rejection rate decreases to 1 percent. But note that 

this case is specific to high α  value. When α  decreases to 0.8 so data generation 

process is 1 38  2,  0.5α µ µ= 0. , = = , rejection rate jumps to 86.2. (Table 4.5.1) 

Limited power distortions in *_ ( )C

B
adj F T  statistic decreases with the 

presence of AR (1) errors. Table 4.4.3 includes simulations when AR component 

0.6ρ = . If we compare Table 4.4.3 with previous Table 4.4.2, we see that wrong 

alternative conclusion rate has been decreased. But low mean break is not detected 

in the presence of AR component. The direction of the impact is reserved when 

AR component is negative. Next table (Table 4.4.4) reveals that, negative AR 

component has an impact on test statistic such that *_ ( )C

B
adj F T  rejects the null 

hypothesis in favor of 3A
H . Spurious unit root pattern evidence is caused by 

negative AR component. Tables 4.4.5 and 4.4.6 show that MA component does 

not have significant effect on power properties of the test statistic. 

Superiority of the *_ ( )C

B
adj F T  statistic is clearer in the presentations in 

Tables 4.4.7-11 where simulations have same parameters as in the work of Sen 

(2003).  It is possible to compare power simulations with Sen (2003).  Wrong 

alternative specifications follow the same pattern for previous case. However the 
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distortions are decreased in number. Simulations are the same as in the case 

( ) (0,0)ρ ψ, = , for positive AR component but negative AR component has effect 

on _ ( )C

B
adj F T  statistic. For the data generation process: 1 38  8,  0α µ µ= 0. , = = ; 

when ρ = 0 , rejection rate is 98.6 for 2A
H  but 3.30 for same alternative. (Table 

4.4.8) This is an evidence for the distortional effect of AR component. Simulations 

in Table 4.3.2 where 0.9α =  there is no power distortion. This result indicates 

that, source of the distortions in the statistic is dependent up on the parameter 

values of the data generation process.  Then someone should be cautious to test for 

both structural break and unit root. Parameter space should be general enough to 

reach a reliable conclusion. Undetermined cases may involve contradicting results. 

This is another motivation for our research. We wanted to include all alternatives 

such that parameter effect up on the test statistic is clearer which is not wholly 

discovered in the literature. For example Sen (2003) found that max ( )
B

F T  

statistic has serious size distortions for negative MA component and erratic power 

results for positive MA component. However in his power simulations 0.8α =  is 

the only case. We reach the same erratic nature of negative MA component of 

errors when 0.8α = . But the erratic nature is removed when 0.9α = . So power 

results will highly depend up on parameter values. When alternative form of break 

is not general enough to capture all forms of break, reliability of the results will be 

brought to question.   
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4.5 FINITE SAMPLE POWER SIMULATIONS WHEN 3A
H  IS TRUE DGP 

Table 4.5.1  Finite Sample Power of 
*_ ( )C

B
adj F T , max ( )

B
F T , ( )

T
J m  

 

( ) (0,0)ρ ψ, =    

 
*_ ( )C

B
adj F T

   

 

max ( )
B

F T

 

 

( )
T

J m

 

 

1               µ µ α3

 

 

3A
H   2A

H  

 

1A
H

     

  0       0.1      1 92,5 7,50 0,0 88,70 5,00 

  0       0.2      1 100, 0,00 0,0 100,00 5,00 

  0       0.3      1 100, 0,00 0,0 100,00 5,00 

  0       0.4      1 100, 0,00 0,0 100,00 5,00 

  0       0.5      1 100, 0,00 0,0 100,00 5,00 

  1       0         1 0,00 100,00 0,0 16,60 5,00 

  1       0.1      1 99,6 0,40 0,0 90,40 5,00 

  1       0.2      1 100, 0,00 0,0 100,00 5,00 

  1       0.3      1 100, 0,00 0,0 100,00 5,00 

  1       0.4      1 100, 0,00 0,0 100,00 5,00 

  1       0.5      1 100, 0,00 0,0 100,00 5,00 

  2       0         1 6,90 93,10 0,0 71,10 5,00 

  2       0.1      1 99,9 0,10 0,0 100,00 5,00 

  2       0.2      1 100, 0,00 0,0 100,00 5,00 

  2       0.3      1 100, 0,00 0,0 100,00 5,00 

  2       0.4      1 100, 0,00 0,0 100,00 5,00 

  2       0.5      1 100, 0,00 0,0 100,00 5,00 

 

Under data generation process that is unit root and structural break, power 

results are presented in Table 4.5.1-5. Results are very similar to the case where 

data generation process is stationary and break. (Tables 4.4.2-11) *_ ( )C

B
adj F T  

statistic can conclude true alternative except that data generation process is only 

mean break with unit root alternative. Note that this exception is disappear when 

value of mean break is higher than 6 or there is also slope trend break. In our 

unreported simulations, we consider max ( )
B

F T  statistic. max ( )
B

F T  has good 

power under this data generation process except there is low mean break. It is 

interesting to note that when *_ ( )C

B
adj F T  concludes wrong alternative, 
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max ( )
B

F T  has some power distortion. When magnitude of mean break is really 

low, *_ ( )C

B
adj F T  rejects the null hypothesis in favor of the stationary break 

alternative. Because mean break is not significant enough to deviate from the null 

hypothesis, *_ ( )C

B
adj F T  is partially lower than the null value so that it falls into 

the second rejection area in Figure 1. Those cases include 

11,  0,  {0,1, 2}α µ µ3= = = . These few exceptions deviate from true alternative; 

even under different combinations of ARMA errors. However there is one case 

that *_ ( )C

B
adj F T  statistic fails to reject joint null hypothesis. When 

31,  2,  0.1α µ µ1= = = , joint null is not rejected for any of the three alternatives. 

For all simulations, this is the only case that *_ ( )C

B
adj F T  statistic fails to reject.  
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CHAPTER 5  

 

 SUMMARY AND CONCLUSION 

 

 

 

 In this work, we try to build a test statistic that can conclude the true behavior 

of the time series. Testing for the true virtue of the time series has been the one 

important area in time series. Previous literature focus on the difference stationary 

versus trend break stationary models after Perron (1989) found that, spurious non-

rejection of difference stationary model is a consequence of unaccounted trend 

break alternative. However trend stationary models that are covered in the previous 

literature specify different alternative forms. In order to diminish misspecification 

errors, general mean and slope of the trend break in trend function is specified 

which is suggested by Sen (2003). When alternative form does not include true 

form of break, the other forms are not able to detect the structural break so that test 

statistic may suffer from spurious results which makes the inferences arises from 

the test statistics unreliable. But then, alternative hypothesis is too general to 

conclude the true structure of the time series. Practical use of this specification is 

limited. We propose a test statistic which has joint null hypothesis so that null 
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hypothesis is difference stationary model. However alternative form is determined 

according to the source of the deviation from the null hypothesis. Hence we were 

able to set up all possible alternative hypotheses which are not put together in the 

literature. So we have specific alternative hypotheses which correspond to 

different models for time series. This is the main motivation of the work that is 

presented. By imposing different alternatives to test statistic we can extend the 

alternative behavior to the difference stationary models. As an extension to the 

trend break stationary model, pure stationary model and trend break with unit root 

pattern behavior of the time series is also covered in our test statistic.  

Misspecification of the alternative hypothesis brings the size and power 

distortions in test statistics.  The test statistic proposed in this work has better 

power results compared to most general test statistic proposed in the literature. 

Also test statistic does not suffer from the misspecification of the alternative form 

of break since it is general enough to capture all forms of break in the alternative. 

Power results are quite evidence for the practical use of the test statistic. Our test 

has generally better power than the max ( )
B

F T  statistic which is proposed by Sen 

(2003). Note that Sen showed that max ( )
B

F T  statistic has better power properties 

from the previous test that are presented in the literature. Monte Carlo simulations 

highlight that only weakness of the *_ ( )C

B
adj F T  statistic is that, test statistic 

concludes wrong alternative when there is only small mean break with high lag 

dependency. In other cases dominance of the *_ ( )C

B
adj F T  statistic is presented in 

the Monte Carlo simulations. Even the low trend break is detected by 

*_ ( )C

B
adj F T  statistic.   
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Test statistic does not have only power dominance but also test has 

practical advantages. Alternatives can specify if there is only break or unit root 

with break. So that breaks date specification practically more reliable. However 

detailed analysis of the break date specification properties are beyond the scope of 

this research and left for further research. But since the source of deviation is 

known by using  *_ ( )C

B
adj F T  statistic, one can reach more reliable break 

specification. Though we did not make an empirical application of the 

*_ ( )C

B
adj F T  statistic, it will be interesting to address an empirical problem. 

Inferences that arise from the test statistic may have interesting results. Any 

empirical application of  *_ ( )C

B
adj F T  test is another idea for further research. 

*_ ( )C

B
adj F T  statistic is simulated by Monte Carlo replication. Asymptotic 

distribution is not derived since previous literature captures the asymptotic 

derivation of modification of this statistic which is not robust to I(1) property. 

Derivation under the joint null hypothesis will prove the invariance of the 

*_ ( )C

B
adj F T  statistic to nuisance parameter which is discussed in Vogelsang 

(1992).  
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APPENDIX 

TABLES 

Table 3.1. ( )
T

J m  Statistic: Critical Values 

      

 Percentage T=50 T=100 T=150 T=250  

1% 0.524 0.499 0.500 0.494 0.479 

2.5% 0.732 0.701 0.682 0.668 0.684 

5% 0.966 0.926 0.927 0.909 0.916 

10% 1.306 1.269 1.250 1.229 1.275 

20% 1.894 1.798 1.809 1.777 1.839 

50% 3.836 3.556 3.577 3.499 3.585 

80% 7.314 7.097 6.865 6.895 6.929 

90% 10.064 9.712 9.745 9.282 9.525 

95% 12.835 12.746 12.528 12.026 12.435 

97.5% 15.938 15.535 15.674 15.294 15.497 

99% 20.565 19.831 19.787 19.777 20.464 

 

 

 

 

∞
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Table 3.2. 
*_ ( )C

B
adj F T  Statistic: Critical Values 

 Percentag
e T=50 T=100 T=150 T=250   

1% 
4.99E+0
0 

4.73E+0
0 

4.85E+0
0 

4.32E+0
0 

4.01E+0
0 

2.5% 
3.89E+0
0 

3.58E+0
0 

3.86E+0
0 

3.59E+0
0 

3.51E+0
0 

5% 
2.90E+0
0 

2.84E+0
0 

2.94E+0
0 

2.84E+0
0 

2.73E+0
0 

10% 
1.91E+0
0 

1.94E+0
0 

2.02E+0
0 

2.00E+0
0 

1.90E+0
0 

20% 
1.01E+0
0 

1.05E+0
0 

1.10E+0
0 

1.14E+0
0 

1.18E+0
0 

50% 
1.30E-
01 

1.53E-
01 

1.79E-
01 

1.89E-
01 

1.91E-
01 

80% 
4.21E-
03 

4.69E-
03 

7.28E-
03 

6.82E-
03 

6.42E-
03 

90% 
2.34E-
04 

3.01E-
04 

5.96E-
04 

5.16E-
04 

5.23E-
04 

95% 
1.28E-
05 

1.95E-
05 

2.78E-
05 

3.51E-
05 

3.71E-
05 

97.5% 
4.57E-
07 

1.28E-
06 

8.47E-
07 

1.50E-
06 

1.49E-
06 

99% 
1.37E-
09 

2.36E-
08 

8.82E-
09 

2.89E-
08 

2.69E-
08 
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4.2 Finite Sample Size Simulations  

 

Table 4.2.2 Finite Sample Size of max ( )
B

F T  when T=250 

( )ρ ψ,   0.0,0.0 0.6,0.0 -0.6,0.0 (0.0,0.5) .0,-.5 -0.6,0.5 

max ( )
B

F T   0.042 0.406 0.901 0.07 0.936 0.080 

 

 

4.3 Finite Sample Power Simulations when 1A
H  is True DGP  

 

Table 4.3.1 Finite Sample Power of 
*_ ( )C

B
adj F T , max ( )

B
F T , ( )

T
J m  

1 0, 0   µ µ3= =     
*_ ( )C

B
adj F T     max ( )

B
F T   ( )

T
J m  

               ρ ψ α  3A
H  2A

H  1A
H      

  0       0         0.95 0,00 37,80 62,20 5,70 9,30 

  0       0         0.9 0,00 14,20 85,80 7,80 20,70 

  0       0         0.8 0,00 0,60 99,40 23,40 56,80 

  0       0         0.7 0,00 0,00 100,00 55,20 86,30 

  0       0         0.6 0,00 0,00 100,00 86,00 97,40 
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Table 4.3.2 Finite Sample Power of 
*_ ( )C

B
adj F T , max ( )

B
F T , ( )

T
J m  

 1 0, 0   µ µ3= =    

 
*_ ( )C

B
adj F T    

 

max ( )
B

F T  

 

( )
T

J m  

                ρ ψ α   3A
H   2A

H   1A
H      

  0.6    0         0.95 0,00 39,10 60,90 15,10 100,00 

  0.6    0         0.9 4,90 0,00 0,00 4,90 100,00 

  0.6    0         0.8 0,90 0,00 0,00 0,90 100,00 

  0.6    0         0.7 0,40 0,00 0,00 0,40 100,00 

  0.6    0         0.6 1,20 0,00 0,00 1,20 100,00 

 

 

 

 

Table 4.3.3 Finite Sample Power of 
*_ ( )C

B
adj F T , max ( )

B
F T , ( )

T
J m  

 1 0, 0   µ µ3= =    

 
*_ ( )C

B
adj F T    

 

max ( )
B

F T  

 

( )
T

J m  

                ρ ψ α   3A
H   2A

H   1A
H      

 -0.6    0         0.95 0,00 10,90 89,10 91,40 100,00 

 -0.6    0         0.9 0,00 3,20 96,80 96,60 100,00 

 -0.6    0         0.8 0,00 0,00 100,00 99,70 100,00 

 -0.6    0         0.7 0,00 0,00 100,00 100,00 100,00 

 -0.6    0         0.6 0,00 0,00 100,00 100,00 100,00 
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Table 4.3.4 Finite Sample Power of 
*_ ( )C

B
adj F T , max ( )

B
F T , ( )

T
J m  

 1 0, 0   µ µ3= =    

 
*_ ( )C

B
adj F T    

 

max ( )
B

F T  

 

( )
T

J m  

                ρ ψ α   3A
H   2A

H   1A
H      

  0       0.5      0.95 4,50 0,00 0,00 4,50 100,00 

  0       0.5      0.9 2,40 0,00 0,00 2,40 100,00 

  0       0.5      0.8 1,70 0,00 0,00 1,70 100,00 

  0       0.5      0.7 2,90 0,00 0,00 2,90 100,00 

  0       0.5      0.6 0,00 0,00 100,00 8,50 100,00 

 

 

 

 

Table 4.3.5 Finite Sample Power of 
*_ ( )C

B
adj F T , max ( )

B
F T , ( )

T
J m  

 1 0, 0   µ µ3= =    

 
*_ ( )C

B
adj F T    

 

max ( )
B

F T  

 

( )
T

J m  

                ρ ψ α   3A
H   2A

H   1A
H      

  0      -0.5      0.95 0,00 2,10 97,90 94,20 100,00 

  0      -0.5      0.9 0,00 0,10 99,90 98,30 100,00 

  0      -0.5      0.8 0,00 0,00 100,00 100,00 100,00 

  0      -0.5      0.7 0,00 0,00 100,00 100,00 100,00 

  0      -0.5      0.6 0,00 0,00 100,00 100,00 100,00 
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4.4 Finite Sample Power Simulations when 2A
H  is True DGP 

Table 4.4.1 Finite Sample Power of 
*_ ( )C

B
adj F T , max ( )

B
F T , ( )

T
J m  

 ( ) (0,0)ρ ψ, =     
*_ ( )C

B
adj F T     max ( )

B
F T   ( )

T
J m  

 1               µ µ α3   3A
H   2A

H   1A
H      

  0       0.1      0.95 0,50 99,50 0,00 16,80 0,00 

  0       0.2      0.95 90,80 9,20 0,00 87,90 0,00 

  0       0.3      0.95 100,00 0,00 0,00 100,00 0,00 

  0       0.4      0.95 100,00 0,00 0,00 100,00 0,00 

  0       0.5      0.95 100,00 0,00 0,00 100,00 0,00 

  1       0         0.95 0,00 87,60 12,40 8,40 0,40 

  1       0.1      0.95 2,90 97,10 0,00 35,30 0,00 

  1       0.2      0.95 90,60 9,40 0,00 89,60 0,00 

  1       0.3      0.95 99,90 0,10 0,00 100,00 0,00 

  1       0.4      0.95 100,00 0,00 0,00 100,00 0,00 

  1       0.5      0.95 100,00 0,00 0,00 100,00 0,00 

  2       0         0.95 0,00 99,80 0,20 66,30 0,00 

  2       0.1      0.95 4,90 95,10 0,00 85,30 0,00 

  2       0.2      0.95 84,20 15,80 0,00 98,30 0,00 

  2       0.3      0.95 99,80 0,20 0,00 100,00 0,00 

  2       0.4      0.95 100,00 0,00 0,00 100,00 0,00 

  2       0.5      0.95 100,00 0,00 0,00 100,00 0,00 

  4       0.5      0.95 0,00 100,00 0,00 100,00 0,00 

  4       0.1      0.95 2,00 98,00 0,00 100,00 0,00 

  4       0.2      0.95 50,80 49,20 0,00 100,00 0,00 

  4       0.3      0.95 97,10 2,90 0,00 100,00 0,00 

  4       0.4      0.95 99,90 0,10 0,00 100,00 0,00 

  4       0.5      0.95 100,00 0,00 0,00 100,00 0,00 

  6       0         0.95 0,00 100,00 0,00 100,00 0,00 

  6       0.1      0.95 0,30 99,70 0,00 100,00 0,00 

  6       0.2      0.95 14,40 85,60 0,00 100,00 0,00 

  6       0.3      0.95 77,10 22,90 0,00 100,00 0,00 

  6       0.4      0.95 99,30 0,70 0,00 100,00 0,00 

  6       0.5      0.95 100,00 0,00 0,00 100,00 0,00 

  8       0         0.95 0,00 100,00 0,00 100,00 0,00 

  8       0.1      0.95 0,00 100,00 0,00 100,00 0,00 

  8       0.2      0.95 1,70 98,30 0,00 100,00 0,00 

  8       0.3      0.95 33,90 66,10 0,00 100,00 0,00 

  8       0.4      0.95 90,10 9,90 0,00 100,00 0,00 

  8       0.5      0.95 99,80 0,20 0,00 100,00 0,00 
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Table 4.4.2 Finite Sample Power of 
*_ ( )C

B
adj F T , max ( )

B
F T , ( )

T
J m  

 ( ) (0,0)ρ ψ, =     
*_ ( )C

B
adj F T     max ( )

B
F T   ( )

T
J m  

 1               µ µ α3   3A
H   2A

H   1A
H      

  0       0.1      0.9 0,00 100,00 0,00 8,80 0,00 

  0       0.2      0.9 5,20 94,80 0,00 39,30 0,00 

  0       0.3      0.9 76,50 23,50 0,00 84,70 0,00 

  0       0.4      0.9 98,40 1,60 0,00 94,90 0,00 

  0       0.5      0.9 99,90 0,10 0,00 100,00 0,00 

  1       0         0.9 0,00 53,90 46,10 7,90 3,40 

  1       0.1      0.9 0,00 100,00 0,00 19,70 0,00 

  1       0.2      0.9 5,40 94,60 0,00 58,60 0,00 

  1       0.3      0.9 69,00 31,00 0,00 83,10 0,00 

  1       0.4      0.9 96,30 3,70 0,00 93,90 0,00 

  1       0.5      0.9 99,80 0,20 0,00 100,00 0,00 

  2       0         0.9 0,00 92,60 7,40 47,30 0,00 

  2       0.1      0.9 0,00 100,00 0,00 65,10 0,00 

  2       0.2      0.9 3,30 96,70 0,00 91,10 0,00 

  2       0.3      0.9 48,40 51,60 0,00 99,10 0,00 

  2       0.4      0.9 89,00 11,00 0,00 100,00 0,00 

  2       0.5      0.9 99,00 1,00 0,00 100,00 0,00 

  4       0.5      0.9 0,00 99,90 0,10 100,00 0,00 

  4       0.1      0.9 0,00 100,00 0,00 100,00 0,00 

  4       0.2      0.9 0,20 99,80 0,00 100,00 0,00 

  4       0.3      0.9 7,60 92,40 0,00 100,00 0,00 

  4       0.4      0.9 43,10 56,90 0,00 100,00 0,00 

  4       0.5      0.9 83,30 16,70 0,00 100,00 0,00 

  6       0         0.9 0,00 100,00 0,00 100,00 0,00 

  6       0.1      0.9 0,00 100,00 0,00 100,00 0,00 

  6       0.2      0.9 0,00 100,00 0,00 100,00 0,00 

  6       0.3      0.9 0,30 99,70 0,00 100,00 0,00 

  6       0.4      0.9 4,10 95,90 0,00 100,00 0,00 

  6       0.5      0.9 27,80 72,20 0,00 100,00 0,00 

  8       0         0.9 0,00 100,00 0,00 100,00 0,00 

  8       0.1      0.9 0,00 100,00 0,00 100,00 0,00 

  8       0.2      0.9 0,00 100,00 0,00 100,00 0,00 

  8       0.3      0.9 0,00 100,00 0,00 100,00 0,00 

  8       0.4      0.9 0,10 99,90 0,00 100,00 0,00 

  8       0.5      0.9 1,60 98,40 0,00 100,00 0,00 
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Table 4.4.3 Finite Sample Power of 
*_ ( )C

B
adj F T , max ( )

B
F T , ( )

T
J m  

 ( ) (0.6,0)ρ ψ, =     
*_ ( )C

B
adj F T     max ( )

B
F T   ( )

T
J m  

 1               µ µ α3   3A
H   2A

H   1A
H      

  0       0.1      0.9 0,00 100,00 0,00 72,30 100,00 

  0       0.2      0.9 3,60 96,40 0,00 42,90 100,00 

  0       0.3      0.9 93,50 6,50 0,00 33,70 100,00 

  0       0.4      0.9 100,00 0,00 0,00 56,60 100,00 

  0       0.5      0.9 100,00 0,00 0,00 86,00 99,40 

  1       0         0.9 0,00 38,00 62,00 75,20 100,00 

  1       0.1      0.9 0,00 100,00 0,00 80,20 100,00 

  1       0.2      0.9 7,50 92,50 0,00 50,00 100,00 

  1       0.3      0.9 92,90 7,10 0,00 25,80 100,00 

  1       0.4      0.9 99,90 0,10 0,00 55,90 100,00 

  1       0.5      0.9 100,00 0,00 0,00 95,70 99,60 

  2       0         0.9 0,00 95,30 4,70 57,10 100,00 

  2       0.1      0.9 0,00 100,00 0,00 94,40 100,00 

  2       0.2      0.9 8,20 91,80 0,00 82,80 100,00 

  2       0.3      0.9 86,40 13,60 0,00 67,10 100,00 

  2       0.4      0.9 99,80 0,20 0,00 82,40 100,00 

  2       0.5      0.9 100,00 0,00 0,00 98,00 99,90 

  4       0.5      0.9 0,00 100,00 0,00 79,20 100,00 

  4       0.1      0.9 0,00 100,00 0,00 90,30 100,00 

  4       0.2      0.9 2,20 97,80 0,00 94,00 100,00 

  4       0.3      0.9 53,10 46,90 0,00 98,80 100,00 

  4       0.4      0.9 96,60 3,40 0,00 99,80 100,00 

  4       0.5      0.9 99,90 0,10 0,00 99,90 100,00 

  6       0         0.9 0,00 100,00 0,00 98,80 100,00 

  6       0.1      0.9 0,00 100,00 0,00 99,90 100,00 

  6       0.2      0.9 0,20 99,80 0,00 99,90 100,00 

  6       0.3      0.9 12,80 87,20 0,00 100,00 100,00 

  6       0.4      0.9 71,60 28,40 0,00 100,00 100,00 

  6       0.5      0.9 98,50 1,50 0,00 100,00 100,00 

  8       0         0.9 0,00 100,00 0,00 100,00 100,00 

  8       0.1      0.9 0,00 100,00 0,00 100,00 100,00 

  8       0.2      0.9 0,00 100,00 0,00 100,00 100,00 

  8       0.3      0.9 0,90 99,10 0,00 100,00 100,00 

  8       0.4      0.9 23,30 76,70 0,00 100,00 100,00 

  8       0.5      0.9 80,40 19,60 0,00 100,00 100,00 
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Table 4.4.4 Finite Sample Power of 
*_ ( )C

B
adj F T , max ( )

B
F T , ( )

T
J m  

 ( ) ( 0.6,0)ρ ψ, = −     
*_ ( )C

B
adj F T     max ( )

B
F T   ( )

T
J m  

 1               µ µ α3   3A
H   2A

H   1A
H      

  0       0.1      0.9 0,00 100,00 0,00 72,30 100,00 

  0       0.2      0.9 3,60 96,40 0,00 42,90 100,00 

  0       0.3      0.9 93,50 6,50 0,00 33,70 100,00 

  0       0.4      0.9 100,00 0,00 0,00 66,60 100,00 

  0       0.5      0.9 100,00 0,00 0,00 96,00 99,40 

  1       0         0.9 0,00 38,00 62,00 65,20 100,00 

  1       0.1      0.9 0,00 100,00 0,00 83,20 100,00 

  1       0.2      0.9 7,50 92,50 0,00 50,00 100,00 

  1       0.3      0.9 92,90 7,10 0,00 35,80 100,00 

  1       0.4      0.9 99,90 0,10 0,00 65,90 100,00 

  1       0.5      0.9 100,00 0,00 0,00 95,70 99,60 

  2       0         0.9 0,00 95,30 4,70 57,10 100,00 

  2       0.1      0.9 0,00 100,00 0,00 94,40 100,00 

  2       0.2      0.9 8,20 91,80 0,00 84,80 100,00 

  2       0.3      0.9 86,40 13,60 0,00 67,10 100,00 

  2       0.4      0.9 99,80 0,20 0,00 82,40 100,00 

  2       0.5      0.9 100,00 0,00 0,00 98,00 99,90 

  4       0.5      0.9 0,00 100,00 0,00 79,20 100,00 

  4       0.1      0.9 0,00 100,00 0,00 97,30 100,00 

  4       0.2      0.9 2,20 97,80 0,00 97,70 100,00 

  4       0.3      0.9 53,10 46,90 0,00 99,80 100,00 

  4       0.4      0.9 96,60 3,40 0,00 99,80 100,00 

  4       0.5      0.9 99,90 0,10 0,00 99,90 100,00 

  6       0         0.9 0,00 100,00 0,00 100,00 100,00 

  6       0.1      0.9 0,00 100,00 0,00 100,00 100,00 

  6       0.2      0.9 0,20 99,80 0,00 100,00 100,00 

  6       0.3      0.9 12,80 87,20 0,00 100,00 100,00 

  6       0.4      0.9 71,60 28,40 0,00 100,00 100,00 

  6       0.5      0.9 98,50 1,50 0,00 100,00 100,00 

  8       0         0.9 0,00 100,00 0,00 100,00 100,00 

  8       0.1      0.9 0,00 100,00 0,00 100,00 100,00 

  8       0.2      0.9 0,00 100,00 0,00 100,00 100,00 

  8       0.3      0.9 0,90 99,10 0,00 100,00 100,00 

  8       0.4      0.9 23,30 76,70 0,00 100,00 100,00 

  8       0.5      0.9 80,40 19,60 0,00 100,00 100,00 
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Table 4.4.5 Finite Sample Power of 
*_ ( )C

B
adj F T , max ( )

B
F T , ( )

T
J m  

 ( ) (0,0.5)ρ ψ, =     
*_ ( )C

B
adj F T     max ( )

B
F T   ( )

T
J m  

 1               µ µ α3   3A
H   2A

H   1A
H      

  0       0.1      0.9 0,00 100,00 0,00 14,40 100,00 

  0       0.2      0.9 18,20 81,80 0,00 74,90 100,00 

  0       0.3      0.9 86,00 14,00 0,00 89,70 100,00 

  0       0.4      0.9 99,10 0,90 0,00 100,00 99,60 

  0       0.5      0.9 99,90 0,10 0,00 100,00 96,30 

  1       0         0.9 0,00 64,50 35,50 11,40 100,00 

  1       0.1      0.9 0,00 100,00 0,00 32,70 100,00 

  1       0.2      0.9 17,70 82,30 0,00 74,50 100,00 

  1       0.3      0.9 79,80 20,20 0,00 99,80 100,00 

  1       0.4      0.9 97,90 2,10 0,00 100,00 99,70 

  1       0.5      0.9 99,90 0,10 0,00 100,00 98,00 

  2       0         0.9 0,00 94,10 5,90 78,40 100,00 

  2       0.1      0.9 0,00 100,00 0,00 86,80 100,00 

  2       0.2      0.9 9,00 91,00 0,00 90,50 100,00 

  2       0.3      0.9 60,20 39,80 0,00 100,00 100,00 

  2       0.4      0.9 92,70 7,30 0,00 100,00 100,00 

  2       0.5      0.9 99,50 0,50 0,00 100,00 99,40 

  4       0.5      0.9 0,00 99,90 0,10 100,00 100,00 

  4       0.1      0.9 0,00 100,00 0,00 100,00 100,00 

  4       0.2      0.9 0,70 99,30 0,00 100,00 100,00 

  4       0.3      0.9 12,30 87,70 0,00 100,00 100,00 

  4       0.4      0.9 51,90 48,10 0,00 100,00 100,00 

  4       0.5      0.9 87,30 12,70 0,00 100,00 100,00 

  6       0         0.9 0,00 100,00 0,00 100,00 100,00 

  6       0.1      0.9 0,00 100,00 0,00 100,00 100,00 

  6       0.2      0.9 0,00 100,00 0,00 100,00 100,00 

  6       0.3      0.9 0,40 99,60 0,00 100,00 100,00 

  6       0.4      0.9 6,50 93,50 0,00 100,00 100,00 

  6       0.5      0.9 35,10 64,90 0,00 100,00 100,00 

  8       0         0.9 0,00 100,00 0,00 100,00 100,00 

  8       0.1      0.9 0,00 100,00 0,00 100,00 100,00 

  8       0.2      0.9 0,00 100,00 0,00 100,00 100,00 

  8       0.3      0.9 0,00 100,00 0,00 100,00 100,00 

  8       0.4      0.9 0,20 99,80 0,00 100,00 100,00 

  8       0.5      0.9 2,40 97,60 0,00 100,00 100,00 
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Table 4.4.6 Finite Sample Power of 
*_ ( )C

B
adj F T , max ( )

B
F T , ( )

T
J m  

 ( ) (0, 0.5)ρ ψ, = −     
*_ ( )C

B
adj F T     max ( )

B
F T   ( )

T
J m  

 1               µ µ α3   3A
H   2A

H   1A
H      

  0       0.1      0.9 0,00 100,00 0,00 88,60 100,00 

  0       0.2      0.9 0,00 100,00 0,00 78,60 100,00 

  0       0.3      0.9 0,10 99,90 0,00 71,60 100,00 

  0       0.4      0.9 28,30 71,70 0,00 71,00 100,00 

  0       0.5      0.9 89,10 10,90 0,00 80,20 100,00 

  1       0         0.9 0,00 3,00 97,00 90,60 100,00 

  1       0.1      0.9 0,00 100,00 0,00 93,80 100,00 

  1       0.2      0.9 0,00 100,00 0,00 87,70 100,00 

  1       0.3      0.9 0,10 99,90 0,00 80,80 100,00 

  1       0.4      0.9 24,70 75,30 0,00 70,80 100,00 

  1       0.5      0.9 84,30 15,70 0,00 86,60 100,00 

  2       0         0.9 0,00 41,80 58,20 82,60 100,00 

  2       0.1      0.9 0,00 100,00 0,00 93,80 100,00 

  2       0.2      0.9 0,00 100,00 0,00 97,70 100,00 

  2       0.3      0.9 0,10 99,90 0,00 97,10 100,00 

  2       0.4      0.9 13,70 86,30 0,00 90,70 100,00 

  2       0.5      0.9 70,90 29,10 0,00 96,90 100,00 

  4       0.5      0.9 0,00 99,20 0,80 93,90 100,00 

  4       0.1      0.9 0,00 100,00 0,00 97,90 100,00 

  4       0.2      0.9 0,00 100,00 0,00 99,70 100,00 

  4       0.3      0.9 0,00 100,00 0,00 100,00 100,00 

  4       0.4      0.9 1,10 98,90 0,00 100,00 100,00 

  4       0.5      0.9 10,20 89,80 0,00 100,00 100,00 

  6       0         0.9 0,00 100,00 0,00 100,00 100,00 

  6       0.1      0.9 0,00 100,00 0,00 100,00 100,00 

  6       0.2      0.9 0,00 100,00 0,00 100,00 100,00 

  6       0.3      0.9 0,00 100,00 0,00 100,00 100,00 

  6       0.4      0.9 0,00 100,00 0,00 100,00 100,00 

  6       0.5      0.9 0,90 99,10 0,00 100,00 100,00 

  8       0         0.9 0,00 100,00 0,00 100,00 100,00 

  8       0.1      0.9 0,00 100,00 0,00 100,00 100,00 

  8       0.2      0.9 0,00 100,00 0,00 100,00 100,00 

  8       0.3      0.9 0,00 100,00 0,00 100,00 100,00 

  8       0.4      0.9 0,00 100,00 0,00 100,00 100,00 

  8       0.5      0.9 0,00 100,00 0,00 100,00 100,00 
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Table 4.4.7 Finite Sample Power of 
*_ ( )C

B
adj F T , max ( )

B
F T , ( )

T
J m  

 ( ) (0,0)ρ ψ, =     
*_ ( )C

B
adj F T     max ( )

B
F T   ( )

T
J m  

 1               µ µ α3   3A
H   2A

H   1A
H      

  0       0.1      0.8 0,00 99,90 0,10 14,70 100,00 

  0       0.2      0.8 0,00 100,00 0,00 23,10 100,00 

  0       0.3      0.8 0,00 100,00 0,00 44,20 100,00 

  0       0.4      0.8 7,20 92,80 0,00 76,40 100,00 

  0       0.5      0.8 41,70 58,30 0,00 94,60 100,00 

  1       0         0.8 0,00 6,30 93,70 15,60 100,00 

  1       0.1      0.8 0,00 100,00 0,00 20,70 100,00 

  1       0.2      0.8 0,00 100,00 0,00 36,10 100,00 

  1       0.3      0.8 0,10 99,90 0,00 60,50 100,00 

  1       0.4      0.8 4,20 95,80 0,00 85,80 100,00 

  1       0.5      0.8 30,20 69,80 0,00 98,90 100,00 

  2       0         0.8 0,00 37,20 62,80 36,50 100,00 

  2       0.1      0.8 0,00 99,90 0,10 43,00 100,00 

  2       0.2      0.8 0,00 100,00 0,00 66,90 100,00 

  2       0.3      0.8 0,00 100,00 0,00 85,80 100,00 

  2       0.4      0.8 1,30 98,70 0,00 92,30 100,00 

  2       0.5      0.8 13,80 86,20 0,00 94,80 100,00 

  4       0         0.8 0,00 84,40 15,60 96,50 100,00 

  4       0.1      0.8 0,00 99,90 0,10 98,60 100,00 

  4       0.2      0.8 0,00 100,00 0,00 99,80 100,00 

  4       0.3      0.8 0,00 100,00 0,00 99,90 100,00 

  4       0.4      0.8 0,00 100,00 0,00 100,00 100,00 

  4       0.5      0.8 0,50 99,50 0,00 100,00 100,00 

  6       0         0.8 0,00 96,20 3,80 100,00 100,00 

  6       0.1      0.8 0,00 99,90 0,10 100,00 100,00 

  6       0.2      0.8 0,00 100,00 0,00 100,00 100,00 

  6       0.3      0.8 0,00 100,00 0,00 100,00 100,00 

  6       0.4      0.8 0,00 100,00 0,00 100,00 100,00 

  6       0.5      0.8 0,00 100,00 0,00 100,00 100,00 

  8       0         0.8 0,00 98,60 1,40 100,00 100,00 

  8       0.1      0.8 0,00 100,00 0,00 100,00 100,00 

  8       0.2      0.8 0,00 100,00 0,00 100,00 100,00 

  8       0.3      0.8 0,00 100,00 0,00 100,00 100,00 

  8       0.4      0.8 0,00 100,00 0,00 100,00 100,00 

  8       0.5      0.8 0,00 100,00 0,00 100,00 100,00 
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Table 4.4.8 Finite Sample Power of 
*_ ( )C

B
adj F T , max ( )

B
F T , ( )

T
J m  

 ( ) (0.6,0)ρ ψ, =     
*_ ( )C

B
adj F T     max ( )

B
F T   ( )

T
J m  

 1               µ µ α3   3A
H   2A

H   1A
H      

  0       0.1      0.8 0,80 0,00 0,00 0,80 100,00 

  0       0.2      0.8 2,50 0,00 0,00 2,50 100,00 

  0       0.3      0.8 0,00 100,00 0,00 14,10 100,00 

  0       0.4      0.8 0,00 100,00 0,00 46,90 100,00 

  0       0.5      0.8 0,20 99,80 0,00 83,20 100,00 

  1       0         0.8 0,90 0,00 0,00 0,90 100,00 

  1       0.1      0.8 2,10 0,00 0,00 2,10 100,00 

  1       0.2      0.8 0,00 100,00 0,00 7,50 100,00 

  1       0.3      0.8 0,00 100,00 0,00 26,80 100,00 

  1       0.4      0.8 0,00 100,00 0,00 62,90 100,00 

  1       0.5      0.8 0,10 99,90 0,00 89,90 100,00 

  2       0         0.8 0,00 2,10 97,90 11,70 100,00 

  2       0.1      0.8 0,00 61,30 38,70 19,50 100,00 

  2       0.2      0.8 0,00 100,00 0,00 36,10 100,00 

  2       0.3      0.8 0,00 100,00 0,00 62,40 100,00 

  2       0.4      0.8 0,00 100,00 0,00 85,40 100,00 

  2       0.5      0.8 0,00 100,00 0,00 96,80 100,00 

  4       0         0.8 0,00 7,20 92,80 94,70 100,00 

  4       0.1      0.8 0,00 41,30 58,70 94,20 100,00 

  4       0.2      0.8 0,00 98,20 1,80 97,00 100,00 

  4       0.3      0.8 0,00 100,00 0,00 98,90 100,00 

  4       0.4      0.8 0,00 100,00 0,00 99,80 100,00 

  4       0.5      0.8 0,00 100,00 0,00 99,90 100,00 

  6       0         0.8 0,00 6,10 93,90 100,00 100,00 

  6       0.1      0.8 0,00 23,80 76,20 100,00 100,00 

  6       0.2      0.8 0,00 85,40 14,60 100,00 100,00 

  6       0.3      0.8 0,00 100,00 0,00 100,00 100,00 

  6       0.4      0.8 0,00 100,00 0,00 100,00 100,00 

  6       0.5      0.8 0,00 100,00 0,00 100,00 100,00 

  8       0         0.8 0,00 3,30 96,70 100,00 100,00 

  8       0.1      0.8 0,00 10,40 89,60 100,00 100,00 

  8       0.2      0.8 0,00 58,90 41,10 100,00 100,00 

  8       0.3      0.8 0,00 99,00 1,00 100,00 100,00 

  8       0.4      0.8 0,00 100,00 0,00 100,00 100,00 

  8       0.5      0.8 0,00 100,00 0,00 100,00 100,00 
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Table 4.4.9 Finite Sample Power of 
*_ ( )C

B
adj F T , max ( )

B
F T , ( )

T
J m  

 ( ) ( 0.6,0)ρ ψ, = −     
*_ ( )C

B
adj F T     max ( )

B
F T   ( )

T
J m  

 1               µ µ α3   3A
H   2A

H   1A
H      

  0       0.1      0.8 0,80 0,00 0,00 0,80 100,00 

  0       0.2      0.8 2,50 0,00 0,00 2,50 100,00 

  0       0.3      0.8 0,00 100,00 0,00 14,10 100,00 

  0       0.4      0.8 0,00 100,00 0,00 46,90 100,00 

  0       0.5      0.8 0,20 99,80 0,00 83,20 100,00 

  1       0         0.8 0,90 0,00 0,00 0,90 100,00 

  1       0.1      0.8 2,10 0,00 0,00 2,10 100,00 

  1       0.2      0.8 0,00 100,00 0,00 7,50 100,00 

  1       0.3      0.8 0,00 100,00 0,00 26,80 100,00 

  1       0.4      0.8 0,00 100,00 0,00 62,90 100,00 

  1       0.5      0.8 0,10 99,90 0,00 89,90 100,00 

  2       0         0.8 0,00 2,10 97,90 11,70 100,00 

  2       0.1      0.8 0,00 61,30 38,70 19,50 100,00 

  2       0.2      0.8 0,00 100,00 0,00 36,10 100,00 

  2       0.3      0.8 0,00 100,00 0,00 62,40 100,00 

  2       0.4      0.8 0,00 100,00 0,00 85,40 100,00 

  2       0.5      0.8 0,00 100,00 0,00 96,80 100,00 

  4       0         0.8 0,00 7,20 92,80 91,70 100,00 

  4       0.1      0.8 0,00 41,30 58,70 94,20 100,00 

  4       0.2      0.8 0,00 98,20 1,80 97,00 100,00 

  4       0.3      0.8 0,00 100,00 0,00 98,90 100,00 

  4       0.4      0.8 0,00 100,00 0,00 99,80 100,00 

  4       0.5      0.8 0,00 100,00 0,00 99,90 100,00 

  6       0         0.8 0,00 6,10 93,90 100,00 100,00 

  6       0.1      0.8 0,00 23,80 76,20 100,00 100,00 

  6       0.2      0.8 0,00 85,40 14,60 100,00 100,00 

  6       0.3      0.8 0,00 100,00 0,00 100,00 100,00 

  6       0.4      0.8 0,00 100,00 0,00 100,00 100,00 

  6       0.5      0.8 0,00 100,00 0,00 100,00 100,00 

  8       0         0.8 0,00 3,30 96,70 100,00 100,00 

  8       0.1      0.8 0,00 10,40 89,60 100,00 100,00 

  8       0.2      0.8 0,00 58,90 41,10 100,00 100,00 

  8       0.3      0.8 0,00 99,00 1,00 100,00 100,00 

  8       0.4      0.8 0,00 100,00 0,00 100,00 100,00 

  8       0.5      0.8 0,00 100,00 0,00 100,00 100,00 

 

 

 



 101 

Table 4.4.10 Finite Sample Power of 
*_ ( )C

B
adj F T , max ( )

B
F T , ( )

T
J m  

 ( ) (0,0.5)ρ ψ, =     
*_ ( )C

B
adj F T     max ( )

B
F T   ( )

T
J m  

 1               µ µ α3   3A
H   2A

H   1A
H      

  0       0.1      0.8 2,50 0,00 0,00 2,50 100,00 

  0       0.2      0.8 0,00 100,00 0,00 18,30 100,00 

  0       0.3      0.8 1,60 98,40 0,00 65,80 100,00 

  0       0.4      0.8 24,90 75,10 0,00 96,60 100,00 

  0       0.5      0.8 62,30 37,70 0,00 99,90 100,00 

  1       0         0.8 4,10 0,00 0,00 4,10 100,00 

  1       0.1      0.8 0,00 100,00 0,00 7,80 100,00 

  1       0.2      0.8 0,00 100,00 0,00 34,60 100,00 

  1       0.3      0.8 1,00 99,00 0,00 79,30 100,00 

  1       0.4      0.8 16,50 83,50 0,00 98,50 100,00 

  1       0.5      0.8 49,00 51,00 0,00 99,90 100,00 

  2       0         0.8 0,00 51,60 48,40 43,70 100,00 

  2       0.1      0.8 0,00 100,00 0,00 53,80 100,00 

  2       0.2      0.8 0,00 100,00 0,00 78,20 100,00 

  2       0.3      0.8 0,30 99,70 0,00 96,20 100,00 

  2       0.4      0.8 6,70 93,30 0,00 99,80 100,00 

  2       0.5      0.8 26,90 73,10 0,00 100,00 100,00 

  4       0         0.8 0,00 86,10 13,90 99,90 100,00 

  4       0.1      0.8 0,00 99,90 0,10 100,00 100,00 

  4       0.2      0.8 0,00 100,00 0,00 100,00 100,00 

  4       0.3      0.8 0,00 100,00 0,00 100,00 100,00 

  4       0.4      0.8 0,10 99,90 0,00 100,00 100,00 

  4       0.5      0.8 1,90 98,10 0,00 100,00 100,00 

  6       0         0.8 0,00 95,80 4,20 100,00 100,00 

  6       0.1      0.8 0,00 99,90 0,10 100,00 100,00 

  6       0.2      0.8 0,00 100,00 0,00 100,00 100,00 

  6       0.3      0.8 0,00 100,00 0,00 100,00 100,00 

  6       0.4      0.8 0,00 100,00 0,00 100,00 100,00 

  6       0.5      0.8 0,00 100,00 0,00 100,00 100,00 

  8       0         0.8 0,00 98,40 1,60 100,00 100,00 

  8       0.1      0.8 0,00 100,00 0,00 100,00 100,00 

  8       0.2      0.8 0,00 100,00 0,00 100,00 100,00 

  8       0.3      0.8 0,00 100,00 0,00 100,00 100,00 

  8       0.4      0.8 0,00 100,00 0,00 100,00 100,00 

  8       0.5      0.8 0,00 100,00 0,00 100,00 100,00 
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Table 4.4.11 Finite Sample Power of 
*_ ( )C

B
adj F T , max ( )

B
F T , ( )

T
J m  

 ( ) (0, 0.5)ρ ψ, = −     
*_ ( )C

B
adj F T     max ( )

B
F T   ( )

T
J m  

 1               µ µ α3   3A
H   2A

H   1A
H      

  0       0.1      0.8 0,00 38,50 61,50 99,60 100,00 

  0       0.2      0.8 0,00 100,00 0,00 99,40 100,00 

  0       0.3      0.8 0,00 100,00 0,00 99,40 100,00 

  0       0.4      0.8 0,00 100,00 0,00 99,40 100,00 

  0       0.5      0.8 0,00 100,00 0,00 99,60 100,00 

  1       0         0.8 0,00 0,00 100,00 99,80 100,00 

  1       0.1      0.8 0,00 50,60 49,40 99,70 100,00 

  1       0.2      0.8 0,00 100,00 0,00 99,70 100,00 

  1       0.3      0.8 0,00 100,00 0,00 99,70 100,00 

  1       0.4      0.8 0,00 100,00 0,00 99,70 100,00 

  1       0.5      0.8 0,00 100,00 0,00 99,70 100,00 

  2       0         0.8 0,00 0,10 99,90 99,70 100,00 

  2       0.1      0.8 0,00 68,20 31,80 99,80 100,00 

  2       0.2      0.8 0,00 100,00 0,00 99,90 100,00 

  2       0.3      0.8 0,00 100,00 0,00 99,90 100,00 

  2       0.4      0.8 0,00 100,00 0,00 99,90 100,00 

  2       0.5      0.8 0,00 100,00 0,00 99,90 100,00 

  4       0         0.8 0,00 16,20 83,80 99,90 100,00 

  4       0.1      0.8 0,00 90,70 9,30 99,90 100,00 

  4       0.2      0.8 0,00 100,00 0,00 100,00 100,00 

  4       0.3      0.8 0,00 100,00 0,00 100,00 100,00 

  4       0.4      0.8 0,00 100,00 0,00 100,00 100,00 

  4       0.5      0.8 0,00 100,00 0,00 100,00 100,00 

  6       0         0.8 0,00 59,40 40,60 100,00 100,00 

  6       0.1      0.8 0,00 97,70 2,30 100,00 100,00 

  6       0.2      0.8 0,00 100,00 0,00 100,00 100,00 

  6       0.3      0.8 0,00 100,00 0,00 100,00 100,00 

  6       0.4      0.8 0,00 100,00 0,00 100,00 100,00 

  6       0.5      0.8 0,00 100,00 0,00 100,00 100,00 

  8       0         0.8 0,00 83,60 16,40 100,00 100,00 

  8       0.1      0.8 0,00 99,00 1,00 100,00 100,00 

  8       0.2      0.8 0,00 100,00 0,00 100,00 100,00 

  8       0.3      0.8 0,00 100,00 0,00 100,00 100,00 

  8       0.4      0.8 0,00 100,00 0,00 100,00 100,00 

  8       0.5      0.8 0,00 100,00 0,00 100,00 100,00 
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4.5 Finite Sample Power Simulations when 3A
H  is True DGP 

Table 4.5.1 Finite Sample Power of 
*_ ( )C

B
adj F T , max ( )

B
F T , ( )

T
J m  

 ( ) (0,0)ρ ψ, =     
*_ ( )C

B
adj F T     max ( )

B
F T   ( )

T
J m  

 1               µ µ α3   3A
H   2A

H   1A
H      

  0       0.1      1 92,50 7,50 0,00 88,70 5,00 

  0       0.2      1 100,00 0,00 0,00 100,00 5,00 

  0       0.3      1 100,00 0,00 0,00 100,00 5,00 

  0       0.4      1 100,00 0,00 0,00 100,00 5,00 

  0       0.5      1 100,00 0,00 0,00 100,00 5,00 

  1       0         1 0,00 100,00 0,00 16,60 5,00 

  1       0.1      1 99,60 0,40 0,00 90,40 5,00 

  1       0.2      1 100,00 0,00 0,00 100,00 5,00 

  1       0.3      1 100,00 0,00 0,00 100,00 5,00 

  1       0.4      1 100,00 0,00 0,00 100,00 5,00 

  1       0.5      1 100,00 0,00 0,00 100,00 5,00 

  2       0         1 6,90 93,10 0,00 71,10 5,00 

  2       0.1      1 99,90 0,10 0,00 100,00 5,00 

  2       0.2      1 100,00 0,00 0,00 100,00 5,00 

  2       0.3      1 100,00 0,00 0,00 100,00 5,00 

  2       0.4      1 100,00 0,00 0,00 100,00 5,00 

  2       0.5      1 100,00 0,00 0,00 100,00 5,00 

  4       0.5      1 55,90 44,10 0,00 100,00 5,00 

  4       0.1      1 100,00 0,00 0,00 100,00 5,00 

  4       0.2      1 100,00 0,00 0,00 100,00 5,00 

  4       0.3      1 100,00 0,00 0,00 100,00 5,00 

  4       0.4      1 100,00 0,00 0,00 100,00 5,00 

  4       0.5      1 100,00 0,00 0,00 100,00 5,00 

  6       0         1 81,80 18,20 0,00 100,00 5,00 

  6       0.1      1 100,00 0,00 0,00 100,00 5,00 

  6       0.2      1 100,00 0,00 0,00 100,00 5,00 

  6       0.3      1 100,00 0,00 0,00 100,00 5,00 

  6       0.4      1 100,00 0,00 0,00 100,00 5,00 

  6       0.5      1 100,00 0,00 0,00 100,00 5,00 

  8       0         1 93,60 6,40 0,00 100,00 5,00 

  8       0.1      1 100,00 0,00 0,00 100,00 5,00 

  8       0.2      1 100,00 0,00 0,00 100,00 5,00 

  8       0.3      1 100,00 0,00 0,00 100,00 5,00 

  8       0.4      1 100,00 0,00 0,00 100,00 5,00 

  8       0.5      1 100,00 0,00 0,00 100,00 5,00 
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Table 4.5.2 Finite Sample Power of 
*_ ( )C

B
adj F T , max ( )

B
F T , ( )

T
J m  

 ( ) (0.6,0)ρ ψ, =     
*_ ( )C

B
adj F T     max ( )

B
F T   ( )

T
J m  

 1               µ µ α3   3A
H   2A

H   1A
H      

  0       0.1      1 99,20 0,80 0,00 100,00 5,00 

  0       0.2      1 100,00 0,00 0,00 100,00 5,00 

  0       0.3      1 100,00 0,00 0,00 100,00 5,00 

  0       0.4      1 100,00 0,00 0,00 100,00 5,00 

  0       0.5      1 100,00 0,00 0,00 100,00 5,00 

  1       0         1 4,70 95,30 0,00 69,70 5,00 

  1       0.1      1 100,00 0,00 0,00 100,00 5,00 

  1       0.2      1 100,00 0,00 0,00 100,00 5,00 

  1       0.3      1 100,00 0,00 0,00 100,00 5,00 

  1       0.4      1 100,00 0,00 0,00 100,00 5,00 

  1       0.5      1 100,00 0,00 0,00 100,00 5,00 

  2       0         1 47,10 52,90 0,00 90,70 5,00 

  2       0.1      1 100,00 0,00 0,00 100,00 5,00 

  2       0.2      1 100,00 0,00 0,00 100,00 5,00 

  2       0.3      1 100,00 0,00 0,00 100,00 5,00 

  2       0.4      1 100,00 0,00 0,00 100,00 5,00 

  2       0.5      1 100,00 0,00 0,00 100,00 5,00 

  4       0         1 88,60 11,40 0,00 100,00 5,00 

  4       0.1      1 100,00 0,00 0,00 100,00 5,00 

  4       0.2      1 100,00 0,00 0,00 100,00 5,00 

  4       0.3      1 100,00 0,00 0,00 100,00 5,00 

  4       0.4      1 100,00 0,00 0,00 100,00 5,00 

  4       0.5      1 100,00 0,00 0,00 100,00 5,00 

  6       0         1 98,30 1,70 0,00 100,00 5,00 

  6       0.1      1 100,00 0,00 0,00 100,00 5,00 

  6       0.2      1 100,00 0,00 0,00 100,00 5,00 

  6       0.3      1 100,00 0,00 0,00 100,00 5,00 

  6       0.4      1 100,00 0,00 0,00 100,00 5,00 

  6       0.5      1 100,00 0,00 0,00 100,00 5,00 

  8       0         1 99,80 0,20 0,00 100,00 5,00 

  8       0.1      1 100,00 0,00 0,00 100,00 5,00 

  8       0.2      1 100,00 0,00 0,00 100,00 5,00 

  8       0.3      1 100,00 0,00 0,00 100,00 5,00 

  8       0.4      1 100,00 0,00 0,00 100,00 5,00 

  8       0.5      1 100,00 0,00 0,00 100,00 5,00 
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Table 4.5.3 Finite Sample Power of 
*_ ( )C

B
adj F T , max ( )

B
F T , ( )

T
J m  

 ( ) ( 0.6,0)ρ ψ, = −     
*_ ( )C

B
adj F T     max ( )

B
F T   ( )

T
J m  

 1               µ µ α3   3A
H   2A

H   1A
H      

  0       0.1      1 41,90 58,10 0,00 7,00 5,00 

  0       0.2      1 100,00 0,00 0,00 92,20 5,00 

  0       0.3      1 100,00 0,00 0,00 100,00 5,00 

  0       0.4      1 100,00 0,00 0,00 100,00 5,00 

  0       0.5      1 100,00 0,00 0,00 100,00 5,00 

  1       0         1 0,00 99,70 0,30 70,30 5,00 

  1       0.1      1 4,00 0,00 0,00 4,00 5,00 

  1       0.2      1 100,00 0,00 0,00 93,40 5,00 

  1       0.3      1 100,00 0,00 0,00 100,00 5,00 

  1       0.4      1 100,00 0,00 0,00 100,00 5,00 

  1       0.5      1 100,00 0,00 0,00 100,00 5,00 

  2       0         1 0,00 100,00 0,00 80,70 5,00 

  2       0.1      1 99,30 0,70 0,00 12,50 5,00 

  2       0.2      1 100,00 0,00 0,00 96,80 5,00 

  2       0.3      1 100,00 0,00 0,00 100,00 5,00 

  2       0.4      1 100,00 0,00 0,00 100,00 5,00 

  2       0.5      1 100,00 0,00 0,00 100,00 5,00 

  4       0         1 25,80 74,20 0,00 99,70 5,00 

  4       0.1      1 99,90 0,10 0,00 90,20 5,00 

  4       0.2      1 100,00 0,00 0,00 100,00 5,00 

  4       0.3      1 100,00 0,00 0,00 100,00 5,00 

  4       0.4      1 100,00 0,00 0,00 100,00 5,00 

  4       0.5      1 100,00 0,00 0,00 100,00 5,00 

  6       0         1 64,60 35,40 0,00 100,00 5,00 

  6       0.1      1 100,00 0,00 0,00 100,00 5,00 

  6       0.2      1 100,00 0,00 0,00 100,00 5,00 

  6       0.3      1 100,00 0,00 0,00 100,00 5,00 

  6       0.4      1 100,00 0,00 0,00 100,00 5,00 

  6       0.5      1 100,00 0,00 0,00 100,00 5,00 

  8       0         1 85,90 14,10 0,00 100,00 5,00 

  8       0.1      1 100,00 0,00 0,00 100,00 5,00 

  8       0.2      1 100,00 0,00 0,00 100,00 5,00 

  8       0.3      1 100,00 0,00 0,00 100,00 5,00 

  8       0.4      1 100,00 0,00 0,00 100,00 5,00 

  8       0.5      1 100,00 0,00 0,00 100,00 5,00 

 

 

 



 106 

Table 4.5.4 Finite Sample Power of 
*_ ( )C

B
adj F T , max ( )

B
F T , ( )

T
J m  

 ( ) (0,0.5)ρ ψ, =     
*_ ( )C

B
adj F T     max ( )

B
F T   ( )

T
J m  

 1               µ µ α3   3A
H   2A

H   1A
H      

  0       0.1      1 95,80 4,20 0,00 100,00 5,00 

  0       0.2      1 100,00 0,00 0,00 100,00 5,00 

  0       0.3      1 100,00 0,00 0,00 100,00 5,00 

  0       0.4      1 100,00 0,00 0,00 100,00 5,00 

  0       0.5      1 100,00 0,00 0,00 100,00 5,00 

  1       0         1 0,00 100,00 0,00 30,70 5,00 

  1       0.1      1 99,70 0,30 0,00 100,00 5,00 

  1       0.2      1 100,00 0,00 0,00 100,00 5,00 

  1       0.3      1 100,00 0,00 0,00 100,00 5,00 

  1       0.4      1 100,00 0,00 0,00 100,00 5,00 

  1       0.5      1 100,00 0,00 0,00 100,00 5,00 

  2       0         1 15,30 84,70 0,00 84,80 5,00 

  2       0.1      1 99,90 0,10 0,00 100,00 5,00 

  2       0.2      1 100,00 0,00 0,00 100,00 5,00 

  2       0.3      1 100,00 0,00 0,00 100,00 5,00 

  2       0.4      1 100,00 0,00 0,00 100,00 5,00 

  2       0.5      1 100,00 0,00 0,00 100,00 5,00 

  4       0         1 63,20 36,80 0,00 100,00 5,00 

  4       0.1      1 100,00 0,00 0,00 100,00 5,00 

  4       0.2      1 100,00 0,00 0,00 100,00 5,00 

  4       0.3      1 100,00 0,00 0,00 100,00 5,00 

  4       0.4      1 100,00 0,00 0,00 100,00 5,00 

  4       0.5      1 100,00 0,00 0,00 100,00 5,00 

  6       0         1 86,40 13,60 0,00 95,00 5,00 

  6       0.1      1 100,00 0,00 0,00 100,00 5,00 

  6       0.2      1 100,00 0,00 0,00 100,00 5,00 

  6       0.3      1 100,00 0,00 0,00 100,00 5,00 

  6       0.4      1 100,00 0,00 0,00 100,00 5,00 

  6       0.5      1 100,00 0,00 0,00 100,00 5,00 

  8       0         1 95,30 4,70 0,00 100,00 5,00 

  8       0.1      1 100,00 0,00 0,00 100,00 5,00 

  8       0.2      1 100,00 0,00 0,00 100,00 5,00 

  8       0.3      1 100,00 0,00 0,00 100,00 5,00 

  8       0.4      1 100,00 0,00 0,00 100,00 5,00 

  8       0.5      1 100,00 0,00 0,00 100,00 5,00 
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Table 4.5.5 Finite Sample Power of 
*_ ( )C

B
adj F T , max ( )

B
F T , ( )

T
J m  

 ( ) (0, 0.5)ρ ψ, = −     
*_ ( )C

B
adj F T     max ( )

B
F T   ( )

T
J m  

 1               µ µ α3   3A
H   2A

H   1A
H      

  0       0.1      1 3,20 0,00 0,00 3,20 5,00 

  0       0.2      1 100,00 0,00 0,00 96,30 5,00 

  0       0.3      1 100,00 0,00 0,00 100,00 5,00 

  0       0.4      1 100,00 0,00 0,00 100,00 5,00 

  0       0.5      1 100,00 0,00 0,00 100,00 5,00 

  1       0         1 0,00 99,30 0,70 69,00 5,00 

  1       0.1      1 0,70 0,00 0,00 0,70 5,00 

  1       0.2      1 100,00 0,00 0,00 90,70 5,00 

  1       0.3      1 100,00 0,00 0,00 100,00 5,00 

  1       0.4      1 100,00 0,00 0,00 100,00 5,00 

  1       0.5      1 100,00 0,00 0,00 100,00 5,00 

  2       0         1 0,00 100,00 0,00 80,10 5,00 

  2       0.1      1 3,10 0,00 0,00 3,10 5,00 

  2       0.2      1 100,00 0,00 0,00 94,80 5,00 

  2       0.3      1 100,00 0,00 0,00 100,00 5,00 

  2       0.4      1 100,00 0,00 0,00 100,00 5,00 

  2       0.5      1 100,00 0,00 0,00 100,00 5,00 

  4       0         1 4,70 95,30 0,00 93,60 5,00 

  4       0.1      1 99,50 0,50 0,00 70,40 5,00 

  4       0.2      1 100,00 0,00 0,00 100,00 5,00 

  4       0.3      1 100,00 0,00 0,00 100,00 5,00 

  4       0.4      1 100,00 0,00 0,00 100,00 5,00 

  4       0.5      1 100,00 0,00 0,00 100,00 5,00 

  6       0         1 30,50 69,50 0,00 100,00 5,00 

  6       0.1      1 99,90 0,10 0,00 100,00 5,00 

  6       0.2      1 100,00 0,00 0,00 100,00 5,00 

  6       0.3      1 100,00 0,00 0,00 100,00 5,00 

  6       0.4      1 100,00 0,00 0,00 100,00 5,00 

  6       0.5      1 100,00 0,00 0,00 100,00 5,00 

  8       0         1 54,90 45,10 0,00 100,00 5,00 

  8       0.1      1 100,00 0,00 0,00 100,00 5,00 

  8       0.2      1 100,00 0,00 0,00 100,00 5,00 

  8       0.3      1 100,00 0,00 0,00 100,00 5,00 

  8       0.4      1 100,00 0,00 0,00 100,00 5,00 

  8       0.5      1 100,00 0,00 0,00 100,00 5,00 

 

 


