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In this work, a new method and algorithm for autonomous teams establishment with
mobile sensor network units by SVMs based on task allocations within a potential field
is proposed. The sensor network deployed into the environment using the algorithm is
composed of robot units with sensing capability of magnetic anomaly of the earth. A
new algorithm is developed for task assignment. It is based on the optimization of weights
between robots and tasks. The weights are composed of skill ratings of the robots and pri-
orities of the tasks. Multiple teams of mobile units are established in a local area based on
these mission vectors. A mission vector is the genetic and gained background information
of the mobile units. The genetic background is the inherent structure of their knowledge
base in a vector form but it can be dynamically updated with the information gained later
on by experience. The mission is performed in a magnetic anomaly environment. The initial
values of the mission vectors are loaded by the task assignment algorithm. The mission
vectors are updated at the beginning of each sampling period of the motion. Then the
teams of robots are created by the support vector machines. A linear optimal hyperplane
is calculated by the use of SVM algorithm during training period. Then the robots are clas-
sified as teams by use of SVM mechanism embedded in the robots. The support vector
machines are implemented in the robots by ordinary op-amps and basic logical gates.
Team establishment is tested by simulations and a practical test-bed. Both simulations
and the actual operation of the system prove that the system functions satisfactorily.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In this paper, a new method and algorithm for team
establishments within a mobile sensor network (SN) is
proposed. The sensor network deployed into the environ-
ment using the algorithm is composed of robot units with
sensing capability of magnetic anomaly of the earth. They
utilize KMZ51 un-isotropic magneto resistive sensors.
The sensors are combined to obtain a convolution mask
for steepest descent in the magnetic anomaly region. The
innovation in this method is to establish more than one
. All rights reserved.
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team based on tasks available in the region of operation.
A task means that it is a magnetic anomaly of earth’s mag-
netic field caused by some dangerous mines. The aim is to
detect these mines. There may be several magnetic anom-
alies within a region. They have to be classified in an intel-
ligent way. This can be achieved in several ways. Why we
prefer a new method to identify these sub-regions by mul-
tiple robotic teams is that in the previous study [1] it was
observed that some of the mobile units had stuck around
some sub-regions. For example, in Fig. 1, the three yellow1

robots swarm into the sub-region where an AT mine is bur-
ied, while the other two blue robots approach into another
1 For interpretation of color in 1–9 and 14–16, the reader is referred to
the web version of this article.

http://dx.doi.org/10.1016/j.measurement.2012.01.046
mailto:nazlibileksedat@yahoo.com
http://dx.doi.org/10.1016/j.measurement.2012.01.046
http://www.sciencedirect.com/science/journal/02632241
http://www.elsevier.com/locate/measurement


Fig. 1. Groups of robotic units approaching two separate objects.
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sub-region where an AP mine is buried. They constituted
small groups of robots based on the information gathered
by the magneto-resistive sensors mounted on them and
calculating the gradient of steepest decent in the magnetic
anomalies. There was no external intervention to the mo-
tions of the robots. They performed their behavior autono-
mously. The behavior of the mobile sensor units are
synchronized in time by a time division multiple access
(TDMA) method [1]. Some of these groups detected impor-
tant objects but the others could not. The robots within the
mobile SN had been separated in an inappropriate manner.
This caused a waste of resources in most of the cases. It
motivated us to create teams of robotic units in an appro-
priate way based on the importance of sub-regions. In this
paper, we modeled the requirement as a task assignment
problem.

In recent years, mobile sensor networks are used in a
wide variety of applications such as establishing forma-
tions, imitating the behavior of some animals, detecting
objects, performing search and rescue activities, area cov-
erage, surveillance and reconnaissance, or controlling
streetlights for energy savings. In this study we try to
achieve autonomously creation of more than one robot
teams allocated into several tasks available within an area
of operations where more than one anti-tank (AT) and/or
anti-personnel (AP) mines exit. The work is motivated by
the detection of these buried mines (anti-personnel and
anti-tank) at the border regions for clearing purposes.
The mines buried across these regions are hard to find be-
cause of the fact that there are no plans available any more
or the mines had changed their locations as a result of
some geological, natural and/or manmade effects. In our
application, an area of several square meters, normally
1.5 m � 1.5 m, is scanned by magneto-resistive sensors
and the buried objects are detected by the anomaly of
the measured earth magnetic field.

Within the scanned region, there may be more than one
buried objects creating magnetic anomalies. In our previ-
ous study, we classified the objects one by one based on
the data collected by mobile sensors acting over the region
[1]. It was an effective approach for mine detection, but as
we observed during operation of the mobile sensor net-
work that some of the robots were grouped around some
other buried objects if available within the same region.
This is a condition that can frequently been encountered
in real applications, therefore we think that we can ap-
proach the problem in a different way.

The sensor network deployed into the environment
using the algorithm is composed of robot units with sens-
ing capability of magnetic anomaly of the earth. They uti-
lize KMZ51 un-isotropic magneto resistive sensors. The
sensors are arranged in a 3 � 3 sensor matrix to implement
a convolution mask for steepest descent in the magnetic
anomaly region. The mask is used to determine the gradi-
ent of the field as a hardware element. The robots perform
rotation and translation motion at the end of each opera-
tion period based on the direction of the gradient vector.
The mobile units are synchronized by using the method
called time division multiple access (TDMA). In this meth-
od, a time slot is assigned to each robotic unit to allow
them to make movements within its time slot.

We can think of the problem as a task allocation prob-
lem which has received significant interest in recent years.
As seen in Fig. 2, the objects found in the region can be con-
sidered as tasks and the aim will be to assign multiple ro-
bots to these tasks based on an appropriate technique.

There are two common methods applied for task alloca-
tion, namely, behavior-based [2–5] and market-based ap-
proaches [6,7]. One of the earliest behavior-based
method is the so called the ALLIANCE Efficiency Problem
(AEP) which is an NP-Hard problem [3]. The other famous
behavior-based architecture is Broadcast Local Eligibility
(BLE) presented in [4]. In general, behavior-based method
is a control methodology in which mobile agents are con-
trolled through the principled integration of a set of inter-
acting behaviors in order to achieve desired system-level
behavior. Behavior-based approaches are an extension of
reactive architectures and also fall between purely reactive
and planar-based extremes [5].

The market-based (or frequently called auction-based)
approach is another well known method for solving task
allocation problem. The famous examples of marked-based
methods are the M + system in [6] and the MURDOCH in
[7]. These methods are based on or a variant of the well-



Fig. 2. Basic approach for task assignment to multiple robotic teams.
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known Contract Net Protocol (CNP) [8]. A survey on mar-
ket-based approaches can be found in [9], Complex task
allocation problems are dealt with in [10] and [11]. In gen-
eral, the market-based task allocation approach is based on
the principles of a market economy that can be applied to
multi-robot coordination where each robot acts to maxi-
mize its individual profit and simultaneously improves
the efficiency of the team. In this approach, two roles are
played dynamically by robots: auctineers and bidders
[9,10,12]. The auctioneer is the robot or central station in
charge of announcing the tasks and selecting best bid from
the bidders. The best bid is the one with lowest cost. The
cost is equal to the distance from the robot to the task.
The bid is a quantity that reflects how much it will cost
the robot to go to a certain waypoint, such as the Euclidean
distance or the traversability index. The properties of the
market-based task allocation can be listed as follows: As
teams of robots as participants in a virtual economy; ro-
bots are contracted to complete required tasks in exchange
for payment; each robot has well-defined cost and revenue
functions to compute the expected gains and losses for
performing tasks; they work to maximize their individual
profits; in a market, trading tasks via auctions; auctions
call for bids; the robots that can perform the tasks for the
best price are awarded the resulting contracts.

Another popular method for task allocation is the use of
vacancy chains [13,14]. The vacancy chains (VCs) are a re-
source distribution strategy common in human and animal
societies. Vacancy chains algorithm is uses local task selec-
tion, reinforcement learning for estimation of task utility
and reward structures based on the vacancy chain frame-
work. Three requirements are listed for resource distribu-
tion through VCs: the resource must be used by only one
individual; a vacancy is required before an individual takes
a new resource unit; and vacancy resource units must be
scarce and many individuals must occupy sub-optimal
unit. In [13], it is demonstrated that VCs could be used to
optimize the performance of a group of robots when the
given task conforms to the above three requirements. In
fact, VCs often disappear when information is widely avail-
able, because information is likely to attract applicants
who engage in a competition [14]. A vacancy may be
caused by a retirement, which triggers a chain of vacancies
through subordinates. At the beginning only one subordi-
nate is available. However, when two or more equally
qualified persons apply for the same position, the resource
is allocated by the labor market. The fact that a VC is iden-
tified does not imply that it is the prime move of resource
allocation. This distinction has never been explicitly stated
in empirical research on VCs. All empirical investigations
have focused on situations where VCs, at least in their
initial steps, did operate as allocation mechanisms. Scarce
resource is allocated by means of VCs.

In [2], it is claimed that the multi-robot task allocation
could be reduced to an instance of the Optimal Assignment
Problem (OAP) [15] that can be casted as a linear optimiza-
tion problem.

A well-known method for task assignment called the
‘‘Hungarian Method’’ is given in [16]. It can solve the OAP
faster. It develops a computational method that uses the
dual linear program in a particularly effective manner.

The simple task assignment problem stated in [16] is as
follows: n individuals (denoted by i = 1, 2, . . . , n) are avail-
able for n jobs (denoted by j = 1, 2, . . . ,n). They qualify for
jobs represented effectively by a (nxn) qualification matrix
Q in which the rows stand for individuals and columns for
jobs and the entries qij = (1 or 0) representing ratings indi-
cating that a worker is qualified or not respectively. Then
the simple assignment problem asks: What is the largest
number of 1’s that can be chosen from Q with no two cho-
sen from the same row or column?

The general assignment problem is as follows: Suppose
n individuals (i = 1, 2, . . . ,n) are available for n jobs
(j = 1, 2, . . . , n) and that a rating matrix R ¼ ðrijÞ is given,
where rij are positive integers, for all i and j. An assignment
consists of the choice of one job ji for each individual i such
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that no job is assigned to two different men. The General
Assignment Problem asks: For which assignments is the
sum of the ratings ðr1j1 þ r2j2 þ � � � þ rnjn Þ largest?

The Hungarian method and the other task assignment
methods mentioned above are generally dealing with the
assignment of a single individual to a single job.

We have two kinds of requirements, namely we can
either assign single robot to a single task or multiple robots
to a single task. In most of the cases, the latter requirement
is more frequent. In our application, we want to achieve a
collective behavior for detecting any object found in the
searched region. We want multiple robots to be swarmed
autonomously into an area where a magnetic anomaly cre-
ated by a ferromagnetic object is available. Every anomaly
can be considered as an area where a mission will be per-
formed. Therefore, an anomaly can be considered as a task
to be assigned to multiple robots. Since there may be more
than one object (i.e., task) in the region, we need to have
more than one robot team in the region of operation.
Therefore, we need to create a couple of robots teams
based on the number of tasks available in that region.
We have to classify the teams of robots as separate teams
having specific tasks to be performed. That means that we
need to solve a task assignment problem to multiple
teams. Each team will have a specific task. The teams will
be established depending on the priorities of the tasks and
the skill ratings of the robots. That is, each robot ri, i =
1, . . . , n will have a skill ratings si; i ¼ 1; . . . ;n and each
task tj; j ¼ 1; . . . ;m will have a priority, pj; j ¼ 1; . . . ;m.

Every robot in the mobile SN is initially assigned to a
task. We developed a new algorithm for initial assignment
of the tasks. After initial assignment, the teams are estab-
lished by use of support vector machine (SVM) technique.
This will speed up the establishment of teams within the
mobile SN. Also, it will help the robots to update their tasks
periodically during the course of the actions. The duration
of the period can be determined a priori. This kind of
updating action may improve the overall performance of
the system in terms of performance criteria determined
in the algorithm. We call this algorithm as the ‘‘mod-med-
ian’’ algorithm. Since it sorts out the unworthy robots the
related task based on mod and median of the performance
values of the robots, and it assigns robots deserving this
task.

The structure of this paper is as follows: Section 2 gives
the problem definition in detail and the algorithm develop-
ment for task assignment. In Section 3, methods of team
establishment are explained. The mission vectors are cre-
ated by two methods, namely, the Skill rating – Priority
(SP) Method and the Most Skillful Robot (MSR) Method.
The theory and implementation of support vector ma-
chines are also given in this section. Section 4 gives the
experimental results. The conclusion is given in Section 5.
2. Problem definition and algorithm development

2.1. Problem definition

The situation is that there are n robots and m tasks
within a mission region. The robots have some skills
expressed as skill ratings and the tasks have some priori-
ties. As it is stated, the aim is to assign groups of robots
to appropriate tasks such that the overall performance be-
comes optimum. To do this, an algorithm called the ‘‘mod-
median’’ algorithm is developed. The algorithm has two
versions. The first one makes an assignment in such a
way that a single robot is assigned in a single task. No other
robots are assigned to the same task. The second version
makes an assignment such that multiple robots (deserved
ones) can be assigned to a single task in optimum way.

The robot task assignment problem can be stated as fol-
lows: Given robots with skill ratings ðri; siÞ; i ¼ 1; . . . ;n and
tasks with priorities ðtj; pjÞ; j ¼ 1; . . . ;m, assign robots to
tasks so as to maximize the overall expected performance.
Normally, the expected performance is the weighed sum of
the utilities, which is a concept borrowed from economics,
that is the internal estimation of the value or the cost of
execution of an action by an individual, and priorities
belonging to the tasks.

The course of action by robot teams is divided into
time periods, T. One period (T) is also divided into two
parts as initial assignment (Ti) and action (Ta), where
T = Ti + Ta. In the initial assignment sub period, the task
assignments are achieved by the so called ‘‘mod-median’’
algorithm to be developed here. In the action sub period,
(Ta) the robots will be grouped into teams by means of
SVMs. At the end of the time period T, a new period with
the same structure begins again. The action period is cho-
sen long enough such that robots in a team can do several
rotational and translational motions within the region of
anomaly. The assignments can be updated again at the
beginning of the new period. The duration for T can be
a time interval passing at least between the start of action
and the first change in rotation angle of any robot within
the team. Normally, it is determined by the user based on
previous experiences.

The map of ri’s to tj’s is shown in Fig. 3. In this mapping,
the weights are the sum of skills of robots si’s and the pri-
orities pj’s, that is, wij = si + pj, i = 1, . . . , n and j = 1, . . . , m.
That is, both the skills and the priorities of the tasks must
be high. The performance in this problem is the sum of the
weights,

P
ijwij. Assign robots to tasks so as to maximize

the overall expected performance (i.e., the sum of the
weights), that is, max

P
ijwij.

If we assign a single robot to a single task, and if n > m,
then some robots will be idle, else if n < m, then some of
the tasks will be empty. But, in any case, the performance
must be greatest in single-to-single assignment. Let’s de-
fine the weight matrix as (boldface capital letters represent
matrix quantities and boldface small letters represent vec-
tor quantities):

W ¼

w11 w12 . . . w1m

w21 w22 . . . w2m

. . . . . . . . . . . .

wn1 wn2 . . . wnm

2
6664

3
7775 ð1Þ

In case we assign multiple robots (or all of them) to a
single task, then we have to determine which mapping will
give the greatest performance. That is, among the column
vectors:
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(r  , s  )n n
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w
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Fig. 3. The mapping of the robots to the tasks.
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w1 ¼ ½w11w21 . . . wn1�T ;w2 ¼ ½w12w22 . . . wn2�T ; . . . ;wm

¼ ½w1mw2m . . . wnm�T ð2Þ

We can determine which one is the greatest. Then we
assign all the robots to that task. However, in this situation,
we have assigned all of the robots only to one single task.
This is not our aim. We try to assign only the robots that
deserve mostly to that job and eliminate the others. How
do we achieve such elimination? This can be done by sort-
ing the elements of the vectors wj ¼ ½w1jw2j . . . wnj�T from
the greatest to the smallest. Then, we can assign the ones
above the median to the tasks and leaving the unassigned
ones as idles. What will happen to the idle robots? They
will wander around the region and search targets around
them. In some time, they may gain a skill, for example
approaching a target and deserve a job. Since we do initial
task assignments at the beginning of each period T, we re-
view the task assignments again and we start a new cycle.
In this way, the task assignment becomes a dynamic
assignment.

We can show this approach by an example given in the
following.

2.2. Example

Let the number of robots be 3 and the number of tasks
be 2. The robot-skill and task-priority pairs are (r1, s1) =
(1, 5), (r2, s2) = (2, 3) and (r3, s3) = (3, 1), and (t1, p1) = (1, 5)
and (t2, p2) = (2, 2). (a) Assign single robot to single task;
(b) assign multiple robots to single task. The matrix:

W ¼ ½w1 w2 � ¼
w11 w12

w21 w22

w31 w32

2
4

3
5 ¼ ðs1 þ p1Þ ðs1 þ p2Þ

ðs2 þ p1Þ ðs2 þ p2Þ
ðs3 þ p1Þ ðs3 þ p2Þ

2
4

3
5

¼
10 7
8 5
6 3

2
4

3
5

(a) The single robot to single task assignment: The larg-
est weight mapped to t1 is w11 = 10, therefore the
robot-task pair is (r1, t1). Similarly, the largest
weight mapped to t2 is w12 = 7. This weight belongs
to r1. However, r1 is already assigned to t1, therefore
it is discarded. The next larger one is w22 = 5. There-
fore, the assignment pair is (r2, t2). Notice that, ini-
tially it is determined which of the applications is
the largest.

(b) Multiple robots to single task assignment: The ele-
ments of the vector w1 is sorted from largest to
smallest as w1 ¼ ½10 8 6�T . The median is
w21 = 8. Take w11 and w21 which are above the med-
ian (included). Assign (r1, t1) and (r2, t1). Now, sort
the second column vector, w1 ¼ ½7 5 3�T . The
median is w22 = 5. But, the robot r1 with largest
weight w21 = 7 has already been assigned to t1 and
the robot r2 in the mapping w22 has already been
assigned to t1. Therefore, we have to delete these
assignments. Only remaining assignment is w32.
But, w32 = 3 is below the median. Therefore, the
robot r2 cannot be assigned to a task. Only the robots
with mapping greater than the median can be
assigned to an appropriate task. In this case, r2 is idle
and t2 is empty.

2.3. Algorithm development

In this work, we develop two versions of the assignment
algorithm. In the first version, a single robot to single task
(SRST) assignment can be achieved.

The SRST assignment algorithm is given below:

Step 1. Create the (m � n) W ¼ ½w1 w2 � � � wm�1

wm� where wj’s are column vectors whose entries are
the weights (that are the sum of skill si and priority pj

related to robot-task pair [si, pj] respectively) of map-
ping wij = si + pj, m is the number of tasks. The dimen-
sion of the column vectors n is the number of robots.
Step 2. Sort the column vectors from the largest to
smallest.
Step 3. Get the greatest among the column vectors wj.
Step 4. Find the largest element wij of the vector wj.
Step 5. Perform the mapping of i to j.



Job area circle (JAC)

Estimated area circle

(a) The time step is k=0 (Initial values of the 
skill ratings and priorities are set to zero)

(b) The time step is k=1

Fig. 4. (a) The robots are arbitrarily located within the area of operation;
(b) the robots detect a magnetic anomaly and can make rotations based
on the direction of gradient of the field. After the rotational motion,
forward intersections are performed and the points P1 and P2 are
obtained. Then the distances and the job area are estimated. Based on
these values, skill ratings and priorities are updated.
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Step 6. Delete wij of the [ri, tj] pair (i.e., discard ri and tj).
Step 7. If all the assignments are completed, then stop.
Step 8. Increment the index of column vector.
Step 9. Go to Step 3.

The second version of the algorithm can perform multi-
ple robots to single tasks (MRST) making the overall per-
formance maximum. This MRST algorithm is called
‘‘mod-median’’ algorithm. The steps for the mod-median
MRST algorithm are given in the following.

MRST Assignment Algorithm:

Step 1. Create the (m � n) W ¼ ½w1 w2 � � � wm�1

wm� where wj’s are column vectors whose entries are
the weights (that are the sum of skill si and priority pj

related to robot-task pair [si, pj] respectively) of map-
ping wij = si + pj, m is the number of tasks. The dimen-
sion of the column vectors n is the number of robots.
Step 2. Sort the column vectors from the largest to
smallest.
Step 3. Get the greatest among the column vectors wj.

Step 4. Find the median element wij of the vector wj.
Step 5. Perform the mapping of i to j.
Step 6. Delete ri and all of the connections, wij‘s of the ri

to the tasks.
Step 7. If all the assignments are completed, then stop.
Step 8. Increment the index of column vector.
Step 9. Go to Step 3.

The skill ratings and priorities must be set before the
operation or during the operation. They are either set by
the user before the operation or determined automatically
during the course of action. For autonomous operations,
the initial values of the skill ratings and priorities are set
to zero.

The skill ratings are related to the distances from the ro-
bots to the tasks. The shorter the distance is, the more skill-
ful the robot. Hence, the skill ratings can be chosen as the
inverse of the distance between the ith robot and the jth
task, i.e.,

sij ¼
1
dij
: ð3Þ

Here we use double index to show the skill ratings of
any robot with a task. A robot may have different skill rat-
ings for each individual task within a region.

The priorities of the tasks are the values mainly deter-
mined from the number of robots aiming at the target ob-
jects. It is the measure of importance of the task. A priority
can be defined as the number of robots aiming to that tar-
get multiplied by the inverse of the size of the object. That
is,

pj ¼
mj

n
� 1

cj
ð4Þ

where cj is the diameter of the jth target object and mj is
the number of robots aiming at this target. mj

n is the ratio of
the number of robots approaching the target j to the total
robots n. Since the weights are the sum of skill ratings
and priorities, we take the inverse of the diameter in order
to make the units consistent. In this case, both the skill rat-
ings and the priorities are in 1/m. The units are consistent
now and they can be added. However, there is a problem
with this definition. Although it seem that the importance
of the target will increase when a number of robots swarm
in a confined region, the priority value will go to infinity
when the value of the diameter goes to zero. This leads
to a misleading operation in the case of, for example, when
there is a small object that has a potential of giving rise to a
false alarm. In order to prevent such a problem, the diam-
eter value is fixed to a constant value. It is taken as the
diameter of an AT mine in this application. Then, the prior-
ity is only depended on the number of robots desiring to
arrive at the target. The definition of the priority is then:
pj ¼
mj

n
� 1

c
ð5Þ
where c is the diameter of an AT mine. This is the so called
‘‘job area circle (JAC)’’. In this application, JAC diameter is
chosen as the diameter of AT mine (Fig. 4).
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The distances between the robots and the intersection
points are determined and set as the skill ratings. They
are put into the databases of the robots in the form of vec-
tors. Also the coordinates of the intersection points are put
into the database vectors. The database vector is called the
‘‘mission vector (MV)’’. The MV is defined clearly in Section
3. The MV is used for the creation of teams by means of
SVM as explained later. The flow chart giving the overall
operation is given in the Appendix.
3. Team establishment

In this work, depending on the tasks available in a re-
gion of operation, it might be necessary to establish more
than one team assigned to the tasks. The teams act to
accomplish the tasks to which they are assigned. A team
is a collection of robots with similar background informa-
tion. In this context, the background information is defined
in the following sub-section.

3.1. Mission vector of the robots in a mobile SN

The background information of the mobile sensors
(MSs) in a mobile SN is the mission vectors (MVs) embed-
ded into them. This can be any type of information repre-
senting the characteristics of a robot. For example, it may
be various attributes assigned to it such as a mission or a
task, a friendship code, gender code, or any kind of nature
given to it. The background information represented as a
vector is defined as

xi ¼ ½xi1 xi2 � � � xim�1 xim�T ; i ¼ 1; . . . ; n ð6Þ

In this work, we define the components of a MV in two
ways. One is the simple case where the components of a
MV are the weights of the background information. In this
representation, the skill ratings and priorities of tasks
play an important role for constituting the MV. We call
this method as ‘‘MV with Skill rating-Priority’’. The repre-
sentation of the MV takes into account the average skill
ratings of all of the robots within the region of operation.
We call this methods as ‘‘MV with the most skillful
robot’’.

3.1.1. MV with skill rating – priority (SP) method
This method is based on representing the MVs by the

skill ratings of the robots and the priorities of the tasks.
A mission vector is the background information of the
robot. The background information (weight) is the as-
signed missions to the mobile sensor units. As you
remember, the mission has two elements, namely the
skill ratings of the robots and the priorities of the tasks
or targets. That is, the components of the MV are the
weights,

xij ¼ wij ¼ si þ pj; ð7Þ

of the ith robot, for j = 1, ... , m. Where m is the number of
tasks in the region of operation. The boundaries for the
components of the vector xi can be found as follows. Any
component of xi can be written from Eqs. (3) and (4) as
xij ¼
1
dij
þ mj

cj � n
ð8Þ

Eq. (8) can be written as

xij ¼
dijmj þ cj

dijcj
ð9Þ

Now, as dij !1,

xij ¼
mj

cj � n
ð10Þ

That means that as the distance increases, the dominant
parameter determining the task is the number of robots in
the target. As dij ? 0,

xij ¼
1
dij
!1 ð11Þ

This means that as the distance decreases, the dominant
term is the skill ratings of the robot.
3.1.2. MV with the Most Skillful Robot (MSR) method
In this method, the MV is the difference between the

skill rating of the robot and the task minus the mean of
the skill ratings between that robot and all the tasks [12]:

xij ¼ sij �
Xm

k¼1

sik

m
ð12Þ
where m is the number of tasks. The rationale is that the
robots are more likely to win tasks that have a low skill rat-
ings for the rest of the team, but a relatively high skill rat-
ing for itself.

In this method, assume that the robot rk has won the
tasks ti and tj. The robot rk will keep ti if and only if

ski �
Xn

l¼1

sli

n

 !
> skj �

Xn

l¼1

slj

n

 !
ð13Þ

The meaning of Eq. (13) is that the skill rating of the ro-
bot winning the task is greater than the mean of the skill
ratings of all the others. That is, the robot chooses the task
taking into account the team members. The task chosen
actually is the best for the team not just for itself.

In this work, we choose a two dimensional vector for
the simplicity to apply to the proposed concept. That is,

xi ¼ ½ x11 x12 �T ð14Þ

The first component represents the primary mission
and the second component represents the secondary mis-
sion. They are automatically updated during the course of
action based on the algorithm given above. If x1 > x2, then
the mobile sensor performs the first mission, otherwise it
performs the second mission. Classification of the mobile
sensors as separate teams is based on their missions. If
the mobile sensor has to do the first (second) mission, then
it must belong to the first (second) class (i.e., team). There-
fore, the background information can give an opportunity
to classify the mobile sensors as mission teams. Any MS



AT mine AP mine

Ferromagnetic
object

Method 1 (for MV)

Method 2 (for MV)Dimensions of RoO
(135 cm x 70 cm)

n=6 (Number of Robots)
n=3 (Number of Tasks)

Fig. 5. Demonstration of initial assignment of mission vectors (MVs) based on two methods. The total number of robots n = 6, total number of tasks m = 3.
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can do either a primary mission assigned to it or a second-
ary mission assigned to it. That is, classification of the mo-
bile sensors as mission teams is based on these vectors.

As an example, we can demonstrate the methods by
using one of our simulation results depicted in Fig. 5. In
this simulation, six robots in total are available in the re-
gion of operation where one anti-tank (AT) mine, one
anti-personnel (AP) mine and one ferromagnetic object
are buried. The image is the region of operation obtained
by scanning it by the magneto-resistive sensors mounted
on the scanner simulating the behavior of the robots. Ini-
tially, the MVs are updated on the robots databases
embedded inside them. The Table 1 gives the data needed
for the analysis.

The data in Table 1 is very important. In the application,
we discard the third task. So, the MV has two dimensions.
Let’s repeat the MVs here again and see the team constitu-
tions clearly. For the first method where the MV creation is
based on the Eq. (8), we have the following MVs (see also
the Table 1):

x1 ¼ ½x11 x12�T ¼ ½0:066 0:064�T

x2 ¼ ½x21 x22�T ¼ ½0:0826 0:07�T

x3 ¼ ½x31 x32�T ¼ ½0:0526 0:08�T

x4 ¼ ½x41 x42�T ¼ ½0:0386 0:116�T

x5 ¼ ½x51 x52�T ¼ ½0:0316 0:15�T

x6 ¼ ½x61 x62�T ¼ ½0:0286 0:086�T

Note that the robots r1 and r2 go to t1, and the robots r3,
r4, r5 and r6 go to t2. This can be understood from the com-
ponents of MVs. When the condition, xi1 > xi2, is satisfied,
the robot ri will go to t1, otherwise it will go t2.
Similarly, we can look at the results of the Method 2
where the MVs are created based on the Eq. (12). We have
the following MVs (see also the Table 1):

x1 ¼ ½x11 x12�T ¼ ½0:0253 � 0:0106�T

x2 ¼ ½x21 x22�T ¼ ½0:033 � 0:013�T

x3 ¼ ½x31 x32�T ¼ ½0:0086 0:0027�T

x4 ¼ ½x41 x42�T ¼ ½�0:014 0:03�T

x5 ¼ ½x51 x52�T ¼ ½�0:036 0:0484�T

x6 ¼ ½x61 x62�T ¼ ½�0:023 0:0007�T

Note that in this case the robots r1, r2 and r3 go to t1, and the
robots r4, r5 and r6 go to t2. This can also be understood from
the components of MVs. When the condition, xi1 > xi2, is sat-
isfied, the robot ri will go to t1, otherwise it will go t2. Notice
that r3 is at the boundary of t1 and t2. The components of its
MV converge to the values of robots who approach to t2.
Although they are so small compared to the values of the
robots of t1, it is still in t1. However, it may go either to t1

or t2. We can easily interpret that both of the methods for
the constitution of MVs functions very well.

The distribution of mission vectors inside a 2-dimen-
sional space is shown in Fig. 6. As seen in Fig. 6, the MVs
are the vectors distributed inside circular regions. Fig. 6
shows the probability distribution function of the MVs

PðxÞ ¼ Pðx11; x12Þ ¼ Ae
� ðx11�x110Þ

2

2r2
x11

þðx12�x120 Þ
2

2r2
x12

� �
ð15Þ

Fig. 7 illustrates the two dimensional space of the MVs
and their distributions. In this example, there are two clas-
ses of teams created for this application. The densities of



Table 1
Initial assignment of mission vectors (MVs).

Distance (cm) Skill ratings Mission vectors (MVs) Method 1

xij ¼ 1
dij
þ mj

cj �n

Mission vectors (MVs) Method 2
xij ¼ sij �

Pm
k¼1

sik
m

d11 20 d12 70 d13 96 s11 0.05 s12 0.014 s13 0.01 x11 0.066 x12 0.064 x11 0.025 x12 �0.01
d21 15 d22 50 d23 78 s21 0.066 s22 0.02 s23 0.013 x21 0.082 x22 0.07 x21 0.033 x22 �0.013
d31 28 d32 33 d33 60 s31 0.036 s32 0.03 s33 0.016 x31 0.052 x32 0.08 x31 0.008 x32 0.0027
d41 45 d42 15 d43 43 s41 0.022 s42 0.066 s43 0.02 x41 0.038 x42 0.116 x41 �0.01 x42 0.03
d51 65 d52 10 d53 25 s51 0.015 s52 0.1 s53 0.04 x51 0.031 x52 0.15 x51 �0.03 x52 0.0484
d61 83 d62 28 d63 17 s61 0.012 s62 0.036 s63 0.058 x61 0.028 x62 0.086 x61 �0.02 x62 0.0007

Fig. 7. Distribution of the mission vectors in hyperspace. Legend: H:
Hyperplane separating two classes; w: The normal vector of the
hyperplane.
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the vectors as concentric circles in the 2-dimensional space
are illustrated in Table 2 and Fig. 7. As seen, the vectors are
concentrated in the circle with r 6 0.3 units at some in-
stant of time (Figs. 6 and 7).

3.2. Support Vector Machine (SVM)

In this paper, the robots of mobile SN are aimed to be
separated into different teams. This separation is based
on the missions assigned to the robots. The missions of ro-
bots can constitute a part of their genetic infrastructure.
Their genetic infrastructures can be implemented as the
mission vectors as described in Section 3. The mobile sen-
sors (MSs) with similar background information (that is,
mission vectors which are close to each other) come to-
gether to form a mission team. Therefore, any MSs must
identify the other MSs based on their background informa-
tion. For the classification of background information, a
simple method called support vector machine (SVM) is
used [17]. SVMs are a set of related supervised learning
methods used for classification. In simple words, given a
set of training examples, each marked as belonging to
one of the two categories, an SVM training algorithm
builds a model that predicts whether a new example falls
into one category or the other [17–21]. This method well
suits to our application. A hyperplane, H, can easily be
determined for separating the regions where the back-
ground genetic information vectors are concentrated. It is
noted that this hyperplane is an optimum separation
hyperplane. In Fig. 8, there are two classes of vectors,
namely, Class 1 and Class2. The vectors, sv1 and sv2 are
the support vectors. H1 and H2 are the hyperplanes passing
through the support vectors sv1 and sv2 respectively and
parallel to the separation hyperplane H. H1 identifies the
class 1 and H2 identifies class 2.
0.36

0.27

0.18

0.09
0.05

P(

Fig. 6. Probability distribution of classifica
The vector w determines the hyperplane H. Notice that
w is perpendicular to H. The components of the vector w
seen in Fig. 8 will be determined by the Example D given
below.

Consider the classification of two classes of vectors that
are linearly separable (see Fig. 7). The linear classifier is the
hyperplane H:

wT � xþ b ¼ 0 ð16Þ

with the maximum width (distance between the hyper-
planes H1 and H2 drawn by dotted lines). The first term is
the dot product of two vectors w and x. The second term
is a scalar variable, b, representing the shift of the hyper-
plane from the origin of the reference frame. We have to
find the set of pairs (w, b) that characterizes the linear clas-
sifier satisfying:
0.1 0.2 0.3 0.4 0.5

x)

tion vectors in 2-dimensional space.



Table 2
Mission vector distribution.

Class 1 (Team 1) Class 2 (Team 2)

Diameter No. of vectors Probability Diameter No. of vectors Probability

60.10 20 0.36 60.10 21 0.38
60.22 15 0.27 60.22 16 0.29
60.30 10 0.18 60.30 9 0.16
60.70 5 0.09 60.70 4 0.07
60.95 3 0.0054 60.95 2 0.037
>1.0 2 0.0036 >1.0 2 0.037

w
1 1.5 2 2.5 3 3.5

x1

x2

H

H1

H2

sv1

sv2

0.413-0.367

-1

+1

Class 1

Class 2

1

2

3

4

4

Fig. 8. The distribution of vectors inside a 2-dimensional space. Legend:
svi: Support vectors (i = 1, 2); H: Hyperplane; w: Normal vector to the
hyperplane representing it; xi: ith coordinate of the space; Hi: Hyperplane
passing through the support vector svi.
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yi ¼ wT � xþ b ð17Þ

yo ¼ ciyi P 1 ð18Þ
where

ci 2 f�1; 1Þg ð19Þ

A Lagrangian is given as

f ¼ 1
2
kwk2 þ

Xn

i¼1

aiðciyi � 1Þ ð20Þ

where ai’s are non-negative Lagrange multipliers. We must
now minimize f given in Eq. (21) with respect to w and b
simultaneously. This requires that the derivatives of f with
respect to all the ai’s vanish, all subject to the constraints
ai P 0. Now, this is a convex quadratic programming prob-
lem, since the objective function is itself convex, and those
parts that satisfy the constraints also form a convex set.
The solution can be expressed in terms of linear combina-
tion of the training vectors as

w ¼
Xn

i¼1

aicixsv i ð21Þ

It is known that the square of the norm of a vector is

kwk2 ¼ wT �w ð22Þ
By putting Eq. (22) into Eq. (21),

f ¼ 3
2

Xn

i¼1

Xn

j¼1

aiajcicjxT
svi � xsvj þ

Xn

i¼1

ðaiciÞ � b�
Xn

i¼1

ai

 
ð23Þ

Minimize f with respect to ai and b subject to

ai P 0 ð24Þ

And

Xn

i¼1

aici ¼ 0 ð25Þ

That is,

df
dai
¼ 0; i ¼ 1;2; . . . ;n ð26Þ

df
db
¼ 0 ð27Þ

For n = 2,

f ¼ 3
2
a1a1c1c1xT

sv1 � xsv1 þ 3a1a2c1c2xT
sv1 � xsv2

þ 3
2
a2a2c2c2xT

sv2 � xsv2 þ a1c1bþ a2c2b� a1 � a2 ð28Þ

Minimize f:

df
da1
¼ 3a1c1c1xT

sv1 � xsv1 þ 3a2c1c2xT
sv1 � xsv2 þ c1b� 1

¼ 0 ð29Þ

df
da2
¼ 3a1c1c2xT

sv1 � xsv2 þ 3a2c2c2xT
sv1 � xsv2 þ c2b� 1

¼ 0 ð30Þ

df
db
¼ a1c1 þ a2c2 ¼ 0 ð31Þ

Find

a1 ¼ a2 and b for c1 ¼ �1; c2 ¼ þ1; xsv1

¼ ½x11 x21�T ; xsv2 ¼ ½x12 x22�T :

After finding the Lagrange multipliers satisfying above
rules, an optimum hyperplane H can be plotted perpendic-
ular to the weighting vector w ¼

Pn
i¼1aicixsvi (see Eq. (22)).

The classification can be achieved by the dot product of any
vector x to be classified by the vector w, that is, y = wT� x. If
y > +1, x belongs to class 1 else it belongs to class 2.
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Fig. 10. The hyperplane H separating two teams of robots. Here, the
mission vectors are x1 ¼ ½0:06926 0:0637�T , x2 ¼ ½0:0566 0:0685�T ;
x3 ¼ ½0:037 0:0976�T , and x4 ¼ ½0:0317 0:1055�T . The support vectors

are chosen as x2 ¼ sv1 ¼ ½0:0566 0:0685�T and x3 ¼ sv2 ¼ ½0:037 0:0976�T .
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3.3. Example

Let’s the support vectors be

xsv1 ¼ ½1:5 2:3�T ; xsv2 ¼ ½2:4 1:5�T ; c1 ¼ �1 and c2

¼ 1

Find the hyperplane that can separate the two dimensional
space into two classification regions. The Eq. (24) can be
rewritten as

f ¼ 3
2

Xn

i¼1

Xn

j¼1

aiajcicjxT
svi � xsvj þ

Xn

i¼1

aici

 !
� b�

Xn

i¼1

ai

For n = 2,

f ¼ 1
2
½a1c1x1

T þ a2c2x2
T � � ½a1c1x1 þ a2c2x2� þ a1ðc1½a1c1x1

T

þ a2c2x2
T � � x1 þ b� � 1Þ þ a2ðc2½a1c1x1

T þ a2c2x2
T � � x2

þ b� � 1Þ

It can be reduced to Eq. (28):

f ¼ 3
2
a1a1c1c1xT

sv1 � xsv1 þ 3a1a2c1c2xT
sv1 � xsv2

þ 3
2
a2a2c2c2xT

sv2 � xsv2 þ a1c1bþ a2c2b� a1 � a2

From Eqs. (29)–(31) and putting the support vectors,

22:62a1 � 21:15a2 � b ¼ 1 ð32Þ

�21:15a1 þ 24:03a2 þ b ¼ 1 ð33Þ
df
db ¼ a1c1 þ a2c2 ¼ 0 gives �a1 + a2 = 0, that is, a1 = a2. Putt-
ing this result into Eqs. (33) and (34) gives

a1 ¼ a2 ¼ 0:45977 ð34Þ

and

b ¼ �0:3241 ð35Þ
+

TTL
Level

Fig. 9. SVM classifier for t
Then the w vector can be written as (see Fig. 8)

w ¼
X2

i¼1

aicixsvi ¼ ½0:413793� 0:367816�T ð36Þ
3.4. Implementation of SVM for team establishment

The SVM classifier can easily be implemented with
operational amplifiers and logic gates as shown in Fig. 9.
In this application, the mission vectors are 2-dimensional
as explained above. This means that there are two classes
of MSs in the operation area. It receives the class vectors
as inputs. The input stage, which is a summing amplifier,
implements the dot product of the input vector with the
vector w. It then produces the output signal as yi = wT�xi.
The next stage is a limiter that decides whether y0 is �1
or +1 representing the appropriate class to which it
1

1
-1

-1

1

eam establishment.



Table 3
Initial assignment of mission vectors (MVs).

Distance (cm) Skill ratings Mission vectors (MVs) Method 1

xij ¼ 1
dij
þ mj

cj �n

Mission vectors (MVs) Method 2
xij ¼ sij �

Pm
k¼1

sik
m

d11 19 d12 73 d13 100 s11 0.052 s12 0.014 s13 0.01 x11 0.069 x12 0.064 x11 0.019 x12 �0.019
d21 25 d22 54 d23 78 s21 0.040 s22 0.018 s23 0.013 x21 0.056 x22 0.07 x21 0.010 x22 �0.010
d31 49 d32 21 d33 40 s31 0.020 s32 0.048 s33 0.025 x31 0.037 x32 0.098 x31 �0.013 x32 0.013
d41 66 d42 18 d43 25 s41 0.015 s42 0.055 s43 0.040 x41 0.031 x42 0.105 x41 �0.02 x42 0.02

H

w= [13.79    -13.79]T

Mission vector (Method 2)
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Fig. 11. The hyperplane H separating two teams of robots. Here, the mission vectors are x1 ¼ ½0:01945 � 0:01945�T , x2 ¼ ½0:01075 � 0:01075�T ; x3 ¼
½�0:0136 0:0136�T and x4 ¼ ½0:0202 0:0202�T . The support vectors are chosen as x3 ¼ sv1 ¼ ½�0:0136 0:0136�T � x2 ¼ sv2 ¼ ½0:01075 � 0:01075�T .

w = [ -6.01    15.45]T

H
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Fig. 12. The hyperplane H separating two teams of robots. Here, the mission vectors are x1 ¼ ½0:0660 0:0640�T ; x2 ¼ ½0:0826 0:0700�T , x3 ¼
½0:0526 0:0800�T ; x4 ¼ ½0:0386 0:1160�T ; x5 ¼ ½0:0316 0:1500�T and x6 ¼ ½0:0286 0:0860�T . The support vectors are chosen as x3 ¼ sv1 ¼
½0:0526 0:0800�T and x4 ¼ sv2 ¼ ½0:0386 0:1160�T .
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belongs. Since a TTL circuit is used to activate the corre-
sponding gate output, it is first converted to the TTL level
and then it is passed through the logic circuit realized by
the NAND gates. The outputs H1 and H2 are active low. That
is, if Hi = 0, then the robot is a member of ith team (where
i = 1, 2).
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Fig. 13. The hyperplane H separating two teams of robots. Here, the mission vectors are x1 ¼ ½0:0253 � 0:0106�T ; x2 ¼ ½0:0330 � 0:0130�T , x3 ¼
½0:0086 0:0027�T ; x4 ¼ ½�0:0140 0:0300�T ; x5 ¼ ½�0:0366 0:0484�T and x6 ¼ ½�0:0230 0:0007�T . The support vectors are chosen as x3 ¼ sv1 ¼
½0:0086 0:0027�T and x6 ¼ sv2 ¼ ½�0:023 0:0007�T .

Fig. 14. Simulation with four mobile sensors grouped automatically into two teams in a magnetic field environment.
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4. Experimental results

The operation of the system is tested by simulations
implemented in Visual C++ environment and also an
experimental prototype systems realized as experimental
Sumo robots. The magnetic anomalies are created by one
real anti-tank (AT) mine, one training anti-personnel (AP)
mine and a ferromagnetic object (a bolt). For illustrative
purposes, some of the simulations and practical applica-
tion results are given in Figs. 14–17. The locations of
anomalies created by the AT mine, AP mine and the ferro-
magnetic bolt are considered as the first task, the second
task and the third task respectively. The task assignments
and team establishments processes for each case are sum-



Fig. 15. Simulation with six mobile sensors grouped automatically into two teams in a magnetic field environment.

Fig. 16. Experiments with prototype experimental robots. In these pictures, the two robots detect the anomalies created under the wooden platforms and
the motions are monitored on the computer screen.
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marized in Tables 1–3. In the experiments, the anomalies
of the AT and AP mines are taken as the tasks and the fer-
romagnetic object is discarded in order to obtain a two-
dimensional mission vectors.

The experiments are carried out by using the following
parameters: the diameters of the first job assignment cir-
cles are c1 = 30 cm, c2 = 10 cm which are the diameters of
AT and AP mines respectively. The two methods, method
1 (MV with Skill rating – Priority (SP) Method) and method
2 (MV with the Most Skillful Robot (MSR) Method) are
used for the determination of the mission vectors.

For the first experiment (Fig. 10), the number of robots
n = 4, the number of tasks m = 2, the number of robots at
the vicinity of task 1 is #1 = 2, and the number of robots
at the vicinity of task 2 is #2 = 2. Table 3 summarizes the
results of the first experiment.

From Table 3, the mission vectors obtained using meth-
od 1 (MV with Skill rating – Priority (SP) Method) are as
follows: x1 ¼ ½0:06926 0:0637�T , x2 ¼ ½0:0566 0:0685�T ,
x3 ¼ ½0:037 0:0976�T , and x4 ¼ ½�0:00317 0:1055��T . The
support vectors are chosen as x2 ¼ sv1 ¼ ½0:0566 0:0685�T

and x3 ¼ sv2 ¼ ½0:037 0:0976�T .
Using Eqs. (29)–(31), the non-negative Lagrange multi-

pliers can be calculated as a1 = a2 = 539.23 and the offset
value b = 2.435. Using Eq. (21), the vector w can be calcu-
lated as w ¼ ½�10:57 0:1055�T . This vector defines the
hyperplane H separating two classes of mission vectors
that is used for the establishment of the teams (Fig. 10).

The mission vectors calculated by the method 2 (MV
with the Most Skillful Robot (MSR) Method) are as follows:
x1 ¼ ½0:01945 � 0:01945�T , x2 ¼ ½0:01075 � 0:01075�T ,
x3 ¼ ½�0:0136 0:0136�T , and x4 ¼ ½�0:0202 0:0202�T .
For these mission vectors, the hyperplane is shown in
Fig. 11 for which w ¼ ½13:79 � 13:79�T and b = 0.116.

For the second illustrative experiment (Fig. 14), n = 6,
m = 2, #1 = 3, #2 = 3. The results of the task assignment pro-
cess are given in Table 1.

From Table 1, the mission vectors obtained using meth-
od 1 (MV with Skill rating – Priority (SP) Method) are as
follows: x1 ¼ ½0:0660 0:0640�T , x2 ¼ ½0:0826 0:0700�T ;
x3 ¼ ½0:0526 0:0800�T , x4 ¼ ½0:0386 0:1160�T ; x5 ¼
½0:0316 0:1500�T and x6 ¼ ½0:0286 0:860�T . The support
vectors are chosen as x3 ¼ sv1 ¼ ½0:0526 0:0800�T and
x4 ¼ sv2 ¼ ½0:0386 0:1160�T .

Using Eqs. (29)–(31), the non-negative Lagrange multi-
pliers can be calculated as a1 = a2 = 429.38 and the offset
value b = �3.72. Using Eq. (21), the vector w can be calcu-
lated as w ¼ ½�6:01 15:45�T . This vector defines the
hyperplane H separating two classes of mission vectors
that is used for the establishment of the teams (Fig. 12).

The mission vectors calculated by the method 2 (MV
with the Most Skillful Robot (MSR) Method) are as follows:
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x1 ¼ ½0:0253 � 0:0106�T ; x2 ¼ ½0:0330 � 0:0130�T , x3 ¼
½0:0086 0:0027�T , x4 ¼ ½�0:0140 0:0300�T ; x5 ¼
½�0:0366 0:0484�T and x6 ¼ ½�0:0230 0:0007�T . The sup-
port vectors are chosen as x3 ¼ sv1 ¼ ½0:0086 0:0027�T

and x6 ¼ sv2 ¼ ½�0:023 0:0007�T .
Using Eqs. (29)–(31), the non-negative Lagrange
multipliers can be calculated as a1 = a2 = 664.96 and the
offset value b = �0.447. Using Eq. (21), the vector w can
be calculated as w ¼ ½�21:00 � 1:33�T . This vector de-
fines the hyperplane H separating two classes of mission
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vectors that is used for the establishment of the teams
(Fig. 13).

And for the last experiment performed by prototype ro-
bots, n = 2, m = 2, #1 = 1, #2 = 1. In this experiment, we tried
to see the functioning and performance of the practical
system in performing task assignment and team establish-
ment by SVM, though the number of robots are very
restricted.

And for the last experiment performed by prototype ro-
bots, n = 2, m = 2, #1 = 1, #2 = 1. In this experiment, we tried
to see the functioning and performance of the practical
system in performing task assignment and team establish-
ment by SVM, though the number of robots are very
restricted.

5. Conclusion

In this paper, the team establishment problem is
solved by using task assignment approach. A new algo-
rithm is developed for task assignment. The task assign-
ment algorithm has two versions. The first version is
used for the assignment of single robot to a single task.
However, the second version is used for the assignment
of multiple robots to a single task. The algorithm depends
on the optimization of weights composed of skill ratings
of the robots and priorities of the tasks. The skill ratings
are related to the distances from the robots to the tasks.
The shorter the distance is, the more skillful the robot.
The priorities of the tasks are the values mainly deter-
mined from the number of robots aiming at the target ob-
jects. It is the measure of importance of the task. A
priority can be defined as the number of robots aiming
to that target multiplied by the inverse of the size of
the object. Two methods are used to define the weights.
The weights are used for the creation of mission vectors
which constitute the background information of the ro-
bots. Depending on the mission vectors, robots are classi-
fied as teams.

In this work, the operation of robot teams is performed
in a periodic fashion. The period is divided into two stages.
The first stage is the initialization stage where the initial
task assignment is done by the task assignment algorithm
developed here. In the second stage, the team establish-
ment is achieved by using SVM method which creates
the teams based on the mission vectors of the robots ob-
tained in the first stage of the period. Dividing the course
of action in this way facilitates the operation of the teams
and also gives an opportunity to update the mission vec-
tors during the operation. It reduces the communications
needs as well. During the second stage, robots move with-
out any communications. They come together as teams by
use of the SVM mechanism.

The sensor network created here is a mobile sensor
network that is composed of mobile units making rota-
tional and translational motion within a period of opera-
tion. Each mobile unit has a capability of sensing the
direction of the gradient vector of the magnetic field by
means of a convolution mask created by a sensor mecha-
nism with 3 � 3 sensor grid. The overall operation is syn-
chronized in time by use of a time division multiple
access (TDMA) method.
The methods are demonstrated by simulations and a
practical example. In order to simplify the proof of the
concept, a two dimensional mission vectors are used.
The task assignment algorithm developed here has no
restriction on the dimension of vectors. It may be applied
for assignment of many robotic teams to many tasks. The
SVM method is also suitable for separation of multiple
regions whether linear of nonlinear fashion. In this
application, the SVM approach is adapted for the classifi-
cation of two dimensional vectors. In that case, a linear
separation hyperplane can easily be found. But it can
be extended to multiple and nonlinear separations as
well.

The approach developed here gives satisfactory results.
It suits very well the solution of the problem for detecting
anti-tank and anti-personnel mines buried long years be-
fore at the border regions. The method helps the works in-
tended to clear this kind of regions.
Appendix A

A.1. Illustrations

In this appendix, the outputs of team establishment
process are given. The process automatically determines
the skill ratings based on the distances to the tasks and pri-
orities of the tasks. These values are used to create the mis-
sion vectors of the robots. They move in the potential field
and constitute the teams based on these vectors by means
of SVMs. The mission vectors are periodically updated dur-
ing the course of action. The first illustration shows the
behavior of four robots in a magnetic anomaly environ-
ment. In the second illustration, the number of robots is in-
creased to six. The third illustration is the conceptual
demonstration of the proposed approach by two practical
experimental robotic systems. The results are encouraging
(see Figs. 14–17).

A.2. Flowchart

This appendix gives the flow chart of the overall opera-
tion. It includes the team assignment algorithms as well.
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