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We address a single-machine scheduling problem where the objective is to minimize the
weighted mean absolute deviation of job completion times from their weighted mean. This
problem and its precursors aim to achieve the maximum admissible level of service equity.
It has been shown earlier that the unweighted version of this problem is NP-hard in the
ordinary sense. For that version, a pseudo-polynomial time dynamic program and a 2-
approximate algorithm are available. However, not much (except for an important solution
property) exists for the weighted version. In this paper, we establish the relationship
between the optimal solution to the weighted problem and a related one in which the devi-
ations are measured from the weighted median (rather than the mean) of the job comple-
tion times; this generalizes the 2-approximation result mentioned above. We proceed to
give a pseudo-polynomial time dynamic program, establishing the ordinary NP-hardness
of the problem in general. We then present a fully-polynomial time approximation scheme
as well. Finally, we report the findings from a limited computational study on the heuristic
solution of the general problem. Our results specialize easily to the unweighted case; they
also lead to an approximation of the set of schedules that are efficient with respect to both
the weighted mean absolute deviation and the weighted mean completion time.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Consider a set N of n independent jobs that are available at time zero for non-preempted processing on a continuously
available machine which can process at most one job at a time. Let job j, j 2 N, have an integer processing time pj (pj > 0)
and an integer weight wj (wj P 0). (For future reference, let pN ¼

P
j2Npj and wN ¼

P
j2Nwj.) Similarly, let S be an ordered

set of the job indexes representing a job sequence and [i] be the index of the job in position i in S. Assuming w.l.o.g. a zero
start time and no inserted machine idle time, S translates to a schedule in which the completion time of the job in position i
in S is given by c½i�ðSÞ ¼

P
16k6ip½k�ðSÞ. We define vðS; dÞ ¼ ð1=wNÞ

P
16i6nw½i�ðSÞjc½i�ðSÞ � djr , for d and r P 0, to be a measure of

the variability of the job completion times in S about d. Here, d can either be a due-date that is common to all the jobs (inde-
pendent of S) or a measure of the central tendency of the job completion times in S. Similarly, r can represent the degree to
which the deviations of the job completion times from d are penalized. We define the weighted mean and the median of the
job completion times in S as cmeanðSÞ ¼ ð1=wNÞ

P
16i6nw½i�ðSÞc½i�ðSÞ and cmed(S) = c[m](S) where m ¼ minfi : 1 6 i 6 n andP

16k6iw½k�ðSÞP
P

i<k6nw½k�ðSÞg, respectively. It is well known that, for any given S, d = cmed(S) minimizes v(S,d) when r = 1
. All rights reserved.
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and d = cmean(S) minimizes v(S,d) when r = 2. The general objective is to find a schedule Sopt that minimizes v(S,d) over all S,
for a particular choice of d and r. In this paper, we focus only on those cases where d = cmed(S) or cmean(S) and r = 1 or 2.

A problem such as the above becomes relevant when one wants to achieve the maximum admissible level of service equi-
ty. Merten and Muller [14] have studied the problem in the context of organizing computer databases in such a way as to
provide users as uniform an access time as possible. Specific versions of the problem also appear as sub-problems while min-
imizing the earliness and tardiness penalties about an unrestrictively large common due-date; see the survey by Baker and
Scudder [2] for examples.

We now summarize the past research on the problem briefly. We state the most relevant developments and do not
claim to be exhaustive. Chronologically, the unweighted problem when d = cmean(S) and r = 2 has been addressed first; it
is commonly known as the completion time variance (CTV) problem. Eilon and Chowdhury [7] have shown that an optimal
CTV schedule is V-shaped w.r.t. the processing time pj, i.e., the jobs preceding the smallest job are scheduled in the longest
processing time first (LPT) order whereas those following it are scheduled in the shortest processing time first (SPT) order.
Kubiak [12] has proved that CTV is NP-hard. De et al. [6] have given an O(n2pN) pseudo-polynomial time dynamic program
and an O(n3/e) fully-polynomial time approximation scheme (FPTAS) for its solution; Kubiak et al. [13] have recently dis-
covered an O(n2/e) FPTAS. An FPTAS delivers a solution whose value is no more than (1 + e) times that of the optimal and
executes in time that is bounded by a polynomial in the problem size (which in our case involves n, (1/e) and
log(maxj{pj,wj})).

The weighted version of CTV, called WCTV, is clearly NP-hard at least in the ordinary sense. Cai [3] has addressed a special
case of WCTV where the weights are agreeable (viz., where wi P wj) pi 6 pj for any i, j 2 N). He has established the V-shape
property of an optimal schedule w.r.t. pj and has provided an O (npNwN) pseudo-polynomial time dynamic program for this
case. Cheng and Kubiak [4] have subsequently given an O (n4 log(maxj{pj,wj})/e) FPTAS for the same problem; more recently,
Erel and Ghosh [8] have found an improved O (n2 log(n)/e) FPTAS. However, the complexity status of the general problem
remains open, i.e., it is not known whether the problem is strongly NP-hard or not.

The unweighted problem when d = cmed(S) and r = 1 has also been addressed early on; it is known as MAD (we will refer to
it as MAD_mC here). Kanet [10] has given an O (n log(n)) time solution in this case. An optimal schedule here is also V-shaped
w.r.t. pj.

The weighted version of MAD, called WET and referred to as WMAD_WmC by us here, has been studied mostly in ear-
liness-tardiness scheduling about an unrestrictively large common due-date. Hall and Posner [9] have shown that the prob-
lem is NP-hard in the ordinary sense, having given an O(npN) pseudo-polynomial time dynamic program for its solution. De
et al. [5] have independently proposed an O(nwN) pseudo-polynomial time dynamic program. Kovalyov and Kubiak [11] have
given an O(n2 log3(maxj{pj,wj,1/e})/e2) FPTAS for the same problem; recently, Erel and Ghosh [8] have found an improved
O(n2 log(maxj{pj,wj})/e) FPTAS. Note that an optimal schedule in this case is V-shaped w.r.t. the pj/wj ratio, i.e., the jobs pre-
ceding the job with the smallest ratio appear in the non-increasing ratio order (weighted LPT or WLPT) and those following it
appear in the non-decreasing ratio order (weighted SPT or WSPT).

Recently, a new variation of the problem where d = cmean(S) and r = 1 has received attention. The rationale for studying
this variation stems perhaps from the observations that the mean completion time is a more accepted measure of centrality
than the median and further that there may be situations where it is more appropriate not to penalize the larger deviations
from the central reference at a progressively higher rate than the smaller ones.

We will refer to the unweighted version of this latter problem as MAD_MC and the weighted version as WMAD_WMC.
Aneja et al. [1] have shown that an optimal schedule for MAD_MC is V-shaped w.r.t. pj. They have also proved that the prob-
lem is NP-hard in the ordinary sense, having given an Oðn3p2

NÞ pseudo-polynomial time dynamic program for its solution.
Mosheiov [15] has subsequently presented an O(n log(n)) time algorithm, which though optimal for MAD_mC, is only 2-
approximate for MAD_MC (i.e., the solution delivered has a value that is no more than twice that of the optimal). Through
a limited computational study, Mosheiov [15] has also shown that the MAD_mC solution in fact provides a much better
approximation than this.

In contrast, precious little has been done relative to WMAD_WMC. Thus far, it has been shown by Aneja et al. [1] that an
optimal schedule is W-shaped w.r.t. pj/wj. (A schedule S is called W-shaped if there exists a job—the so-called pivot job—such
that the jobs preceding/following it appear in the WLPT/WSPT order; a V-shaped schedule is W-shaped as well.)
However, Aneja et al. [1] have shown, through a limited computational study, that a V-shaped schedule is often a very good
surrogate.

In this paper, we address WMAD_WMC more completely. First, we provide a solution framework for the problem and
present some basic results that are both useful and interesting. We show in particular that the optimal schedule for
WMAD_WmC provides (though not in polynomial time) a 2-approximate solution to WMAD_WMC; this generalizes a result
due to Mosheiov [15] for MAD_MC. Next, we go on to develop an Oðn2p2

Nw2
NÞ pseudo-polynomial time dynamic program for

solving WMAD_WMC exactly; this establishes that the problem is NP-hard only in the ordinary sense. This dynamic pro-
gram easily specializes to MAD_MC, yielding an Oðn3p2

NÞ time solution as in Aneja et al. [1]. We then propose an
O(n2max{n2/e2, log (maxj{pj,wj})}) FPTAS for WMAD_WMC, which upon appropriate modification, yields an O(n3/e2) FPTAS
for MAD_MC. Finally, in line with Mosheiov [15], we report the findings of a computational study where the solution to
WMAD_WmC is used as a heuristic solution to WMAD_WMC. We close by discussing how our dynamic programming solu-
tion can approximate the set of schedules that are efficient w.r.t. both the weighted mean absolute deviation and the
weighted mean completion time.
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2. Solution framework and basic results

First off, we assume that all the jobs are numbered such that p1/w1 6 � � � 6 pn/wn and further that N is ordered as
{1,2, . . . ,n}. We then define vmean(S) = v(S,d), where d = cmean(S). Our objective in WMAD_WMC is to find a schedule Smean

which minimizes vmean(S) over all possible S. Since there is a W-shaped schedule (w.r.t. pj/wj) that is optimal in this case
(see Aneja et al. [1]), we can restrict our attention to such schedules only.

A W-shaped schedule S is of the form: S = {L(S), {q},R(S)}, where q(q 2 N) is the so-called pivot job, and L(S) and R(S) are,
respectively, WLPT and WSPT ordered sets of the remaining jobs such that L(S) [ R(S) = N � {q} and L(S) \ R(S) = £. In solving
WMAD_WMC (i.e., searching for Smean), one difficulty is that, while we can take Smean to be W-shaped, we cannot fix the iden-
tity of its pivot job a priori. This leads us, in effect, to try each q 2 N as a pivot.

Another difficulty, while solving WMAD_WMC, is that we do not know cmean(Smean), until we have found Smean itself.
This leads us potentially to evaluate v(S,d), for a given S, over all d, d 2 {0,1/wN,2/wN, . . . ,pN}. (The values selected for d
ensure that cmean(S) = d.) If q is the pivot job in S as before, we can further impose the constraint that d 6 cq(S) 6 d + pq,
effectively making the pivot job q straddle d. (We can do this since, for a given d, it is easily seen that there is an
optimal schedule in which the jobs completing on or before d are WLPT ordered and those starting on or after d are WSPT
ordered.)

We can then solve WMAD_WMC roughly as follows: try each q, q 2 N, as the pivot job; consider all potentially optimal
W-shaped schedules with q as the pivot job; over this set (of which, say, S is a member), evaluate v(S,d) for all d such
that d 2 {0,1/wN,2/wN, . . . ,pN} and cq(S) � pq 6 d 6 cq(S), and find an (S,d) pair with cmean(S) = d which minimizes v(S,d) over
all available pairs; finally, pick the best pair over all q as the optimal solution. The exact details as to how this is done
are given in the next section. In the mean time, it may be worthwhile to look at a W-shaped schedule via a numerical
example.

Example 2.1. Consider a 5-job problem with the following parameters and let {5,2, ,1,4} be a W-shaped schedule with
job 3 as the pivot job (call it q). Fig. 2.1 shows the schedule (call it S).
j:
 1
Fig
2

. 2.1. Proper W-shaped sched
3

ule.
4
 5

pj:
 1
 2
 3
 3
 3

wj:
 3
 4
 1
 1
 1
Notice here that, for any d that is an integer multiple of (1/wN) (0.1 in this case) and between cq(S) � pq and cq(S) (here 5
and 8, respectively), job q in S straddles d. As noted earlier, these d values are the only ones that are appropriate for this S, and
we will thus evaluate v(S,d) over these values alone. (We say that we consider only these (S,d) pairs.) h

We now present a few basic observations and our first results that are both useful and interesting. (They do not require
any particular assumptions about the shape of a schedule S.) However, before we do so, we need to formally introduce
WMAD_WmC. To that end, we define vmed(S) = v(S,d), where d = cmed(S). Our objective in WMAD_WmC is to find a schedule
Smed which minimizes vmed(S) over all possible S.

First, consider S with d0 and d00 for d. Assume w.l.o.g. that v(S,d0) P v(S,d00).

Observation 2.1. v(S,d0) 6 v(S,d00) + jd0 � d00j.
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Proof
vðS;d0Þ ¼ ð1=wNÞ
X

16i6n

w½i�ðSÞ c½i�ðSÞ � d0
�� �� ¼ ð1=wNÞ

X

16i6n

w½i�ðSÞ c½i�ðSÞ � d00 þ d00 � d0
�� ��

6 ð1=wNÞ
X

16i6n

w½i�ðSÞ c½i�ðSÞ � d00
�� ��þ ð1=wNÞ

X

16i6n

w½i�ðSÞjd00 � d0j ¼ vðS;d00Þ þ jd0 � d00j: �
The following is easy to visualize; we give a formal proof anyhow.

Observation 2.2. jcmean(S) � dj 6 v(S,d).
Proof
jcmeanðSÞ � dj 6 ð1=wNÞ
X

16i6n

w½i�ðSÞc½i�ðSÞ � d

�����

����� ¼ ð1=wNÞ
X

16i6n

w½i�ðSÞc½i�ðSÞ �wNd

�����

�����

¼ ð1=wNÞ
X

16i6n

w½i�ðSÞc½i�ðSÞ �
X

16i6n

w½i�ðSÞd
�����

����� ¼ ð1=wNÞ
X

16i6n

w½i�ðSÞ c½i�ðSÞ � d
� �

�����

�����

6 ð1=wNÞ
X

16i6n

w½i�ðSÞ c½i�ðSÞ � d
�� �� ¼ vðS;dÞ: �
The following result, which draws upon the above observations, makes an important connection between vmean(S) and
vmed(S).
Result 2.1. vmean(S) 6 2vmed(S).
Proof. From Observation 2.1, using d0 = cmean(S) and d00 = cmed(S), we get
vmeanðSÞ ¼ vðS; cmeanðSÞÞ 6 vðS; cmedðSÞÞ þ cmeanðSÞ � cmedðSÞj j:
From Observation 2.2, we then get
vmeanðSÞ 6 vðS; cmedðSÞÞ þ vðS; cmedðSÞÞ ¼ 2vmedðSÞ: �
Recall that Smean is an optimal schedule for WMAD_WMC (which minimizes vmean(S) over all S) and that Smed is an optimal
schedule for WMAD_WmC (which minimizes vmed(S) over all S). Since WMAD_WmC is a relaxation of WMAD_WMC, we get
the following.
Observation 2.3. vmean(Smean) P vmed(Smed).
Proof. Because vmed(S) 6 vmean(S) and vmed(Smed) 6 vmed(S) for any S, we have
vmeanðSmeanÞP vmedðSmeanÞ and vmedðSmeanÞP vmedðSmedÞ:
Putting the above inequalities together, we get
vmeanðSmeanÞP vmedðSmedÞ: �
This immediately leads us to the main result of this section.
Result 2.2. vmean(Smed) 6 2vmean(Smean).

Discussion. Applying Result 2.1 and Observation 2.3 in succession, we get
vmeanðSmedÞ 6 2vmedðSmedÞ 6 2 vmeanðSmeanÞ: �
Result 2.2 shows that any schedule that is optimal for WMAD_WmC also provides a solution for WMAD_WMC that has a
value which is never more than twice the optimal value. This is a direct generalization of a similar result for MAD_MC in
Mosheiov [15]. Unfortunately, WMAD_WmC is NP-hard and cannot be solved in polynomial time. We will, however, be able
to exploit this result while developing the FPTAS for WMAD_WMC.
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3. Dynamic programming algorithm

Our dynamic program implicitly enumerates over all potentially optimal (S,d) pairs, where S is a W-shaped schedule built
around a pivot job q and d has a value that is appropriate for S (i.e., it is such that q straddles d). We do this for all q. For a
given q, S is of the form {L(S), {q},R(S)}, where L(S) and R(S) are respectively WLPT and WSPT ordered. We build S inside-out,
starting with job q and assigning the remaining jobs in N– {q}, one at a time and in increasing order of their indexes, either to
the front of L(S) or the back of R(S).

For notational purposes, let pX ¼
P

j2Xpj and wX ¼
P

j2Xwj, where X is a subset of N. Now, suppose that, at stage k during
our construction process, A is a k-job partial schedule consisting of job q (as its pivot) and the first k � 1 jobs in N� {q}. Let
dA be an appropriate d for A. This (A,dA) pair is characterized by cmean(A) and v(A,dA). Similarly, let A0 be another k-job par-
tial schedule, for which q is again the pivot job and dA0 is an appropriate d. This (A0,dA0) pair is characterized by cmean(A0)
and vðA0; dA0 Þ. We state below the conditions under which the (A,dA) pair is said to dominate the ðA0; dA0 Þ pair. Note here that
dominance simply means that we need not carry forward the ðA0; dA0 Þ pair further in our enumeration; it does not mean
that we discard the partial schedule A0 at this stage (as another pair including A0 may survive). (Refer to Fig. 3.1, built
on Example 2.1, for an illustration of dominance. Notice that the hcmean(A),v(A,dA)i values for an (A,dA) pair appear next
to A in this figure.)

Observation 3. If cmeanðA0Þ ¼ cmeanðAÞ; dA0 ¼ dA and vðA0; dA0 Þ > vðA; dAÞ, then the ðA0; dA0 Þ pair cannot lead to an optimal
solution upon completion if the (A,dA) pair does not.
Proof. Assume that ðS0; dS0 Þ, obtained upon the completion of ðA0; dA0 Þ, leads to an optimal solution. Let U be the set of the last
n � k � 1 jobs in N � {q}, ordered as they appear in S0 and given by {L(U),R(U)}, where L(U)(R(U)) appears leftmost (rightmost)
in S0. It is clear that S0 = {L(U),A0,R(U)} and dS0 ¼ dA0 þ pLðUÞ.

Now, complete (A,dA) in the same way as above to get (S,dS). Clearly, S = {L(U),A,R(U)} and dS = dA + pL(U). Since dA ¼ dA0 , we
have dS ¼ dS0 (see Fig. 3.1).

It is possible to see (refer to Fig. 3.1 for perspective) that, after some algebra, we get:
wNcmeanðS0Þ ¼ wA0cmeanðA0Þ þwUcmeanðUÞ þwRðUÞpA0 þwA0pLðUÞ; and

wNcmeanðSÞ ¼ wAcmeanðAÞ þwUcmeanðUÞ þwRðUÞpA þwApLðUÞ:
It follows from the above that cmean(S0) = cmean(S). We have already noted that dS0 ¼ dS.
Finally, turning to vðS0; dS0 Þ and v(S,dS), we get after some algebra (refer again to Fig. 3.1):
wNvðS0; dS0 Þ ¼ wA0vðA
0
;dA0 Þ þwUvðU; dS0 � dA0 Þ þwRðUÞpA0 þ ðwLðUÞ �wRðUÞÞdA0 ; and

wNvðS;dSÞ ¼ wAvðA;dAÞ þwUvðU;dS � dAÞ þwRðUÞpA þ ðwLðUÞ �wRðUÞÞdA:
Since vðA0; dA0 Þ > vðA; dAÞ, it should be clear that vðS0; dS0 Þ > vðS; dSÞ.
Fig. 3.1. Dominance among partial schedules.



E. Erel, J.B. Ghosh / Applied Mathematics and Computation 217 (2011) 9340–9350 9345
Note at this point that, because of the assumed optimality of ðS0; dS0 Þ; cmeanðS0Þ ¼ dS0 . This implies in turn that cmean(S) = dS

and further that vmeanðS0Þ ¼ vðS0; dS0 Þ;vmeanðSÞ ¼ vðS; dSÞ and vmean(S0) > vmean(S). Thus, ðS0; dS0 Þ obtained from ðA0; dA0 Þ cannot
yield an optimal solution to WMAD_WMC, contradicting the original premise and proving the observation’s validity. h

We can now describe the dynamic program (which is stated in an enumerative form and which we call DP_OPT) for solv-
ing WMAD_WMC exactly. Let Xk be the set of the (A,dA) pairs at stage k of the dynamic program, corresponding to a pivot job
q. Also, let X be the set of the optimal (S,d) pairs corresponding to each q, q 2 N.

DP_OPT:

1. Set X = {}.
2. For each q 2 N:

2.1. Set X1 = {({q},d): d = 0,1/wN,2/wN, . . . ,pq}.
2.2. For k = 2 through n:

2.2.1. Let j be the index of the (k � 1)th job in N � {q}.
2.2.2. For each (B,dB) pair in Xk�1:

Add two new pairs to Xk:({j} [ B,dB + pj) and (B [ {j},dB).
2.2.3. From among all the (A,dA) pairs in the current Xk that have the same cmean(A) value and the same dA value,

keep one that has the smallest v(A,dA) value (cf. Observation 3). Let the resulting set be the final Xk.

2.3. From Xn, find all the (S,dS) pairs in which cmean(S) = dS. From among them, find one with the smallest v(S,dS) value
and add it to X.

3. From X, find an (S,d) pair with the smallest v(S,d) value. Deliver the corresponding schedule Smean as an optimal schedule
for WMAD_WMC.

Before we move on, it is instructive to see how an (A,dA) pair in stage k � 1 yields two new pairs for stage k; Fig. 3.2 below,
where the hcmean(A),v(A,dA)i values for an (A,dA) pair appear next to or below A, shows this. We now establish the correctness
and the time complexity of DP_OPT.

Result 3. DP_OPT solves WMAD_WMC correctly in Oðn2p2
Nw2

NÞ time.
Proof. The procedure given above is correct as it implicitly enumerates over all legitimate (S,d) pairs. It never discards a pair,
which upon completion may lead to an optimal solution (unless, of course, there is yet another pair that is equivalent).

At the end of stage k for a given q, the procedure retains exactly one pair for each distinct combination of cmean(A) and dA

values. It can be seen that the number of distinct values of cmean(A), as well as that of dA, is bounded above by pNwN. Thus, the
cardinality of Xk is O(pN

2wN
2). Over the n values of q and the n � 1 values of k, this translates to an overall time complexity of

O(n2pN
2wN

2). h

DP_OPT can solve MAD_MC if we simply set wj = 1 for all j 2 N; the time complexity in this case is O(n4pN) (since wN = n).
We can do better if we exploit the V-shape property; this obviates the search for a pivot job. In addition to setting wj = 1 for
all j 2 N, we carry out the enumeration in Step 2 of DP_OPT only for q = 1 (not for all q 2 N). Also, for any (S,d) pair that we
Fig. 3.2. Partial schedule generation in step 2.2.2 of DP_OPT.
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consider, we ensure that the jobs scheduled before (after) the smallest job, i.e., job 1, are LPT (SPT) ordered, and further that
job 1 either straddles d or appears immediately before or after the job that does; this implies that d� pn 6 c1(S) 6 d + pn + p1.
(Recall that n is the longest job.) We address the latter by seeding X1 in Step 2.1 as follows:
X1 ¼ fðf1g;dÞ : d ¼ �pn;�pn þ 1=n; . . . ;0; . . . ; p1 þ png:
Finally, for any (S,d) pair, we need to make sure that all the jobs in S scheduled before (after) the smallest job start before
(complete after) d. We thus never create a new pair in Step 2.2.2 unless this condition is met. By doing all of the above, we
save enumerating over the n values of q. The time complexity now becomes O(n3pN), which is the same as what Aneja et al.
[1] report for MAD_MC.

4. Fully polynomial time approximation scheme

Our FPTAS for WMAD_WMC, which we call DP_APX, is a mild modification of DP_OPT. Let �v be an upper bound on
the value of the optimal solution to WMAD_WMC; in addition, let v be a valid lower bound. We can get these bounds
from a 2-approximate solution to WMAD_WmC, obtained in O(n2 log(maxj{pj,wj})) time via the FPTAS of Erel and Ghosh
[8] with e = 1. Calling the schedule delivered Sheur and letting Smean and Smed be, as before, the optimal schedules
for WMAD_WMC and WMAD_WmC, respectively, we can set v = 1/2vmed(Sheur) and �v ¼ vmeanðSheurÞ. Note that:
vmean(Smean) 6 vmean(Sheur) (because of the optimality of Smean), and vmean(Sheur) 6 2vmed(Sheur) (by Result 2.1). The former
inequality establishes the validity of �v , while the latter shows that �v 6 2 vmedðSheurÞ. Note also that: vmed(Sheur) 6
2vmed(Smed) (by the 2-approximation guarantee), and vmed(Smed) 6 vmean(Smean) (due to Observation 2.3). Together, they
establish that vmean(Smean) P 1/2vmed(Sheur) and validate v. Note at this point that ð�v=vÞ 6 4 for our particular choices
of �v and v.

As in DP_OPT, in stage k of DP_APX for a given q, let A be a k-job partial schedule made up of job q (as the pivot) and the
first k � 1 jobs in N � {q}, and let dA be an appropriate d for A. This (A,dA) pair is associated with cmean(A) and v(A,dA). Assume,
as before, that U is the set of n � k unscheduled jobs in N at this stage. We can now make the following observation regarding
the viability of considering (A,dA) further during our enumeration.

Observation 4.1. The (A,dA) pair cannot lead to an optimal solution if the following condition holds: wAvðA; dAÞþ
wUminfdA; pA � dAg > wN �v .
Proof. Suppose that (A,dA) is completed with the jobs in U, as in the proof of Observation 3, to yield the optimal (S,dS) pair
with S = {L(U),A,R(U)}. Because of the supposed optimality of (S,dS), we have: cmean(S) = dS.

Using the expression for wNv(S,dS) used in the proof of Observation 3, we can write:
wNvmeanðSÞ ¼ wNvðS;dSÞ ¼ wAvðA;dAÞ þwUvðU;dS � dAÞ þwRðUÞpA þ ðwLðUÞ �wRðUÞÞdA

¼ wAvðA;dAÞ þwUvðU;dS � dAÞ þwRðUÞ½pA � dA� þwLðUÞdA

¼ wAvðA;dAÞ þwUvðU;dS � dAÞ þ ½wRðUÞ þwLðUÞ�minfdA;pA � dAg
¼ wAvðA;dAÞ þwUvðU;dS � dAÞ þwUminfdA;pA � dAg > wN �v ðbecause of the stated conditionÞ
¼ wN vmeanðSheurÞ:
S cannot thus be optimal. h

We now obtain a couple of useful bounds when the condition in Observation 4.1 does not hold for an (A,dA) pair.

Observation 4.2. For the (A,dA) pair with wAvðA; dAÞ þwUminfdA; pA � dAg 6 wN �v:

(i) wAjcmeanðAÞ � dAj 6 wN �v; and
(ii) wUminfdA; pA � dAg 6 wN �v .
Proof. The first bound follows from Observation 2.2 and the stated condition. The second follows trivially from the stated
condition. h

Let us suppose, as we have done prior to stating Observation 3, that A0 (just like A) is a k-job partial schedule, for which q is
the pivot and dA0 is an appropriate d for A0. This ðA0; dA0 Þ pair corresponds to cmean(A0) and vðA0; dA0 Þ. Note that A and A0 contain
the same set of k jobs (i.e., wA0 ¼ wA and pA0 ¼ pAÞ.

We can now compute the maximum loss in the final objective function value (call it the v-value) that results if we retain
the (A,dA) pair and discard the ðA0; dA0 Þ pair at stage k of the enumeration.
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Observation 4.3. The maximum loss (in the final v-value) incurred when (A,dA) is retained and ðA0; dA0 Þ is discarded at stage k
is given by ð1=wNÞDaþ 2ðwU=w2

NÞDb, if the following conditions hold: (i) jwA½cmeanðAÞ � dA� �wA0 ½cmeanðA0Þ � dA0 �j 6 Da; (ii)
wNjdA � dA0 j 6 Db; and (iii) wAvðA; dAÞ 6 wA0vðA

0; dA0 Þ. (Note that both Da and Db > 0.)
Proof. Suppose that a possible completion of the k-job ðA0; dA0 Þ pair yields an optimal n-job ðS0; dS0 Þ pair such that
cmeanðS0Þ ¼ dS0 . Let S0 = {L(U),A0,R(U)}, where U = {L(U),R(U)} is the set of n � k unscheduled jobs in N that are ordered as in
S0. From the competing k-job (A,dA) pair, construct the n-job (S,dS) pair such that S = {L(U),A,R(U)}. We now establish an
upper bound on the difference vmean(S) � vmean(S0). First, from the expressions for cmean(S), cmean(S0), v(S,dS) and vðS0; dS0 Þ used
in the proof of Observation 3, we get:
wNcmeanðSÞ �wNcmeanðS0Þ ¼ wAcmeanðAÞ �wA0cmeanðA0Þ; and

wNvðS;dSÞ �wNvðS0; dS0 Þ ¼ ½wAvðA;dAÞ �wA0vðA
0
;dA0 Þ� þ ½wLðUÞ �wRðUÞ�ðdA � dA0 Þ 6 ðwU=wNÞDb:
The above inequality follows from conditions (ii) and (iii) in the statement of Observation 4.3 and the fact that
wL(U) � wR(U) 6 wU.

We now have:
wNvmeanðSÞ �wNvmeanðS0Þ 6 ½wNvðS; dSÞ �wNvðS0;dS0 Þ� þ jwNcmeanðSÞ �wNdSj
(from Observation 2.1 and the assumption that cmeanðS0Þ ¼ dS0 Þ
6 ðwU=wNÞDbþ wNcmeanðSÞ �wNcmeanðS0Þ
� �

� ½wNdS �wNdS0 �
�� ��
(from the expression for the v-difference above and the assumption that cmeanðS0Þ ¼ dS0 Þ
6 ðwU=wNÞDbþ wAcmeanðAÞ �wA0cmeanðA0Þ
� �

� ½wNdS �wNdS0 �
�� ��
(from the expression for the c-difference above)
6 ðwU=wNÞDbþ wA½cmeanðAÞ � dA� �wA0 ½cmeanðA0Þ � dA0 �
� �

�wU ½dA � dA0 �
�� ��
(since dS � dS0 ¼ dA � dA0 and wN = wA + wU)
6 ðwU=wNÞDbþ wA cmeanðAÞ � dA½ � �wA0 ½cmeanðA0Þ � dA0 �
�� ��þwU jdA � dA0 j 6 Daþ 2ðwU=wNÞDb
(from conditions (i) and (ii) in the statement of Observation 4.3).
Dividing both sides by wN, we finally get: vmean(S) � vmean(S0) 6 (1/wN)Da + 2(wU/wN

2)Db. (This is the maximum error
DP_APX is liable to make at stage k of the enumeration. Suitable choices of Da and Db will allow us to control the extent of
this error and execute DP_APX in polynomial time at the same time.) h

Let amin(amax) be the minimum (maximum) of wA[cmean(A) � dA] and bmin(bmax) be the minimum (maximum) of wNdA over
all appropriate members of Xk, i.e., the set of k-job (A,dA) pairs, at stage k of DP_APX. We can now describe the FPTAS.

DP_APX:

1. Set X = {}. Get �v and v from Sheur.
2. For each q 2 N:

2.1. Set p1 = pq and x1 = wq.
Also, set Da = (evwN)/(2n) and Db ¼ ðevw2

NÞ=½4nðwN �x1Þ�.
Let D = min{(wN/w1)Da,Db}.

2.1.1. Let bmin ¼ dmaxf0; ðwN=x1Þðx1p1 �wN �vÞge and bmax ¼ bminfðw2
N �vÞ=ðwN �x1Þ;1=2ðwNp1Þc.

Generate the following set of (C,dC) pairs if bmin 6 bmax:
{({q},d): wNd = bmin,bmin + bDc,bmin + 2bDc, . . . ,bmax}.

2.1.2. Let bmin ¼ dmaxf1=2ðwNp1Þ; ðwN=x1Þðx1p1 �wN �vÞ;wNp1 � ðw2
N �vÞ=ðwN �x1Þe, and bmax = wNp1.

Generate the following set of (C,dC) pairs if bmin 6 bmax: {({q},d): wNd = bmin,bmin + bDc,bmin + 2bDc, . . . ,bmax}.
2.1.3. Combine the two sets generated in Steps 2.1.1 and 2.1.2 to get X1.

If X1 is empty, return to Step 2 and try the next q;
Otherwise, proceed to Step 2.2.

2.2. For k = 2 through n:
2.2.1. Let j be the index of the (k � 1)th job in N � {q}.

Set pk = pk�1 + pj and xk = xk�1 + wj.
2.2.2. For each (B,dB) pair in Xk�1:

Add two new pairs to Xk:
({j} [ B,dB + pj) and (B [ {j},dB).
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2.2.3. Delete from Xk all (A,dA) pairs for which
xkvðA;dAÞ þ ðwN �xkÞminfdA;pk � dAg > wN �v :
2.2.4. If k = n, skip to Step 2.3; continue otherwise.
Let Da = (evwN)/(2n) and Db ¼ ðevw2

NÞ=½4nðwN �xkÞ�.
2.2.4.1. Consider first the (A,dA) pairs in the current Xk with dA 6 1/2 pk.

Compute amin, amax, bmin and bmax over this subset of Xk.
Divide the interval [amin,amax] into subintervals of width Da and the interval [bmin,bmax] into subintervals of width
Db.
Of the (A,dA) pairs in this subset with their wA[cmean(A) � dA] and wNdA values in the same Da � Db rectangle, retain
in the final Xk one with the smallest v(A,dA).

2.2.4.2. Consider next the remaining (A,dA) pairs in the current Xk.
Repeat the same process as in Step 2.2.4.1 for these pairs.
2.3. Add all the (S,dS) pairs in Xn to X.

3. From X, extract an (S,d) pair such that vmean(S) is minimum, and deliver S as Sapx.

We now present the main result of this section, and, indeed, of the whole paper.

Result 4. DP_APX is an FPTAS in that it produces a (1 + e)-approximate solution to WMAD_WMC in O(n2max{n2/
e2, log(maxj{pj,wj})}) time.
Proof. No (S,dS) pair is discarded in stage n. At stage k(2 6 k 6 n � 1), we do not discard any (A,dA) pair whose completion
will result in an error more than ð1=wNÞDaþ 2½ðwN �xkÞ=w2

N�Db. (Refer to Observations 4.1 and 4.3.) It is easy to verify that
this is true for stage 1 as well. Now, substituting the values of Da and Db used in DP_APX, we see that the maximum error at
any stage k is limited to (e/n)v. Over n stages, the error can thus accumulate to a maximum of ev. This guarantees the desired
(1 + e)-approximation.

We now turn to the issue of a polynomial time guarantee. At stage k(2 6 k 6 n � 1), the number of wA[cmean(A) � dA]
subintervals in Steps 2.2.4.1 and 2.2.4.2 is bounded by:
dðamax � aminÞ=Dae 6 ½2maxfjaminj; jamaxjg�=Daþ 1 6 ð2 wN �vÞ=Daþ 1 ðcf : Observation 4:2Þ 6 4ðn=eÞð�v=vÞ þ 1

¼ 16ðn=eÞ þ 1 ðas �v=v ¼ 4Þ:
As for the number of wNdA subintervals, first note that: ðwN �xkÞðbmax � bminÞ 6 w2
N �v (this follows from Observation 4.2). The

number of subintervals is bounded by:
dðbmax � bminÞ=Dbe 6 ðw2
N �vÞ=½ðwN �xkÞDbÞ 6 4ðn=eÞð�v=vÞ þ 1 ¼ 16ðn=eÞ þ 1:
There are clearly O(n2/e2) Da � Db rectangles at stage k, 2 6 k 6 n � 1. For each of these rectangles, at most one (A,dA) pair is
retained; the total number of (A,dA) pairs left at the end of stage k is thus O(n2/e2). (The same is true for stages 1 and n as
well.) Since q and k take on n and n � 1 values, respectively, the total number of pairs considered by DP_APX is O(n4/e2).
It takes O(n2 log(maxj{pj,wj})) time to compute �v and v up front. The overall time complexity of DP_APX can thus be stated
as O(n2max{n2/e2, log(maxj{pj,wj})}). h

In order to get an FPTAS for MAD_MC, we can modify DP_OPT as described at the end of Section 3 and then apply DP_APX
subject to these modifications. There are two main points to make: first, we do not have to enumerate over all n values of q;
second, we can get �v and v by solving MAD_mC in O(n log(n)) time via the algorithm due to Kanet [10]. Thus, �v=v ¼ 4 as
before, and we get an O(n3/e2) FPTAS for MAD_MC. There is also the minor issue of populating X1 initially; one needs to
remember here that �pn 6 d 6 p1 + pn in this case. This issue, however, is easily addressed, and we choose to skip the
details.

5. Computational study

In line with Mosheiov [15], we now report the findings of a computational study, where the optimal schedule for the
WMAD_WmC problem is used as a heuristic solution for WMAD_WMC (which we already know is 2-approximate). We
use the optimal solution to WMAD_WmC, as it provides both lower and upper bounds on the WMAD_WMC optimal solution
values; we need both of these for performance evaluation. We use a dynamic program given by De et al. [5] to this end. (For
the purpose of obtaining a near-optimal schedule alone, we could as well have used any good heuristic.).

We explore 4 problem sizes: n = 25, 50, 75, and 100. For each n, we randomly generate 25 problem instances. The p’s and
the w’s are generated independently from two discrete uniform distributions over all integers from 1 to 100. The dynamic



Table 1
Performance evaluation results.

Size (n) Performance ratio CPU time (seconds)

Average Maximum Average Maximum

25 1.002594 1.006998 0.691 0.937
50 1.000636 1.002101 2.647 3.234
75 1.000414 1.001224 5.969 7.438

100 1.000138 1.000711 9.971 12.312

E. Erel, J.B. Ghosh / Applied Mathematics and Computation 217 (2011) 9340–9350 9349
program is coded in Liberty Basic and run on a Dell laptop (with 1.83 GHz Core 2 Duo CPU and 2 GB RAM) operating under
Windows XP. No special efforts have been expended to achieve efficiency. Past experience [5] shows that such efforts could
have had resulted in a speedup of at least an order of magnitude.

Table 1 summarizes the results of our study. For each n, it records the average and the maximum value of the ‘‘perfor-
mance ratio’’ and the CPU time, respectively. The reported performance ratio, computed as vmean(Smed)/vmed(Smed), is a sur-
rogate for the true one given by vmean(Smed)/vmean(Smean). Notice that vmed(Smed) 6 vmed(Smean) 6 vmean(Smean) and further that
the reported ratio is a conservative estimate of the true one. This implies that, if the reported ratio is small (close to 1) and
the reported performance good, the true ratio is even smaller and the true performance even better than reported.

Table 1 shows that the optimal WMAD_WmC schedule Smed provides a very good solution to WMAD_WMC (well within
1% of its optimal solution value), much better than what its 2-approximate guarantee promises. This agrees with what Mos-
heiov [15] has found for MAD_MC and MAD_mC. Also, the results indicate that the performance ratio improves as the prob-
lem size increases. This seems to agree with the theoretical finding by Mosheiov [15] that Smed is asymptotically optimal for
WMAD_WMC in the unweighted case.

Note that the time to obtain Smed is significantly smaller than what one would expect for Smean. However, one can easily
replace Smed with a heuristically obtained V-shaped schedule. This can be done at great time savings and no significant loss of
accuracy by using a scheme such as the one given in De et al. [5].

Whether one is solving WMAD_WmC exactly or approximately, one is searching over V-shaped schedules only. As we
have seen, such a search can quickly produce a very good schedule. We have also seen that this schedule continues to be
good for WMAD_WMC. The upshot is that one can solve WMAD_WMC quite effectively by searching over V-shaped sched-
ules. This has been a conclusion reached at by Aneja et al. [1] as well.
6. Conclusion

In this paper, we have addressed the WMAD_WMC problem, for which only minimal results have been available thus far.
We have established a connection between the optimal solutions to this problem and the better known WMAD_WmC prob-
lem. We have further given a pseudo-polynomial time dynamic program (DP_OPT) and an FPTAS (DP_APX) for the exact and
the approximate solution, respectively, of WMAD_WMC. We have indicated briefly how the above algorithms specialize to
the MAD_MC problem. Finally, we have shown via a computational study that the optimal schedule for WMAD_WmC is
near-optimal for WMAD_WMC.

To conclude, we may note that DP_OPT makes available to us, in the form of Xn at the end of Step 2.2, a set of (S,d) pairs
that are efficient (nondominated) w.r.t. vmean(S) and cmean(S), where S is a W-shaped schedule with pivot job q. If, in Step 2.3,
we now add all the members of Xn (rather than just the optimal one) to X, and if, in Step 3, we apply Step 2.2.3 to X, we get a
completely representative set of W-shaped efficient schedules. While it is not clear at this time if all efficient schedules are
necessarily W-shaped, the set delivered by DP_OPT (with the suggested modifications) nevertheless provides us with a rich
and interesting subset of such schedules.
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