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ABSTRACT

ACTIVITY RECOGNITION INVARIANT TO
POSITION AND ORIENTATION OF

WEARABLE MOTION SENSOR UNITS

Aras Yurtman

Ph.D. in Electrical and Electronics Engineering

Advisor: Billur Barshan Özaktaş

April 2019

We propose techniques that achieve invariance to the placement of wearable motion

sensor units in the context of human activity recognition. First, we focus on

invariance to sensor unit orientation and develop three alternative transformations

to remove from the raw sensor data the effect of the orientation at which the sensor

unit is placed. The first two orientation-invariant transformations rely on the

geometry of the measurements, whereas the third is based on estimating the

orientations of the sensor units with respect to the Earth frame by exploiting the

physical properties of the sensory data. We test them with multiple state-of-the-art

machine-learning classifiers using five publicly available datasets (when applicable)

containing various types of activities acquired by different sensor configurations. We

show that the proposed methods achieve a similar accuracy with the reference

system where the units are correctly oriented, whereas the standard system

cannot handle incorrectly oriented sensors. We also propose a novel non-iterative

technique for estimating the orientations of the sensor units based on the physical

and geometrical properties of the sensor data to improve the accuracy of the

third orientation-invariant transformation. All of the three transformations

can be integrated into the pre-processing stage of existing wearable systems

without much effort since we do not make any assumptions about the sensor

configuration, the body movements, and the classification methodology.

Secondly, we develop techniques that achieve invariance to the positioning of the

sensor units in three ways: (1) We propose transformations that are applied

on the sensory data to allow each unit to be placed at any position within a

pre-determined body part. (2) We propose a transformation technique to allow the

units to be interchanged so that the user does not need to distinguish between them

before positioning. (3) We employ three different techniques to classify the activities

based on a single sensor unit, whereas the training set may contain data acquired

by multiple units placed at different positions. We combine (1) with (2) and also
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with (3) to achieve further robustness to sensor unit positioning. We evaluate our

techniques on a publicly available dataset using seven state-of-the-art classifiers and

show that the reduction in the accuracy is acceptable, considering the flexibility,

convenience, and unobtrusiveness in the positioning of the units.

Finally, we combine the position- and orientation-invariant techniques to

simultaneously achieve both. The accuracy values are much higher than those of

random decision making although some of them are significantly lower than the

reference system with correctly placed units. The trade-off between the flexibility in

sensor unit placement and the classification accuracy indicates that different

approaches may be suitable for different applications.

Keywords: Wearable sensing, human activity recognition, sensor placement, sensor

position, sensor orientation, position-invariant sensing, orientation-invariant sensing,

orientation estimation, motion sensors, inertial sensors, accelerometer, gyroscope,

magnetometer.



ÖZET

GİYİLEBİLİR HAREKET ALGILAYICI ÜNİTELERİNİN
KONUM VE YÖNLERİNDEN BAĞIMSIZ OLARAK

AKTİVİTE TANIMA

Aras Yurtman

Elektrik ve Elektronik Mühendisliği, Doktora

Tez Danışmanı: Billur Barshan Özaktaş

Nisan 2019

İnsan aktivitelerinin tanınması bağlamında giyilebilir hareket algılayıcı ünitelerinin

yerleşimine karşı değişmezlik elde eden yöntemler öne sürülmektedir. İlk olarak,

algılayıcı ünitelerinin yönlerine yoğunlaşılarak ünitelerin takılış yönünün etkisini

ham algılayıcı verilerinden çıkaran üç alternatif dönüşüm geliştirilmektedir. Yönden-

bağımsız dönüşümlerin ilk ikisi, ölçümlerin geometrisine dayanırken, üçüncüsü,

algılayıcı verilerinin fiziksel özellikleri kullanılarak algılayıcı ünitelerinin dünyanın

koordinat sistemine göre yönlerinin kestirimini esas almaktadır. Bu yöntemler,

birden fazla güncel makine öğrenme sınıflandırıcısı ile (mümkün olduğunda) herkese

açık, çeşitli aktivite tiplerini içeren ve farklı algılayıcı düzenleşimleriyle elde

edilmiş olan beş veri kümesi kullanılarak değerlendirilmiştir. Alışılagelmiş sistem,

yanlış yönlü algılayıcılarla baş edemezken, bu yöntemlerin, algılayıcı yönlerinin

doğru olduğu referans sistemle benzer başarım elde ettiği gösterilmiştir. Üçüncü

dönüşümün başarımını arttırmak için, algılayıcı verilerinin fiziksel ve geometrik

özelliklerine dayanan, algılayıcı üniteleri için yenilikçi ve yinelemesiz bir yön

kestirim yöntemi de öne sürülmektedir. Algılayıcı düzenleşimleri, beden hareketleri

ve sınıflandırma yöntemi ile ilgili herhangi bir varsayımda bulunulmadığı için,

yönden-bağımsız yöntemlerin üçü de, var olan giyilebilir sistemlerin ön-işleme

aşamalarına kolayca dahil edilebilir.

İkinci olarak, algılayıcı ünitelerinin konumlandırılmasına karşı üç farklı şekilde

değişmezlik elde eden yöntemler geliştirilmektedir: (1) Her bir giyilebilir ünitenin

önceden belirlenmiş bir beden parçası üzerinde herhangi bir konuma yerleştirilmesine

izin vermek için algılayıcı verilerine uygulanan iki farklı dönüşüm öne sürülmektedir.

(2) Kullanıcının, üniteleri yerleştirmeden önce birbirinden ayırt etmesine gerek

kalmaması için, ünitelerin değiş tokuş edilebilmelerine izin veren bir dönüşüm öne

sürülmektedir. (3) Öğrenme verileri birden fazla konuma yerleştirilmiş birden fazla

üniteden elde edilen veriler içermesine karşın, aktiviteleri tek bir algılayıcı ünitesine
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dayanarak sınıflandırabilen üç farklı yöntem kullanılmaktadır. Daha fazla gürbüzlük

elde etmek için (1)’deki yöntem, (2) ile ve ayrıca (3) ile birleştirilmektedir. Önerilen

yöntemler, yedi güncel sınıflandırıcı kullanılarak herkese açık bir veri kümesi

üzerinde gerçeklenmiş ve sağlanan esneklik düşünüldüğünde başarımdaki düşüşün

kabul edilebilir olduğu değerlendirilmiştir.

Son olarak, konum ve yönden bağımsız yöntemler, bu iki önemli özelliğin aynı

anda sağlanabilmesi için tümleştirilmiştir. Başarım değerleri, doğru biçimde takılmış

olan algılayıcı ünitelerinin başarımından daha düşük olsa da, rastgele karar verme

stratejisine göre çok daha yüksektir. Algılayıcı ünitelerinin yerleşimi ve sınıflandırma

başarımı arasındaki ödünleşime göre, farklı uygulamalar için farklı yöntem seçimleri

yapılabilmektedir.

Anahtar sözcükler : Giyilebilir algılama, insan aktivitesi tanıma, algılayıcı yerleşimi,

algılayıcı konumu, algılayıcı yönü, konumdan bağımsız algılama, yönden bağımsız

algılama, yön kestirimi, hareket algılayıcıları, ataletsel sensörler (eylemsizlik

duyucuları), ivmeölçer, dönüölçer (jiroskop), manyetometre.
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Chapter 1

Introduction

Human activity recognition has been an active field of research since the late

1990s, with applications including but not limited to healthcare, surveillance,

entertainment, and military systems [1–3]. The recognized activities can be daily

activities such as walking and sitting as well as sports activities such as jumping

and running on a treadmill. Recent work on automatically recognizing daily

activities focuses on machine learning algorithms that rely on simultaneous input

from several different sensor modalities such as visual, inertial, acoustic, force,

pressure, strain, physiological, and kinetic sensors, among others [4–7]. Collecting

information about a user’s activities for ambient-assisted living in smart homes and

detecting abnormal behavior to assist the elderly or people with special needs

are challenging research issues [8,9]. These systems aim to maintain the user’s

independence, enhancing their personal safety and comfort and delaying the process

of moving to a care home. However, automatic monitoring of people performing

daily activities should be done without restricting their independence, intruding on

their privacy, or degrading their quality of life.

A commonly used approach in designing smart environments involves the use of

one or more types of external sensors in a complementary fashion (e.g., cameras and

tactile sensors), usually with relatively high installation cost and heavy demands on

computing power [10, 11]. If a single camera is used, the 3D scene is projected onto
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a 2D one, with significant information loss. Other people or pets moving around

may easily confuse such systems. Occlusion or shadowing of points of interest

(by human body parts or objects in the surroundings) is resolved by using 2D

projections from multiple cameras in the environment to reconstruct the 3D

scene. Each camera needs to be individually calibrated and suffers from the

correspondence problem. To resolve the latter, points of interest on the human body

are pre-identified by placing special, visible markers at those points and the

positions of the markers are recorded by cameras. Processing and storing camera

recordings is costly and camera systems obviously interfere with privacy. Recorded

data are highly sensitive to privacy breaches when transmitted or stored [12].

Continuous monitoring may cause stress and discomfort on the subject and may

subsequently cause changes in his natural movements.

The main advantage of embedding external sensors in the environment is that

the person does not have to wear or carry any sensors or devices [13,14]. This

approach may also eliminate problems related to placing the sensors incorrectly on

the body, although some camera systems do require wearing/pasting on special tags

or markers as mentioned above. Designing smart environments may be acceptable

when the activities of the person are confined to certain parts of a building. However,

when the activities are performed both indoors and outdoors and involve going from

one place to another (e.g., riding a vehicle, going shopping, commuting, etc.), this

approach becomes unsuitable. It imposes restrictions on the mobility of the person

since the system operates only in the limited environment being monitored.

The use of wearable motion sensors in activity recognition has pervaded since

this approach is superior to using external sensors in many respects [15]. The

required infrastructure and associated costs of wearable sensors are much lower than

designing smart environments. Unlike visual motion-capture systems that require a

free line of sight, wearable sensors can be flexibly used inside or behind objects

without occlusion. They can acquire the required 3D motion data directly on the

spot without the need for multiple camera projections. The 1D signals acquired

from the multiple axes of wearable motion sensors are much simpler and faster to

process. Because they are light, comfortable, and easy to carry, wearable sensors do

2



not restrict people to a studio-like environment and can operate both indoors and

outdoors, allowing free pursuit of activities without intruding on privacy.

Wearable systems are criticized mainly because people may forget, neglect,

or not want to wear them. If they are battery operated, batteries need to be

recharged or replaced from time to time. However, with the advances of the

MEMS (Micro-Electro-Mechanical Systems) technology, these devices have been

miniaturized. Their lightness, low power consumption, and wireless use have

eliminated the concerns related to portability and discomfort. Furthermore, the

algorithms developed can be easily embedded to a device or accessory that the

person normally carries, such as a mobile phone, watch, bracelet, or a hearing aid.

Wearable sensors are thus a very suitable domain for automatic monitoring and

classification of daily activities, and we have chosen to follow this approach in our

works [16–25].

With the advancements mentioned above, proper placement of wearable devices

on the body has become a challenging task for the user, making wearables prone to

be fixed to the body at incorrect positions and orientations. In most applications of

wearable sensing, it is assumed that sensor units are placed at pre-determined

positions and orientations that remain constant over time [26]. This assumption

may be obtrusive because the user needs to be attentive to placing the sensor unit

correctly and to keeping it at the same position and orientation. In practice, users

may place the sensor units incorrectly on the body and even if this is not the case,

their positions and orientations may gradually change because of loose attachments

and body movement. If the sensor units are worn on specially designed clothing or

accessories, these may vibrate or move relative to the body. Often, elderly, disabled,

injured people or children also need to wear these sensors for health, state, or

activity monitoring [16, 27], and may have difficulty placing them correctly. Hence,

transformations that achieve position- and orientation-invariance to the placement

of the sensor units would be advantageous for the users.

Earlier works on activity recognition that employ wearable sensors are reviewed

in [28–30]. Incorrect placement of a wearable sensor unit may involve placing

it at a different position as well as at a different orientation. The majority of
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existing wearable activity recognition studies neglect this issue and assume that

the sensor units are properly placed on the body or, alternatively, use simple

features (such as the vector norms) that are invariant to sensor unit placement. It

would be a valuable contribution to develop wearable systems that are invariant

to sensor unit position and orientation without any significant degradation in

performance. In the former, sensor units can be placed anywhere on the same body

part (e.g., lower arm) or on different body parts; in the latter, the units can be

fixed to pre-determined positions at any orientation. Studies that consider both

position and orientation invariance at the same time are reported but none of these

works can handle incorrect placement of sensor units without a considerable

loss in performance (between 20–50%) [31]. Existing studies on position- and

orientation-invariant sensing have strong limitations and have been tested in very

restricted scenarios. Thus, these two problems have not been completely solved to

date. In this thesis, we focus on these problems and develop transformations for the

generic activity recognition scheme that can be easily adapted to existing systems.

Our aim is to develop techniques that can be applied at the pre-processing stage

of the activity recognition framework to make this process robust to variable

sensor unit placement. The proposed techniques can also be integrated into other

applications of wearable sensing such as fall detection and classification [32], gesture

recognition [33], leg motion classification [34, 35], authentication of users in mobile

sensing systems [36], and automated evaluation of physical therapy exercises [16, 20].

We utilize widely available sensor types and do not make any assumptions about

the sensor configuration, data acquisition, activities, and activity recognition

procedure. Our proposed method can be integrated into existing activity recognition

systems by applying transformations to the time-domain data in the pre-processing

stage without modifying the rest of the system or the methodology. We outperform

the existing methods for position and orientation invariance and achieve accuracies

close to those of the standard activity recognition system in most cases.

We employ tri-axial wearable motion sensors (accelerometer, gyroscope, and

magnetometers when applicable) to capture the body motions. Data acquired by

these sensors not only contain information about the body movements but also

about the placement of the sensor unit. However, these two types of information are
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coupled in the sensory data and it is not straightforward to decouple them. More

specifically, a tri-axial accelerometer captures the vector sum of the gravity vector

and the acceleration resulting from the motion. A tri-axial gyroscope detects the

angular rate about each axis of sensitivity and can provide the angular velocity

vector. A tri-axial magnetometer captures the vector sum of the magnetic field of

the Earth and external magnetic sources, if any. We propose various techniques that

preserve the information related to the body motions and satisfy invariance to the

placement of the sensor unit at the same time. Our first aim is to minimize the

reduction in the accuracy caused by the removal of the placement information. Our

second aim is to achieve robustness to sensor unit placement so that the accuracy

does not degrade.

1.1 Literature Review

The methods that have been proposed to achieve robustness to the placement of

wearable motion sensor units are grouped as position- and orientation-invariant

techniques as well as those that are invariant to both.

1.1.1 Invariance to Sensor Unit Position

A number of methods have been proposed to achieve robustness to the positioning

of wearable motion sensor units [3, 26]. These methods can be grouped into four

categories as described below, with their main features summarized in Table 1.1.

1.1.1.1 Extracting Position-Invariant Information from Sensor Data

Some studies propose to heuristically transform the sensor data or extract heuristic

features to achieve robustness to the positioning of the sensor units. Reference [37]

ignores acceleration data when there is too much rotational movement. It considers

that the acceleration caused by rotational movements depends on the sensor

5
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position, whereas the acceleration caused by linear movements is fixed over all

sensor positions within the same body part under the assumption that the body

part is rigid. The acceleration data are omitted only if the magnitude of the

measured acceleration vector is not close to the magnitude of the Earth’s gravity

and the difference between these magnitudes (which roughly represents the

magnitude of pure acceleration) is small compared to the magnitudes of the angular

velocity and angular acceleration detected by the gyroscope. In [37], an additional

low-pass filtered acceleration signal is also used in classification because it mostly

contains the gravitational component, whose direction depends on the sensor unit

orientation but not its position within the same body part. Low-pass filtering the

acceleration data is proposed in [38] as well to achieve robustness to the positioning

of the sensor units.

Reference [39] recognizes the uncommon activities “riding in a bus” and

“riding in a subway” in addition to simple daily activities. The vibrations caused by

the transportation types are experienced by the whole body; hence, the smart

phone (whose motion sensors are used) is allowed to be placed at any position and

orientation on the body. Classification is performed based on heuristic features

extracted from the acceleration magnitude, discrete Fourier transform (DFT)

of the vertical acceleration, and the speed measured by the global positioning

system (GPS), which are obtained using built-in features of the Android mobile

operating system.

1.1.1.2 Training Classifiers with Different Sensor Unit Positions

Another method to handle the varying positioning of the sensor units is to train an

activity classifier in a generalized way to capture all (possible or considered) sensor

unit positions. Some studies rely on such generalized classifiers only because data

are acquired from different sensor configurations. This type of variation in the

datasets makes the activity recognition inherently invariant to the positioning of the

sensor units due to the variation in the training data, even though no specific

techniques are used for this purpose. In particular, the studies [40–44] allow smart

phones that contain motion sensors to be placed at any position on the body

7



as a real-world scenario. However, it is not clear how differently the subjects

positioned them in the experiments. Commonly used classifiers in these studies are

Support Vector Machines (SVM), Artificial Neural Networks (ANN), decision trees,

and näıve Bayes classifiers as well as deep learning approaches.

The datasets in [33,45–50] contain data from multiple sensor units and the

segments obtained from each unit are considered as separate training and test

instances for generalized classification. In this scheme, the classifiers are trained

with multiple unit positions and tested by using each position separately so that a

single unit is sufficient for activity recognition. In [33, 46–48], generalized classifiers

trained with multiple sensor unit positions achieve an accuracy slightly lower than

position-specific classifiers. In [33], the accuracy further decreases when the

leave-one-position-out method is used, where, for each position, a classifier trained

with the data of the remaining positions is used. The studies [46–50] consider no

more than several possible sensor unit positions and several activities, and the

accuracy can drop abruptly if the numbers are increased. Reference [33], on the

other hand, classifies aerobic movements with all the sensor units placed on the left

leg and basic hand gestures with all the units on the right arm.

References [33,51–53] analyze the case where training and test data originate

from different sensor unit positions and provide the accuracy separately across the

positions. In all of them, the accuracy significantly decreases if the classifier is

trained with the data of a different sensor unit position because a single unit

position is not sufficient to train a generalized classifier.

According to the results of the previous work, if training and test data originate

from different sensor unit positions, an acceptable accuracy can be obtained if the

training data include multiple positions, especially those that are on the same body

part with the position at which the test data are acquired. On the other hand,

training data acquired only from a single position cannot provide a classifier

generalizable to the other positions.
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1.1.1.3 Adapting Classifiers for New Sensor Unit Positions

Positioning the sensor units differently on the body causes variations in the features

extracted from the acquired data. References [54, 55] assume that these variations

only cause some shifts in the class means in the feature space and calculate the

amount of shifts in an unsupervised way (i.e., without using the class labels) given

new data obtained from a different sensor unit position. This assumption seems to

hold for the position changes that occur only within the same body part (such as

the left lower leg or the torso), as both studies obtain unsatisfactory classification

accuracies across the different body parts, even across the lower and the upper

arm/leg, which shows that different body parts have different motion characteristics

even though they are close to each other, as stated in [26]. Another drawback of

these adaptation-based methods is the difficulty of deciding when to start the

adaptation process, which is suggested to be manually initiated by the user in [55],

whereas this issue is not mentioned at all in [54].

1.1.1.4 Classifying Sensor Unit Positions

Some studies classify the sensor unit’s position on the body during a pre-determined

set of activities assuming that there is a finite set of positions, which is not valid in

some scenarios. This position information can be used for context awareness

or to select an activity classifier that is trained specifically for that position.

Reference [56] distinguishes the walking activity from other activity types by

training a generalized classifier for four pre-determined sensor positions. Recordings

of the walking activity of at least one minute duration are used to classify the sensor

unit’s position. In this scheme, it is assumed that the sensor unit remains at the

same position for at least a few minutes. Both classification techniques are invariant

to the sensor unit orientations as the magnitude of the acceleration vectors are used.

In [57], a sparse representation classifier is trained for all activity-sensor unit

position pairs. Then, Bayesian fusion is used to recognize the activity independently

of the sensor unit position and to classify the position of the unit independently of
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the performed activity. Reference [58] considers each activity-position pair as a

different class so that the activity and sensor unit position can be simultaneously

classified. Another study [59] follows a two-stage approach by first classifying the

sensor unit’s position on the body and then recognizing the activity type using a

classifier specifically trained for that position. By evaluating the accuracy through

leave-one-subject-out (L1O) method (where the training and test sets originate

from different subjects) on the same dataset, it shows that the two-stage approach

performs considerably better than a single-stage generalized activity classifier

trained using all the sensor unit positions. Reference [60] also classifies the activity

and the sensor unit position simultaneously, following a more complicated approach:

For each time segment, it first determines the activity category as static or dynamic,

without the position information. Then, it classifies the sensor position by using the

classifier specifically trained for the determined category. Finally, it recognizes the

activity type by relying on the classifier trained for that particular sensor unit

position. The subjects are isolated in all three steps where all the classifiers are

trained and tested separately for each subject. Hence, the method may not be

generalizable to a new subject, considering that activity recognition rate highly

depends on the subject(s) from whom the training data are acquired [17,62].

1.1.1.5 Other Approaches

Reference [31] relies on a machine-learning approach that is robust to incorrect

positioning of some of multiple sensor units. It fuses the decisions of the classifiers,

each of which is trained specifically for a sensor unit, instead of the usual approach

where a single classifier is trained by aggregating the features of all the units. This

method can tolerate incorrect positioning of some of the sensor units by relying on

the correctly placed ones in the classification process.
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1.1.2 Invariance to Sensor Unit Orientation

A variety of methods have been proposed to achieve orientation invariance with

wearable motion sensors. These methods can be grouped as transformation-based

geometric methods, learning-based methods, and other approaches.

1.1.2.1 Transformation-Based Geometric Methods

A straightforward method for achieving orientation invariance is to calculate the

magnitudes (the Euclidean norms) of the 3D vectors acquired by tri-axial sensors

and to use these magnitudes as features in the classification process instead of

individual vector components. When the sensor unit is placed at a different

orientation, the magnitude of the sensor readings remains the same, making this

method invariant to sensor unit orientation [26, 48, 63]. Reference [26] states that a

significant amount of information is lost with this approach and the accuracy drops

off even for classifying simple daily activities. Instead of using only the magnitude,

references [47, 64, 65] append the magnitude of the tri-axial acceleration vector as a

fourth axis to the tri-axial data. Reference [47] shows that this modification

slightly increases the accuracy compared to using only the tri-axial acceleration

components. Even if the magnitude of the acceleration is not appended to the data,

the limited number of sensor unit orientations considered (only four) allows

accurate classification to be achieved with SVM classifiers [47]. Reference [66] uses

the magnitude, the y-axis data, and the squared sum of x and y axes of the

tri-axial acceleration sequences acquired by a mobile phone, assuming that the

orientation of the phone carried in a pocket has natural limitations: the screen of

the phone either faces inward or outward.

In a number of studies [58, 67,68], the direction of the gravity vector is estimated

by averaging the acceleration vectors in the long term. This is based on the

assumption that the acceleration component associated with daily activities

averages out to zero, causing the gravity component to remain dominant. Then,

the amplitude of the acceleration along the gravity vector direction and the
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magnitude of the acceleration perpendicular to that direction are used for activity

recognition [58,67,68], which is equivalent to transforming tri-axial sensor sequences

into bi-axial ones. In terms of activity recognition accuracy, in reference [67], this

method is shown to perform slightly better and in reference [68], significantly worse

than using only the magnitude of the acceleration vector.

In addition to the direction of the gravity vector, reference [52] also estimates the

direction of the forward-backward (saggital) axis of the human body based on the

assumption that most of the body movements as well as the variance of the

acceleration sequences are in this direction. The sensor data are transformed into

the body frame whose axes point in the direction of the gravity vector, the

forward-backward direction of the body that is perpendicular to that, and a third

direction perpendicular to both, forming a right-handed coordinate frame. The

method in [52] does not distinguish between the forward and backward directions of

the body, whereas reference [26] determines the forward direction from the sign of

the integral of the acceleration as the subject walks.

Reference [69] proposes a coordinate transformation from the sensor frame to

the Earth frame to achieve orientation invariance. To transform the data, the

orientation of a mobile phone is estimated based on the data acquired from the

accelerometer, gyroscope, and magnetometer of the sensor unit embedded in

the device. An accuracy level close to the fixed orientation case is obtained by

representing the sensor data with respect to the Earth frame. However, only two

different orientations of the phone are considered, which is a major limitation

of the study in [69]. Reference [70] calculates three principal axes based on

acceleration and angular rate sequences by using Principal Component Analysis

(PCA) and represents the sensor data with respect to these axes. Among the

references [71–73] that employ deep learning for activity recognition, reference [73]

increases robustness to variable sensor unit orientations by summing the features

extracted from the x, y, z axes.
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1.1.2.2 Learning-Based Methods

Reference [31] proposes a high-level machine-learning approach for activity

recognition that can tolerate incorrect placement (both position and orientation)

of some of multiple wearable sensor units. In the standard approach, features

extracted from all the sensor units are aggregated and the activity is classified at

once. In reference [31], the performed activity is classified by processing the data

acquired from each sensor unit separately and the decisions are fused by using the

confidence values. The proposed method is compared with the standard approach

for different sets of activities, features, and different numbers of incorrectly placed

sensor units by using three types of classifiers. When the subjects are requested to

place the sensor units at any position and orientation on the appropriate body

parts, incorrect placement of some of the units can be tolerated when all nine units

are employed, but not with only a single unit. Adapting the class means in the

feature space is proposed to achieve position invariance in [54] in addition to

orientation invariance (see Section 1.1.1.3).

1.1.2.3 Other Approaches

Reference [74] proposes to classify the sensor unit orientation to compensate

for variations in orientation. Dynamic portions of the sensor sequences are

extracted by thresholding the standard deviation of the acceleration sequence

and four pre-determined sensor unit orientations are perfectly recognized by

a one-nearest-neighbor (1-NN) classifier. Then, the sensory data are rotated

accordingly prior to activity recognition. However, the number of sensor unit

orientations considered is again very limited and the direction of one of the sensor

axes is common to all four orientations.
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1.1.3 Simultaneous Invariance to Sensor Unit Position

and Orientation

Among the studies on position invariance, references [39, 40, 53, 56, 58, 61]

employ transformations that completely remove the orientation information.

References [37,38,51] rely on initial calibration poses or movements to achieve

orientation invariance throughout the recording session. Reference [54] claims to

handle variations in both the position and the orientation by adapting the class

means in the feature space. Reference [75] integrates the magnitude of the angular

rate for position and orientation invariance within the same body part; however, it

also uses the magnitude of the acceleration which is invariant only to sensor unit

orientation. The classification schemes in [41, 47] are not fully orientation invariant

but they include additional features to increase robustness to the sensor unit

orientations. One of the three sensor axes is assumed to point either away from or

towards the body in [50]. Datasets used in studies [52–54,60] contain a set of

pre-determined orientations by discretization. On the other hand, references [43, 44]

do not specify how the mobile phones (whose motion sensors are employed) are

oriented, and may include multiple orientations.

1.1.4 Discussion

Most of the existing methods are not comparable with each other because of

the difference in the sensor types, sensor placement, activity and movement

types, classification schemes, and the techniques used for evaluating the accuracy.

Moreover, the impact of the proposed position and orientation invariance methods

on the accuracy is not always presented because it is not possible to directly

compare them with the fixed-position or fixed-orientation approaches in some

scenarios; e.g., when no data are acquired with fixed sensor unit positions and/or

orientations. The studies [33,45–50,56,57,59,60] consider only a finite number

of possible positions for the sensor units on the body, which is an unrealistic

assumption. Some of the existing methods such as [26, 47, 52, 66, 67] either impose a

major restriction on the possible sensor unit orientations or the types of body
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movements, which prevents them from being used in a wide range of applications

such as health, state, and activity monitoring of elderly or disabled people.

Different activity or movement classes are considered in the previous studies,

which highly affect the classification accuracy, as shown in [31]. For instance, some

studies consider only one stationary activity (during which the subject is not

moving) [43], combine several activity types into a single class [42, 44, 45, 47–50, 58],

or do not include any [31,33,37,51,54,55,57,61], as shown in Table 1.1. Some

datasets consider the activities that are often poorly classified or confused with

each other as a single class. For example, ascending and descending stairs are

combined in [37,41,56], which expectedly has a positive effect on the accuracy,

given that these activities are classified with lower accuracy than the others

in [3,26,43,44,46,47,49]. Most of the existing studies do not utilize a magnetometer,

which measures the Earth’s magnetic field superposed with external magnetic

sources (if any) and provides the orientation information.

1.2 Main Contributions of the Thesis

We develop transformation and classification techniques that are applicable to

wearable motion sensor data to achieve robustness to the placement of the sensor

units in terms of their position and orientation:

� In Chapter 2, we propose two different techniques for orientation invariance.

They are based on geometrical transformations that remove the orientation

information from the data while preserving the remaining information

about the movements of the sensor unit. We mathematically prove the

orientation-invariance property of the transformations without making any

assumptions. They are computationally efficient and easy to implement, can

be applied to different sensor types, and integrated into the pre-processing

stage of many wearable sensing schemes.
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� In Chapter 3, we develop a transformation technique as an alternative to

those proposed in Chapter 2 and improve the classification accuracy while

still preserving the orientation-invariance property. The transformation

requires each sensor unit to contain an accelerometer, a gyroscope, and a

magnetometer, each being tri-axial because it exploits the information

acquired by these three sensor types to estimate the orientations of the units

with respect to the Earth frame at each time sample. The transformation is

sufficiently efficient to be implemented in near real time although its run times

are longer than those in Chapter 2. It can be applied in the pre-processing

stage of existing wearable systems, as those proposed in Chapter 2.

� In Chapter 4, we develop a novel non-iterative orientation estimation

method (OEM) for motion sensor units. When it is integrated into the

orientation-invariant transformation (OIT) that is proposed in Chapter 3, it

improves the activity recognition accuracy compared to the existing methods,

as well as being computationally efficient.

� In Chapter 5, we provide flexibility in the positioning of the sensor units in

multiple ways: First, we propose transformation techniques to allow the

units to be positioned anywhere within the same body part to improve the

robustness to their attachment and also shifts in position and orientation that

may occur in the long term. Secondly, we develop a transformation that

makes the activity recognition system invariant to the interchanging of the

sensor units so that the users do not need to identify them before putting

them on their body. Finally, we perform activity recognition based on a single

sensor unit where the dataset may contain multiple units that are placed at

different positions on the body. We also achieve the position-invariance

property simultaneously with the interchangeable units and also with the

single-unit classification scheme.

� In Chapter 6, we simultaneously implement the position- and orientation-

invariant techniques that are proposed in the previous chapters. We achieve

activity recognition accuracies well above random decision making while

allowing the sensor units to be placed arbitrarily on the body.
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1.3 Organization of the Thesis

The rest of this thesis is organized as follows: In Chapters 2 and 3, we provide

transformations to achieve orientation invariance of wearable motion sensor units.

In Chapter 4, we propose a novel method to estimate the orientation of sensor units

and integrate it into the transformation proposed in Chapter 3. Chapter 5 presents

the techniques proposed for invariance to the positioning of the units, their

interchangeability, and classification based on a single unit. Chapter 6 combines the

position- and orientation-invariant techniques to simultaneously achieve position

and orientation invariance. Finally, in Chapter 7, we provide concluding remarks

and indicate directions for future research.
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Chapter 2

Invariance to Sensor Unit

Orientation Based on

Geometrical Transformations

In this chapter, we focus on invariance to sensor unit orientation and propose to

transform the 3D time-domain sensor data in a way that the resulting sequences

do not depend on the absolute sensor orientation (but they should depend on

the changes in the orientation over time to preserve activity-related rotational

information). In other words, each 3D time-domain sensor sequence is transformed

to another multi-dimensional time-domain sequence in an orientation-invariant

manner, as depicted in Figure 2.1.

We propose two different OIT techniques, namely the heuristic OIT [18, 21] and

the singular value decomposition (SVD)-based OIT [18,22], described below. The

content of this chapter has appeared in [18].
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Figure 2.1: An overview of the proposed methodology for sensor unit orientation
invariance.

2.1 Heuristic Orientation-Invariant Transforma-

tion

In the heuristic OIT, 3D sensor data are transformed into 9D data, invariant to

sensor unit orientation. Let ~vn = (vx[n], vy[n], vz[n])T , 1 ≤ n ≤ N be the data

vector in 3D space R3 acquired from the x, y, z axes of a tri-axial sensor, such as an

accelerometer, at time sample n. The first- and second-order time-differences of ~vn

are defined as ∆~vn = ~vn+1−~vn and ∆∆~vn = ∆~vn+1−∆~vn, respectively. The heuristic

OIT, represented by a transformation Theuristic : ~vn → ~wn ∀n, transforms the

measurement vectors ~vn ∈ R3 to orientation-invariant vectors ~wn ∈ R9, whose

elements are selected as follows:

w1[n] = ‖~vn‖ (the norm) (2.1a)

w2[n] = ‖∆~vn‖ (the norm of the first-order difference ∆~vn) (2.1b)

w3[n] = ‖∆∆~vn‖ (the norm of the second-order difference ∆∆~vn) (2.1c)

w4[n] = αn = ∠ (~vn, ~vn+1) (the angle between ~vn and ~vn+1) (2.1d)

w5[n] = βn = ∠ (∆~vn,∆~vn+1) (the angle between ∆~vn and ∆~vn+1) (2.1e)
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w6[n] = γn = ∠ ( ∆∆~vn, ∆∆~vn+1) (the angle between ∆∆~vn and ∆∆~vn+1) (2.1f)

w7[n] = θn = ∠ (~pn, ~pn+1) where ~pn = ~vn × ~vn+1 (2.1g)
(the angle between rotation axes ~pn and ~pn+1)

w8[n] = φn = ∠ (~qn, ~qn+1) where ~qn = ∆~vn ×∆~vn+1 (2.1h)
(the angle between rotation axes ~qn and ~qn+1)

w9[n] = ψn = ∠ (~rn, ~rn+1) where ~rn = ∆∆~vn × ∆∆~vn+1 (2.1i)
(the angle between rotation axes ~rn and ~rn+1)

The rationale for selecting these nine elements among many is that apart from

the norms covered by the first three elements, the angles between the successive

time samples of the sensor sequence and its first- and second-order differences

(fourth to sixth elements) contain more granularity and fine detail regarding the

activities performed. The last three elements consider rotation axes between

successive time samples and contain information about the rotational movements of

the data vectors in 3D space.

The first five elements are shown geometrically in Figure 2.2(a). In Equation (2.1)

and throughout this thesis, ‖·‖ denotes the Euclidean norm. In Equation (2.1d), the

angle αn between ~vn and ~vn+1 is calculated based on the two vectors’ normalized

inner product:

αn = ∠ (~vn, ~vn+1) = cos−1

(
~vn · ~vn+1

‖~vn‖ ‖~vn+1‖

)
(2.2)

The angle αn is set to zero when ~vn = ~0 and/or ~vn+1 = ~0, in which case it is not

defined. The angles in Equation (2.1e–i) are calculated in the same way.

In Equation (2.1g), ~pn is the vector representing the axis of rotation from ~vn to ~vn+1;

that is, ~vn+1 is obtained when ~vn is rotated about ~pn by an angle of αn (see

Equation (2.1d) and Figure 2.2(b)). Similarly, ~vn+2 is obtained when ~vn+1 is rotated

about ~pn+1 by αn+1. Then, the angle between the consecutive rotation axes,

~pn and ~pn+1, is calculated, which is denoted by θn, as shown in Figure 2.2(b).

In Equation (2.1h,i), the rotation axes are calculated based on the first- and

20



(a)

(b)

Figure 2.2: Graphical illustration of the selected axes of the heuristic OIT. The
geometric features of three sequential measurements ~v1, ~v2, ~v3 in 3D space are shown.
The first- and second-order difference sequences, the angles between successive
measurement vectors, and the angles between successive difference vectors are
shown in (a); The rotation axes and the angles between them are illustrated in (b).

21



second-order difference sequences ∆~vn and ∆∆~vn, respectively, and the angle between

the consecutive rotation axes is calculated.1

The transformed vector ~wn has nine elements, corresponding to the new axes

that are completely invariant to sensor orientation. Mathematically, when ~vn is pre-

or post-multiplied by any rotation matrix for all n, the transformed vector ~wn

remains unchanged. Note that for this transformation to be orientation invariant,

the measured sequence ~vn needs to be multiplied by the same rotation matrix for

all n; that is, the sensor can be placed at any orientation at some given position on

the body, but its orientation with respect to the body must remain the same during

the short time period over which data are processed. This is a necessary restriction

because we preserve the change in the orientation of measurement vectors ~vn in the

transformation over time, which provides information about the orientation change

of the body if the sensor rotates with the body rather than rotating freely.

To prove the orientation invariance of the transformation Theuristic mathematically,

assume that the sensor is placed at a different orientation and the acquired data are

~vn
′ = R~vn ∀n, where R is a rotation matrix that is constant over n. Then, we need

to prove that its transformation ~wn
′ is the same as ~wn:

~wn = ~wn
′ ∀n where ~vn

Theuristic−−−−−→ ~wn and ~vn
′ Theuristic−−−−−→ ~wn

′ (2.3)

For the proof, note the following facts: (1) multiplying a vector by a rotation

matrix does not change its norm; (2) multiplying two vectors by the same rotation

matrix affects neither the angle between them nor their inner product;2 and (3) if a

time-varying vector is multiplied by a constant rotation matrix over time, its first-

1~pn, ~qn, and ~rn need not have unit norms because only their directions are used in
Equation (2.1g–i).

2For the proof, let αn = ∠ (~vn, ~vn+1). Then,

∠ (R~vn,R~vn+1) = cos−1

(
(R~vn) · (R~vn+1)

‖R~vn‖ ‖R~vn+1‖

)
= cos−1

(
~vn · ~vn+1

‖~vn‖ ‖~vn+1‖

)
= αn

for any rotation matrix R.
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and second-order differences are also multiplied by the same rotation matrix.3 Using

these facts, we prove Equation (2.3) for the first six dimensions of the heuristic OIT:

w′1[n] = ‖R~vn‖ = ‖~vn‖ = w1[n]

w′2[n] = ‖∆(R~vn)‖ = ‖R ∆~vn‖ = ‖∆~vn‖ = w2[n]

w′3[n] = ‖∆∆ (R~vn)‖ = ‖R ∆∆~vn‖ = ‖∆∆~vn‖ = w3[n]

w′4[n] = ∠ (R~vn,R~vn+1) = ∠ (~vn, ~vn+1) = w4[n] (2.5)

w′5[n] = ∠ (∆(R~vn) ,∆(R~vn+1)) = ∠ (R ∆~vn,R ∆~vn+1) = ∠ (∆~vn,∆~vn+1)

= w5[n]

w′6[n] = ∠ ( ∆∆ (R~vn) , ∆∆ (R~vn+1)) = ∠ (R ∆∆~vn,R ∆∆~vn+1) = ∠ ( ∆∆~vn, ∆∆~vn+1)

= w6[n]

For the remaining axes, note that if any two vectors are multiplied by the same

rotation matrix, the rotation axis between them also rotates in the same way. To

prove this, let ~pn
′ = ~vn

′ × ~vn+1
′ be the rotation axis between ~vn

′ and ~vn+1
′ . Then,

~pn
′ = ~vn

′ × ~vn+1
′ = (R~vn)× (R~vn+1) = R (~vn × ~vn+1) = R~pn (2.6)

The rotation axes ~qn and ~rn also rotate in the same way as ~vn rotates. Based on

these observations, we prove Equation (2.3) for the remaining dimensions:

w′7[n] = ∠ (~pn
′, ~pn+1

′ ) = ∠ (R~pn,R~pn+1) = ∠ (~pn, ~pn+1) = w7[n]

w′8[n] = ∠ (~qn
′, ~qn+1

′ ) = ∠ (R~qn,R~qn+1) = ∠ (~qn, ~qn+1) = w8[n] (2.7)

w′9[n] = ∠ (~rn
′, ~rn+1

′ ) = ∠ (R~rn,R~rn+1) = ∠ (~rn, ~rn+1) = w9[n]

Therefore, the orientation invariance of the heuristic OIT is proven.

3For the proof, let ∆~vn = ~vn+1 − ~vn and ∆∆~vn = ∆~vn+1 −∆~vn. Then,

∆(R~vn) = R~vn+1 −R~vn = R ∆~vn

and ∆∆ (R~vn) = ∆(R~vn+1)−∆(R~vn) = R∆~vn+1 −R∆~vn = R ∆∆~vn

for any rotation matrix R.
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2.2 Orientation-Invariant Transformation Based

on Singular Value Decomposition

As an alternative to the heuristic approach, orientation invariance can be achieved

by singular value decomposition [76]. In the SVD approach, the x, y, z axes of

the original tri-axial sensor are transformed to three principal axes that are

orthogonal to each other and along which the variance of the data is the largest.

The directions of the principal axes, hence the transformation, depends on the data

to be transformed. The motivation for using SVD to achieve orientation invariance

is that when the data constellation is rotated as a whole, the principal axes also

rotate in the same way, and the representation of the data in terms of the principal

axes remains the same.

To apply SVD, data acquired from each tri-axial sensor are represented as a

matrix V of size 3×N , with the rows corresponding to the x, y, z axes and the

columns representing the time samples:

V =
[
~v1 ~v2 · · · ~vN

]
(2.8)

Then, V is decomposed into three matrices by SVD as

V = UΣWT (2.9)

In general, for complex V, U is a 3× 3 unitary matrix, Σ is a 3×N rectangular

diagonal matrix containing the singular values along the diagonal, and W is

an N ×N unitary matrix. In our application, V is real, so U and W are real

unitary, hence, orthonormal matrices that satisfy UTU = UUT = I3×3 and

WTW = WWT = IN×N , where I is the identity matrix. The matrix U can also

be viewed as a 3× 3 rotation matrix.

Since the matrix V only has three rows, its rank is at most three, and only the

first three singular values can be non-zero. Hence, SVD can be represented more

compactly by considering only the first three columns of Σ and W, in which case
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their sizes become 3× 3 and N × 3, respectively. This compact representation will

be used in the rest of the thesis, where W is no longer unitary because it is not

square, but has orthonormal columns that satisfy WTW = I3×3.

Changing the orientation of a sensor unit is equivalent to rotating the measurement

vectors for each time sample in the same way; that is, pre-multiplying V by a

rotation matrix R:

Ṽ = RV (2.10)

V is constant over time because it is assumed that the sensor orientation with

respect to the body part onto which the sensor is placed remains the same while

acquiring the data stored in V, as done in the heuristic OIT. The SVD of the

rotated data matrix Ṽ becomes

Ṽ = R
(
UΣWT

)
= (RU) ΣWT = ŨΣWT (2.11)

where Ũ = RU because the product of two rotation matrices is another rotation

matrix, and the SVD representation is almost unique [77] up to the signs of the

columns of U and W. In other words, if a principal vector ~ui (the ith column of U,

where i = 1, 2, 3) is selected in the opposite direction, the variance along that

axis is still maximized and the decomposition can be preserved by negating the

corresponding column of W. (Another ambiguity in SVD is that the principal

vectors can be selected in any direction in case of degenerateness, that is, when V is

not full-rank. This situation is not observed in experimental data because of the

presence of noise.)

Because of the almost-uniqueness property of SVD, the matrices Σ and W are

not affected by the sensor orientation (up to the signs of the columns of W).

Therefore, the proposed SVD-based OIT omits the leftmost matrix and takes ΣWT

as the part of the data that is invariant to sensor orientation (up to the signs of the

resulting axes). Then, the SVD-based OIT can be represented as

TSVD : V→ ΣWT (2.12)
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This transformation is equivalent to a rotational transformation because

ΣWT =
(
UTU

)
ΣWT = UT

(
UΣWT

)
= UTV (2.13)

and UT is the corresponding rotation matrix. Note that the rotation may be right-

or left-handed, that is, proper or improper because det U = ±1.

The SVD-based OIT rotates the measurement vectors in 3D space such that the

variance of the data along the first principal axis ~u1 is the largest, followed by the

second principal axis ~u2, which is orthogonal to ~u1, and followed by the third

axis ~u3, which is orthogonal to both ~u1 and ~u2. Thus, if all the vectors are rotated

in the same way because of a different sensor orientation, the rotation UT will

change accordingly to yield the same transformed sequence (up to the signs of the

axes). Mathematically, if the data matrix is rotated as in Equation (2.10), the same

transformed data, ΣWT, must be obtained (except for the signs of the rows).

Hence, using the fact that RU is also a rotation matrix composed of two rotations,

one can write

ΣWT =
[
(RU)T(RU)

]
ΣWT = (RU)T

[
(RU)ΣWT

]
= (RU)TṼ (2.14)

which reveals that the new rotation matrix of the transformation is (RU)T.

If the unit contains more than one type of sensor (e.g., an accelerometer

and a gyroscope), all the sensors have the same orientation with respect to

the body part the sensor unit is placed on, ignoring the misalignment errors

between the sensors in the same unit [78,79]. In this case, the same rotational

transformation should be applied to the data acquired by all the sensor types in the

same unit. Let V1,V2, . . . ,VS be the data matrices of sensors 1–S, defined as in

Equation (2.8). These are concatenated as
[
V1 V2 · · · VS

]
to obtain a joint

transformation, as illustrated in Figure 2.3(a) for the first dataset (dataset A

in Section 2.3.1). In the figure, sequences of the three sensor types, namely

the accelerometer, gyroscope, and magnetometer, are concatenated along the

time-sample dimension. Gyroscope sequences have the smallest variance and

accelerometer sequences have the largest. However, the more the data of a sensor
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type vary, the more the SVD transformation is affected, and that sensor type will

have a greater contribution. Hence, we normalize the data of the different sensor

types to equalize their effect on the transformation: In each dataset, we scale

the sequences of each sensor type to have unit variance over the whole dataset.

Then, we concatenate the normalized sequences (indicated by an overbar) as

V =
[
V1 V2 · · · VS

]
and use it in place of V in Equations (2.9)–(2.13). The

normalized sequences are shown in Figure 2.3(b). Finally, we apply the SVD-based

OIT, where a single 3× 3 rotational transformation is employed for the same

segment of all the sensor sequences acquired from the same sensor unit.

accelerometer gyroscope magnetometer

x
y
z

!" !# !$

(a)

accelerometer gyroscope magnetometer

x
y
z

 !"
 !#

 !$

 ! =

(b)

Figure 2.3: Concatenation of the sequences of the different sensor types. (a) Ac-
celerometer, gyroscope, and magnetometer sequences are concatenated along the
time-sample dimension to obtain a joint 3× 3 transformation; and (b) the three
sequences are normalized to have unit variance (over the whole dataset) before
applying SVD-based OIT.

As an example, the 3D sequence of the accelerometer on the left leg of the first

subject as he performs the tenth activity (A10) in our activity dataset (dataset A in

Section 2.3.1) is plotted in Figure 2.4(a). The sequence is rotated arbitrarily in 3D

space and plotted in Figure 2.4(b).4 To obtain orientation-invariant sequences, the

4 For this specific example, the rotation matrix is calculated using Equation 3.6 with the
angles θ = 12.9◦, φ = −54.3◦, and ψ = −23.8◦.
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original sequence (or, equivalently, the rotated sequence) is transformed by the

heuristic OIT (Figure 2.4(c)) and the SVD-based OIT (Figure 2.4(d)). Note that

the sequences in Figure 2.4 (c) and (d) can be obtained by transforming either the

original sequence in Figure 2.4(a) or its rotated form in Figure 2.4(b), or by any

other arbitrarily rotated form of Figure 2.4(a). It is observed that the quasi-periodic

nature of the data is preserved in both transformations. Since we observe in

Figure 2.4(c) that the last two elements of the sequence transformed by the

heuristic OIT contains much noise, we did not consider including differences of the

sensor sequences beyond second order.

2.3 Methodology and Results

2.3.1 Datasets

We use five publicly available datasets recorded by different research groups

to observe the effects of the proposed transformations on the acquired data.

The datasets are labeled A–E and their attributes are provided in Table 2.1 [80–85].

The sensor configurations for the datasets are shown in Figure 2.5.

Dataset A was acquired by our research group [80,81,86,87] using five Xsens

MTx wearable sensor units containing tri-axial accelerometers, gyroscopes, and

magnetometers [88]. Nineteen activities were considered, including random activities

such as playing basketball (see Table 2.1 for the list of activities in the datasets).

Among the five datasets, A is the largest, including a wide range of activities

and employing a small network of five sensor units. Unlike in the other four

datasets, in dataset A, each subject performs each activity for an equal amount of

time. Dataset A is accessible through University of California Machine Learning

Repository [80] and IEEE Data Port [81]. Dataset B utilizes four accelerometers

and considers five basic activities, some of which are transitional activities, such as

sitting down [82, 89]. However, this property is not used in the classification process.

Dataset C considers six basic activities and utilizes a smartphone containing an
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Figure 2.4: Original and orientation-invariant sensor sequences. (a) Original and
(b) randomly rotated accelerometer sequences while performing A10 in dataset A.
Orientation-invariant sequences transformed by the (c) heuristic and (d) SVD-based
OIT.
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Table 2.1: Attributes of the five datasets.

dataset A [80, 81] B [82] C [83] D [84] E [85]
no. of subjects 8 4 30 14 15
no. of activities 19 5 6 12 7

activities

sitting (A1),
standing (A2), lying
on back and on right
side (A3, A4),
ascending and
descending stairs (A5,
A6), standing still in
an elevator (A7),
moving around in an
elevator (A8), walking
in a parking lot (A9),
walking on a treadmill
in flat and 15◦ inclined
positions at a speed of
4 km/h (A10, A11),
running on a treadmill
at a speed of 8 km/h
(A12), exercising on a
stepper (A13),
exercising on a cross
trainer (A14), cycling
on an exercise bike in
horizontal and vertical
positions (A15, A16),
rowing (A17), jumping
(A18), and playing
basketball (A19)

sitting
down (B1),
standing
up (B2),
stand-
ing (B3),
walk-
ing (B4),
and
sitting (B5)

walking (C1),
ascending
stairs (C2),
descending
stairs (C3),
sitting (C4),
standing (C5),
and lying (C6)

walking (D1),
walking left
and
right (D2 and D3),
ascending and
descending
stairs (D4, D5),
running
forward (D6),
jumping (D7),
sitting (D8),
standing (D9),
sleeping (D10),
ascending and
descending in
an
elevator (D11,
D12)

working at a
com-
puter (E1),
standing
up–walking–
ascending/
descending
stairs (E2),
stand-
ing (E3),
walking (E4),
ascending/
descending
stairs (E5),
walking and
talking with
some-
one (E6),
talking while
stand-
ing (E7)

no. of
non-stationary
activities

15
A5–A19

3
B1, B2, B4

3
C1–C3

9
D1–D7, D11,
D12

4
E2, E4–E6

no. of units 5 4 1 1 1
no. of axes per
unit

9 3 6 6 3

unit positions
torso, right and left
arm, right and left leg

waist, left
thigh, right
ankle, right
upper arm

waist front right hip chest

sensor types
accelerometer,
gyroscope,
magnetometer

accelerome-
ter

accelerometer,
gyroscope (of
smartphone)

acceleromter,
gyroscope

accelerome-
ter

dataset
duration (h)

13 8 7 7 10

sampling rate
(Hz)

25 8 50 100 52

no. of segments 9120 4130
10,299
(50% overlap)

5353 7345

segment length
(s)

5 5 2.56 5 5

no. of features
(for the
reference case,
with no trans-
formation)

1170 276 234 156 78
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accelerometer and a gyroscope [83,90]. Using a high-pass filter, the gravitational

component of the total acceleration is removed and an additional 3D sequence is

obtained. This dataset has the largest number of subjects among the five datasets.

Dataset D includes 12 activities and utilizes a single sensor unit containing an

accelerometer and a gyroscope [84]. Unlike in the other four datasets, the subjects

have a diverse range of age, height, and weight attributes. Dataset E utilizes a

single tri-axial accelerometer placed on the chest [85, 91]. Most of the 15 subjects

are male. Seven activities are considered, some of which are compound activities

that contain more than one activity; for example, one of the activities comprises

standing up, walking, and going up/down stairs. Some activity pairs seem to be

difficult to distinguish, such as “walking” versus “walking and talking with

someone.” This dataset contains the smallest number of features per segment

because only a single tri-axial sensor is used.

2.3.2 Activity Recognition

In activity recognition, a procedure similar to that in [86, 87, 92] is followed, whose

block diagram is provided in Figure 2.6. In the pre-processing stage, the following

steps are taken in order: the data sequences are segmented into time windows of

fixed duration, one of the two OIT methods is applied if orientation invariance is

desired, features are extracted from each segment and normalized. Then, the

number of features is reduced through principal component analysis (PCA). Finally,

classification is performed with four different classifiers and their accuracy is

calculated using two cross-validation techniques.

2.3.2.1 Pre-Proccessing

First, the recorded data sequences are divided into non-overlapping segments of five

seconds’ duration each for datasets A, B, D, and E. Dataset C is originally divided

into 50% overlapping segments of 2.56 s duration each and the original segments are

used for this dataset. For all datasets, each segment belongs to a continuous
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(a) (b) (c) (d) (e)

Figure 2.5: (a–e) Configuration of the sensor units in datasets A–E. The body drawing
in the figure is from http://www.clker.com/clipart-male-figure-outline.

html onto which sensor units were added by the authors.
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Figure 2.6: Activity recognition paradigm.
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recording of a single activity performed by one of the subjects. The number of

segments extracted from datasets A–E are 9120, 4130, 10,299, 5353, and 7345,

respectively.

Following segmentation, one of the two proposed OIT techniques is applied

to each segment of the data if orientation invariance is desired. Five cases are

considered to observe the effects of sensor rotation on the classification process and

to observe the improvement obtained with the proposed transformations:

� Reference case is the standard (ordinary) activity recognition scheme with

fixed sensor unit positions and orientations. In this case, originally recorded

sequences are used without applying any transformation.

� Random rotation case simulates the situation where each sensor unit is

placed at a fixed position at any orientation. We use the original dataset by

synthetically rotating the data to make a fair comparison between reference

and random rotation cases. Tri-axial recordings of each sensor unit in each

segment are randomly rotated in 3D space to observe the performance of the

system when the units are placed at random orientations. To this end,

for each segment of each unit of a given dataset, we generate a random

rotation matrix R and pre-multiply each of the three-element measurement

vectors belonging to that segment (for the accelerometer, gyroscope, and

magnetometer if available) by this rotation matrix as Ṽ = RV. The rotation

matrix is calculated from yaw, pitch, and roll angles θ, φ, ψ that are randomly

generated in the interval [0, 2π) radians:

R =

1 0 0

0 cos θ − sin θ

0 sin θ cos θ


 cosφ 0 sinφ

0 1 0

− sinφ 0 cosφ


cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 (2.15)

Note that while all of the sensor types in the same unit are rotated in the

same way for a given segment, each segment recorded from each sensor unit

for each dataset is rotated differently (by a different random rotation matrix).
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� Euclidean norm method takes the Euclidean norm of each 3D sensor

sequence at each time sample, and uses only the norms (as functions of

the time sample) in classification. This is indeed a basic but proper OIT

technique, which corresponds to the first dimension of the transformed signal,

w1[n], in the heuristic OIT. It has been used in some studies to obtain a

scalar quantity as a feature [93], to achieve orientation invariance in the

simplest possible way [47,94], or to incorporate additional information such as

the energy expenditure estimate of the subject [95]. Taking the Euclidean

norm reduces the number of axes by a factor of three.

� Proposed method 1 corresponds to the heuristic OIT technique. The

time-domain sequence contained in each segment of each tri-axial sensor in

each unit is transformed to yield a 9D orientation-invariant time-domain

sequence. As a consequence, dimensionality of the time-domain data increases

by a factor of three (from three to nine). We also consider taking only the

first three or the first six elements of the transformation. (Throughout this

chapter, all of the nine elements of the heuristic OIT are considered unless

stated otherwise.)

� Proposed method 2 corresponds to the SVD-based OIT. A single transfor-

mation is calculated for all the sensor types in each sensor unit, again

independently for each time segment, as explained in Section 2.2. The

dimensionality is not affected by this transformation, unlike the Euclidean

norm method and proposed method 1.

Although the sensor units are placed on the body at the same orientation during

data acquisition, the applied transformations in the last three cases remove the

orientation information from the data, simulating the case where each sensor unit is

placed at any orientation on the body at a fixed position. Thus, a fair comparison

can be made among the five cases based on the same experimental data.

For each segment, statistical features are extracted from each axis of the

(possibly transformed) data and are concatenated to construct the feature vector

associated with that segment. For instance, for dataset A and the reference
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case, there are 5 units× 9 sensors = 45 axes in total, the features are extracted

separately from each of these 45 axes over the given time segment, and concatenated

into a single feature vector associated with that particular segment. The following

features are considered: mean, variance, skewness, kurtosis, certain coefficients

of the autocorrelation sequence,5 and the five largest DFT peaks with the

corresponding frequencies.6 The number of features are 1170, 276, 234, 156, and 78

for datasets A–E, respectively, for the reference case. Following feature extraction,

the features are normalized to the interval [0, 1] for each subject in each dataset.

As the last step of the pre-processing stage, the number of features is reduced

through PCA, which linearly and orthogonally transforms the feature space such

that the transformed features are sorted in descending order of variance [96]. This

approach allows us to consider only the first M dimensions in the classification

process, decreasing the computational complexity and possibly improving

classification if an appropriate value of M is chosen. Moreover, it enables us to

make a comparison between the different datasets by equalizing the dimensionality

of the feature space among them. To select an appropriate value for M , the

eigenvalues of the covariance matrix of the feature vectors extracted from each of

the five cases are sorted in descending order and plotted in Figure 2.7 for each

dataset. M = 30 appears to be a suitable choice because there is a dramatic

decrease from the first eigenvalue to the 30th in all five datasets.

2.3.2.2 Classification

Following feature reduction, classification is performed with four state-of-the-art

classifiers. The parameters of the second and the third classifiers are jointly

optimized by a grid search for all five cases, the two cross-validation techniques, and

the five datasets. The classifiers and the parameter optimization process are

explained below.

5Every fifth autocorrelation sample up to the 50th is used. The variance is included once as the
first autocorrelation sample. Fewer coefficients may be used depending on the length of the
segment.

6The separation between any two peaks in the DFT sequence is taken to be at least 11 samples.
A smaller number of peaks can be used depending on the segment duration.
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Figure 2.7: The first 50 eigenvalues of the covariance matrix in descending order for
the features extracted from the data transformed according to the five cases.
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1. Bayesian Decision Making (BDM): To train a BDM classifier, for each

activity class a multi-variate Gaussian distribution is fitted using the training

feature vectors of that class by using maximum likelihood estimation. This

process involves estimating the mean vector and the covariance matrix

for each class. Then, for a given test vector, its conditional probability,

conditioned on the class information (i.e., the probability given that it

belongs to a particular class) can be calculated. The class that maximizes this

probability is selected according to the maximum a posteriori (MAP) decision

rule [96, 97].

2. k-Nearest-Neighbor (k-NN): The k-NN classifier requires storing training

vectors. A test vector is classified by using majority voting on the classes of

the k nearest training vectors to the test vector in terms of the Euclidean

distance, where k is a parameter that takes integer values [96,97]. In this

study, k values ranging from 1 to 30 have been considered for all cases,

cross-validation techniques, and datasets. The value k = 7 is found to be

suitable and is used throughout this work.

3. Support Vector Machines (SVM): The SVM is a binary classifier in

which the feature space is separated into two classes by an optimal hyperplane

that has the maximum margin [97]. In case the original feature space may

not be linearly separable, it can be implicitly and nonlinearly mapped to

a higher-dimensional space by using a kernel function, which represents

a measure of similarity between two data vectors x and y. There are

two commonly used kernels: the Gaussian radial basis function (RBF),

fRBF(x,y) = e−γ‖x−y‖
2
, and the linear kernel, flinear(x,y) = xTy. In this

study, we use the former, which is equivalent to mapping the feature space to

a Hilbert space of infinite dimensionality. The reason for this choice is that

there is no need to consider the linear kernel if the RBF kernel is used with

optimized parameters [98], which is the case here. Then, binary classification

is performed according to which side of the hyperplane the test vector

resides on. To use the SVM with more than two classes, a one-versus-one

approach is followed where a binary SVM classifier is trained for each class

pair. A test vector is classified with all pairs of classifiers and the classifier

with the highest confidence makes the class decision [99]. The MATLAB
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toolbox LibSVM is used for the implementation [100]. The two parameters

of the SVM classifier, C and γ, are optimized jointly over all five cases,

both cross-validation techniques, and all five datasets. The parameter C is

the penalty parameter of the optimization problem of the SVM classifier

(see Equation (2.1) in [101]) and γ is the parameter of the Gaussian RBF

kernel described above. A two-level grid search is used to determine the

parameter pair that performs the best over all cases, cross-validation tech-

niques, and datasets. In the coarse grid, the parameters are selected

as (C, γ) ∈ {10−5, 10−3, 10−1, . . . , 1015} × {10−15, 10−13, 10−11, . . . , 103}
and the best parameter pair is found to be (C∗, γ∗) = (101, 10−1).

Then, a finer grid around (C∗, γ∗) on the set (C, γ) ∈ 100P × P,

with P = {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 1, 3, 5} reveals the best

parameter pair (C∗∗, γ∗∗) = (40, 0.2), which is used in all five cases, cross-

validation techniques, and datasets considered in this chapter.

4. Artificial Neural Networks (ANN): An ANN consists of neurons,

each of which produces an output that is a nonlinear function (called

the activation function) of a weighted linear combination of mul-

tiple inputs and a constant. In this study, the sigmoid function,

g(x) = (1 + e−x)
−1

, is used as the activation function [97]. A multi-layer

ANN consists of several layers of neurons. The inputs to the first layer are the

elements of the feature vector. In the last layer, a neuron is allocated to

each of the K classes. The number of hidden-layer neurons is selected as

the nearest integer to 1
2

(
ln (2K)

ln 2
+ 2K − 1

)
, depending on the number of

classes K. (As a rule of thumb, each class is assumed to have two linearly

separable subclasses. Then, the number of neurons in the hidden layer is

selected as the average of the optimistic and pessimistic cases. In the former,
ln (2K)

ln 2
neurons are required to have the hyperplanes intersect at different

positions, whereas in the latter, 2K − 1 neurons are required for parallel

hyperplanes [102].) Training an ANN can be implemented in various ways

and determines the weights of the linear combination for each neuron.

The desired output is one for the neuron corresponding to the class of the

input vector and zero for the output neurons of the other classes. The

back-propagation algorithm is used for training, which iteratively minimizes

38



the errors in the neuron outputs in the least-squares sense, starting from the

last layer and proceeding backwards [103]. The weights are initialized with a

uniform random distribution in [0, 0.2] and the learning rate is chosen as 0.3.

An adaptive stopping criterion is used, which terminates the algorithm at the

ith epoch (that is, when each training vector has been used exactly i times) if

min {Ei−9, Ei−8, . . . , Ei} > Ei−10 − 0.01, where Ei is the average of the sum

of the squared errors over all the training vectors in the last layer’s outputs at

the ith epoch. In other words, the algorithm stops when the errors at (any of)

the last 10 epochs are not significantly smaller than the error at the 11th

epoch from the end. In classification, a test vector is given as the input to the

ANN and the output neuron with the maximum output indicates the class

decision.

2.3.2.3 Cross Validation

The accuracies of the classifiers are determined by two cross-validation techniques:

P -fold and leave-one-subject-out (L1O). In P -fold cross validation, the dataset is

randomly divided into P = 10 equal partitions and the data in each partition are

classified with a classifier trained by the data in all the remaining partitions. L1O

cross validation is similar to P fold, the main difference being that data are

partitioned subject-wise so that each partition contains the data acquired from one

of the subjects [97]. In L1O, feature vectors of a given subject are left out while

training the classifier with the remaining subjects’ feature vectors. The left out

subject’s feature vectors are then used for testing (classification). This process is

repeated for each subject. L1O is highly affected by the variation in the data across

the subjects because the training and test sets contain different subjects’ data.

Hence, it is more challenging than subject-unaware cross-validation techniques such

as repeated random sub-sampling or P fold [104].
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2.3.3 Comparative Evaluation Based on Accuracy

We naturally expect the accuracy achieved with the proposed transformations to be

lower compared to the reference case because neither of the two transformations

preserves the direction of the gravity vector detected by the accelerometers nor the

direction of the Earth’s magnetic North measured by the magnetometers. After

transforming, absolute sensor orientations are no longer available. Removing this

information is necessary to provide the user the flexibility to place the sensor units

at any orientation.

The activity recognition accuracies for datasets A–E are shown in Figure 2.8,

along with the standard deviations over the cross-validation iterations. For

each dataset, the classifier accuracies are presented for the five cases for each

cross-validation technique. We observe that when the standard activity recognition

system is used with randomly oriented sensors (the random rotation case), the

accuracy drops by 21.2% on the average, compared to the reference case. Using

only the Euclidean norm improves the accuracy drop for datasets A–C, and causes

an average degradation of 13.5% in accuracy compared to the reference case, over

all datasets. We also observe that both of the proposed OIT techniques significantly

improve the accuracy drop compared to the random rotation case in most situations.

On the average, proposed methods 1 (with 9 elements) and 2 decrease the accuracy

by 15.5% and 7.6%, respectively, compared to the reference case; hence, the latter is

superior to the former most of the time. When the first three or the first six

elements of the heuristic OIT are used, the performance depends on the dataset and

the cross-validation technique used and is comparable to using all nine elements.

The accuracy obtained by using the SVD-based OIT is comparable with the

reference case for all datasets except for C for which it is lower.

The most accurate classifier, in general, is the SVM; its accuracy is especially

greater than the other classifiers when the sensors are oriented randomly. This

result shows that the SVM is robust against challenges associated with the

classification problem and imperfections in the data, even though the same

parameter values are used for the SVM classifier throughout the study. The

40



reference: no rotation
random rotation
reference method: Euclidean norm
proposed method 1: heuristic OIT (3 elements)
proposed method 1: heuristic OIT (6 elements)
proposed method 1: heuristic OIT (9 elements)
proposed method 2: SVD-based OIT

Figure 2.8: Accuracies shown as bars or horizontal lines for all the cases, datasets,
classifiers, and cross-validation techniques. The vertical sticks indicate plus/minus
two standard deviations around the mean over the cross-validation iterations.

41



robustness of the SVM in different problems is consistent with the results obtained

in [47]. The second most robust classifier is BDM, which is also more accurate than

most of the other classifiers for random rotation for all datasets. We attribute the

robustness of BDM to its “coarseness” in classification, which improves the

accuracy in classifying imperfect data. In other words, because each segment in the

training and test data is rotated randomly and differently, the feature vectors are

scattered in the feature space. In this case, one needs to train a classifier that will

not separate the feature space haphazardly based on individual feature vectors, but

rather consider the simple common properties of the feature vector constellations of

the classes. Binary decision making realizes this successfully, fitting a smooth

Gaussian distribution to the training data of each class. However, the k-NN

classifier, for instance, partitions the feature space into regions with complicated

boundaries and performs worse for randomly rotated data.

Since we use the same methodology to classify the activities in all datasets, we

are able to make a fair comparison between the datasets. Referring to Figure 2.8,

we observe that the activity recognition accuracy highly differs among the datasets

even for the reference case where no transformation is applied: Datasets D and E

result in lower accuracy than datasets A–C for all four classifiers. In particular, the

classifiers perform poorly for dataset E, especially for L1O cross validation,

where most of the segments are incorrectly classified. This result shows that a single

tri-axial accelerometer worn on the chest is not sufficient to recognize relatively

complicated activities, such as working at a computer (E1) or talking while

standing (E7). Rotating or transforming the data does not have a significant effect

on the results for dataset E and L1O cross validation, indicating that the recorded

data do not contain sufficient information about the activities. We also observe in

all datasets that the L1O cross-validation technique results in much lower accuracy

than P fold because of the variations in the data across the subjects who perform

the activities [17].
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2.4 Discussion

We have not recorded a new dataset for incorrectly oriented sensor units in this

study. The first reason for this choice is that it would not have been possible to

compare the five cases based on the same dataset because we would not have

been able to obtain the results in the reference case using a dataset recorded

with different sensor orientations. Considering that there are usually significant

variations in the data recorded from activities performed by different subjects and

by the same subject at different times [17, 105], comparing the five cases based on

different datasets would not be fair. The second reason is that the proposed OITs

completely remove the absolute orientation information from the data, which means

that the transformed sequences would be exactly the same if the sensor units were

oriented differently. A third reason is the difficulty of selecting the incorrect sensor

orientations considered in the new dataset because this would highly affect the

results of random rotation.

We assume that each sensor unit may be placed at any orientation at a given

position but the orientation on the body must remain the same in the short term.

We make this assumption because we wish to preserve the information related to the

rotational motion of the body related to the activities performed and only remove

that related to the absolute orientation of the sensors. To this end, in the heuristic

OIT, we extract some quantities from the sensor sequences and their time differences

that are invariant to sensor orientation. If the sensor orientation with respect to the

body changes over time, these difference sequences will be affected. However, the

heuristic OIT uses differences spanning at most four consecutive time samples,

which correspond to a duration of three sampling periods (0.12, 0.375, 0.06, 0.03,

and 0.06 sec in datasets A–E, respectively). Thus, it is sufficient to maintain

the sensor unit orientations for three sampling periods to obtain uncorrupted

transformed sequences. This result translates into practice, where the sensor

orientations are allowed to deviate slowly provided that the deviation over three

sampling periods is negligible. This property is not valid for the SVD-based OIT,

which requires that the sensor unit orientations with respect to the body remain the

same throughout the time period the transformation is applied (one segment).
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However, since each segment is transformed independently in both the training and

test phases, the sensor unit orientations in each segment may be completely different.

This result would have no effect on the transformed sequences nor the accuracy.

Unlike some studies that assume correct sensor placement in the training phase,

such as [31], we allow users of wearable systems the flexibility to place the sensor

units at any orientation during both the training and test phases for both OIT

techniques. Many studies consider only a small and finite number of orientations,

whereas in our approach, orientation angles can take values over a continuum. This

method is advantageous because of the inevitable deviations in sensor placement

over time. We also do not make any assumptions regarding the nature of the daily

activities. For instance, in [67], to estimate the directions of the forward-backward

and vertical axes of the human body, it is assumed that the long-term average of

the acceleration provides the direction of the gravity vector, and most of the

variations perpendicular to the vertical axis are along the forward-backward

direction of the body. Similar assumptions are made in [106]. These assumptions are

not valid in applications such as monitoring elderly, disabled, or injured people, and

children who are more likely to place the sensor units incorrectly because of these

users’ limitations, or in evaluating physical therapy or sports exercises, where the

subjects’ body movements can be more vigorous and different than those in daily

activities. Thus, we believe that the existing techniques are not applicable to the

generic activity recognition framework and that the approaches proposed here allow

more flexibility.

The most important advantage of our methodology is that the OIT techniques

that we propose can be readily used without much effort at the beginning of the

typical activity recognition paradigm (consisting of segmentation, feature extraction

and reduction, and classification, Figure 2.6), provided that rule-based heuristic

approaches that rely on the physical meanings of the raw sensor measurements are

not used. The SVD-based OIT can be applied to the raw sensor measurements in

any kind of system that processes multi-dimensional time-domain sequences. The

only requirement to apply the heuristic OIT is that the system should be able to

process up to 9D time-domain sequences instead of 3D ones.
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2.5 Run-Time Analysis

To assess the computational cost of pre-processing the sequences, the run

times of the proposed OIT techniques and the Euclidean norm method are

provided in Table 2.2 for each dataset. We observe that the calculation of

the heuristic OIT takes the longest, followed by the SVD-based OIT, and the

Euclidean norm approach. As the number of elements included in heuristic OIT is

increased from 1 (Euclidean norm) to 3 to 6 to 9, the run time naturally increases.

The 3-element and 6-element versions of the heuristic OIT algorithm could be

suitable for deployment on resource-limited platforms for which the calculation of

an inverse cosine or a vector dot/cross product is a significant effort.

Table 2.2: Run times of the three OIT techniques (in sec) for datasets A–E.

method
dataset

A B C D E

Euclidean norm 6.60 2.34 5.52 4.12 3.51

proposed method 1: heuristic OIT (3 elements) 28.93 2.23 6.57 5.95 2.76

proposed method 1: heuristic OIT (6 elements) 191.41 10.10 44.06 49.24 21.01

proposed method 1: heuristic OIT (9 elements) 369.24 17.50 84.24 91.45 38.67

proposed method 2: SVD-based OIT 70.03 4.12 20.43 59.74 8.33

We also investigate the run times of the classifiers that show some variation. The

classifiers’ run times are presented separately for the five cases and the two

cross-validation techniques for dataset A in Table 2.3.7 In the rows entitled

“run time,” each entry is the sum of the training and classification times of all the

test feature vectors in an average cross-validation iteration. It is observed that

k-NN is significantly faster than the other classifiers, whereas the ANN and SVM

are relatively slow. The variation in the run time across the five cases and the two

cross-validation techniques is not as much as the variation across the classifiers.

7The processing was performed on 64-bit MATLAB® R2016a running on a laptop computer
containing a quad-core processor Intel® CoreTM i7-4720HQ with a clock speed of 2.6–3.6 GHz and
16 GB of RAM. For the heuristic OIT, run times of the version with nine elements is provided.
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Table 2.3: Total run time (training and classification of all test feature vectors),
average training time per single cross-validation iteration, and average classification
time per feature vector for dataset A.
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classifier P -fold L1O

run time
(s)

BDM 1.31 1.62 1.30 1.29 1.31 1.63 1.61 1.69 2.59 2.38

k-NN 0.15 0.16 0.16 0.16 0.15 0.18 0.17 0.19 0.42 0.26

SVM 13.24 36.05 12.23 30.50 13.65 12.07 28.42 11.70 34.53 17.50

ANN 8.75 12.80 13.85 14.48 10.12 7.99 9.33 9.13 11.35 9.33

training
time (s)

BDM 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

k-NN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SVM 12.84 30.19 11.68 29.89 13.22 11.64 27.52 11.06 33.58 16.81

ANN 8.56 12.77 13.83 14.45 10.10 7.97 9.30 9.10 11.31 9.30

classification
time (ms)

BDM 1.42 1.76 1.42 1.40 1.42 1.42 1.40 1.47 2.25 2.08

k-NN 0.16 0.17 0.17 0.17 0.16 0.15 0.15 0.16 0.37 0.22

SVM 0.31 0.72 0.48 0.52 0.34 0.29 0.69 0.46 0.66 0.45

ANN 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.03 0.02

Each entry in the rows entitled “training time” is the average duration of

training a classifier in a single P -fold or L1O iteration. The ANN and SVM are

about three orders of magnitude slower than the other classifiers in training, in

exchange for higher accuracy. The k-NN classifier does not require any training

because it only needs to store the training feature vectors for classification. The

training time of BDM does not significantly depend on the data, hence, it is nearly

the same for each of the five cases and the two cross-validation techniques. On the

other hand, the training times of the SVM and ANN highly differ across the five

cases and the two cross-validation techniques, and training is faster in the reference

case and proposed method 2.

The rows entitled “classification time” contain the average durations of classifying

a single test feature vector for each case and each cross-validation technique. In all

cases, BDM has the longest classification time, whereas ANN has the shortest. The

classification time of the SVM is case dependent, whereas the classification times of

the other classifiers are comparable for each of the five cases.
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2.6 Concluding Remarks

The aim of this chapter was to solve the generic problem of placing sensor units at

incorrect orientations, instead of partially solving both the incorrect position and

orientation problems under restrictive assumptions. The results show that both OIT

techniques that we propose solve the issue of incorrect sensor unit orientation in

activity recognition, with an average absolute reduction of 11.6% in accuracy.

In particular, compared to the reference case, the SVD-based OIT causes an average

accuracy degradation of 7.6%, whereas this value is 15.5% for the heuristic OIT. On

the other hand, without any transformation, random sensor unit orientation

decreases the accuracy by 21.2% on average, which shows the effectiveness of the

transformations that we propose. The use of these transformations requires neither

restrictive assumptions about the sensor and activity types nor about the sensor

unit positions. The proposed methodology can be used in the pre-processing stage

of existing wearable systems without much effort, making them invariant to sensor

unit orientation.
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Chapter 3

Invariance to Sensor Unit

Orientation Based on Orientation

Estimation

In Chapter 2, we have proposed two different geometrical transformations,

heuristic OIT and SVD-based OIT, for invariance to sensor unit orientation.

In this chapter, we develop an alternative OIT that exploits the data acquired by

accelerometers, gyroscopes, and magnetometers. For orientation invariance, we

represent the sensor data with respect to the Earth frame. We also calculate

the sensor rotations between consecutive time samples and represent them by

quaternions in the Earth frame. The overview of the proposed method is depicted in

Figure 3.1. For this purpose, we need to estimate the sensor unit orientation with

respect to the Earth frame. In this chapter, we employ an existing OEM based on

the Gauss-Newton (GN) algorithm [107], whereas in Chapter 4, we develop a novel

OEM and compare it with the existing methods. The work presented in this chapter

has appeared in [19].
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Figure 3.1: An overview of the proposed method for sensor unit orientation
invariance.

3.1 Estimation of Sensor Unit Orientation

We capture the body motions using three types of tri-axial wearable motion sensors:

accelerometer, gyroscope, and magnetometer. The acceleration vector acquired by

an accelerometer approximately points in the down direction of the Earth frame,

provided that the gravitational component of the total acceleration is dominant

over the acceleration components resulting from the motion of the sensor unit.

However, even if the acceleration vector consists of mainly the gravitational

component, by itself it is not sufficient to estimate the sensor unit orientation

because there exist infinitely many solutions to the sensor unit orientation, obtained

by rotating the correct solution about the direction of the acquired acceleration

vector (Figure 3.2(a)). Hence, we need to incorporate the magnetometer into the

orientation estimation as well.

The magnetic field vector acquired by a magnetometer points in a fixed direction

in the Earth frame (the magnetic North) (Figure 3.2(b)), provided that there are no

external magnetic sources or distortion and the variation of the Earth’s magnetic

field is neglected. By taking the reference directions obtained from the accelerometer

and the magnetometer as the vertical axis and the (magnetic) North axis of the

Earth frame, respectively, we can estimate the static orientation of the sensor unit

with respect to the Earth frame. However, this estimation is reliable only in the long
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term because the gravity component is superposed with the acceleration caused by

the motion of the unit and the Earth’s magnetic field is superposed with the

external magnetic sources (if any). Hence, we also estimate the dynamic orientation

by integrating the gyroscope angular rate output, which is reliable only in the short

term because of the drift error [78]. To obtain an accurate orientation estimate both

in the short and long term, we merge these two sources of information. Thus, we

exploit the information provided by the three types of sensors to determine the

sensor unit orientation with respect to the Earth frame as a function of time.

(a) (b)

Figure 3.2: (a) With only the acquired acceleration field vector a, there exist
infinitely many solutions to the sensor unit orientation (two are shown); (b) the
acquired magnetic field vector m uniquely identifies the sensor unit orientation.

Once we estimate the sensor unit orientation with respect to the Earth frame, we

can transform the acquired data from the sensor frame to the Earth frame such that

they become invariant to sensor unit orientation. In addition, to include the

information about the rotational motion of the sensor unit, we represent the sensor

unit rotation between consecutive time samples in the Earth frame by using a

similarity transformation. We show that appending this rotational motion data to

the sensor data and representing both in the Earth frame improves the activity

recognition accuracy.

Existing orientation estimation techniques for the sensor units can be classified

into deterministic, stochastic, and frequency-based approaches [108]. Since stochastic
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approaches are computationally intensive and frequency-based approaches are

relatively not very robust [108], we focus on deterministic methods in this study.

While most existing OEMs obtain the dynamic estimate by integrating the angular

rate vector, they estimate the static orientation in different ways based on the

acceleration and magnetic field vectors. Simple, non-iterative techniques such as

TRIAD [109] and factored quaternion algorithm [110] rely on geometric approaches

to respectively calculate the rotation matrices and quaternions that represent the

static orientation. Since they do not utilize gyroscopic angular rate measurements, a

dynamic orientation estimate is not involved. These approaches are mainly intended

for slowly moving or static sensor units. On the other hand, there exist orientation

estimation studies that are based on the use of iterative algorithms such as

Gradient-Descent (GD) [111], GN [107], and Levenberg-Marquardt (LM) [112], the

last of which is a blend of GD and GN. Linear and extended Kalman filters (KF)

are also employed but with relatively high computational cost [113–115]. The

iterative algorithms first estimate the static orientation by minimizing a cost

function that decreases as the vertical and North directions of the Earth approach

the acceleration and magnetic field vectors, respectively. The method proposed

in [111] uses the GD algorithm to align the upward direction of the Earth frame

with the acceleration vector and the North direction with the horizontal component

of the magnetic field vector. To improve the computational efficiency, it uses an

approximate solution and iterates the GD algorithm only once. The algorithm

proposed in [107] uses the GN method to make an alignment similar to that in [111];

however, unlike [111], it calculates the solution without making any approximations.

The same study also provides a brief comparison between GD and GN algorithms

for which the number of iterations is limited to ten and three, respectively. Based

on the results, it is stated that GN is faster and does not require as many iterations

as GD to reach the minimum point and the estimated orientation angles do not

fluctuate as much around their true values. These iterative algorithms may not

always converge to the global minimum and are computationally intensive because

they need to be iterated several times at each time sample. Once the static

orientation estimate is obtained through a number of iterations, the static and

dynamic orientation estimates are combined through weighted averaging at each

time sample. Existing OEMs summarized above are reviewed in [108] in more detail.
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We define the Earth’s coordinate frame E according to the North-East-

Down (NED) convention [116] such that the Earth’s z axis, zE, points downwards

and the Earth’s x axis, xE , points in the direction of the component of the Earth’s

magnetic field that is perpendicular to the z axis, which is roughly the North

direction, as illustrated in Figure 3.3.

Let Sn be the rotating sensor frame at time sample n. Estimating the sensor

unit orientation involves calculating a 3× 3 rotational transformation matrix RE
Sn

that describes the sensor frame Sn with respect to the Earth frame E at each

time sample n. The Earth frame and the sensor frame at consecutive time

samples n and n + 1 are depicted in Figure 3.4 together with the rotation matrices

relating these coordinate frames. In this chapter, we adopt the OEM in [107], which

is explained in the Appendix. The short-term orientation estimate is calculated

by integrating the angular rate acquired by the gyroscope. For the long-term

orientation estimation, the GN method is used to minimize a cost function which

decreases as the acceleration vector points downwards in the Earth frame and as

the horizontal component of the magnetic field vector is aligned with the North

direction of the Earth frame. Then, the short- and long-term orientation estimates

are combined through weighted averaging [107].

3.2 Sensor Signals with Respect to the Earth

Frame

The tri-axial data acquired on the x, y, and z axes of each sensor type in the sensor

coordinate frame Sn naturally depend on the orientations of the sensor units. Our

approach is based on transforming the acquired data from the sensor frame to the

Earth frame.

Let vS[n] =
(
vSx [n], vSy [n], vSz [n]

)T
be the data vector in R3 acquired from the

x, y, z axes of a tri-axial sensor at time sample n. To represent vS [n] with respect to

the Earth frame, we pre-multiply it by the estimated sensor unit orientation at that
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Figure 3.3: The Earth frame illustrated on an Earth model with the acquired
reference vectors.

time sample, which is the rotation matrix relating the Sn frame to the E frame:

vE[n] = RE
Sn

vS[n] (3.1)

The components of the vector vE[n] =
(
vEx [n], vEy [n], vEz [n]

)T
are represented with

respect to the xE, yE, zE axes of the Earth frame and are invariant to the sensor

unit orientation.

3.3 Differential Sensor Rotations with Respect

to the Earth Frame

In addition to the data transformed to the Earth frame, we propose to incorporate

the information contained in the change in the sensor unit orientation over time.

While the sensor units can be placed at arbitrary orientations, we require that

during data acquisition their orientations remain fixed with respect to the body
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Figure 3.4: The Earth and the sensor coordinate frames at two consecutive time
samples with the rotational transformations relating them.

part they are placed on. In other words, the sensor units need to be firmly attached

to the body and are not allowed to rotate freely during the motion. However, this

restriction is only necessary in the short term over one time segment (for dataset A

used in this chapter). Under this restriction, the rotational motion of the body

parts on which the sensor units are worn can be extracted from the acquired data

correctly regardless of the initial orientations of the units.

Note that we can easily calculate the sensor unit orientation RSn
Sn+1

at time

sample n+ 1 relative to the sensor orientation at time sample n as

Cn , RSn
Sn+1

= RSn
E RE

Sn+1
=
(
RE
Sn

)−1
RE
Sn+1

(3.2)

for each n as shown in Figure 3.4. The matrix Cn is not invariant to sensor unit

orientation because it represents the orientation of frame Sn+1 with respect to Sn

and depends on the orientation at which the sensor unit is fixed to the body. To

observe this, let us assume that the sensor unit is placed at a different arbitrary

orientation; that is, the sensor unit is rotated by an arbitrary rotation matrix P

that is constant over time. Then, the acquired data are ṽS [n] = P−1 vS [n] for all n,
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represented with respect to the new sensor unit orientation S̃n, and the sensor unit

orientation with respect to the Earth is estimated as R̃E
Sn

= RE
Sn

P for all n. Note

that the original rotation matrix is post-multiplied by P because P describes

a rotational transformation with respect to the sensor frame, not the Earth

frame [117]. For the new sensor unit orientation, the rotation of the sensor unit

between time samples n and n+ 1 can be calculated as

C̃n = R̃Sn
Sn+1

= R̃Sn
E R̃E

Sn+1

=
(
R̃E
Sn

)−1

R̃E
Sn+1

=
(
RE
Sn

P
)−1 (

RE
Sn+1

P
)

= P−1
(
RE
Sn

)−1
RE
Sn+1

P

= P−1 RSn
E RE

Sn+1
P

= P−1 RSn
Sn+1

P

= P−1 Cn P

(3.3)

Since C̃n 6= Cn in general, Cn is not invariant to sensor unit orientation. We can

make the rotational transformation Cn invariant to sensor unit orientation by

representing it in the Earth frame. Hence, we transform Cn from the sensor

frame Sn to the Earth frame E by using a similarity transformation [118]:

Dn =
(
RSn
E

)−1
Cn

(
RSn
E

)
= RE

Sn
RSn
Sn+1

RSn
E = RE

Sn+1
RSn
E (3.4)

We call this transformation Dn differential sensor rotation with respect to the Earth

frame.

It is straightforward to show that Dn is invariant to sensor unit orientation.

Using a constant arbitrary rotation matrix P that relates the original and modified
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sensor unit orientations as before, we have:

D̃n = R̃E
Sn+1

R̃Sn
E

= R̃E
Sn+1

(
R̃E
Sn

)−1

=
(
RE
Sn+1

P
) (

RE
Sn

P
)−1

= RE
Sn+1

P P−1︸ ︷︷ ︸
I3×3

(
RE
Sn

)−1

= RE
Sn+1

RSn
E

= Dn

(3.5)

Thus, we observe that the differential rotation D̃n with respect to the Earth frame,

calculated based on the rotated data, is the same as the one calculated based on the

original data (Dn).

3.4 Comparative Evaluation of Proposed and

Existing Methodology on Orientation In-

variance for Activity Recognition

To demonstrate our methodology, we use the publicly available daily and sports

activities dataset acquired by our research group earlier [80], which is named as

dataset A in Chapter 2.1 To acquire the dataset, each subject wore five Xsens MTx

sensor units [88] (see Figure 3.6), each unit containing three tri-axial devices: an

accelerometer, a gyroscope, and a magnetometer. The sensor units are placed on

the chest, on both wrists, and on the outer sides of both knees, as shown in

Figure 3.5. Nineteen activities are performed by eight subjects. For each activity

performed by each subject, there are 45 (= 5 units× 9 sensors) time-domain

sequences of 5 min duration, sampled at 25 Hz, and consisting of 7500 time samples

1The remaining datasets are not used in this chapter since they do not include data from a
magnetometer.
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each. The attributes of the dataset and the types of activities are provided in the

second column of Table 2.1.

The activities can be broadly grouped into two, as shown in the second column

of Table 2.1: In stationary activities (A1–A4), the subject stays still without moving

significantly, whereas non-stationary activities (A5–A19) are associated with some

kind of motion.

3.4.1 Activity Recognition

We employ the activity recognition procedure described in Section 2.3.2. The details

are explained below:

3.4.1.1 Description of the Proposed and Existing Methodology on

Orientation Invariance

In the pre-processing stage, seven data transformation techniques are considered to

observe the effects of different sensor unit orientations on the accuracy and the

improvement obtained with the existing and the proposed OITs:

� Reference: Data are not transformed and the sensor units are assumed to

maintain their fixed positions and orientations during the whole motion. This

corresponds to the standard activity recognition scheme, as in [86,87,92].

� Random rotation: This case is considered to assess the accuracy of the

standard activity recognition scheme (without any OIT) when the sensor

units are oriented randomly at their fixed positions. Instead of recording a

new dataset with random sensor unit orientations, we randomly rotate the

original data to make a fair comparison with the reference case. For this

purpose, we randomly generate a rotational transformation matrix R as

defined in Equation 2.15 independently for each time segment of each sensor

unit (see Section 3.4.1.2 for segmentation). We pre-multiply each of the three
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(a) (b)

Figure 3.5: (a) Positioning of the MTx units on the body; (b) connection diagram
of the units (the body drawing in the figure is from http://www.clker.com/

clipart-male-figure-outline.html; the cables, Xbus Master, and sensor units
were added by the authors).

Figure 3.6: The Xsens MTx unit [88].

58

http://www.clker.com/clipart-male-figure-outline.html
http://www.clker.com/clipart-male-figure-outline.html


tri-axial sequences of that unit by the random rotation matrix corresponding

to that segment of the unit: ṽ[n] = R vS[n]. In this way, we simulate the

situation where each sensor unit is placed at a possibly different random

orientation in each time segment.

� Euclidean norm method: The Euclidean norm of the x, y, z components

of the sensor sequences are taken at each time sample and used instead

of using the original tri-axial sequences, as explained in Section 2.3.2.1.

As reviewed in Section 1.1.2, this technique has been used in activity

recognition to achieve invariance to the sensor unit orientation [26, 48, 63] or

as an additional feature as in [32,47,64–66,93].

� Sequences along and perpendicular to the gravity vector: In this

method, the acceleration sequence in each time segment is averaged over time

to approximately calculate the direction of the gravity vector. Then, for

each sensor type, the sensor sequence’s amplitude in this direction and the

magnitude that is perpendicular to this direction are taken. This method has

been used in [58,67,68] to achieve orientation invariance.

� SVD-based transformation: Sensory data are represented with respect to

three principal axes that are calculated by SVD [18,22], as explained in

Section 2.2. The transformation is applied to each time segment of each

sensor unit separately so that sensor units are allowed to be placed at

different orientations for each segment.

To calculate the orientation-invariant transformations in the remaining two

methods, we estimate the orientation RE
Sn

of each of the five sensor units as a

function of time sample n as explained in the Appendix. For the algorithm to reach

steady state rapidly, we append to the acquired signal a prefix signal of duration 1 s

that consists of zero angular rate, a constant acceleration, and a constant magnetic

field that are the same as the measurements at the first time sample.

� Sensor sequences with respect to the Earth frame: We transform the

sensor sequences into the Earth frame using the estimated sensor orientations,
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as described by Equation (3.1). This method has been used in [69] to achieve

invariance to sensor unit orientation in activity recognition. As an example,

Figure 3.7(a) shows the accelerometer, gyroscope, and magnetometer data

(vS[n]) acquired during activity A10 and Figure 3.7(b) shows the same

sequences transformed into the Earth frame. We observe that the magnetic

field with respect to the Earth frame does not significantly vary over time

because the Earth’s magnetic field is nearly constant in the Earth frame

provided that there are no external magnetic sources in the vicinity of the

sensor unit.

� Proposed method: sensor sequences and differential quaternions,

both with respect to the Earth frame: We calculate the differential

rotation matrix Dn with respect to the Earth frame for each sensor unit

at each time sample n, as explained in Section 3.3. This rotation matrix

representation is quite redundant because it has nine elements while any 3D

rotation can be represented by only three angles. Since the representation

by three angles has a singularity problem, we represent the differential

rotation Dn compactly by a four-element quaternion qdiff
n as

qdiff
n =


qdiff

1

qdiff
2

qdiff
3

qdiff
4

 =


√

1+d11+d22+d33

2
d32−d23

4
√

1+d11+d22+d33
d13−d31

4
√

1+d11+d22+d33
d21−d12

4
√

1+d11+d22+d33

 (3.6)

where dij (i, j = 1, 2, 3) are the elements of Dn [119]. The vector qdiff
n is

called differential quaternion with respect to the Earth frame (the dependence

of the elements of qdiff
n and Dn on n has been dropped from the notation for

simplicity). In the classification process, we use each element of qdiff
n as a

function of n, as well as the sensor sequences with respect to the Earth frame.

Hence, there are four time sequences for the differential quaternion in addition

to the three axes each of accelerometer, gyroscope, and magnetometer data

for each of the five sensor units. Therefore, the transformed data comprises

(4 + 3 + 3 + 3) sequences× 5 sensor units = 65 sequences in total.
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We have observed that the joint use of the sensor sequences and differential

quaternions, both with respect to the Earth frame, achieves the highest activity

recognition accuracy compared to the other combinations. Representing

rotational transformations by rotation matrices instead of quaternions

degrades the accuracy. Omitting magnetometer sequences with respect to the

Earth frame causes a slight reduction in the accuracy.

Figure 3.7(c) shows the nine elements of the differential rotation matrix Dn

with respect to the Earth frame over time, which are calculated based on the

sensor data shown in Figure 3.7(a). Figure 3.7(d) shows the elements of

the differential quaternion qdiff
n as a function of n. The almost periodic

nature of the sensor sequences (Figure 3.7(a)) is preserved in Dn and qdiff
n

(Figure 3.7 (c) and (d)). The differential rotation is calculated between two

consecutive time samples that are only a fraction of a second apart, hence

the amplitudes of the elements of Dn and qdiff
n do not vary much. Since

differential rotations involve small rotation angles (close to 0◦), the Dn

matrices are close to the 3× 3 identity matrix (I3×3) because they can be

expressed as the product of three rotation matrices as in Equation (2.15)

where each of the basic rotation matrices (as well as their product) is close to

I3×3 because of the small angles. Hence, the diagonal elements which are close

to one and the upper- and lower-diagonal elements which are close to zero are

plotted separately in Figure 3.7(c) for better visualization. When Dn is close

to I3×3, the qdiff
n vectors calculated by using Equation (3.6) are close to

(1, 0, 0, 0)T , as observed in Figure 3.7(d).

3.4.1.2 Classification

A procedure similar to that in [86, 87, 92] is followed for activity recognition. The

sensor sequences are divided into 9120 (= 60 feature vectors per 5 min recording×
19 activities× 8 subjects) non-overlapping segments of 5-s duration each and

transformed according to one of the seven approaches described in Section 3.4.1.1.

Then, statistical features are extracted for each segment of each axis of each sensor

type, as described in Section 2.3.2.1, resulting in a total of 26 features per segment
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Figure 3.7: Original and orientation-invariant sequences from a walking activity
plotted over time. (a) Original sensor sequences; (b) sensor sequences; elements of
(c) the differential rotation matrix and (d) the differential quaternion. Sequences in
(b)–(d) are represented in the Earth frame and are invariant to sensor orientation.
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of each axis. For the reference approach that does not involve any transformation,

there are 5 sensor units× 9 axes× 26 features per axis = 1170 features that are

stacked to form a 1170-element feature vector for each segment. The number of axes

as well as the number of features vary depending on the transformation technique;

however, the total number of feature vectors is fixed (9120). For instance, in the

Euclidean norm, there is a three-fold decrease in the number of axes and hence in

the number of features. The features are normalized to the interval [0, 1] over all the

feature vectors for each subject.

The number of features is reduced through PCA, as in Section 2.3.2.1. This

allows one to consider only a certain number of features that exhibit the largest

variances to reduce the dimensionality. Thus, for each approach, the eigenvalues of

the covariance matrix of the feature vectors are calculated, sorted in descending

order, and plotted in Figure 3.8. Using the first 30 eigenvalues appears to be suitable

for most of the approaches; hence, we reduce the dimensionality down to F = 30.

We perform activity classification with seven state-of-the-art classifiers that are

briefly described below.

� Support Vector Machines (SVM): This classifier is described in

Section 2.3.2.2. We optimize the SVM parameters in the same way

as in Section 2.3.2.2 over all approaches and cross-validation techniques in

this chapter. In the coarse grid, we get the same optimal parameter values as

in Section 2.3.2.2; hence we use the same fine grid. The optimal parameter

values in the fine grid are obtained as (C∗∗, γ∗∗) = (5, 0.1), which are used

throughout this chapter.

� Artificial Neural Networks (ANN): The ANN classifier, explained in

Section 2.3.2.2, is used here with the same parameter selection method.

� Bayesian Decision Making (BDM): This classifier is explained in

Section 2.3.2.2.

� Linear Discriminant Classifier (LDC): This classifier is the same as

BDM except that the average of the covariance matrices individually
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Figure 3.8: The first 100 eigenvalues of the covariance matrix of the feature vectors
sorted in descending order, calculated based on the features extracted from the data
transformed according to the seven approaches.
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calculated for each class is used for all of the classes. Since the Gaussian

distributions fitted to the different classes have different mean vectors but the

same covariance matrix in this case, the classes have identical probability

density functions centered at different points in the feature space. Hence, the

classes are linearly separated from each other, and the decision boundaries in

the feature space are hyperplanes [97].

� k-Nearest Neighbor (k-NN): The k-NN classifier, explained in

Section 2.3.2.2, is used here with the same parameter selection as in

that section.

� Random Forest (RF): A random forest classifier is a combination of

multiple decision trees [120]. In the training phase, each decision tree

is trained by randomly and independently sampling the training data.

Normalized information gain is used as the splitting criterion at each node. In

the classification phase, the decisions of the trees are combined by using

majority voting. The number of decision trees is selected as 100 because we

have observed that using a larger number of trees does not significantly

improve the accuracy while increasing the computational cost considerably.

� Orthogonal Matching Pursuit (OMP): The training phase consists of

only storing the training vectors with their class labels. In the classification

phase, each test vector is represented as a linear combination of a very

small portion of the training vectors with a bounded error, which is called

the sparse representation. The vectors in the representation are selected

iteratively by using the OMP algorithm [121] where an additional training

vector is selected at each iteration. The algorithm terminates when the

desired representation error level is reached, which is selected to be 10−3.

Then, a residual for each class is calculated as the representation error when

the test vector is represented as a linear combination of the training vectors of

only that class, and the class with the minimum residual error is selected.
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3.4.1.3 Cross Validation

To determine the accuracies of the classifiers, L1O cross-validation technique is

used, as explained in Section 2.3.2.3. Thus, in our implementation, the dataset is

partitioned into eight and there are 1140 feature vectors in each partition.

3.4.2 Comparative Evaluation Based on Accuracy and

Run Time

The activity recognition performance of the different data transformation techniques

and classifiers is shown in Figure 3.9. In the figure, the lengths of the bars

correspond to the classification accuracies and the thin horizontal sticks indicate

plus/minus one standard deviation about the accuracies averaged over the

cross-validation iterations.

In the lower part of Figure 3.9, the accuracy values averaged over the seven

classifiers are also provided for each approach and compared with the reference case,

as well as with the proposed method. Referring to this part of the figure, the

standard system that we take as reference, with fixed sensor orientations, provides

an average accuracy of 87.2%. When the sensor units are randomly oriented, the

accuracy drops by 31.8% on average with respect to the standard reference case.

This shows that the standard system is not robust to incorrectly or differently

oriented sensor units. The existing methods for orientation invariance result in a

more acceptable accuracy reduction compared to the reference case: The accuracy

drop is 18.8% when the Euclidean norms of the tri-axial sensor sequences are taken,

12.5% when the sensor sequences are transformed to the Earth frame, 12.2% when

the sensor sequences are represented along and perpendicular to the gravity vector,

and 8.4% when the SVD-based transformation is applied.

Our approach that uses the sensor sequences together with differential quaternions,

both with respect to the Earth frame, achieves an average accuracy of 82.5% over

all activities with an average accuracy drop of only 4.7% compared to the reference
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case. Such a decrease in the accuracy is expected when the sensor units are allowed

to be placed freely at arbitrary orientations because this flexibility entails the

removal of fundamental information such as the direction of the gravity vector

measured by the accelerometers and the direction of the Earth’s magnetic field

detected by the magnetometers. Hence, the average accuracy drop of 4.7% is

considered to be acceptable when such information related to the sensor unit

orientations is removed inevitably.

In the lower part of Figure 3.9, we also provide the improvement achieved by

each method compared to the random rotation case which corresponds to the

standard system using random sensor unit orientations. The method that we newly

propose in this chapter performs the best among all the methods considered in this

study when the sensor units are allowed to be attached at arbitrary orientations.

The activity recognition accuracy highly depends on the classifier. According to

Figure 3.9, in almost all cases, the SVM classifier performs the best among the

seven classifiers compared. SVM outperforms the other classifiers especially in

approaches targeted to achieve orientation invariance where the classification

problem is more challenging. The robustness of SVM in such non-ideal conditions is

consistent with other studies [47,87]. Besides the SVM classifier, ANN and LDC

also obtain high classification accuracy. Although reference [69] states that k-NN

has been shown to perform remarkably well in activity recognition, it is not the

most accurate classifier that we have identified.

To observe the recognition rates of the individual activities, a confusion matrix

associated with the SVM classifier is provided in Table 3.1 for the proposed method.

It is apparent that the proposed transformation highly misclassifies the stationary

activities A1–A4. These activities contain stationary postures, namely, sitting,

standing, and two types of lying, which are misclassified probably because we

remove the information about sensor unit orientation from the data. In particular,

activity A1 (sitting) is mostly misclassified and confused with activities A3 (lying on

back side) and A7 (standing still in an elevator). The remaining stationary activities

are also misclassified as A7. Among the 15 non-stationary activities, activities A10

and A11 (walking on a treadmill in flat and 15◦ inclined position, respectively) are
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confused with each other because of the similarity between the body movements in

the two activities. Other misclassifications occur between activity pairs that have

similarities such as A7/A8, A8/A7, A2/A8, A18/A6, and A13/A9, although rarely.

Activities A12 (running on a treadmill at a speed of 8 km/h) and A17 (rowing) are

perfectly classified by SVM for the proposed method, probably because they

are associated with unique body movements and do not resemble any of the

other activities.

We present the classification performance separately for stationary and

non-stationary activities in Figure 3.10. For each classifier and each approach, we

calculate the accuracy values by averaging out the accuracies of the stationary

activities (A1–A4) and non-stationary activities (A5–A19).

For stationary activities (see Figure 3.10(a)), an average accuracy of 81.2% is

obtained for fixed sensor unit orientations. When the sensor units are oriented

randomly, the average accuracy drops to 42.6%. The existing orientation-invariant

methods exhibit accuracies between 31.7% and 62.2%, some of them being higher

and some being lower than the accuracy for random rotation. The Euclidean norm

method performs particularly poorly in this case. The proposed method achieves an

average accuracy of 66.8%, which is considerably higher than random rotation and

all the existing OITs. Although two of the existing transformations provide some

improvement compared to the random rotation case, their accuracies are much lower

than the standard reference system. Hence, removing the orientation information

from the data makes it particularly difficult to classify stationary activities.

For non-stationary activities (see Figure 3.10(b)), the accuracy decreases from

88.8% to 58.8% on average when the sensor units are placed randomly and no

transformation is applied. The existing orientation-invariant methods obtain

accuracies ranging from 78.2% to 83.2%, which are comparable to the reference case

with fixed sensor unit orientations. The method we propose obtains an average

accuracy of 86.7%, which is higher than all the existing methods and only 2.1%

lower than the reference case. This shows that when the sensor units are fixed to

the body at arbitrary orientations, the proposed method can classify non-stationary

activities with a performance similar to that of fixed sensor unit orientations. In the
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last two rows of the confusion matrix provided in Table 3.1, the average accuracy of

the stationary activities (A1–A4) and non-stationary activities (A5–A19) are

provided separately for the proposed method, again using the SVM classifier.

Referring to Figure 3.10(a), we observe that the recognition rate of stationary

activities highly depends on the classifier. On average, the best classifier is LDC,

probably because the recognition of stationary activities is quite challenging and the

LDC classifier separates the classes from each other linearly and smoothly in the

feature space. For the proposed method, the OMP classifier performs much better

than the remaining six classifiers. On the other hand, for non-stationary activities

(see Figure 3.10(b)), the classifiers obtain comparable accuracy values, unlike the

case for stationary activities. In this case, SVM is the most accurate classifier, both

on average and for the proposed method.

3.5 Run-Time Analysis

The average run times of the data transformation techniques per 5-s time segment

are provided in Table 3.2. All the processing in this work was performed on 64-bit

MATLAB® R2017b running on a laptop computer whose specifications are

provided in Section 2.5. The proposed method has an average run time of about

61 ms per 5-s time segment and can be executed in near real time since the run

time is much shorter than the duration of the time segment.

The run times of the classifiers are presented in Table 3.3 for each of the seven

data transformation techniques. Table 3.3(a) contains the total run times of the

classifiers for an average cross-validation iteration, including the training phase and

classification of all the test feature vectors. We observe that k-NN, LDC, and

BDM are much faster than the other classifiers for all of the data transformation

techniques. Table 3.3(b) contains the average training times of the classifiers for a

single cross-validation iteration. The k-NN and OMP classifiers only store the

training feature vectors in the training phase; therefore, their training time

is negligible. Among the remaining classifiers, training of BDM is the fastest.
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reference (no transformation)
random rotation
Euclidean norm
sensor sequences with respect to the Earth frame
sensor sequences along and perpendicular to the gravity vector
SVD-based transformation
proposed method: sensor sequences and differential quaternions,
both with respect to the Earth frame

Figure 3.10: Activity recognition performance for all the data transformation
techniques and classifiers for (a) stationary and (b) non-stationary activities. The
lengths of the bars represent the accuracies and the thin horizontal sticks indicate
plus/minus one standard deviation over the cross-validation iterations.
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Table 3.2: Average run times of the data transformation techniques per 5-s time
segment.

data transformation technique run time (ms)

Euclidean norm 0.69

sensor sequences with respect to the Earth frame 56.25

sensor sequences along and perpendicular to the gravity vector 1.09

SVD-based transformation 8.94

proposed method: sensor sequences and differential
61.08

quaternions, both with respect to the Earth frame

Table 3.3(c) contains the average classification time of a single test feature vector,

extracted from a segment of 5-s duration. ANN and LDC are about an order of

magnitude faster than the others in classification. The classification time of OMP is

the largest. Note that, because of programming overheads, the total classification

times provided in Table 3.3(a) are greater than the sum of the training and

classification times (Table 3.3(b,c), respectively) multiplied by 1140 (the number of

feature vectors per L1O iteration).

3.6 Discussion

Overall, the recognition rates of non-stationary activities are considerably better

than those of stationary ones for all the approaches considered in this study. This is

because in non-stationary activities, the activity type is encoded in the body

motion whereas in stationary activities, since there is no significant body motion,

the removal of sensor unit orientation information to achieve orientation invariance

has a major impact on the accuracy. The classification of stationary activities is a

more challenging problem and it is clear that sensor unit orientations provide

essential information for this purpose.

The direction of the gravity vector measured by the accelerometer and the

direction of the magnetic field vector determined by the magnetometer provide

essential information about the orientation of the sensor unit. When the sensor

sequences are represented with respect to the Earth frame to achieve orientation
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Table 3.3: (a) Total run time (including training and classification of all test feature
vectors) and (b) training time in an average L1O iteration; (c) average classification
time of a single test feature vector.
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(a)

total run time

(s)

SVM 6.42 14.20 7.22 11.71 8.19 6.24 10.05

ANN 7.37 8.49 8.54 6.58 12.04 7.91 6.14

BDM 1.67 1.61 1.59 1.55 2.12 1.48 1.69

LDC 1.10 0.87 0.84 1.52 0.84 0.93 1.51

k-NN 0.24 0.12 0.12 0.21 0.19 0.12 0.22

RF 16.81 22.51 26.40 24.34 19.05 19.71 23.98

OMP 1018.27 798.90 92.32 99.41 96.48 75.18 114.68

(b)

training time

(s)

SVM 6.01 13.39 6.61 10.31 7.58 5.36 8.60

ANN 7.35 8.47 8.52 6.57 12.01 7.89 6.12

BDM 0.01 0.01 0.01 0.01 0.01 0.01 0.01

LDC 0.33 0.23 0.22 0.38 0.22 0.26 0.33

k-NN – – – – – – –

RF 15.20 20.90 24.11 21.75 17.45 17.87 21.25

OMP – – – – – – –

(c)

classification time

(ms)

SVM 0.26 0.60 0.42 0.39 0.40 0.24 0.31

ANN 0.02 0.02 0.01 0.01 0.02 0.01 0.01

BDM 1.46 1.41 1.39 1.35 1.85 1.29 1.47

LDC 0.04 0.03 0.03 0.05 0.03 0.03 0.04

k-NN 0.21 0.11 0.11 0.19 0.16 0.11 0.19

RF 0.71 0.73 0.99 0.83 0.72 0.74 0.87

OMP 892.55 700.17 80.55 86.38 84.20 65.43 99.69
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invariance, this information is lost because the gravity and the magnetic field of the

Earth are roughly in the fixed zE and xE directions of the Earth frame, respectively.

Hence, in our proposed method, we incorporate the change in the sensor unit

orientation over time by calculating differential quaternions with respect to the

Earth, which represent the rotation between consecutive time samples invariantly to

the sensor unit orientation. The use of differential quaternions increases the accuracy

considerably because they effectively represent the rotational motion of the sensor

unit related to the activities. When the rotational transformation is represented

with respect to the Earth frame, it is invariant to sensor unit orientation, as desired.

For all the methods compared in this chapter, we use the same dataset which was

acquired by placing the sensor units on the body at fixed orientations. This enables

us to make a fair comparison between all of the seven approaches considered in this

work. In the random rotation case, we rotate the data arbitrarily for each time

segment and each sensor unit; hence, we obtain new data that simulate random

sensor unit orientations and match exactly the same level of difficulty of the

original data except for the rotational difference. In the last five approaches that

correspond to orientation-invariant methods, it is mathematically guaranteed that

the transformed data are exactly invariant to sensor unit orientations; hence, they

can be directly compared with the reference and random rotation cases. Had we

recorded an additional dataset with different sensor unit orientations, we would not

be able to fairly compare the accuracies obtained with the two datasets because it

is not possible to guarantee the same level of difficulty in activity recognition in

different experiments. This fact can be observed even within the current dataset

from the non-negligible standard deviations in the activity recognition accuracy

over the cross-validation iterations (see Figures 3.9 and 3.10). This shows that the

variation among the subjects is significant, as also observed in [17].

3.7 Concluding Remarks

In this chapter, we have demonstrated that the standard activity recognition

paradigm cannot handle incorrectly or differently oriented sensor units when
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the position remains fixed. To overcome this problem, we have proposed a

transformation that we apply on the sensor data at the pre-processing stage to

increase the robustness of the system to errors in the orientations at which the

sensor units are attached to the body. The method we have proposed extracts

the activity-related information from the sensor sequences while removing the

information associated with the absolute sensor unit orientations. This way,

we ensure that the transformed sequences do not depend on the absolute sensor

unit orientations. The transformed sequences have the same form as the original

sequences except the number of axes, which enables us to apply this method in the

pre-processing stage of any system that can handle multi-axial data, including

systems that directly use time-domain data in its raw form as well as those that use

extracted features. We have shown that our method significantly reduces the

accuracy degradation caused by incorrect/different sensor unit orientations.

The proposed method performs substantially better than the existing methods

developed specifically for this problem and achieves nearly the same accuracy level

as the fixed orientation case for non-stationary activities. The transformation we

propose can be computed in a time much shorter than the duration of one segment

of the data, therefore, it can be efficiently implemented and used in near real time.
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Chapter 4

Novel Non-Iterative Orientation

Estimation Method for Wearable

Motion Sensor Units

In Chapter 3, we have employed an existing OEM based on GN [107]. In this

chapter, we propose a novel non-iterative OEM for wearable motion sensor units

acquiring accelerometer, gyroscope, and magnetometer measurements. We integrate

the proposed method into the OIT proposed in Chapter 3. The overview of the

method is shown in Figure 4.1.

Figure 4.1: An overview of the proposed OEM.
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4.1 Notation and Representation of Sensor Unit

Orientation

Data acquired from the accelerometer, gyroscope, and magnetometer at time

sample n are represented by 3× 1 vectors a[n],ω[n], and m[n], respectively. For a

time segment of recorded data that contains N time samples, the discrete-time

index n takes values between 1 and N , and is omitted for simplicity where needed.

The hat notation is used for vectors normalized by their magnitudes (unit vectors):

â , a/‖a‖ and m̂ , m/‖m‖.

According to the East-North-Up (ENU) convention,1 the x, y, z axes of the

Earth’s coordinate frame E point in the East, North, and upward directions,

respectively (Figure 4.2). The transformation between E and the sensor frame Sn

at the time sample n can be represented by a 3 × 3 rotation matrix R[n] or

equivalently by a 4× 1 quaternion q[n] [119].2 The columns of R[n] correspond to

the unit vectors x̂E , ŷE , ẑE of frame E with respect to Sn. Note that the transpose

of R[n] (which is the same as its inverse since R[n] is an orthonormal matrix),

represents the orientation of the sensor frame Sn with respect to the Earth frame E.

4.2 Proposed Methodology to Estimate Sensor

Unit Orientation

Given the current angular rate vector, ω[n] = (ωx[n], ωy[n], ωz[n])T , the dynamic

orientation qd[n] for n = 1, . . . , N is estimated based on the combined orientation

estimate q[n − 1] at the previous time sample [see Equation (4.6)] and the

1For the Earth frame, we have used the NED convention in Chapter 3, as in the original
implementation of GN-based OEM (see [107] and the Appendix), whereas we use the ENU
convention in this chapter. The estimated sensor unit orientations for the two conventions are
related to each other by a fixed coordinate transformation. Both conventions yield exactly the
same activity recognition results.

2The matrix R[n] in this chapter is the same as the matrix RSn

E in Chapter 3.

78



Figure 4.2: The Earth frame illustrated on an Earth model illustrating the unit
vectors of the Earth frame, the two reference vectors a and m, and the magnetic
dip angle ϕ.

augmented angular rate vector ω′[n] , (0, ωx[n], ωy[n], ωz[n])T as

qd[n] = q[n− 1] + ∆t

(
1

2
q[n− 1]⊗ω′[n]

)
(4.1)

where the symbol ⊗ denotes the quaternion product operator and ∆t is the time

step.

Assuming that the acceleration components resulting from the motion of the

sensor unit average out to zero, gravity stands as the dominant component of a in

the long term. Consequently, averaging the acquired acceleration vectors provides

an estimate of the direction of the gravity vector which points in the vertical

direction of the Earth. Based on this assumption that the average of the a vectors

points to the vertical, we can estimate the magnetic dip angle ϕ by averaging the

angle between m[n] and the horizontal plane (perpendicular to a[n]) over a short
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time segment:

ϕ̃ =
1

N

N∑
n=1

ϕ[n] where ϕ[n] =
π

2
− ∠

(
a[n],m[n]

)
(4.2)

Here, ∠(·, ·) ∈ [0, π) denotes the angle between two 3D vectors and N is the

number of time samples over a short time segment.

If ϕ̃ were zero, then we could have taken the upward (ẑE) and the North (ŷE)

axes in the same direction as the detected a and m vectors, respectively, as in

existing work. Since this is not the case in general, we select ẑE and ŷE orthogonally

to simultaneously meet the two objectives,

O1: ẑE is as close as possible to â and

O2: the angle between ŷE and m̂ is as close as possible to ϕ̃.

We geometrically determine ẑE and ŷE to satisfy the objectives O1 and O2 directly

without the use of any iterative OEMs such as GD or GN as follows:

To satisfy O1 only, the up and North directions (ẑE and ŷE) can be taken as the

â vector and the normalized component m̂⊥ of m perpendicular to a, respectively,

as in the TRIAD algorithm [109]:

m̂⊥ =
m⊥
‖m⊥‖

where m⊥ = m− (â ·m) â (4.3)

To satisfy O2 only, we may rotate the ẑE and ŷE axes on the a-m plane about

the axis m̂× â by the angle

α = sign(a ·m) (∠(m,m⊥)− |ϕ̃|) = sign(a ·m) (ϕ[n]− |ϕ̃|) (4.4)

where sign(·) denotes the signum function. This rotation is depicted in Figure 4.3

for the two cases.

Since the objectives O1 and O2 cannot be satisfied at the same time (unless

ϕ̃ = 0), we consider a solution which tries to meet both objectives simultaneously by

rotating the vectors â and m̂⊥ through an angle cα, where c ∈ [0, 1] is a parameter

80



(a) (b)

Figure 4.3: Selection of the ẑE and ŷE axes to estimate the static orientation for
the cases where (a) a ·m ≥ 0 and (b) a ·m < 0.

of the algorithm. Then,

ẑE = â cos(cα)− m̂⊥ sin(cα)

ŷE = â sin(cα) + m̂⊥ cos(cα)
(4.5)

We select the remaining axis that points to the East as x̂E = ŷE × ẑE and

represent the static orientation estimate by the quaternion qs[n] corresponding to

the rotational transformation Rs[n] = [x̂E ŷE ẑE].

We finally merge the dynamic and static estimates through weighted averaging

to obtain the combined orientation estimate:

q[n] = Kqd[n] + (1−K) qs[n] (4.6)

where K ∈ [0, 1] is the weight parameter of the algorithm. The flowchart of the

algorithm is shown in Figure 4.4.

We optimize the parameters c and K of the newly proposed OEM through a 2D

grid search to maximize classification accuracy. On a coarse grid where both

parameters vary between zero and one with 0.1 increments, the optimal values
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Figure 4.4: The flowchart of the proposed algorithm.

are (c∗,K∗) = (0.40, 0.98). On a fine grid where c ∈ {0.30, 0.32, . . . , 0.80} and

K ∈ {0.90, 0.91, . . . , 1.00}, the optimal parameter pair is (c∗∗,K∗∗) = (0.36, 0.98),

which is the parameter pair used in this study. When c and K are both set equal to

zero, the proposed OEM reduces to the TRIAD algorithm.

4.3 Implementation of Existing OEMs and Ini-

tialization

We implement the existing iterative OEMs as follows: For KF-based OEM,

we use the function ahrsfilter that is available in the Sensor Fusion and

Tracking Toolbox of MATLAB R2018b [122]. This method relies on an indirect

complementary KF model. The term complementary indicates that the KF balances

orientation estimates coming from (i) the accelerometer and magnetometer and

(ii) from the gyroscope [123]. The term indirect indicates that the KF operates on

the error vector rather than the state vector itself [123]. The error process is

modeled through the 12× 1 state vector

xε,k =


θε,k
ωε,k

aε,k
mε,k

 (4.7)
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where θε,k is the 3× 1 orientation error vector, ωε,k is the 3× 1 gyroscope offset

vector, aε,k is the 3× 1 acceleration error vector measured in the sensor frame, and

mε,k is the 3× 1 magnetic disturbance error vector measured in the sensor frame,

all measured at iteration k [123]. The 6× 1 observation vector is defined as

zε,k =

[
gd,k − gs,k

md,k −ms,k

]
(4.8)

where gd,k and gs,k are the dynamic and static estimates of the gravity vector at

iteration k, whereas md,k and ms,k are their counterparts for the magnetic field of

the Earth [123]. The state and observation equations are expressed as

xk = Akxk−1 + wk (4.9)

zk = Hkxk + vk (4.10)

where wk and vk are additive noise vectors, Ak = 0, and Hk is a matrix

calculated based on the dynamic orientation estimate [123]. In this way, the

static and dynamic estimates are adaptively combined, as in the remaining

orientation estimation techniques (other than TRIAD). The noise variances of

the accelerometer, gyroscope, and magnetometer sensors are provided by the

manufacturer as 0.0110 (m/s2)
2
, 9.6328× 10−5 (rad/s)2, and 0.01581 (µT/s)2,

respectively [88]. We optimized these input parameters through a 3D grid search

where we multiplied each by the factors 0.25, 0.5, 1, 2, or 4 and considered all

53 = 125 combinations of these parameters. The highest accuracy is obtained

where the values provided by the manufacturer are multiplied by 0.25, 0.25, and 4,

respectively.

In the GD-based OEM, we use a single, approximated GD iteration at each time

sample, as in its original implementation [111]. We implement the GN and LM

algorithms without imposing any limit to the number of iterations, and terminate

them when the change in the cost function is smaller than 10−3. For LM, we use the

algorithm provided on page 438 in [112]: We initialize the damping parameter with

0.5 for the first iteration and adaptively change it by a multiplicative factor of two

in the iterations that follow.
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We initialize the iterative and proposed OEMs as follows: Because of the

dependence of the dynamic orientation estimate qd[n] on the combined esti-

mate q[n− 1] at the previous time sample and since such a combined estimate is

not available at the first time sample, Equation (4.1) is not evaluated for n = 1.

Thus, the combined estimate in Equation (4.6) at n = 1 is calculated solely based

on the static estimate without using the dynamic estimate: q[1] = qs[1]. The

iterative methods (GD, GN, and LM) are executed at each time sample n to

estimate the static orientation qs[n]. Since there is no information about the

orientation at n = 1, they are initialized with the quaternion estimated by the

TRIAD algorithm at the first time sample. The KF is also initialized with an

algorithm that is equivalent to TRIAD. (Note that both TRIAD and the proposed

algorithm can already make an orientation estimate at the very first time sample.)

For n = 2, . . . , N , the combined orientation estimate q[n− 1] at the previous time

sample is used as the initial condition [107, 111]. We apply the OEMs to each time

segment (5-s duration) of the recorded data separately.

4.4 Comparative Evaluation of the Proposed

and Existing OEMs

In Chapter 3, we proposed a methodology for recognizing daily and sports activities

that requires accurate sensor unit orientation estimates to allow the units to be

worn on the body at any orientation. In that chapter, we employed the GN

algorithm [107] to estimate the orientation of the sensor units. Here, we demonstrate

that the activity recognition accuracy can be considerably improved by only

replacing the GN algorithm with the newly proposed OEM.

We use the publicly available dataset acquired by our research group, comprised

of 19 daily and sports activities [80, 81,86]. The dataset (referred as dataset A in

84



Section 2.3.1) is described in Section 3.4 and its attributes are provided in the

second column of Table 2.13.

Figure 4.5(a) shows the data acquired from the sensor unit on the right leg of a

subject during the activity of walking on a flat treadmill. The estimated elements of

the quaternions q[n] representing the sensor unit orientations using the existing and

proposed algorithms are plotted as a function of time in part (b) of the same figure.

We have implemented eight approaches: The REF method is the standard activity

recognition scheme with sensor units fixed to the body at proper orientations and

does not transform the acquired data in any way (see Section 3.4.1.1). In ROT, we

simulate arbitrarily oriented sensor units by randomly rotating the acquired data

vectors through a rotational transformation, independently generated for each time

segment of each sensor unit, as explained in the random rotation approach in

Section 3.4.1.1. The OIT approach allows the units to be fixed to the body at any

orientation by representing the acquired data in frame E together with the use

of differential quaternions, as in the proposed approach that is described in

Section 3.4.1.1. The OIT requires accurate estimation of sensor unit orientation. In

this chapter, we estimate the sensor unit orientation by using five existing OEMs

(TRIAD [109], KF [122], GD [111], GN (Appendix A and [107]), LM [112]) and the

non-iterative method that we propose here. The six variations of the OIT using

these OEMs are respectively denoted by OIT-TRIAD, OIT-KF, OIT-GD, OIT-GN,

OIT-LM, and OIT-proposed.

Next, we follow the activity recognition scheme that is explained in Section 3.4.1,

which involves the basic stages of feature extraction, feature reduction, feature

normalization, and classification of the (transformed) data. For the OIT approach

described in Section 3.4.1.1, 13 axes are used instead of nine axes of the raw sensor

data (see Section 3.4.1.2), and thus, there exist 1,690 features instead of 1,170. We

reduce the total number of features from 1,170 to 30 for REF and ROT and from

1,690 to 30 for OIT through the use of PCA, as explained in Section 2.3.2.1.

3The remaining datasets are not used in this chapter since they do not include data from a
magnetometer.
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Figure 4.5: (a) Original sensor data and (b) the estimated elements of the orientation
quaternions plotted as a function of time.
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In Section 3.4.2, we have considered seven classifiers among which SVM usually

showed outstanding performance, followed by LDC, ANN, and BDM. In this part of

the thesis, we limit the number of classifiers to these best-performing four, select

their parameters as in Section 3.4.2, and evaluate their accuracies through L1O

cross validation that is explained in Section 2.3.2.3.

Activity recognition accuracies for the eight approaches that use the four selected

classifiers are provided in Figure 4.6. As expected, the highest accuracy is obtained

with REF that uses properly oriented sensor units and the lowest with ROT where

the units are randomly oriented without the use of any OIT. All six OEMs, when

integrated into the OIT, improve the accuracy compared to ROT. However, the

proposed OEM is superior to the other five, achieving an average accuracy 8.0%,

5.0%, 4.5%, 4.3%, and 4.2% higher than OIT-TRIAD, OIT-KF, OIT-GD, OIT-GN,

and OIT-LM, respectively (Figure 4.6(b)). Compared to REF, the average accuracy

of OIT-proposed is 2.6% lower, which is naturally expected. The thin horizontal

sticks in both parts of the figure indicate plus/minus one standard deviation over

the cross-validation iterations and the classifiers, respectively.

Referring to Figure 4.6(a), SVM usually performs the best among the four

classifiers, demonstrating its robustness to variations in the data. For all six

variations of the OIT, it achieves an accuracy noticeably higher than the remaining

classifiers. LDC is the second best classifier on the average. The BDM classifier when

used with OIT-KF, OIT-GD, OIT-GN, OIT-LM, and OIT-proposed unexpectedly

obtains an accuracy higher than REF, despite that the sensor units are allowed to

be arbitrarily oriented on the body.

4.5 Run-Time Analysis

We have determined the run times of the OEMs by running them stand alone

(that is, not as part of an OIT but externally). According to the run times

provided in Table 4.1, the proposed OEM is computationally more efficient

than KF, GN, and LM by factors of 4.6, 2.9, and 5.9 and less efficient than
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Figure 4.6: Activity recognition accuracy for the data transformation techniques
and classifiers. (a) Individual results of the four selected classifiers and (b) their
average accuracy.
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TRIAD and GD by factors of 1.02 and 1.5, respectively. Since the computationally

efficient approaches (GD and TRIAD) are not very accurate and the slightly more

accurate algorithms (GN and LM) have much longer run times, the newly proposed

method achieves a satisfactory compromise between accuracy and run time.

For comparison, it is stated in [115] that linear and extended Kalman filter

based approaches take 3.1 and 5.5 times more processing, respectively, compared

to the approximated GD as in [111]. The average classification times of the

four classifiers are 0.38, 0.04, 0.01, and 1.49 ms per time segment, which can be

neglected compared to the run times of the OEMs.

Table 4.1: Average run times of the OEMs compared in this study.

OEM run time per 5-s time segment (ms)

TRIAD 19.45

KF 91.13

GD 13.36

GN 57.66

LM 115.93

proposed 19.82

4.6 Concluding Remarks

We have demonstrated that among the five state-of-the-art OEMs, the simpler and

computationally efficient TRIAD and GD are not very accurate (within the context

of activity recognition) whereas GN and LM are computationally expensive,

despite being slightly more accurate. The KF method is neither very accurate nor

computationally efficient in the proposed activity recognition scheme. We have

developed a non-iterative OEM based on physical and geometric properties of two

reference vectors that is simple to implement and efficient for real-time execution.

We have evaluated the effectiveness of our method in a real-world scenario of daily

and sports activity recognition where the motion sensor units can be worn on the

body at arbitrary orientations, as proposed in Chapter 3. By only replacing the

OEM in this scheme with the newly proposed one, accuracy is improved and the

run time is considerably reduced.
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Chapter 5

Invariance to Sensor Unit

Position

In this chapter, we develop techniques that provide flexibility in the positioning of

wearable motion sensor units. For this purpose, we achieve position invariance

within the same body part, allow the interchangeability of the units, and perform

classification based on a single sensor unit. We assume that the sensor unit

orientations are fixed in this chapter and consider simultaneous position and

orientation invariance in Chapter 6.

Throughout this chapter, we employ the publicly available dataset acquired by

our research group, comprised of 19 daily and sports activities [80,81,86]. The

dataset (referred as dataset A in Section 2.3.1) is described in Section 3.4 and its

attributes are provided in the second column of Table 2.11. The sensor unit

configuration is shown in Figure 3.5.

To assess the performance of existing and proposed methods, we apply the

activity recognition scheme that is described in Section 3.4.1.2: Time-domain data

are divided into non-overlapping time segments of 5-s duration. Then, existing and

proposed transformation techniques are applied to the data for robustness to sensor

1The remaining datasets are not used in this chapter since they do not include data from a
magnetometer which are required to implement some of the techniques proposed here.
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unit positioning. Statistical features are extracted for each segment of each axis of

each sensor type, as described in Section 2.3.2.1. The features are normalized and

reduced through PCA (see Section 2.3.2.1). Seven state-of-the-art classifiers that are

explained in Section 3.4.1.2 are considered and their accuracies are assessed using

P -fold and L1O cross-validation techniques, as described in Section 2.3.2.3.

5.1 Position Invariance within the Same Body

Part

In this section, we focus on techniques that achieve invariance to sensor unit

positioning within the same body part as a first step to achieve position invariance.

Measurements of motion sensors are related directly to the linear and angular

motion of the rigid body at which they are attached. We assume that the body part

on which the sensor unit is placed, such as the lower arm, is considered to be rigid

so that the relative position of any point with respect to another point remains

constant in time. In other words, the distance between any two arbitrary points is

preserved. The motion of a rigid body at any time instant can be described by a

translation and a rotation in 3D space [124]. The linear velocity of all points within

the rigid body is the same and can be represented by a 3× 1 column vector υ. The

angular velocity of all the points on the rigid body is also the same and can be

represented by a 3× 1 angular velocity (rate) vector ω. The vector ω points along

the axis of rotation and its magnitude represents the rate of rotation. The direction

of rotation can be found using the right-hand rule. A gyroscope directly measures

the angular rate vector ω associated with the rigid body.

A magnetometer measures the vector sum m of the Earth’s magnetic field and

external magnetic sources, if any. The Earth’s magnetic field is approximately

constant within the human body and does not change much with the position of the

sensor unit. Hence, the magnetometer data depend only on the orientation of the

body part and not the sensor unit position on it.
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According to the Coriolis theorem, an accelerometer measures the vector sum a

of multiple acceleration components [124]:

a = υ̇ + g︸ ︷︷ ︸
alinear

+ω× (ω× r)︸ ︷︷ ︸
acentripetal

+ ω̇× r︸ ︷︷ ︸
aEuler

+ 2ω× ṙ︸ ︷︷ ︸
aCoriolis

(5.1)

where υ̇ is translational acceleration due to linear motion, g is the gravitational

acceleration, ω̇ is the angular acceleration, and r is the vector pointing from an

arbitrary point (the origin) on the axis of rotation to the sensor unit as illustrated

in Figure 5.1. The dot accent (˙) in Equation 5.1) represents the first-order time

derivative.

When the sensor unit is worn at a different position on the same body part,

the vector r becomes r′ = r + ∆r, where ∆r is the sensor unit displacement

(Figure 5.1). The acceleration a′ of the displaced sensor unit can be expressed in

terms of the acceleration a at the original sensor unit position and ∆r as follows:

a′ = υ̇ + g +ω× (ω× r′) + ω̇× r′ + 2ω× ṙ′

= υ̇ + g +ω× [ω× (r + ∆r)] + ω̇× (r + ∆r) + 2ω×
(
ṙ + ∆̇r

)
(5.2)

= a +ω× (ω×∆r)︸ ︷︷ ︸
∆acentripetal

+ ω̇×∆r︸ ︷︷ ︸
∆aEuler

+ 2ω× ∆̇r︸ ︷︷ ︸
∆aCoriolis

We assume that once the subject places the sensor unit on his/her body, its position

with respect to the body remains fixed over time in the short term. We model

this by keeping the sensor unit displacement ∆r constant during each time

segment (∆̇r = 0). Thus, the Coriolis acceleration aCoriolis is not affected by the

change in the sensor unit position on the same body part. This is also true for the

component alinear since both υ̇ and g are the same everywhere on the body part,

provided that ∆̇r = 0. Hence, positioning the sensor unit differently on the same

body part introduces the two additional components: ∆acentripetal and ∆aEuler.
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Figure 5.1: Sensor unit positioning within the same rigid body part. The displacement
between two arbitrary positions and the centripetal and Euler components of the
acquired acceleration vector are shown.
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5.1.1 Impact of Sensor Unit Positioning within the Same

Body Part on the Activity Recognition Accuracy

To observe the effects of sensor unit positioning on the accuracy, we first simulate

the scenario where the sensor units are randomly positioned on the body parts at

which they are originally placed. We generate a constant random displacement (RD)

vector ∆r independently for each sensor unit for each time segment of the data.

Then, we calculate the acceleration vector a′ for the displaced sensor unit based on

the original measurement a by using Equation (5.2) (with the last term being zero).

We consider that each sensor unit is positioned on a disk with a given radius dmax

centered at its ideal position and the displacement ∆r is restricted to reside on the

plane where the unit makes contact with the body part it is attached to. All of the

five sensor units make contact with the x-y plane (see Figure 3.5). We consider

three different simulation models where the direction of ∆r is selected circularly

symmetrically in all of them but its magnitude is determined differently:

� RD-conc (concentrated): The magnitude of ∆r (which is d) is uniformly

distributed between 0 and dmax so that d ∼ U [0, dmax]. Its angular direction ϑ

also has uniform distribution: ϑ ∼ U [0, 2π). Then, the vector ∆r can be

calculated as ∆r = [d sinϑ, d cosϑ, 0]T .

� RD-trun (truncated Gaussian): The distribution of the points on the

x-y plane is selected as a bi-variate Gaussian random vector. For this purpose,

we generate two independent and identically distributed Gaussian random

variables ∆rx, ∆ry with zero mean and standard deviation 0.4 dmax so that

∆rx, ∆ry ∼ N (0, 0.16 d2
max). Then, we generate the displacement vector

as ∆r = [∆rx, ∆ry, 0]T . To ensure that ∆r is on the disk centered at the

origin with radius dmax, we repeat this process as many times as necessary

until ∆r resides inside the disk.

� RD-uni (uniformly distributed per unit area): The displacement

points ∆r are generated to have uniform distribution per unit area

on the x-y plane. Two independent and identically distributed random
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variables ∆rx, ∆ry are generated uniformly in the interval [−dmax, dmax] and

this process is repeated as many times as needed until ∆r resides inside the

disk centered at the origin with radius dmax.

For the RD-conc and RD-trun models, the displacement points (∆r) are

concentrated around the origin, corresponding to the case where the units are more

likely to be placed close to their correct/ideal positions. On the other hand, for the

RD-uni model, the ∆r points are uniformly distributed on the disk with equal

density per unit area. Note that the displacement distance is bounded by dmax in all

of the three models.

To analyze the effect of randomly displacing the sensor unit positions on the

activity recognition accuracy, we apply one of the transformations RD-conc,

RD-trun, and RD-uni to the test data in each cross-validation iteration, while

keeping the original training data that are associated with the correctly placed

sensor units. We execute the activity recognition scheme for different dmax values

ranging from 0.5 cm to 100 cm. We provide the accuracy values in Figures 5.2–5.4

for the three RD simulation models. The classification accuracy is presented for

each classifier separately at the top and by averaging over the classifiers at the

bottom in the figures. The standard deviation sticks at the top and bottom parts of

the figures indicate plus/minus one standard deviation about the accuracies over

the cross-validation iterations and over the classifiers, respectively. Parts (a) and (b)

of the figures correspond to the P -fold and L1O cross-validation techniques,

respectively.

Referring to Figures 5.2–5.4, we observe that the activity recognition accuracy

naturally decreases when the sensor units are fixed to different positions within the

body part they are supposed to be put on. Displacements up to a few centimeters

can be tolerated by the standard activity recognition scheme, whereas displacements

by more than 10 cm significantly degrade the accuracy. The approaches RD-trun

and RD-conc have similar trends with each other, whereas RD-uni exhibits a

greater degradation in the accuracy when the units are displaced. This is expected

because the distribution of the displacement points ∆r is concentrated around the

origin for RD-trun and RD-conc unlike RD-uni where the distribution is equal
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throughout the disk. The drop in the accuracy is expected because training data are

associated with correctly positioned sensor units while the test data are displaced

and the classifiers are not trained for this displacement. In particular, the distance

of 100 cm has a higher accuracy for L1O than for P -fold because the training data

in L1O have wider variations among the partitions (as each partition contains data

acquired from a different subject) and the classifiers are more prepared for possible

variations in the test data.

5.1.2 Proposed Methods for Robustness to Displacement

within the Same Body Part

The gyroscope (ω) and magnetometer (m) sequences are invariant to the positioning

of the sensor unit within the same body part (which is considered to be rigid), and

thus, are used for classification without making any modifications. On the other

hand, the acceleration sequences (a) depend on the position of the unit and the

classification accuracy is degraded when they are directly used in the classification

process, as shown in Section 5.1.1. Hence, we propose to extract sequences that are

functions of time and robust to the positioning of the sensor unit within the same

body part and to use these sequences in in the classification process instead of the

raw acceleration data.

To extract position-invariant sequences, we analyze the two components caused

by displacing the sensor unit according to Equation (5.2):

∆aEuler = ω̇×∆r (5.3)

∆acentripetal = ω× (ω×∆r) (5.4)

The components ∆aEuler and ∆acentripetal are perpendicular to ω̇ and ω,

respectively, for a given displacement vector ∆r. Their magnitudes are calculated
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Figure 5.2: Activity recognition accuracy for fixed (reference) and randomly
displaced units with the RD-conc approach for (a) P -fold and (b) L1O cross
validation. The lengths of the bars indicate the accuracy values. The thin sticks
represent plus/minus one standard deviation over the cross-validation iterations and
over the classifiers at the top and bottom parts of the figure, respectively.
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Figure 5.3: Activity recognition accuracy for fixed (reference) and randomly
displaced units with the RD-trun approach for (a) P -fold and (b) L1O cross
validation.

98



P-fold

99.3

98.8

99.0

93.9

98.6

98.7

98.8

95.4

91.9

88.5

88.7

96.6

98.3

92.6

93.4

92.0

88.0

87.4

93.8

96.1

91.3

91.9

85.5

77.3

84.4

94.6

96.6

92.9

90.3

83.8

76.2

82.4

93.9

97.0

90.9

87.7

83.7

77.7

81.2

90.0

94.0

89.0

83.1

76.5

61.0

75.6

87.4

91.7

88.5

74.2

65.1

46.8

67.8

80.1

82.4

81.6

60.1

50.8

34.4

54.5

66.4

65.0

74.6

57.6

48.7

23.0

51.7

61.1

56.5

63.0

10.7

6.9

5.2

6.7

8.3

8.2

5.2

SVM

ANN

BDM

LDC

 k-NN

RF

OMP

0 20 40 60 80 100

L1O

90.8

90.9

77.1

89.8

87.4

88.5

85.9

90.3

87.7

72.5

88.8

86.9

88.1

82.4

90.3

87.7

74.4

88.8

87.0

87.7

82.9

87.8

83.5

67.3

86.2

84.5

86.8

79.0

76.0

72.8

54.0

74.3

74.6

73.2

75.6

68.6

64.4

45.1

66.4

66.7

67.5

63.7

69.0

63.7

40.7

66.7

68.4

66.8

66.9

66.9

63.6

40.5

64.7

64.5

66.0

59.5

69.5

64.9

40.7

65.7

66.7

66.5

60.6

52.9

46.3

24.4

51.9

54.0

53.0

67.1

14.2

13.0

6.2

14.4

13.4

13.3

7.5

SVM

ANN

BDM

LDC

 k-NN

RF

OMP

0 20 40 60 80 100

98.2   fixed units

93.1   0.5 cm

91.7   1 cm

89.0   2 cm

87.8   5 cm

86.2   10 cm

80.5   15 cm

71.1   20 cm

58.0   25 cm

51.7   50 cm

7.3   100 cm

av
er

ag
e 

ov
er

 c
la

ss
ifi

er
s

0 20 40 60 80 100

accuracy (%)

87.2   fixed units

85.2   0.5 cm

85.5   1 cm

82.2   2 cm

71.5   5 cm

63.2   10 cm

63.2   15 cm

60.8   20 cm

62.1   25 cm

49.9   50 cm

11.7   100 cm

av
er

ag
e 

ov
er

 c
la

ss
ifi

er
s

0 20 40 60 80 100

accuracy (%)

(a) (b)

Figure 5.4: Activity recognition accuracy for fixed (reference) and randomly
displaced units with the RD-uni approach for (a) P -fold and (b) L1O cross
validation.
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as follows:

‖∆aEuler‖ = ‖ω̇‖ ‖∆r‖ sin (∠(ω̇,∆r)) (5.5)

‖∆acentripetal‖ = ‖ω‖2 ‖∆r‖ sin (∠(ω,∆r)) (5.6)

To observe which of the two components is dominant, we define the ratio

ρ ,
‖∆aEuler‖
‖∆acentripetal‖

=
‖ω̇‖
‖ω‖2

sin (∠(ω̇,∆r))

sin (∠(ω,∆r))
(5.7)

By defining the following variables:

σ ,
‖ω̇‖
‖ω‖2 (5.8)

β , ∠(ω̇,∆r) (5.9)

7 , ∠(ω,∆r) (5.10)

λ ,
sin β

sin 7
(5.11)

the ratio in Equation (5.7) may be expressed as ρ = σλ. Then, we may neglect

∆acentripetal when ρ� 1. In this case, the projection

p , a · ω̇
‖ω̇‖

(5.12)

of acceleration onto the direction of ω̇ is independent of the sensor unit

displacement ∆r because the only component ∆aEuler (we consider) that originates

from the random displacement is orthogonal to ω̇. Hence, we calculate the

component p of a along the direction of ω̇ which is approximately invariant to

sensor unit position within the same body part.

The orientation of the sensor unit with respect to the Earth frame can also be

included as position-invariant feature. For this purpose, the orientation of the sensor

unit is estimated with respect to the fixed Earth frame based on the accelerometer,

gyroscope, and magnetometer data by using the OEM proposed in Chapter 4.

According to the ENU convention, the x, y, z axes of the Earth frame point to

the East, North, and up directions, respectively. The sensor unit orientation is
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represented by a 4× 1 quaternion vector q for each time sample, as a feature that

is invariant to the position of the unit within the same body part.

We propose two approaches where different combinations of the position-invariant

sequences ω, m, p, and q are used for classification: ωmp and ωmpq. To assess

the position invariance of these two approaches, we randomly displace the sensor

unit positions as follows: For the training data, we only apply ωmp (or ωmpq),

whereas for the test data, we first randomly displace the unit positions and then

apply ωmp (or ωmpq). In this way, we simulate the case where we implement the

ωmp (or ωmpq) to achieve robustness to sensor unit positioning where the units

are placed at different positions within the pre-determined body parts during the

activity recognition scheme.

We statistically analyze the quantities σ, λ, and ρ in our dataset as follows:

� Among all 5-s time segments, the minimum ratio of time samples where σ > 1

is 68.8%. The histogram for the percentage of time samples in a time segment

is shown in Figure 5.5(a).

� The average value of σ over all the 5,700,000 time samples in the dataset is

σ̄ = 897.9. We have σ > 1 for 97.3% of these time samples. The histogram for

σ is shown in Figure 5.5(b).

� The ratio λ is plotted as a function of the angles β and 7 in Figure 5.5(c). The

angles depend on the direction of the displacement ∆r. The ratio λ increases

as 7 approaches to 0 or π rad and decreases as β approaches to 0 or π rad.

� When the direction of ∆r is selected uniformly, the distribution of ρ can be

empirically calculated. The histogram for ρ is shown in Figure 5.5(d). We

have ρ > 1 for 97.8% of the time samples in the dataset.

These statistics indicate that ρ is much greater than one; that is,

‖∆aEuler‖ � ‖∆acentripetal‖ for almost all of the time samples in the dataset. Hence,

we can neglect the component ∆acentripetal and rely on this fact to use p as a

position-invariant feature within the same body part.
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(a) (b)

(c) (d)

Figure 5.5: Statistics of the quantities σ, λ, and ρ that are related to the centripetal
and Euler components of the acceleration. (a) Histogram of the percentage of
time samples in a segment where σ > 1, (b) histogram of σ over time samples,
(c) surface plot for ρ on the β-7 plane, and (d) histogram of ρ over time samples.
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The x, y, z components of the original acceleration a, angular rate ω, and

angular acceleration ω̇ vectors are plotted as functions of time in Figure 5.6(a) for

the sensor unit on the right leg of a subject during activity A10 (see Section 2.3.1).

The vectors ∆acentripetal and ∆aEuler caused by the sensor displacement as well as

the acceleration a′ for the displaced sensor unit are plotted as functions of time for

dmax = 2 cm and dmax = 15 cm in Figure 5.6(b) and (c), respectively. We observe

that ∆aEuler has a magnitude greater than ∆acentripetal most of the time and thus

has a stronger effect on the acceleration a′ measured by the displaced sensor unit.

The acceleration component p and the orientation quaternion q are plotted

as a function of time in parts (a) and (b) of Figure 5.7, respectively, for the

same recording as in Figure 5.6. The periodicity of the motion is apparent in

Figure 5.7(b).

The activity recognition accuracies for the ωmp approach along with the three

random displacement types RD-conc, RD-trun, and RD-uni are provided in

Figures 5.8–5.10, respectively. We observe in Figure 5.8 that when the units are fixed,

the ωmp approach yields almost the same accuracy as the reference case for P -fold

cross validation and a similar accuracy with the reference for L1O (see Figure 5.2).

The accuracy of the ωmp approach is not affected by RD-disk up to 50-cm

displacement unlike the reference case (compare Figures 5.2–5.4 with 5.8–5.10),

whereas a maximum sensor unit displacement of 100 cm causes a noticeable

reduction in accuracy, especially for RD-uni. Nevertheless, the position-invariant

feature p performs much better than the raw acceleration a when the units are

displaced.

The activity recognition accuracies for the ωmpq approach along with the

three random displacement types RD-conc, RD-trun, and RD-uni are provided

in Figures 5.11–5.13, respectively. Similar to ωmp, the ωmpq approach is

robust to the displacement of the sensor units within the pre-determined body

parts. The accuracy of ωmpq is higher than ωmp on the average (compare

Figures 5.11–5.13 with 5.8–5.10).
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Figure 5.6: The original and displaced acceleration data. (a) The acceleration,
angular rate, and angular acceleration sequences acquired from the sensor unit at
the original position, (b)–(c) the centripetal, Euler, and displaced acceleration
sequences calculated for the sensor unit that is displaced by 2 and 15 cm.
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Figure 5.7: The position-invariant quantities extracted from the sensor data:
(a) The component of acceleration along the direction of ω̇ and (b) the quaternion
that represents the sensor unit orientation with respect to the Earth frame.

5.1.3 Comparison of the Proposed and Existing Methods

for Position Invariance within the Same Body Part

A straightforward approach to achieve position invariance within the same

body part is to omit the acceleration data and to rely on the gyroscope and

magnetometer data. This approach is called ωm for which the activity recognition

accuracies are shown in Figure 5.14. Compared to the proposed approach ωmpq,

the ωm approach preforms slightly worse for small displacement distances and

slightly better for large displacement distances.

To our knowledge, the only existing approach that is applicable to our framework

except ωm is to low-pass filter the acceleration data as proposed in [37,38]. The

acceleration sequences contain gravitational and motion-originated components, the

former of which can be separated from the latter in the frequency domain for most

human activities and is invariant to the sensor unit position within the same body

part. The acceleration data a are low-pass filtered to make the gravitational
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Figure 5.8: Activity recognition accuracy for the ωmp approach for fixed and
randomly displaced units with the RD-conc approach for (a) P -fold and (b) L1O
cross validation.
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Figure 5.9: Activity recognition accuracy for the ωmp approach for fixed and
randomly displaced units with the RD-trun approach for (a) P -fold and (b) L1O
cross validation.
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Figure 5.10: Activity recognition accuracy for the ωmp approach for fixed and
randomly displaced units with the RD-uni approach for (a) P -fold and (b) L1O
cross validation.
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Figure 5.11: Activity recognition accuracy for the ωmpq approach for fixed and
randomly displaced units with the RD-conc approach for (a) P -fold and (b) L1O
cross validation.
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Figure 5.12: Activity recognition accuracy for the ωmpq approach for fixed and
randomly displaced units with the RD-trun approach for (a) P -fold and (b) L1O
cross validation.
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Figure 5.13: Activity recognition accuracy for the ωmpq approach for fixed and
randomly displaced units with the RD-uni approach for (a) P -fold and (b) L1O
cross validation.
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Figure 5.14: Activity recognition accuracy for the ωm approach for (a) P -fold and
(b) L1O cross validation.

component more dominant over the other; thus, to improve the robustness to the

sensor unit positioning. For this purpose, a zero-phase Chebyshev type-II infinite

impulse response low-pass filter with a cut-off frequency of 10 Hz is applied to the

acceleration sequences, as proposed in [38]. In addition to the filtered acceleration

data (denoted as ã), the gyroscope and magnetometer sequences, ω and m, are

also used in the classification process because they are already invariant to the

positioning of the sensor unit within the same body part.

Figures 5.15–5.17 show the activity recognition rates for the aforementioned

existing approach ωmã. It obtains a higher accuracy than the proposed approaches

ωmp and ωmpq for displacement distances up to a few centimeters; however, its

accuracy significantly decreases when the displacement exceeds several centimeters,

which shows that it is not as robust as the newly proposed methods to the

positioning of the sensor units. In particular, for the maximum sensor displacement

of 100 cm, the existing approach ωmã performs poorly, whereas the proposed

approaches ωmp and ωmpq perform fairly well.
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Figure 5.15: Activity recognition accuracy for the ωmã approach for fixed and
randomly displaced units with the RD-conc approach for (a) P -fold and (b) L1O
cross validation.
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Figure 5.16: Activity recognition accuracy for the ωmã approach for fixed and
randomly displaced units with the RD-trun approach for (a) P -fold and (b) L1O
cross validation.
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Figure 5.17: Activity recognition accuracy for the ωmã approach for fixed and
randomly displaced units with the RD-uni approach for (a) P -fold and (b) L1O
cross validation.
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5.2 Interchangeable Sensor Units

Many wearable systems require subjects to place more than one sensor unit at

pre-determined positions on their body. This type of sensor configuration is

obtrusive not only because they need to attach multiple sensor units but also

because they need to identify the units to place each of them at its correct position

on the body. The first level of flexibility provided for this purpose is to allow

the units to be interchanged with each other and the second is to perform the

classification based on a single unit. In this section, we consider the former, leaving

the latter to Section 5.3, and propose a transformation technique called unit-based

singular value decomposition (U-SVD) for interchangeable units. When U-SVD is

applied to the sensor data in the pre-processing stage, the transformed data are no

longer affected from the ordering of the sensor units.

5.2.1 Impact of Interchanged Sensor Units on the Activity

Recognition Accuracy

When the sensor units are interchanged, the axes of the time-domain signal

corresponding to different units are shuffled. This translates into a different ordering

of the features in the feature vectors. When a test feature vector is obtained from

sensor units that are ordered differently than the training data, the classification

accuracy is expected to drop significantly because the indices of the features in the

feature vectors will not match. To observe the impact of randomly interchanged

sensor units on the activity recognition accuracy, we randomly interchange the

time-domain sequences associated with the five sensor units with each other,

independently for each 5-s time segment in the test data. We name this approach as

randomly interchanged units (RIU) and provide its activity recognition accuracy in

Figure 5.18. We observe that the accuracy of RIU abruptly decreases compared to

the reference approach where the units are correctly ordered.

116



P-fold
99.3

98.8

99.0

93.9

98.6

98.7

98.8

44.8

33.2

17.4

38.0

55.0

43.5

53.7

97.6

93.9

97.1

83.0

95.4

95.7

95.6

92.2

80.9

89.3

70.1

87.4

88.6

85.6

96.0

83.6

93.2

67.1

89.8

91.0

91.3

SVM

ANN

BDM

LDC

 k-NN

RF

OMP

0 20 40 60 80 100

L1O
90.8

90.9

77.1

89.8

87.4

88.5

85.9

39.7

31.8

16.0

35.8

40.3

39.7

37.3

77.1

71.9

71.2

74.9

71.6

72.0

67.2

67.5

54.9

65.2

61.5

59.9

58.7

51.6

71.2

55.9

68.1

59.3

67.1

58.9

60.4

SVM

ANN

BDM

LDC

 k-NN

RF

OMP

0 20 40 60 80 100

98.2   fixed units

40.8   RIU

94.1   U-SVD

av
er

ag
e 

ov
er

 c
la

ss
ifi

er
s

0 20 40 60 80 100

accuracy (%)

87.2   fixed units

34.4   RIU

72.3   U-SVD

av
er

ag
e 

ov
er

 c
la

ss
ifi

er
s

0 20 40 60 80 100

accuracy (%)

(a) (b)

Figure 5.18: Activity recognition accuracy for randomly interchanged sensor units
(RIU) and the proposed U-SVD approach employed on its own and together with
the ωmp or ωmpq approaches for (a) P -fold and (b) L1O cross validation.
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5.2.2 Proposed Unit-Based SVD Method for Interchange-

able Sensor Units

The proposed U-SVD transformation technique takes a linear combination of the

time-domain sequences acquired by the different sensor units, independently for

each 5-s time segment, so that interchanging the units during one time segment

does not affect the transformed data at all. The U-SVD method comprises the

following steps:

1. We normalize the time-domain sequences such that each sensor type

(accelerometer, gyroscope, and magnetometer) has unit variance. The

normalized sequences are respectively denoted by the column vectors â[n],

ω̂[n], and m̂[n] of size 3× 1 each, where n = 1, . . . , N is the time sample

index and N is the number of time samples in a time segment, which is 125

for our dataset. Each of the three vectors have x, y, z components, for

instance, â[n] = [âx[n], ây[n], âz[n]]T .

2. We form a data matrix V associated with each time segment as follows:

With Nu being the number of units and i = 1, . . . , Nu being the sensor unit

index, we stack the measurements of each unit to form a row vector vi of

length Nv = 3× 3×N as

vi =
[
âT [1], . . . , âT [N ], ω̂

T [1], . . . , ω̂T [N ], m̂T [1], . . . , m̂T [N ]
]

(5.13)

and vertically concatenate them to form a matrix of size Nu ×Nv:

V =


v1

v2

...

vNu

 (5.14)

If the sensor units are interchanged, then the rows of V are re-ordered.

3. We decompose the matrix V into three matrices through the compact form of

the SVD transformation [76] as V = UΣWT (see Section 2.2). Then, we
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calculate the U-SVD transformation as

TU-SVD : V→ ΣWT (5.15)

The transformed data matrix VU-SVD , ΣWT has the same size (Nu ×Nv)

as V.

4. We separate the data contained in the transformed matrix VU-SVD by

reversing the operations performed in Step 2 so that the transformed data

have the same format as the raw data and can be input to the standard

activity recognition scheme without making any modifications.

Since VU-SVD = UTV, each row of VU-SVD is a linear combination of the rows vi

of V, each of which is associated with a unique sensor unit. The matrix U that

contains the linear combination coefficients is calculated by SVD in Step 3 such that

the rows of the transformed data matrix VU-SVD are the projections of vi onto the

principal axes in the Nu-dimensional space. When the rows vi of V are re-ordered

as a result of interchanging the sensor units, the projections onto the principal axes

remain the same, so does the matrix VU-SVD. Therefore, the U-SVD transformation

is invariant to the interchanging of the sensor units. U-SVD is analogous to the

method proposed in Section 2.2 where the x, y, z axes of the tri-axial sensors are

projected on their principal axes to achieve robustness to sensor unit orientations.

We apply the U-SVD transformation independently to each time segment. In this

way, we allow the sensor units to be interchanged differently in each time segment.

We need to apply U-SVD to both the training and test data to match them

with each other for accurate classification. In this way, we allow the units to be

interchanged differently in each time segment of both the training and the test data.

The activity recognition accuracy for the U-SVD approach is shown in Figure 5.18.

U-SVD obtains a much higher accuracy than RIU when the units are randomly

interchanged. Compared with the reference approach, allowing the units to

be interchanged decreases the accuracy as expected; however, the reduction is

relatively small: 4.1% for P -fold and 14.9% for L1O cross validation.
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5.2.3 Interchangeable Sensor Units with Position Invari-

ance within the Same Body Part

To allow interchangeable sensor units and at the same time achieve position

invariance within the same body part, we apply one of the transformations ωmp

and ωmpq followed by U-SVD. In applying U-SVD, we no longer have the original

sensor sequences as they are transformed beforehand using the ωmp (or ωmpq)

approach. The new sequences are ω, m, p (and possibly q) with dimensions

three, three, one (and four) and we treat them in the same way as we treated the

data from three different sensor types when applying the U-SVD transformation.

The accuracy values for the approaches where the U-SVD transformation is

applied together with ωmp or ωmpq are shown in Figure 5.18. We observe that

both combinations achieve accuracies close to the stand-alone use of U-SVD for

P -fold cross validation, whereas there is a noticeable drop in the accuracy for L1O.

In particular, compared to U-SVD, the approach “ωmpq + U-SVD” causes an

accuracy reduction of only 6.7% and 9.3% for P -fold and L1O, respectively.

Therefore, we may achieve position invariance within the same body part by also

allowing interchangeable sensor units with a reasonable drop in the classification

accuracy.

5.3 Classification Based on a Single Sensor Unit

with or without Position Invariance within

the Same Body Part

In this section, we consider the scenario named single-unit classification (SUC)

where the training data are collected from multiple sensor units attached at

different positions on different body parts and activity recognition is performed

based on a single unit that is placed at one of these positions. The system is trained

for all the sensor unit positions that are available in the dataset and does not use
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the information about at which of them the unit is placed in the test phase. This

flexibility makes the system less obtrusive since the user may attach the unit at any

preferred position and does not need to provide the position information by any

means.

We consider three different approaches for this purpose:

� SUC-I: In this approach, we train the classifiers in a generalized way as

follows (see Section 1.1.1.2): Let f
(j)
i be a column vector that contains the

features extracted from unit i in the jth time segment, where i ∈ {1, . . . , Nu}
and j ∈ {1, . . . , Ns} with Ns being the total number of segments in the

training set. In the reference approach, we stack the features associated with

all the sensor units as

f (j) =

[(
f

(j)
1

)T
,
(
f

(j)
2

)T
, . . . ,

(
f

(j)
Nu

)T]T
(5.16)

and form the training set as Treference =
{
f (1), f (2), . . . , f (Ns)

}
which contains

Ns training vectors. However, in generalized training, we use the features

extracted from each unit as a separate training instance and form the training

set as

TSUC-I =
{

f
(1)
1 , f

(1)
2 , . . . , f

(1)
Nu
, f

(2)
1 , f

(2)
2 , . . . , f

(2)
Nu
, . . . , f

(Ns)
1 , f

(Ns)
2 , . . . , f

(Ns)
Nu

}
.

(5.17)

In this way, we have Nu ×Ns training feature vectors, which is Nu times

more than the reference approach and the vectors have Nu times smaller

length compared to the reference case.

In the test phase, we perform the classification based on a single sensor unit;

hence, we have separate test feature vectors associated with each unit as in

the training set. Using the generalized classifier, we classify the activity type

separately for each test feature vector without using the information about

which position it is associated with. Since the training set consists of feature

vectors associated with all the positions that are available in the dataset, we

expect the classifier to match one of these training feature vectors to the

given test feature vector obtained from a single sensor unit position. This is
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not an easy task because of the variation of the data within the activity

classes, especially for L1O.

� SUC-II: We perform activity recognition in two steps, as proposed in [59]: In

the first step, we classify the sensor unit’s position among the positions that

are available in the dataset. We follow the same classification scheme as in

activity recognition.

For the second step, we train a different activity classifier that is specialized

for each unit position. The training set for unit position i is formed as

TSUC-II, i =
{

f
(1)
i , f

(2)
i , . . . , f

(Ns)
i

}
(5.18)

where i ∈ {1, . . . , Nu}. Based on the unit classification result obtained in the

first step, we select the activity classifier trained for that specific unit and

then recognize the activity.

� SUC-III: In this approach, we consider simultaneous position and activity

classification [57]. For this purpose, we treat each sensor unit position

associated with each activity as a different class so that the number of classes

is Nu ×Na where Na denotes the number of activities. We may associate the

estimated classes with the unit positions and activities; hence, this method

simultaneously classifies both of them. We present here only the activity

classification accuracy results since classifying sensor unit positions is not the

aim of this study.

The activity recognition accuracies for the SUC-I, SUC-II, and SUC-III

approaches are comparatively provided in Figure 5.19. All three SUC approaches

obtain accuracies that are considerably lower than the reference approach, as

expected. The accuracy drop is smaller in P -fold than L1O cross validation. The

SUC-III approach obtains the highest accuracy.
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Figure 5.19: Activity recognition accuracy for single-unit classification (SUC)
employed on its own and together with the ωmp or ωmpq approaches for
(a) P -fold and (b) L1O cross validation.
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To achieve position invariance within the same body part, we apply each of the

three SUC approaches on the data transformed using the methods ωmp and

ωmpq. This scheme has only the following requirement:

Only one sensor unit needs to be placed at the pre-determined

orientation on one of the body parts on which the sensor units are

placed during the training phase.

Our dataset captures the movements of the right and left lower arm, right and left

upper leg, and torso (see Section 3.4 and the second column of Table 2.1); thus, it

is sufficient for the user to place the unit on one of these body parts at the

pre-determined orientation.

Referring to the activity recognition accuracies given in Figure 5.19, we observe

that applying the transformation ωmp decreases the accuracy for the SUC

approaches. This is expected because ωmp allows more flexibility in the positioning

of the sensor units. On the other hand, the ωmpq approach surprisingly improves

the accuracy when combined with the SUC approaches even with respect to using

each SUC method on its own.

5.4 Run-Time Analysis

The run times of the data transformation techniques are provided in Table 5.1 as

the average values per 5-s time segment. The processing was performed on 64-bit

MATLAB® R2018b running on a laptop computer whose specifications are

provided in Section 2.5. Among the position-invariant transformations, the proposed

ωmp approach is computationally more efficient than the existing approach ωmã,

whereas the second proposed approach ωmpq takes the longest to execute. The

U-SVD transformation that is proposed for the interchangeability of the units runs

faster when it is applied together with ωmp and slower when it is applied together

with ωmpq because of the varying dimension of time-domain data. All of the run
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times in the table are much shorter than the duration of the time segments, thus,

can be executed in near real time.

Table 5.1: Average run times of the transformation techniques per 5-s time segment.

data transformation technique run time per 5-s time segment (ms)

ωmp 2.57

ωmpq 11.19

ωmã 6.43

U-SVD 18.00

ωmp + U-SVD 12.85

ωmpq + U-SVD 38.79

Table 5.2 shows the run times of the classifiers in terms of their averages and

standard deviations over the following transformation techniques: fixed units,

ωmp, ωmpq, ωmã, U-SVD, ωmp + U-SVD, ωmpq + U-SVD, SUC-I, SUC-

II, SUC-III,ωmp + SUC-I,ωmp + SUC-II, SUC-III + ωmp,ωmpq + SUC-I,

ωmpq + SUC-II, and ωmpq + SUC-III. Table 5.2(a) and (b) contain the total

run time (including the training phase, classification of all test feature vectors, and

programming overheads) and the training time, respectively, both provided in

seconds for an average cross-validation iteration. We observe that, in terms of the

total run time, k-NN is the fastest and OMP is the slowest among the seven

classifiers. These two classifiers do not have an execution in the training phase other

than the storage of the training feature vectors, whereas the RF classifier takes the

longest to train. Table 5.2(c) contains the average classification time in milliseconds

per single test feature vector associated with a 5-s time segment. Although all of

the classifiers can label a test feature vector in a duration much shorter than the

associated time segment, the ANN and LDC classifiers perform this operation

almost instantly, whereas the OMP classifier is more than two orders of magnitude

slower than the others.
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Table 5.2: (a) Total run time (including training and classification of all test
feature vectors) and (b) training time in an average L1O iteration. (c) Average
classification time of a single test feature vector. The run times are shown as the
average values plus/minus one standard deviation over the following transfor-
mation techniques: fixed units, ωmp, ωmpq, ωmã, U-SVD, ωmp + U-SVD,
ωmpq + U-SVD, SUC-I, SUC-II, SUC-III, ωmp + SUC-I, ωmp + SUC-II,
ωmp + SUC-III, ωmpq + SUC-I, ωmpq + SUC-II, and ωmpq + SUC-III.

classifier

(a)

total run time (s)

(b)

training time (s)

(c)

classification time (ms)

SVM 8.77 ± 2.70 7.25 ± 2.33 0.33 ± 0.11

ANN 5.43 ± 2.10 5.42 ± 2.10 0.01 ± 0.00

BDM 1.41 ± 0.11 0.01 ± 0.00 1.37 ± 0.11

LDC 1.59 ± 0.40 0.28 ± 0.01 0.03 ± 0.00

k-NN 0.13 ± 0.02 – 0.12 ± 0.02

RF 23.20 ± 4.07 20.33 ± 3.63 0.80 ± 0.07

OMP 200.74 ± 279.72 – 194.78 ± 271.13

5.5 Concluding Remarks

This chapter has focused on the positioning of wearable sensor units. We have

proposed a number of methods that allow the subjects to wear each sensor unit at

different positions within a pre-determined body part or across different body parts.

We have also developed techniques to recognize activities by using a single sensor

unit that is placed at an arbitrary position, based on training data acquired from

multiple units. We have comparatively evaluated these approaches using a publicly

available dataset containing daily and sports activities which are much more

complex and larger in number than those in existing studies. We have employed

seven state-of-the-art classifiers and two cross-validation techniques to demonstrate

the robustness of our methodology. We have observed a trade-off between the

flexibility in sensor unit placement and the classification accuracy.
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Chapter 6

Simultaneous Invariance to

Sensor Unit Position and

Orientation

In this chapter, we simultaneously achieve position and orientation invariance by

applying the position-invariant techniques that are proposed in Chapter 5 and

the orientation-invariant approaches proposed in Chapter 3. We employ the

same dataset (dataset A), activity recognition methodology, and cross-validation

techniques as in Chapter 5.

6.1 Simultaneous Position and Orientation In-

variance within the Same Body Part

In this section, we analyze the effects of differently placed sensor units within the

same body part and propose a method to simultaneously achieve position and

orientation invariance.
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6.1.1 Impact of Sensor Unit Positioning within the Same

Body Part on the Activity Recognition Accuracy

To simulate randomly positioned and oriented sensors within the same body

part, we first displace the sensor units using the RD-conc, RD-trun, and RD-uni

simulation models that are explained in Section 5.1.1. Then, we randomly rotate

(RR) the sensor data as described in Section 3.4.1.1. These transformations simulate

the case where each sensor unit is placed at a random position and orientation

within a disk that is coincident with the surface where the unit makes contact with

the body. The classifiers do not learn the effects of the transformations in the

training phase because we apply both of the RD and RR transformations to each

time segment in the test data only, which demonstrates a real-world scenario.

The activity recognition accuracy is shown for the fixed and randomly rotated

sensor units as well as for both randomly rotated and displaced units using the

RD-conc, RD-trun, and RD-uni approaches in Figures 6.1–6.3, respectively.

Randomly rotating the units decreases the accuracy by more than 55% compared to

the fixed units. When the units are also displaced, the accuracy decreases further.

The drop in the accuracy increases with the displacement distance, as expected.

The degradation in the accuracy caused by RD-uni is more apparent than RD-conc

and RD-trun.

6.1.2 Proposed Method for Position and Orientation In-

variance within the Same Body Part

To allow orientation invariance in addition to position invariance within the same

body part, we replace the sensor sequences and the extracted position-invariant

features that are used in Section 5.1.2 with their orientation-invariant counterparts.

For this purpose, we first estimate sensor unit orientation using the method

proposed in Section 4.2. Based on the estimated orientation, we represent the

position-invariant sensor sequences ω and m as well as the position-invariant

quantity p in the Earth frame, denoting them with the superscript E as in
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Figure 6.1: Activity recognition accuracy for fixed and randomly rotated (RR) units
as well as both randomly rotated and displaced units with the RD-conc approach
for (a) P -fold and (b) L1O cross validation. The lengths of the bars indicate the
accuracy values. The thin sticks represent plus/minus one standard deviation over
the cross-validation iterations and over the classifiers at the top and bottom parts
of the figure, respectively.
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Figure 6.2: Activity recognition accuracy for fixed and randomly rotated (RR) units
as well as both randomly rotated and displaced units with the RD-trun approach
for (a) P -fold and (b) L1O cross validation.
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Figure 6.3: Activity recognition accuracy for fixed and randomly rotated (RR) units
as well as both randomly rotated and displaced units with the RD-uni approach for
(a) P -fold and (b) L1O cross validation.
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Chapter 3. We use the differential sensor quaternion qdiff (described in Section 3.3)

instead of the orientation quaternion q. Since the quantities ωE , mE , pE , and qdiff

do not depend on the orientation at which the units are worn on the body, we

ensure that the approaches that employ the combinations of these quantities are

invariant to the sensor unit orientation.

The activity recognition results for the approaches (ωm)E and (ωmp)E qdiff ,

both of which are position and orientation invariant, are provided in Figure 6.4.

Compared to the case where the units are correctly placed, the (ωmp)E qdiff ap-

proach achieves only 3.2% and 6.2% lower accuracy values for P -fold and L1O

cross-validation techniques, respectively, whereas the degradation caused by the

(ωm)E approach is significantly higher. Comparing Figure 6.4 with Figures 6.1–6.3

reveals that both of the (ωm)E and (ωmp)E qdiff approaches obtain an accuracy

much higher than RR that is employed on its own or together with RD.
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Figure 6.4: Activity recognition accuracy for the (ωm)E and (ωmp)E qdiff

approaches for (a) P -fold and (b) L1O cross validation.
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6.2 Position and Orientation Invariance within

the Same Body Part with Interchangeable

Sensor Units

We have developed the U-SVD transformation to allow the sensor units to

be interchanged with each other, as explained in Section 5.2.2. We have also

combined it with the approaches ωm and ωmpq to additionally achieve position

invariance within the same body part in Section 5.2.3. In this section, we allow the

units to be placed at any orientation as well. For this purpose, we apply the

simultaneously position- and orientation-invariant approach (ωmp)E qdiff together

with the U-SVD transformation for interchangeable units. In utilizing these

transformations, we first calculate (ωmp)E qdiff and then apply the U-SVD by

taking the sensor type dimensions as three, three, one (and four) in the first step

of U-SVD (see Section 5.2.2).

Referring to the activity recognition accuracies that are provided in Figure 6.5,

the proposed (ωmp)E qdiff + U-SVD approach obtains an acceptable accuracy for

P -fold cross validation, which is about 40% higher than RIU (see Section 5.2.1) and

17% lower than fixed units. The proposed approach brings an improvement to

the accuracy compared to RIU for L1O cross validation as well, although it is

less effective in L1O than P -fold. We also observe in Figure 6.5 that allowing

the units to be interchanged using U-SVD degrades the accuracy more than

the position invariance within the same body part achieved by (ωmp)E qdiff,

although the difference is small for P -fold. Allowing both of the flexibilities by

using (ωmp)E qdiff + U-SVD further degrades the accuracy, as expected, because

the only requirement for the user is to place exactly one sensor unit at any position

and orientation on each of the body parts on which the sensor units are placed in

the dataset.
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Figure 6.5: Activity recognition accuracy randomly interchanged sensor units (RIU)
as well as the proposed U-SVD and (ωmp)E qdiff approaches that are employed on
their own and simultaneously for (a) P -fold and (b) L1O cross validation.
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6.3 Position and Orientation Invariance within

the Same Body Part with Single-Unit Clas-

sification

We combine the SUC methods that are explained in Section 5.3 with the

simultaneously position- and orientation-invariant transformation (ωmp)E qdiff

that is described in Section 5.1.2 to classify the activities based on a single sensor

unit that is placed at any position and orientation on one of the body parts

included in the dataset. According to the accuracies provided in Figure 6.6,

applying the transformation (ωmp)E qdiff in addition to the SUC approaches

significantly degrades the accuracy compared to fixed sensor units. However, the

accuracy values are still well above random decision making, which has an average

accuracy of 1/19 = 5.3% for 19 classes. The SUC-I approach performs better than

SUC-II and SUC-III when applied together with (ωmp)E qdiff whereas SUC-III is

the most accurate among the three when they are employed on their own without

considering position or orientation invariance.

6.4 Run-Time Analysis

The run times of the simultaneously position- and orientation-invariant techniques

for an average 5-s time segment are provided in Table 6.1. Specifications of

the device on which the processing was performed are provided in Section 5.4.

In all of the approaches, the acquired data and the calculated quantities are

represented in the Earth frame. This representation requires the estimation of

sensor unit orientations, which takes most of the run time (see Section 4.4).

The approach (ωmp)E qdiff + U-SVD has a longer run time than the other two

because of the calculation of the SVD transformation. Nevertheless, all of the run

times are much shorter than the time segment duration (5 s) and can be executed

in near real time.
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Figure 6.6: Activity recognition accuracy for single-unit classification (SUC)
employed on its own and together with the (ωmp)E qdiff approach for (a) P -fold
and (b) L1O cross validation.
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Table 6.1: Average run times of the transformation techniques per 5-s time segment.

data transformation technique run time per 5-s time segment (ms)

(ωm)
E

26.53

(ωmp)
E

qdiff 32.86

(ωmp)
E

qdiff + U-SVD 54.62

The run times of the classifiers are provided in Table 6.2. Part (a) of the table

shows the total run time for an average cross-validation iteration including the

training phase and classification of all the test feature vectors. The k-NN classifier

has the shortest total run time among the seven classifiers whereas OMP has the

longest. The training times of the classifiers in an average cross-validation iteration

are provided in Table 6.2(b). In the training phase, the k-NN and OMP classifiers

only store the training feature vectors and have no training time in practice. The

RF classifier is the slowest in terms of training time. Table 6.2(c) contains the

average classification time for a test feature vector. The ANN, LDC, and k-NN

classifiers are the fastest, identifying the activity in no longer than than 0.1 ms. The

OMP classifier has the longest run time because it executes an iterative algorithm

independently for each test feature vector, but its run time is still much shorter

than the segment duration, allowing a near real-time implementation.

Table 6.2: (a) Total run time (including training and classification of all test
feature vectors) and (b) training time in an average L1O iteration. (c) Average
classification time of a single test feature vector. The run times are shown as the
average values plus/minus one standard deviation over the following transfor-
mation techniques: fixed units, (ωm)E, (ωmp)E qdiff, (ωmp)E qdiff + U-SVD,
SUC-I + (ωmp)E qdiff, SUC-II + (ωmp)E qdiff, SUC-III + (ωmp)E qdiff.

classifier

(a)

total run time (s)

(b)

training time (s)

(c)

classification time (ms)

SVM 10.65 ± 2.83 8.83 ± 2.65 0.39 ± 0.10

ANN 4.90 ± 1.06 4.89 ± 1.05 0.01 ± 0.00

BDM 1.31 ± 0.04 0.01 ± 0.00 1.27 ± 0.04

LDC 1.75 ± 0.11 0.26 ± 0.03 0.02 ± 0.00

k-NN 0.11 ± 0.01 – 0.10 ± 0.01

RF 26.57 ± 3.22 23.34 ± 2.98 0.83 ± 0.08

OMP 89.26 ± 7.77 – 87.25 ± 7.78
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6.5 Concluding Remarks

In this chapter, we have concentrated on simultaneous position and orientation

invariance of wearable motion sensor units in the context of human activity

recognition. To improve the robustness of the activity recognition system, we have

proposed to utilize the techniques that we have developed in Chapters 3 and 5. This

scheme allows the users to place the wearable sensor units at any position and

orientation on their body, provided that the sensor configuration used to acquire the

dataset includes the body parts on which the units are worn. The subjects may

either place the units without the need of identifying them or place only one sensor

unit at any position and orientation on a body part from which data are collected.
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Chapter 7

Summary and Conclusions

We have proposed techniques to achieve robustness to the placement of wearable

motion sensor units where none of the approaches in the literature provide a generic

framework that achieves significant robustness to their placement throughout

the body. To this aim, we have developed three types of transformation and

classification methods:

� orientation-invariant techniques that transform the data such that they are

not affected from the orientation at which the units are placed on the body

(Chapters 2 and 3),

� position-invariant techniques that achieve robustness to the positioning and

the interchanging of the units on the body (Chapter 5), and

� simultaneously position- and orientation-invariant techniques that allow both

of the above flexibilities (Chapter 6).

We have also proposed a novel technique for estimating the orientations of the

sensor units to improve the accuracy of the orientation-invariant techniques that are

based on orientation estimation.
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We have employed publicly available datasets to assess the performance of these

techniques for repeatability. These datasets had been recorded independently of the

techniques proposed in this thesis so that there was no possibility to fine tune the

types of activities, sensor types and configurations, and experimental procedures to

unfairly improve the effectiveness of the proposed methods. We intentionally have

not exploited the types of activities in the datasets and the specific sensor positions

in developing the transformation techniques because we have aimed to keep the

proposed techniques applicable to different scenarios. We have used the standard

activity recognition scheme including multiple state-of-the-art classifiers and

cross-validation techniques as well as datasets recorded by other researchers (when

applicable) to demonstrate the robustness of our methodology.

Unlike most of the existing studies, we have compared all of the proposed

methods with the reference approach where the sensor units are correctly placed as

well as with the existing approaches in the literature. Hence, we could provide the

reduction in the accuracy caused by the robustness to the placement of sensor units

and compare different techniques that are proposed for the same purpose. We

have also compared the proposed methods with the worst-case scenarios by

simulating randomly rotated and/or displaced sensor units and have presented the

improvement obtained by these methods.

The proposed techniques are applicable to short time segments of recorded

sensor data independently, which enables them to be used in different applications,

including near real-time ones, since there is no long-term dependency on the

past data. This property also restricts the impact of a shift or sudden change

in the positions and/or orientations of the sensor units to the time segment

during which the change occurs. The proposed transformations can be applied

in the pre-processing stage of existing wearable systems without much effort,

making them invariant to sensor position and/or orientation. The use of these

transformations does not require restrictive assumptions about the activity

types and the experimental setup. Most of the transformations do not make any

assumptions about sensor types as well, enabling them to be employed in various

wearable sensing applications.
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In general, we have observed a trade-off between the activity recognition accuracy

and the flexibility that is allowed in sensor unit placement, as expected. While the

orientation-invariance property causes a negligible reduction in the accuracy in most

cases, some of the position-invariant methods considerably decrease the accuracy,

especially for L1O cross validation where the variability between the training and

test data is high. The simultaneously position- and orientation-invariant approaches

achieve the lowest accuracy at the expense of allowing the sensor units to be placed

on the body almost arbitrarily. The accuracy might be improved by selecting a

subset of the activity types according to the application, or acquiring training data

from the specific subject for personalized training.

This study is a proof-of-concept for a comparative analysis of the accuracies and

run times of the proposed and existing methods as well as state-of-the-art classifiers.

Therefore, we have implemented them as well as the remaining parts of the activity

recognition framework on a laptop computer rather than on a mobile platform.

Given that the data transformation techniques and most of the classifiers have

been implemented in MATLAB in this study, it is possible to further improve the

efficiency of the algorithms by programming them in other languages such as C++,

by implementing them on an FPGA platform, or by embedding the algorithms in

wearable hardware. As such, our methodology can be handled by the limited

resources of wearable systems such as computing processor, battery and storage

capacity, and wireless transmission capability. Alternatively, transmitting the data

acquired from wearable devices wirelessly to a cloud server would allow performing

the activity recognition in the cloud [64,125]. Despite the latency issues that will

arise in this case, this approach would provide additional flexibility and enable the

applications of wearables to further benefit from the proposed methodology and the

advantages of cloud computing.

As future work, one may consider investigating additional robust features

invariant to the placement of the sensor units such as differential quaternions

represented in the sensor frame. Differential quaternions with respect to the Earth

frame may be extracted over a wider time window rather than over only two
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consecutive time samples (Section 3.3), which may improve robustness against

high-frequency noise.

The number of activity types may be reduced for simultaneous position and

orientation invariance as this might improve the accuracy and used in more

specific applications. Besides activity recognition and monitoring, the proposed

approaches can be exploited in other applications of wearable sensing such as

gesture recognition, posture and gait analysis, fall detection and classification,

sports science, virtual reality, pedestrian dead reckoning, and automated evaluation

of physical therapy exercises. For instance, the study reported in [36] assumes

that the motion sensors used for gait-based personal authentication have fixed

orientations. In [16], physical therapy exercises are detected and evaluated based on

template signals by using time-domain sequences acquired from wearable sensors.

Making fall detection and classification algorithms invariant to sensor position and

orientation would be another valuable contribution. The proposed techniques can be

employed in such applications to allow flexibility in the placement of motion sensor

units. Energy harvesting techniques based on MEMS technology can be used in

order to extend the battery lives of wireless sensor units [126].
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Appendix A

Sensor Unit Orientation

Estimation Using Gauss-Newton

Algorithm

The OEM in [107] combines orientation estimates based on two sources of

information. The first, dynamic estimate is obtained simply by integrating the

gyroscope angular rate measurements. This estimate is accurate in the short term

but drifts in the long term. The second, static estimate relies on the direction of the

gravity vector measured by the accelerometer and the magnetic field of the Earth

detected by the magnetometer in the long term. For the long-term estimation, the

Gauss-Newton method [107] is used to solve a minimization problem where the cost

function decreases as the acquired acceleration vector is aligned with the gravity

vector and as the acquired magnetic field vector is aligned with the magnetic North

of the Earth. The short- and long-term estimates are combined through weighted

averaging [107].

In the orientation estimation algorithm, we relate the sensor and the Earth

frames by a quaternion q̂n = (q1, q2, q3, q4)T corresponding to the rotation
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matrix R̂Sn
E =

(
R̂E
Sn

)−1

for all n as follows [119]:

R̂Sn
E =

q2
1 + q2

2 − q2
3 − q2

4 2 (q2q3 − q1q4) 2 (q1q2 + q2q4)

2 (q2q3 + q1q4) q2
1 − q2

2 + q2
3 − q2

4 2 (q3q4 − q1q2)

2 (q2q4 − q1q3) 2 (q1q2 + q3q4) q2
1 − q2

2 − q2
3 + q2

4

 (A.1)

The short- and long-term orientation estimates are denoted by q̂n, ST and q̂n, LT

and the overall estimate is denoted by q̂n.

The short-term estimate of the sensor quaternion q̂n, ST at time sample n based

on the overall estimate q̂n−1 at the previous time sample is given by:

q̂n, ST = q̂n−1 + ∆t

(
1

2
q̂n−1 ⊗ω′S[n]

)
(A.2)

where ω′S[n] =
(
0, ωSx [n], ωSy [n], ωSz [n]

)T
is an augmented vector consisting of

zero and the angular rate vector acquired by the gyroscope at time sample n [107]

and ∆t is the sampling interval. Note that the equation involves feedback because

q̂n, ST is calculated based on q̂n−1.

For the long-term estimation, let aS[n] and mS[n] be the acceleration and the

magnetic field vectors, respectively, represented in the sensor frame and normalized

by their magnitudes. To align aS[n] with the zE axis of the Earth frame, we

represent it in the Earth frame as aE [n] = qn ⊗ aS [n]⊗ q∗n, and solve the following

minimization problem [107]:

q̂n, LT-1 = arg min
qn

f1
(
qn, aS[n]

)
where f1

(
qn, aS[n]

)
=
∥∥∥(0, 0, 1)T − qn ⊗ aS[n]⊗ q∗n

∥∥∥ (A.3)

where ⊗ denotes the quaternion product operator.

We represent the magnetic field vector mS [n] as mE [n] = qn⊗mS [n]⊗q∗n in the

Earth frame and allow it to have only a vertical component along the zE direction

and a horizontal component along the xE direction. Hence, we align mE [n] with the
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magnetic reference vector defined as m0[n] ,
(√

(mE
x [n])2 + (mE

y [n])2, 0, mE
z [n]

)T
in the Earth frame by solving the following minimization problem [107]:

q̂n, LT-2 = arg min
qn

f2
(
qn, mS[n]

)
where f2

(
qn, mS[n]

)
=
∥∥m0[n]− qn ⊗mS[n]⊗ q∗n

∥∥ (A.4)

To simultaneously align the acceleration and magnetic field vectors, we combine

the minimization problems defined in Equations (A.3) and (A.4) into one and solve

the following joint minimization problem:

q̂n, LT = arg min
qn

f
(
qn, aS[n], mS[n]

)
(A.5)

where the combined objective function is

f
(
qn, aS[n], mS[n]

)
= f21

(
qn, aS[n]

)
+ f22

(
qn, mS[n]

)
(A.6)

We use the Gauss-Newton method to solve the problem defined in Equation (A.5)

iteratively [107]. The quaternion at iteration i+ 1 can be calculated based on the

estimate at the ith iteration as follows:

q
(i+1)
n, LT = q

(i)
n, LT −

(
JTJ

)−1
JT f

(
q

(i)
n, LT, aS[n], mS[n]

)
(A.7)

where J is the 6× 4 Jacobian matrix of f with respect to the elements of q
(i)
n . This

matrix is provided in closed form in [107].

Finally, the short- and long-term estimates are merged by using weighted

averaging [107]:

q̂n = Kq̂n, ST + (1−K)q̂n, LT (A.8)

where the parameter K is selected as 0.98 as in [107]. The estimated quaternion q̂n

represents the rotation matrix R̂Sn
E compactly, where we drop the hat notation (̂ )

in the body of the text for simplicity.
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[12] D. Karaoğlan and A. Levi, “A survey on the development of security

mechanisms for body area networks,” The Computer Journal, vol. 57, no. 10,

pp. 1484–1512, October 2014.

[13] A. Yurtman and B. Barshan, “Human activity recognition using tag-based

radio frequency localization,” Applied Artificial Intelligence, vol. 30, no. 2,

pp. 153–179, March 2016.

[14] A. Yurtman and B. Barshan, “Human activity recognition using tag-

based localization (Etiket-tabanlı konumlama ile insan aktivitelerinin

tanınması),” Proceedings of the IEEE 20th Conference on Signal Processing,

Communications, and Applications, in Turkish, 18–20 April 2012, Fethiye,
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features robust to sensor displacement for activity recognition in body

area sensor networks,” Proceedings of the 5th International Conference on

Intelligent Sensors, Sensor Networks and Information Processing, pp. 43–48,

7–10 December 2009, Melbourne, VIC, Australia.
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