
COMPUTATIONAL ANALYSIS OF THE

SEARCH BASED CUTS ON THE

MULTIDIMENSIONAL 0-1 KNAPSACK PROBLEM

A THESIS

SUBMITTED TO THE DEPARTMENT OF INDUSTRIAL

ENGINEERING

AND THE INSTITUTE OF ENGINEERING AND SCIENCES

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

by

Duygu Pekbey

September 2003

 ii

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Osman Oğuz (Principal Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Mustafa Ç. Pınar

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Bahar Y. Kara

Approved for the Institute of Engineering and Sciences:

Prof. Mehmet Baray

Director of Institute of Engineering and Sciences

 iii

ABSTRACT

COMPUTATIONAL ANALYSIS OF THE SEARCH BASED CUTS ON

THE MULTIDIMENSIONAL 0-1 KNAPSACK PROBLEM

Duygu Pekbey

M. S. in Industrial Engineering

Supervisor: Assoc. Prof. Osman Oğuz

September 2003

In this thesis, the potential use of a recently proposed cut (the search based

cut) for 0-1 programming problems by Oguz (2002) is analyzed. For this

purpose, the search based cuts and a new algorithm based on the search based

cuts are applied to multidimensional 0-1 knapsack problems from the

literature as well as randomly generated multidimensional 0-1 knapsack

problems. The results are compared with the implementation of CPLEX v8.1

in MIP mode and the results reported.

Key Words: 0-1 Integer Programming, Multidimensional 0-1 Knapsack

Problem

 iv

ÖZET

ARAŞTIRMA TABANLI KESMELERİN ÇOK BOYUTLU 0-1 SIRT

ÇANTASI PROBLEMLERİ ÜZERİNDE HESAPSAL ANALİZİ

Duygu Pekbey

Endüstri Mühendisliği Yüksek Lisans

Tez Yöneticisi: Doç. Dr. Osman Oğuz

Eylül 2003

Bu çalışmada, yakın zamanda 0-1 programlama problemleri için Oguz (2002)

tarafından önerilen bir kesmenin (araştırma tabanlı kesme) potansiyel faydası

analiz edilmektedir. Bu amaçla, araştırma tabanlı kesmeler ve bunlar üzerine

kurulan yeni bir algoritma literatürdeki çok boyutlu 0-1 sırt çantası

problemlerine ve rastlantısal olarak oluşturulan çok boyutlu 0-1 sırt çantası

problemlerine uygulanmaktadır. Sonuçlar CPLEX v8.1' in MIP biçimindeki

uygulaması ve literatürdeki sonuçlarla karşılaştırılmaktadır.

Anahtar Kelimeler: 0-1 tamsayılı programlama, çok boyutlu 0-1 sırt çantası

problemleri

 v

To my parents and my sister . . .

 vi

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to Assoc. Prof. Osman Oğuz for

his guidance, attention and patience throughout our study.

I wish to express my thanks to the readers Assoc. Prof. Mustafa Ç. Pınar and

Asst. Prof. Bahar Y. Kara for their effort, kindness and time.

I would like to thank Aykut Özsoy, Güneş Erdoğan, Ünal Akmeşe, Çağatay

Kepek, Hakan Ümit and Pınar Tan for their assistance, support and friendship

during the graduate study. I am also very thankful to all Industrial

Engineering Department staff.

I am grateful to Çağdaş Yavuz and Karim Saadaoui for their support and

friendship.

Finally, I would like to thank my family, and especially my sister for her

invaluable support and love.

 vii

CONTENTS

1 Introduction ...1

2 Literature Review ..4

3 The Partitioning Algorithm ..17

3.1 Description of the Search Based Cuts ...17

3.2 Partitioning the Problem ..19

3.3 An example ..22

3.4 Computational Experimentation and Results26

3.5 One Step Partitioning Algorithm ...29

4 Computational Analysis of the Search Based Cuts32

4.1 Computational Analysis of the Search Based Cuts Applied to the

 Multidimensional 0-1 Knapsack Problem ...32

4.2 Computational Analysis of the Search Based Cuts Applied to the Set

 Covering Problem ..39

5 Application of the Partitioning Algorithm to the Multidimensional 0-1

 Knapsack Problem ..45

5.1 Problem Generation ...45

5.2 Computational Results ...46

6 Conclusion ..57

Bibliography ..59

 viii

LIST OF FIGURES

4-1a: Absolute reduction in the objective value per cut as n increases35

4-1b: Absolute reduction in the objective value per cut as m increases38

4-2: Absolute increase in the objective value per cut as n increases42

 ix

LIST OF TABLES

3-4: Computational results for standard test problems (Shih (1979))27

4-1a: Computational results for m=5, α=0.5 and n=100 OR-lib. instances ...33

4-1b: Computational results for m=5, α=0.5 and n=250 OR-lib. instances ...33

4-1c: Computational results for m=5, α=0.5 and n=500 OR-lib. instances ...34

4-1d: Average value of absolute reduction in the objective value per cut for

 m=5, α=0.5 ..35

4-1e: Computational results for n=100, α=0.5 and m=5 OR-lib. instances ...36

4-1f: Computational results for n=100, α=0.5 and m=10 OR-lib. instances ..36

4-1g: Computational results for n=100, α=0.5 and m=30 OR-lib. instances .37

4-1h: Average value of absolute reduction in the objective value per cut for

 n=100, α=0.5 ...37

4-2a: Computational results for m=5 and n=100 set covering problems40

4-2b: Computational results for m=5 and n=150 set covering problems40

4-2c: Computational results for m=5 and n=200 set covering problems40

4-2d: Average value of absolute increase in the objective value per cut for

 m=5 ...41

4-2e: Computational results for n=100 and m=5 set covering problems43

 x

4-2f: Computational results for n=100 and m=10 set covering problems43

4-2g: Average value of absolute increase in the objective value per cut for

 n=100 ...43

5-2a: Computational results for n=500 and m=10 OR-library instances48

5-2b: Computational results for n=1000 and m=10 randomly generated

 instances ..49

5-2c: Computational results for n=2000 and m=10 randomly generated

 instances ..50

5-2d: Comparison of one step partitioning algorithm with Cplex and genetic

 algorithm of Chu and Beasley ...52

5-2e: Comparison of one step partitioning algorithm with Cplex for n=1000

 randomly generated instances ..53

5-2f: Comparison of one step partitioning algorithm with Cplex for n=2000

 randomly generated instances ..54

5-2g: Computational results of the problems for which the experiment was

 repeated ..56

 1

C h a p t e r 1

Introduction

In this thesis, a computational study on the potential use of a recently

proposed cut for 0-1 programming problems by Oguz (2002) is presented.

The cut is of a general type, and can be used for almost any 0-1 integer

programming problem. We have chosen to focus on and limit the scope of

the study to the multidimensional 0-1 knapsack problems for a couple of

reasons. Firstly, extending the scope to cover several types of combinatorial

optimization problems would require development of much more

sophisticated and expert programming skills and effort, and longer time.

Secondly, a wide array of test problems and computational results on this

specific problem already exist in the literature and it is easier to carry out

comparative analysis with this problem.

In this study, in order to analyze the potential use of the search based cuts

(see Oguz (2002)), we have applied them to 60 multidimensional 0-1

knapsack problems (0-1 MDKP) from the literature as well as 25 randomly

generated set covering problems. In addition, in order to check the efficiency

of the partitioning algorithm-a new algorithm based on the search based

cuts-, we have made computational experiments with 30 small-sized 0-1

MDKP from the literature (Shih (1979)) as well as randomly generated 0-1

MDKP with different numbers of variables and different numbers of

constraints.

In order to reduce the computational time and effort required by the

partitioning algorithm, we presented a modification of the partitioning

Chapter 1. Introduction

 2

algorithm which we named "one step partitioning algorithm" and made

computational experiments with 60 randomly generated large sized 0-1

MDKP as well as 30 large-sized 0-1 MDKP from the literature (Chu and

Beasley (1998)). We compared our results with the implementation of

CPLEX v8.1 in MIP mode and the results reported by Chu and Beasley

(1998).

The remaining part of this thesis is organized as follows: After introducing

the multidimensional 0-1 knapsack problem briefly, we present a

comprehensive survey of the work done for it in the literature in the next

chapter. In chapter 3, the "search based cuts" and the "partitioning

algorithm" are discussed. In chapter 4, computational analysis of the search

based cuts is presented and in chapter 5, computational results of the

application of one step partitioning algorithm to the large-sized 0-1 MDKP

are reported. Finally, some conclusions and remarks for future works are

given in chapter 5.

The Multidimensional 0-1 Knapsack Problem

The multidimensional 0-1 knapsack problem (0-1 MDKP) is an important

combinatorial optimization problem which is widely studied in the literature

and can be employed to formulate many practical problems such as capital

budgeting or resource allocation. As an example, think that there are n

projects with known profits cj and project j consumes aij units from resource

i given bi as the capacity of resource i. The goal is to select a group of

projects to allocate resources in such a way that the profit is maximized and

the capacity of any resource is not exceeded. Other applications of the

multidimensional 0-1 knapsack problem include cutting stock problems

Chapter 1. Introduction

 3

(Gilmore and Gomory (1966)), cargo loading (Shih (1979)) and allocating

processors and databases in distributed systems (Gavish and Pirkul (1982)).

The 0-1 MDKP can be considered as a general 0-1 integer programming

problem with non-negative coefficients and can be formulated as follows:

 n

maximize ∑ cj xj ,
 j=1

 n

subject to ∑ aij xj ≤ bi , i = 1, . . . , m,
 j=1

 xj Є {0, 1}, j = 1, . . . , n.

where aij ≥ 0 for i = 1, . . . , m; j = 1, . . . , n; bi > 0 for i = 1, . . . , m and

cj > 0 for j = 1, . . .,n.

In addition, for the problem to be meaningful, the following must be true:

 n

 bi < ∑ aij for i = 1, . . . , m (otherwise i th constraint will be redundant),
 j=1

 aij < bi for i = 1, . . . , m ; j = 1, . . . , n (otherwise xj will be fixed to zero).

If m = 1, the problem is the standard knapsack problem which is proven to

be NP-complete(see Garey and Johnson (1979)). Since the standard

knapsack problem is NP-complete, the multidimensional 0-1 knapsack

problem is also NP-complete.

C h a p t e r 2

Literature Review

Most of the research on knapsack problems deals with the standard knapsack

problem (m = 1) and a good review of exact and heuristic algorithms for the

standard knapsack problem is given by Martello and Toth (1990). Below we

review exact and heuristic algorithms designed to solve the multidimensional

0-1 knapsack problem (0-1 MDKP).

Gilmore and Gomory (1966), and Nemhauser and Ullmann(1969) developed

dynamic programming based methods to solve the 0-1 MDKP. However,

they were not able to solve large instances. Nemhauser and Ullmann(1969)

reported that for the problems that they had solved the number of variables

was at most 50. Weingartner (1967), and Weingartner and Ness (1967) also

developed dynamic programming based methods to solve the 0-1 MDKP

and Cabot (1970) developed an enumeration algorithm based on Fourier-

Motzkin elimination.

Soyster, Lev, and Slivka (1978) developed an algorithm for solving zero-one

integer programs with many variables and few constraints. In their

algorithm, sub-problems were generated from the linear programming

relaxation and solved through implicit enumeration. The variables in these

sub-problems corresponded to the fractional variables obtained in the linear

program. The number of variables in the sub-problems is much less than the

number of variables in the original zero-one integer program because the

number of fractional variables in the linear program is bounded by the

number of constraints in the linear program.

Chapter 2. Literature Review

 5

Senju and Toyoda (1968) proposed a dual gradient method that starts with a

possibly infeasible initial solution (all decision variables set to 1) and

achieves feasibility by dropping the non-rewarding variables one by one,

while following an effective gradient path.

Zanakis (1977) compared three heuristic algorithms for the 0-1 MDKP from

Hillier (1969); Kochenberger, McCarl, and Wymann (1974); Senju and

Toyoda(1968) and reported that none was found to dominate the others

computationally.

In order to apply the greedy method for standard knapsack problem where

items are picked from the top of a list sorted in decreasing order on cj/aj

(Martello and Toth (1987)) to the 0-1 MDKP, Toyoda (1975) proposed a

new measurement called aggregate resource consumption. He developed a

primal gradient method that improves the initial feasible solution (all

decision variables set to zero) by incrementing the value of the decision

variable with the steepest effective gradient. Using the basic idea behind

Toyoda’s primal gradient method, Loulou and Michaelides (1979) developed

a greedy-like algorithm that expands the initial feasible solution by including

the decision variable with the maximum pseudo-utility. The pseudo-utility is

defined as uj = cj/vj , where vj is the penalty factor of variable j , which

depends on the resource coefficients aij and can be defined in several ways.

They tested this method on small-sized randomly generated problems as well

as some larger real-world problems and showed that the average deviation

from optimum ranged from 0.26% to 1.08% for smaller problems and up to

14% for larger problems.

Balas and Martin (1980) presented a heuristic algorithm for the 0-1 MDKP

which utilizes linear programming by relaxing the integrality constraints xj Є

Chapter 2. Literature Review

 6

{0, 1} to 0 ≤ xj ≤ 1. The fractional xj are then set to 0 or 1 according to a

heuristic which maintains feasibility.

Shih (1979) proposed a branch and bound algorithm for the 0-1 MDKP. In

this algorithm, estimation of an upper bound for a node was made by solving

m single constraint knapsack problems with the same objective function. An

optimal fractional solution (Dantzig (1957)) was found for each of the m

single constraint knapsack problems separately. To find optimal fractional

solution one must include as much as possible of each item in the order of

decreasing cj/aij to the knapsack i until the constraint i is satisfied exactly as

an equation. Minimum of the objective function values associated with each

optimal fractional solution was chosen as the upper bound for that node.

The node selected for next branching would be the end node whose upper

bound is maximum of all end nodes and where the solution associated with

such an upper bound is infeasible(if solution is feasible it is also an optimal

solution). The branching variable would be the one whose cj/aij ratio is

minimum of all non-zero free variables in this infeasible solution.

Shih solved thirty 5-constraint knapsack problems with 30-90 variables (we

also used this data to test our first algorithm) and reported that his algorithm

is faster than original Balas and improved Balas additive algorithms (Balas

(1965)) with respect to the total as well as the individual solution times.

Using Senju and Toyoda 's dual gradient algorithm and Everett (1963) 's

generalized lagrange multipliers approach, Magazine and Oguz (1984)

proposed another heuristic that moves from the initial infeasible solution (all

variables set to 1) towards a feasible solution by following a direction which

reduces the aggregate weighted infeasibility among all resource constraints.

Their algorithm was tested on randomly generated problems with sizes from

Chapter 2. Literature Review

 7

m = 20 to 1,000 and n = 20 to 1,000, and its computational efficiency is

compared with two other well-known heuristics: the primal heuristic of

Kochenberger, McCarl, and Wymann (1974) (1) and the dual approach of

Senju and Toyoda (1968)(2). They reported that, in terms of solution quality,

(1) produced slightly better results than their heuristic and their heuristic was

superior to (2). Their heuristic and (2) were much better than (1) in terms of

computation time.

Fox and Scudder (1985) presented a heuristic based on starting from setting

all variables to zero(one) and successively choosing variables to set to

one(zero). They reported results for randomly generated test problems with

sizes up to m = 100 and n = 100, and with cj = 1 and aij = 0 or 1.

Gavish and Pirkul (1985) proposed another branch and bound algorithm in

which they used tighter upper bounds obtained with relaxation techniques

such as lagrangean, surrogate and composite relaxations. They tried to

evaluate the quality of the bounds generated by these different relaxations

and showed that the composite relaxation (which used a subgradient

optimization procedure to determine the multipliers) yielded the best bounds

overall, but needed extra computational effort. They developed new

algorithms for obtaining surrogate bounds and suggested rules for reducing

the problem size. They tested their algorithm on a set of randomly generated

problems with sizes up to m = 5 and n = 200 and reported that it is faster

than the branch and bound algorithm of Shih (1979). They showed that if

their algorithm is used as a heuristic by terminating it before the tree search

is completed, then it is superior to the heuristic developed by Loulou and

Michaelides (1979).

In addition, Pirkul (1987) presented an efficient algorithm in which m

knapsack constraints were transformed into a single knapsack constraint

Chapter 2. Literature Review

 8

using the dual variables (known as the surrogate multipliers) obtained from

the linear programming relaxation of the 0-1 MDKP. He then obtained a

feasible solution to this problem using a greedy algorithm based on the

ordering of the profit to weight ratios. This ratio was defined as,

 m

cj / ∑ wi aij
 i=1

where wi is the surrogate multiplier for constraint i. Surrogate multipliers

were determined using a descent procedure. He reported that the algorithm

was considerably better than the heuristic of Loulou and Michaelides (1979)

and similar to the pivot and complement heuristic of Balas and Martin

(1980) in terms of solution quality.

Lee and Guignard (1988) presented a heuristic that combined Toyoda’s

primal heuristic (1975) with variable fixing, linear programming and a

complementing procedure from Balas and Martin (1980). Computational

experiments were done with standard test problems and randomly generated

problems with sizes up to m = 20 and n = 200. They reported that their

heuristic produced better results than Toyoda (1975) and Magazine and

Oguz (1984), but is out-performed by Balas and Martin (1980).

Drexl (1988) presented a heuristic based upon simulated annealing. They

made experiments with 57 standard 0-1 MDKP test problems from the

literature and found optimal solutions for 25 of these problems.

Volgenant and Zoon (1990) extended Magazine and Oguz’s heuristic in two

ways: (1) in each step, not one, but more multiplier values are computed

simultaneously, and (2) at the end the upper bound is sharpened by changing

some multiplier values. They showed that these extensions yielded an

Chapter 2. Literature Review

 9

improvement, on average, at the cost of only a modest amount of extra

computing time.

Crama and Mazzola (1994) showed that although the bounds obtained with

relaxation techniques such as lagrangean, surrogate, or composite

relaxations, are stronger than the bounds obtained from the linear

programming relaxation, the improvement in the bound that can be achieved

using these relaxations is limited. In fact, the improvement in the quality of

the bounds using any of these relaxations cannot exceed the magnitude of

the largest coefficient in the objective function.

There are a few number of papers considering a statistical-asymptotic

analysis of the 0-1 MDKP. Schilling (1990) presented an asymptotic analysis

and computed the asymptotic objective function value of a particular m

constraint, n variable 0-1 random integer programming problem as n

increases and m remaining fixed. In this analysis, the aij 's and cj 's were

uniformly and independently distributed over the unit interval and bi = 1.

Szkatula (1994) generalized that analysis to the case where the bi were not

restricted to be one (see also Szkatula (1997)). A statistical analysis was

presented by Fontanari (1995) in which he investigated the dependence of

the multidimensional knapsack objective function on the knapsack capacities

and on the number of capacity constraints, in the case when all n objects

were assigned the same profit value and the aij 's were uniformly distributed

over the unit interval. A rigorous upper bound to the optimal profit was

obtained employing the annealed approximation and then compared with the

exact value obtained through a lagrangean relaxation method.

Freville and Plateau (1994) presented an efficient preprocessing procedure

for the 0-1 MDKP based on their previous work ((Freville and Plateau

Chapter 2. Literature Review

 10

(1986)) and they also proposed a heuristic for the bidimensional knapsack

problem (Freville and Plateau (1997)).

Dammeyer and Voss (1993) proposed a tabu search heuristic for the 0-1

MDKP based on reverse elimination method. They made computational

experiments with 57 standard test problems from the literature and reported

that they found optimal solutions for 41 of these problems.

Aboudi and Jörnsten (1994) combined tabu search with the pivot and

complement heuristic of Balas and Martin (1980) in a heuristic for general

zero-one integer programming. They made computational experiments with

57 standard test problems and found optimal solutions for 49 of these

problems.

Løkketangen, Jörnsten, and Storøy (1994) presented a tabu search heuristic

within a pivot and complement framework and gave computational results

for the same set of test problems. They found optimal solutions for 39 of

these problems.

Glover and Kochenberger (1996) presented a heuristic based on tabu search.

They employed a flexible memory structure that integrates recency and

frequency information keyed to “critical events” in the search process. Their

method was enhanced by a strategic oscillation scheme that alternates

between constructive (current solution feasible) and destructive (current

solution infeasible) phases. They define a “critical event” as the last feasible

solution found after a transition between phases. They found optimal

solutions for each of 57 standard test problems from the literature.

Løkketangen and Glover (1996) presented a heuristic based on probabilistic

tabu search for solving general zero-one mixed-integer programming

Chapter 2. Literature Review

 11

problems. They made computational experiments with 18 standard test

problems and found optimal solutions for 13 of these problems.

Løkketangen and Glover (1997) presented a tabu search heuristic for solving

general zero-one mixed-integer programming problems. They made

experiments with 57 standard test problems and found optimal solutions for

54 of these problems.

Hanafi and Freville (1997) presented an efficient tabu search approach for

the 0-1 MDKP, a heuristic algorithm strongly related to the work of Glover

and Kochenberger (1996). They described a new approach to tabu search

based on strategic oscillation and surrogate constraint information that

provides a balance between intensification and diversification strategies.

New rules needed to control the oscillation process were given for the 0-1

MDKP. They tested their approach on 54 instances from Freville and Plateau

(1986) and 24 instances from Glover and Kochenberger(1996). Optimal

solutions were obtained for the first set of problems and better results than

Glover and Kochenberger (1996) were reported for the second set.

Khuri, Bäck, and Heitkötter (1994) presented a genetic algorithm to solve

the 0-1 MDKP. In their algorithm, infeasible solutions were allowed to

participate in the search and a simple fitness function that uses a graded

penalty term was used. They applied their algorithm on 9 test problems taken

from the literature and reported moderate results. The problem sizes ranged

from 15 objects to 105 and from 2 to 30 knapsacks.

Thiel and Voss (1994) suggested an algorithm for the 0-1 MDKP by

combining a genetic algorithm implementation with tabu search. They tested

their heuristic on a set of standard test problems, but the results were not

Chapter 2. Literature Review

 12

computationally competitive with the results obtained using other heuristic

methods.

Hoff, Løkketangen, and Mittet (1996) presented a genetic algorithm for the

0-1 MDKP in which only feasible solutions were allowed. They found

optimal solutions for 56 of the 57 test instances from the literature. They also

applied their algorithm on 9 test instances used by Khuri, Bäck and

Heitkötter (1994) and obtained better results for all of them. They also

compared their results to those obtained by Thiel and Voss (1993). When

compared to their pure genetic algorithm approach, they got better results for

44 of the 57 instances. With the genetic algorithm-tabu search approach of

Thiel and Voss (1993), they got slightly better average results than Hoff,

Løkketangen, and Mittet. One reason for this is that genetic algorithms have

a problem on focusing on some types of local optima, but these are for these

cases easily found by the tabu search component.

Chu and Beasley (1998) presented a heuristic based upon genetic algorithms

for solving the 0-1 MDKP. It appears to be the most successful genetic

algorithm to date for the 0-1 MDKP. In their heuristic, a heuristic operator

which utilises problem-specific knowledge is incorporated into the standard

genetic algorithm approach.

They initially tested the heuristic on 55 standard test problems and showed

that it finds the optimal solution for all of them. However, these problems

were solved in very short computing times using CPLEX, and Chu and

Beasley generated a set of large 0-1 MDKP instances using the procedure

suggested by Freville and Plateau (1994). These data contained randomly

generated 0-1 MDKP 's with different numbers of constraints (m = 5, 10,

30), variables (n = 100, 250, 500), and different tightness ratios (α = 0.25,

0.5, 0.75). The coefficients cj were correlated to aij making the problems in

Chapter 2. Literature Review

 13

general more difficult to solve than uncorrelated problems, see (Gavish and

Pirkul (1985), Pirkul (1987)). There were 10 problem instances for each

combination of m, n, and α, and 270 test problems in total.

Chu and Beasley solved 270 problems that they generated using both

CPLEX and their genetic algorithm heuristic. They solved 30 of these

problems to optimality using CPLEX and for the remaining 240 problems,

they terminated CPLEX whenever tree memory exceeds 42 Mb or after 1800

CPU seconds. The quality of the solutions generated were measured by the

percentage gap between the best solution value found and the optimal value

of the LP relaxation(100 * (optimal LP value-best solution value)/(optimal

LP value)). The average percentage gap (over all 270 test problems) was

much lower for their heuristic (0.54%) than for CPLEX (3.14%).

They also compared the performance of their heuristic with the heuristic of

Magazine and Oguz (1984), the heuristic of Volgenant and Zoon (1990) and

the heuristic of Pirkul (1987) on the newly generated problems and reported

that their heuristic was superior over these heuristic methods in terms of the

solution quality. However, in terms of computation time, their heuristic

required much more computation time than that required by the other

heuristics.

Günther R. Raidl (1998) improved a genetic algorithm for solving the 0–1

MDKP by introducing a pre-optimized initial population, a repair and a local

improvement operator. These new techniques were based on the solution of

the linear programming relaxation of the 0-1 MDKP. The pre-optimization

of the initial population and the repair and local improvement operators all

contained random elements for retaining population diversity. The algorithm

was tested on standard large-sized test data proposed by Chu and Beasley

(1998) and compared to the genetic algorithm from Chu and Beasley (1998).

Chapter 2. Literature Review

 14

They showed that most of the time the new genetic algorithm converged

much faster to better solutions, especially for large problems.

Barake, Chardaire and McKeown (2001) presented the application of a new

technique that they have proposed, known as PROBE(Population Reinforced

Optimization Based Exploration), to the 0-1 MDKP. PROBE is a population

based metaheuristic that directs optimization algorithms towards good

regions of the search space using some ideas from genetic algorithms. They

tested their algorithm on the 270 test problems generated by Chu and

Beasley (1998). They showed that for problems with a small number of

constraints and variables the genetic algorithm of Chu and Beasley was

slightly better than PROBE in terms of solution quality. For problems with a

large number of constraints, PROBE gave slightly better solutions than the

genetic algorithm but the PROBE computing times were slightly larger than

the genetic algorithm computing times on average.

Osorio, Hammer and Glover (2000) used surrogate analysis and constraint

pairing for solving the 0-1 MDKP to fix some variables to zero and to

separate the rest into two groups, those that tend to be zero and those that

tend to be one, in an optimal integer solution. They generated logic cuts

based on their analysis using an initial feasible integer solution, before

solving the problem with branch and bound.

In order to test the efficiency of the logic cuts generated, they presented two

experiments and solved the problems using CPLEX v6.5.2 both with and

without the addition of their procedure. For the first experiment, they used

270 large-sized test problems from the OR-library, and for the second one,

they generated a new set of test problems which are harder.

Chapter 2. Literature Review

 15

They reported that in the first experiment, the average objective value for the

genetic algorithm(Chu and Beasley(1998)) was 120153.1, for CPLEX,

120162.5 and for their procedure, 120167.2. Their procedure was able to

solve 100 problems to optimality, while CPLEX alone could solve only 95

and in the rest of the problems, CPLEX usually terminated because the tree

size memory (250 Mb) was exceeded. Their procedure kept the tree size

memory within the limits for a larger number of instances and finished

because the time limit (10800 sec) was reached.

For the second experiment, they generated problems with 5 constraints and

100, 250 and 500 variables, and examined tightness values of 0.25, 0.5 and

0.75. They showed that CPLEX performed much better on average with the

addition of their procedure and problems were solved by constructing

smaller search trees.

Vasquez and Hao (2001) presented a hybrid approach for the 0–1 MDKP.

The proposed approach combines linear programming and tabu search. They

tested their approach on the 56 test problems from OR-library for which n

varies from 6 to 105 and m from 2 to 30. They showed that their approach

finds the optimal value in an average time of 1 second. They also tested their

approach on the 90 largest test problems (n = 500) of OR-library . They

compared the best results they obtained for these problems to those obtained

by Chu and Beasley (1998), by Osorio, Hammer and Glover (2000) and by

the MIP solver CPLEX v6.5.2 alone. They reported that their approach

outperforms all the other algorithms except for the instances m = 5 and α =

0.75 (10 problems).

Gabrel and Minoux (2002) described a constraint-generation procedure for

systematically building strengthened formulations for the 0-1 MDKP, which

Chapter 2. Literature Review

 16

is based on a new scheme for exact separation of extended cover inequalities

for knapsack constraints.

In order to check the relevance of the separation scheme, they made

experiments on a series of 80 randomly generated instances of sizes n = 120

and m = 30, 60, 90; n = 150 and m = 30, 75, 100; n = 180 and m = 40, 60.

They also used instances(with 100 variables, 5 and 10 constraints) from the

OR-library defined by Chu and Beasley (1998) .

In a majority of the test problems solved, the computing times obtained by

the standard branch and bound procedure of CPLEX applied to the

strengthened formulation (without automatic cover inequality generation)

were improved over the time taken by CPLEX in MIP mode with automatic

cover inequality generation. In addition, they showed that the fraction of

total computing time taken by the constraint generation procedure was on

average, less than 5% of total computation time. They also tried to

strengthen the extended cover inequalities generated by constraint-

generation procedure by sequential lifting and reported that 97% of the

inequalities could not be further strengthened.

C h a p t e r 3

The Partitioning Algorithm

In this chapter, firstly the search based cuts are described and the integrality

gap is defined. Then, the search and cut algorithm is introduced and how to

partition a problem for generating a sub-problem is explained. The

partitioning algorithm and an application of this algorithm to a small

example are presented. Finally, the computational results of the application

of partitioning algorithm on multidimensional 0-1 knapsack problems are

given and the one step partitioning algorithm is explained.

3.1 Description of the Search Based Cuts

Consider the following 0-1 integer programming problem:
 n

maximize ∑ cj xj , (1)
 j=1

 n

subject to ∑ aij xj ≤ bi , i = 1, . . . , m, (2)
 j=1

 xj Є {0, 1}, j = 1, . . . , n. (3)

Let X* = (x1*, x2*, . . . ,xn*) denote a solution to the linear programming

relaxation of this problem. We generate Xint = (x1', x2', . . . ,xn') as our

candidate solution by the following: xj' = 1 if xj* ≥ 0.5, xj' = 0 if xj* < 0.5. *

* The cuts and algorithms described in this chapter are from Oguz, 2002, "Search and Cut:
New Class of Cutting Planes for 0-1 Programming".

Chapter 3. The Partitioning Algorithm

 18

The following equality ∑ xj' + ∑ (1 - xj') = n holds for S1 = { j | xj' = 1}
 jЄS1 jЄS2

and S2 = { j | xj' = 0}.

The candidate solution (Xint) to our problem can be feasible or infeasible.

Suppose that it is infeasible and there exists a feasible solution which is

represented by X = (x1, x2, . . . ,xn) to the same problem, then

∑ xj + ∑ (1 - xj) ≤ n - 1 (4)
 jЄS1 jЄS2

must hold, because at least one xj must be different than xj' for j Є S1 U S2.

Now, consider carrying out a one dimensional search on the vector Xint. That

is, if xi' is equal to 1, we will change its value to zero while keeping all the

other components of the vector Xint at their current values and then check the

resulting vector for feasibility. If xi' is equal to 0, we will change its value to

one and check the resulting vector for feasibility. If we repeat this process

for i = 1, 2, . . . , n; either we can find one or several feasible solutions or we

can't find any. If we find a feasible solution we can compare the objective

value associated with this solution with the maximum objective value found

so far and keep a record of the best solution encountered. After completing

one dimensional search we can reduce the right hand side constant of the

inequality (4) to n - 2.

If t dimensional searches have been done for t = 1, . . . ,k, in the same way

described above, then the inequality given in (4) is a valid inequality for the

problem given in (1)-(3) with the right hand side value of n - k - 1.

 n

The difference δ = n - ∑ max [xj*, (1 - xj*)] is called the integrality gap
 j=1

Chapter 3. The Partitioning Algorithm

 19

associated with the vector X*. If X* is integer, then the integrality gap is

zero, taking its smallest possible value. If all xj* = 1/2, j = 1, . . . , n, then the

integrality gap is at its largest possible value, n/2. For a valid inequality

resulting from a search with depth k to be a cut, we must have k ≥ δ .

Now, we can give an algorithm based on the search based cuts described

above.

The Search and Cut Algorithm

1. Set the value of the incumbent solution zinc to -∞.

2. Solve the LP relaxation of the problem given in (1)-(3) plus any cuts

generated so far. Stop if the problem is infeasible, or the objective function

value is less than zinc +1, concluding that the solution vector associated with

zinc is optimal. Otherwise go to 3.

3. Compute the value of the integrality gap (δ) and set k ≥ δ .

4. Carry out t dimensional searches on the vector Xint for t = 1, ... k. If a

feasible solution is found, compare the objective value associated with this

solution with zinc. If it is larger than zinc, then set zinc equal to this new value.

5. Append a new cut as ∑ xj + ∑ (1 - xj) ≤ n - k - 1, and go to 2.
 jЄS1 jЄS2

3.2 Partitioning the Problem

Since it depends on enumerative search to generate a cut, the efficiency of

the search and cut algorithm will decrease as the value of integrality gap (δ)

gets larger. For this reason, if integrality gap is large, we suggest to partition

the problem into smaller sub-problems instead of doing enumerative search

to generate a cut.

Chapter 3. The Partitioning Algorithm

 20

Suppose that we have a subset of T of the components of the vector X* such

that:

T C N = {1, 2, . . . ,n}, and |T| - ∑ max [xj*, (1 - xj*)] < 1
 jЄT

Then if,

maximize ∑ cj xj , (5)
 jЄN\T

subject to ∑ aij xj ≤ bi - ∑ aij xj' , i = 1, . . . , m, (6)
 jЄN\T jЄT

 xj Є {0, 1}, j Є N \ T (7)

has no solution , the following inequality is valid for the solution set of our

problem:

∑ xj + ∑ (1 - xj) ≤ |T| - 1
 jЄT∩S1 jЄT∩S2

Again, it is possible to improve the quality of this cut by carrying out one

dimensional search on the components of Xint in the set T.

Algorithm to obtain T:

1. Order xj* with increasing max [xj*, (1 - xj*)] values so that

|xj(i)* - 1/2| ≤ |xj(i+1)* - 1/2|. Set Q = { }. (The subscript j(i) means that the jth

component is in the ith position in the ordering.)

2. Set k = 1.

 n

3. If n - ∑ max [xj(i)*, (1 - xj(i)*)] ≥ 1 is true,
 i=k+1

set Q = Q U {j(k)}, k = k + 1, n = n - 1 and repeat 3. Otherwise go to 4.

Chapter 3. The Partitioning Algorithm

 21

4. Set T = N \ Q and stop.

The Partitioning Algorithm

Let's call the problem defined by the equations (5)-(7) P(T0) and the set T on

which P(T0) is based T0. P(T0) is our initial sub-problem. This sub-problem

may still have a large number of variables. Therefore, instead of solving it

with the search and cut algorithm, we suggest to solve this problem with the

aid of new cuts we are proposing.

First, we solve the LP relaxation of P(T0), find the candidate solution vector

and the integrality gap (δ) associated with this vector. Then, we apply the

above algorithm to obtain T1 and P(T1). We have,

T1 C N \ T0 and |T1| - ∑ max [xj*, (1 - xj*)] < 1.
 jЄT1

And P(T1) is defined as,

maximize ∑ cj xj ,
 jЄN\T0UT1

subject to ∑ aij xj ≤ bi - ∑ aij xj' , i = 1, . . . , m,
 jЄN\T0UT1 jЄT0UT1

 xj Є {0, 1}, j Є N \ T0 U T1

Then, we solve P(T1),and when either it is found infeasible or an optimal

solution to it is found, we add a cut to P(T0). This cut will be

∑ xj + ∑ (1 - xj) ≤ |T1| - 1
 jЄT1∩S1 jЄT1∩S2

If P(T1) has a large number of variables, instead of solving it directly, we

can repartition it to P(T2) and attempt to solve P(T2) in order to add a cut to

P(T1).

Chapter 3. The Partitioning Algorithm

 22

Now, suppose that we have used partitioning until we reached P(Ti) and we

are able to solve it easily because it doesn't have a lot of variables. After

solving P(Ti) we will go back to P(Ti-1) and add a new cut to it. Then, we

will solve the LP relaxation of P(Ti-1) plus the cuts added so far and redefine

P(Ti) using the solution of the LP relaxation of the new P(Ti-1). This process

continues until P(Ti-1) is solved and a cut is generated for P(Ti-2). When

either an optimal solution is found to P(Ti-2) or it is declared infeasible, we

will append a cut to P(Ti-3) and continue to move back and forth recursively

until P(T0) is solved by the aid of new cuts generated. After P(T0) is solved,

we will add a new cut to our original problem, solve its LP relaxation and

generate a new candidate solution. Then, we will redefine T0 and start

partitioning again to solve P(T0). After P(T0) is resolved, we will append one

more cut to our original problem. The algorithm stops when sufficient cuts

are added to solve the original problem.

3.3 An example

Consider the following 0-1 MDKP,

maximize 167 x1 + 207 x2 + 48 x3 + 142 x4 + 112 x5

subject to 121 x1 + 46 x2 + 17 x3 + 91 x4 + 85 x5 ≤ 72

 31 x1 + 330 x2 + 8 x3 + 77 x4 + 22 x5 ≤ 93

xj Є {0, 1}, j = 1, . . . , 5

The LP relaxation of this problem has the solution: (0.369832, 0.222834, 1,

0, 0) with the objective value, 155.8885. The candidate integer solution

associated with this vector is (0, 0, 1, 0, 0). This solution is feasible and

becomes the first incumbent solution with Zinc
1 = 48. The integrality gap (δ)

is 0.5926657. Since δ <1, we add the following cut to the problem:

- x1 - x2 + x3 - x4 - x5 ≤ 0

Chapter 3. The Partitioning Algorithm

 23

When we resolve the LP relaxation of our original problem together with the

new cut we added, the solution is (0, 0.224820, 0.791843, 0, 0.567023) with

the objective value, 148.0528. The candidate integer solution vector is (0, 0,

1, 0, 1) which is infeasible. The integrality gap associated with the solution

is 0.8659547 and we append one more cut to the original problem:

- x1 - x2 + x3 - x4 + x5 ≤ 1

Now our problem becomes,

maximize 167 x1 + 207 x2 + 48 x3 + 142 x4 + 112 x5

subject to 121 x1 + 46 x2 + 17 x3 + 91 x4 + 85 x5 ≤ 72

 31 x1 + 330 x2 + 8 x3 + 77 x4 + 22 x5 ≤ 93

 - x1 - x2 + x3 - x4 - x5 ≤ 0

 - x1 - x2 + x3 - x4 + x5 ≤ 1

xj Є {0, 1}, j = 1, . . . , 5.

The solution to the LP relaxation of the above problem is (0.049426,

0.225066, 0.774492, 0, 0.5) with the objective value, 148.0185 and the

candidate solution vector, (0, 0, 1, 0, 1) which is infeasible. The integrality

gap associated with the solution to the LP relaxation is 1 and we partition the

problem with T0 = 1, 4; fixing x1 =0, x4 = 0.

We define P(T0) as,

maximize 207 x2 + 48 x3 + 112 x5

subject to 46 x2 + 17 x3 + 85 x5 ≤ 72

 330 x2 + 8 x3 + 22 x5 ≤ 93

 - x2 + x3 - x5 ≤ 0

 - x2 + x3 + x5 ≤ 1

xj Є {0, 1}, j = 2, 3, 5.

Chapter 3. The Partitioning Algorithm

 24

and solve the LP relaxation. The solution is (0.226676, 0.627862, 0.598815).

The candidate solution for this sub-problem is (0, 1, 1) and it is infeasible.

Since the integrality gap is 1, we repartition the problem with T1 = 2, fixing

x2 = 0.

Now, P(T1) is,

maximize 48 x3 + 112 x5

subject to 17 x3 + 85 x5 ≤ 72

 8 x3 + 22 x5 ≤ 93

 x3 - x5 ≤ 0

 x3 + x5 ≤ 1

 xj Є {0, 1}, j = 3, 5.

The solution to the LP relaxation of the above problem is (0.191176 ,

0.808824). The candidate solution is (0, 1) which is infeasible. The

integrality gap is 0.3823529 and we add the following cut to P(T1):

- x3 + x5 ≤ 0

At this point P(T1) becomes,

maximize 48 x3 + 112 x5

subject to 17 x3 + 85 x5 ≤ 72

 8 x3 + 22 x5 ≤ 93

 x3 - x5 ≤ 0

 x3 + x5 ≤ 1

 - x3 + x5 ≤ 0

 xj Є {0, 1}, j = 3, 5.

The solution to the LP relaxation of the above problem is (0.5, 0.5) with the

associated candidate solution (1, 1) which is infeasible. Since the integrality

Chapter 3. The Partitioning Algorithm

 25

gap associated with the solution to the LP relaxation is 1, we repartition the

problem with T2 =3, fixing x3 = 1.

Now, P(T2) is defined as,

maximize 112 x5

subject to 85 x5 ≤ 55

 22 x5 ≤ 85

 x5 ≥ 1

 x5 ≤ 0

x5 Є {0, 1}.

Since the above problem is infeasible, we add x3 ≤ 0 to P(T1).

The solution to the LP relaxation of the new P(T1) is (0, 0). Since the

solution is integer with objective value equal to 0, we add the cut x2 ≥ 1 to

P(T0).

The new P(T0) is infeasible, so we add the cut x1 + x4 ≥ 1 to the original

problem.

Now our original problem becomes,

maximize 167 x1 + 207 x2 + 48 x3 + 142 x4 + 112 x5

subject to 121 x1 + 46 x2 + 17 x3 + 91 x4 + 85 x5 ≤ 72

 31 x1 + 330 x2 + 8 x3 + 77 x4 + 22 x5 ≤ 93

- x1 - x2 + x3 - x4 - x5 ≤ 0

- x1 - x2 + x3 - x4 + x5 ≤ 1

 x1 + x4 ≥ 1

 xj Є {0, 1}, j = 1, . . . , 5.

The above problem is infeasible, therefore we conclude that Zinc
1

 = 48 is

optimal.

Chapter 3. The Partitioning Algorithm

 26

3.4 Computational Experimentation Results

In order to check the efficiency of the partitioning algorithm, we have

designed 3 computational experiments; the first experiment involved the

application of the algorithm to small-sized test problems from the literature,

the second experiment involved the application of the algorithm to randomly

generated 0-1 MDKP with different numbers of variables (n) and different

numbers of constraints (m) and finding out the largest values of n and m for

which the algorithm could solve problems to optimality, and the third

experiment involved the application of the algorithm to large-sized test

problems from the literature.

For the first experiment, we have chosen 30 small-sized test problems (Shih

(1979)) from the literature which have been used in the computational

experimentations of almost all of the algorithms designed for solving the 0-1

MDKP. We were able to solve all of these problems to optimality using the

partitioning algorithm, coded in C language. Our computational results

regarding these problems are shown in the table below,

Chapter 3. The Partitioning Algorithm

 27

Table 3-4: Computational results for standard test problems (Shih (1979))

Problem name # of var. # of cons. optimal solution
value iteration time(s)

weish01 30 5 4554 250 1.78
weish02 30 5 4536 144 1.15
weish03 30 5 4115 90 0.64
weish04 30 5 4561 15 0.1
weish05 30 5 4514 6 0.06
weish06 40 5 5557 142 1.28
weish07 40 5 5567 121 1.03
weish08 40 5 5605 103 0.92
weish09 40 5 5246 6 0.04
weish10 50 5 6339 824 9.16
weish11 50 5 5643 209 2.04
weish12 50 5 6339 190 1.77
weish13 50 5 6159 315 3.44
weish14 60 5 6954 317 3.04
weish15 60 5 7486 76 0.75
weish16 60 5 7289 76 0.75
weish17 60 5 8633 94 0.97
weish18 70 5 9580 173 1.8
weish19 70 5 7698 318 3.74
weish20 70 5 9450 129 1.28
weish21 70 5 9074 98 1.19
weish22 80 5 8947 241 2.67
weish23 80 5 8344 252 2.91
weish24 80 5 10220 87 0.97
weish25 80 5 9939 150 1.61
weish26 90 5 9584 483 6.77
weish27 90 5 9819 28 0.28
weish28 90 5 9492 65 0.7
weish29 90 5 9410 40 0.48
weish30 90 5 11191 10 0.09

 average 130 0.94

Chapter 3. The Partitioning Algorithm

 28

For the second experiment we randomly generated 0-1 MDKP as follows:

 Each coefficient of the constraint matrix aij (i = 1, . . . , m and j = 1, .

. . , n) and each coefficient of the objective function cj (j = 1, . . . , n)

is an integer randomly chosen between 1 and 1000.

 The right-hand side coefficients (bi ’s) are generated using

 n
bi = 0.5 ∑ aij

 j=1

We made experiments for different values of m and n and found out that if

we set m at 5, the largest value of n was 90 for which the algorithm could

solve problems to optimality, this value was 40 if we set m at 10 and 25 if

we set m at 20. The reason for this is that we limited our algorithm to

partitioning the original problem at most 10 times, that is if the first sub-

problem is P(T0), then the algorithm stops when it reaches P(T10) (see

section 3.2), due to computational and programming difficulties and to solve

larger problems requires using the partitioning procedure more than 10

times.

Note that, the largest values of m and n for which the algorithm solves

problems to optimality will be different if one generates easier or harder

problems than the ones we generated using the procedure described above.

Since the easiest large-sized test problems in the literature are harder than

the problems we generated, we conclude that with its current design the

partitioning algorithm is not an efficient algorithm to solve large-sized 0-1

MDKP. Therefore, we tried to modify it in such a way that it does not

require to use the partitioning procedure a large number of times to solve a

Chapter 3. The Partitioning Algorithm

 29

problem. For this purpose, we chose to take advantage of the IP solver of

CPLEX to solve sub-problems. Our computational experiments with larger

problems showed us that this may be an efficient way to solve large-sized 0-

1 MDKP. As it can be seen in the Chapter 5, by this way we are able to find

better quality solutions than CPLEX to 0-1 MDKP with large number of

variables and few constraints.

The description of the modified partitioning algorithm is given in the next

section.

3.5 One Step Partitioning Algorithm

Consider the following 0-1 integer programming problem:

 n

maximize ∑ cj xj ,
 j=1

 n

subject to ∑ aij xj ≤ bi , i = 1, . . . , m,
 j=1
 xj Є {0, 1}, j = 1, . . . , n.

1. solve the LP relaxation of the above problem plus any cuts generated so

far. Let X* = (x1*, x2*, . . . ,xn*) denote the solution to the LP relaxation.

Stop, if either the problem is infeasible or the objective function value

for X* is less than the best feasible integer solution value found so far

(Zinc) plus one, declaring Zinc as optimal.

2. generate Xint = (x1', x2', . . . ,xn') as candidate solution by the following:

xj' = 1 if xj* ≥ 0.5, xj' = 0 if xj* < 0.5.

Chapter 3. The Partitioning Algorithm

 30

Check if this solution is feasible and update the incumbent solution if it is

feasible and the objective function value associated with it is greater than

Zinc.

3. calculate the value of the integrality gap associated with the solution to the

LP relaxation as follows:
 n

δ = n - ∑ max [xj*, (1 - xj*)]
 j=1

3.a. If the value of the integrality gap (δ) is less than 1, add the following

cut to the problem:

∑ xj + ∑ (1 - xj) ≤ n - 1
 jЄS1 jЄS2

where S1 = { j | xj' = 1} and S2 = { j | xj' = 0}.

 Go to 1.

3.b. If the value of the integrality gap (δ) is greater than 1,

3.b.1. partition the problem with T defined as:

 T C N = {1, 2, . . . ,n}, and j Є T if max [xj*, (1 - xj*)] = 1, j = 1, . . .,n,

and solve the associated problem P(T):

maximize ∑ cj xj ,
 jЄN\T

subject to ∑ aij xj ≤ bi - ∑ aij xj' , i = 1, . . . , m,
 jЄN\T jЄT

 xj Є {0, 1}, j Є N \ T

by CPLEX v8.1 in MIP mode.

Chapter 3. The Partitioning Algorithm

 31

3.b.2. check the candidate solution for feasibility and if it is feasible

and the objective function value associated with it is greater than Zinc,

update the incumbent solution.

3.b.3. append a new cut to the original problem as,

∑ xj + ∑ (1 - xj) ≤ |T| - 1
 jЄT∩S1 jЄT∩S2

where S1 = { j | xj' = 1} and S2 = { j | xj' = 0}.

Go to 1.

As the number of iterations increases, the computational time increases

rapidly at each iteration because the number of constraints increases and the

sub-problems get larger. Since we use the IP solver of CPLEX to solve sub-

problems, the computational time of the algorithm rapidly increases as the

sub-problems get larger.

 32

C h a p t e r 4

Computational Analysis of the Search Based

Cuts

4.1 Computational Analysis of the Search Based Cuts Applied

to the 0-1 MDKP

We used the multidimensional 0-1 knapsack problems generated by Chu and

Beasley (1998) for the computational analysis of the search based cuts. We

made two experiments. In the first experiment, we fixed the number of

constraints and for different numbers of variables we calculated the absolute

reduction in the objective value per cut after 100 cuts (generated by the one

step partitioning algorithm) are added to the original problem. We used 10

problems for each combination of m and n, while m is the number of

constraints and n is the number of variables. The results for the first

experiment are as follows:

Chapter 4. Computational Analysis of the Search Based Cuts

 33

Table 4-1a: Computational results for m=5, α=0.5 and n=100 OR-library instances (see [6])

pb z(1) z(2) |z(1)-z(2)| / 100
Mkpcb1-11 42939.52 42830.36 1.0916
Mkpcb1-12 42706.7 42613.85 0.9285
Mkpcb1-13 42165.19 42095.35 0.6984
Mkpcb1-14 45347.07 45234.88 1.1219
Mkpcb1-15 42434.12 42328.64 1.0548
Mkpcb1-16 43082.23 42988.35 0.9388
Mkpcb1-17 42190.6 42069.72 1.2088
Mkpcb1-18 45265.47 45171.75 0.9372
Mkpcb1-19 43567.49 43507.01 0.6048
Mkpcb1-20 44796.63 44680.97 1.1566

 average 0.97414

Table 4-1b: Computational results for m=5, α=0.5 and n=250 OR-library instances (see [6])

pb z(1) z(2) |z(1)-z(2)| / 100
mkpcb2-11 109220.6 109186.6 0.340
mkpcb2-12 109960.3 109917.4 0.429
mkpcb2-13 108648.8 108607.1 0.417
mkpcb2-14 109510.8 109472.7 0.381
mkpcb2-15 110834.2 110805.7 0.285
mkpcb2-16 110366.8 110336.1 0.307
mkpcb2-17 109152.6 109126 0.266
mkpcb2-18 109137.7 109113.1 0.246
mkpcb2-19 110123.1 110075.3 0.478
mkpcb2-20 107162.1 107136 0.261

 average 0.341

Chapter 4. Computational Analysis of the Search Based Cuts

 34

Table 4-1c: Computational results for m=5, α=0.5 and n=500 OR-library instances (see [6])

pb z(1) z(2) |z(1)-z(2)| / 100
mkpcb3-11 218500.1 218483.1 0.170
mkpcb3-12 221272.4 221253.3 0.191
mkpcb3-13 217615.8 217600.9 0.149
mkpcb3-14 223653.2 223634.9 0.183
mkpcb3-15 219067.5 219042.9 0.246
mkpcb3-16 220617 220602.2 0.148
mkpcb3-17 220076.5 220054.4 0.221
mkpcb3-18 218282.7 218266.5 0.162
mkpcb3-19 217059.9 217043.3 0.166
mkpcb3-20 219812.8 219793.6 0.192

 average 0.1828

The first column of the tables above shows the problem name, in the second

column the objective value for the LP relaxation of the original problem

(z(1)) is given for each problem, z(2) is the objective value for the LP

relaxation of the original problem plus 100 cuts generated by the one step

partitioning algorithm and finally |z(1)- z(2)| /100 (absolute change in the

objective value per cut) is given in column 4.

As seen from the tables above we fixed m at 5 and made computational

experiments for n = 100, 250, 500. The average value of the absolute

reduction in the objective value per cut after 100 cuts are added is 0.97414

for n = 100, 0.341 for n = 250 and 0.1828 for n = 500. These results are

shown in the table and depicted in the graph below,

Chapter 4. Computational Analysis of the Search Based Cuts

 35

Table 4-1d: Average value of absolute reduction in objective value per cut for m=5, α=0.5

n |z(1)- z(2)| / 100
100 0.97414
250 0.341
500 0.1828

Figure 4-1a: Absolute reduction in the objective value per cut as n increases

As it can be seen from the table, the absolute reduction in the objective value

per cut after 100 cuts are added decreases as the number of variables

increases. That is, the effectiveness of the search based cuts decrease as the

number of variables increases.

In the second experiment, we fixed the number of variables and for different

numbers of constraints we calculated the absolute reduction in the objective

value per cut after 100 cuts (generated by the one step partitioning

algorithm) are added to the original problem. We used 10 problems for each

Chapter 4. Computational Analysis of the Search Based Cuts

 36

combination of m and n, while m is the number of constraints and n is the

number of variables. The results for the second experiment are as follows:

Table 4-1e: Computational results for n=100, α=0.5 and m=5 OR-library instances (see [6])

pb z(1) z(2) |z(1)-z(2)| / 100
mkpcb1-11 42939.52 42830.36 1.0916
mkpcb1-12 42706.70 42613.85 0.9285
mkpcb1-13 42165.19 42095.35 0.6984
mkpcb1-14 45347.07 45234.88 1.1219
mkpcb1-15 42434.12 42328.64 1.0548
mkpcb1-16 43082.23 42988.35 0.9388
mkpcb1-17 42190.6 42069.72 1.2088
mkpcb1-18 45265.47 45171.75 0.9372
mkpcb1-19 43567.49 43507.01 0.6048
mkpcb1-20 44796.63 44680.97 1.1566

 average 0.97414

Table 4-1f: Computational results for n=100, α=0.5 and m=10 OR-library instances (see [6])

pb z(1) z(2) |z(1)-z(2)| / 100
mkpcb4-11 41712.64 41622.68 0.8996
mkpcb4-12 42597.32 42504.68 0.9264
mkpcb4-13 42759.32 42643.13 1.1619
mkpcb4-14 45959.36 45862.18 0.9718
mkpcb4-15 42183.12 42076.02 1.0710
mkpcb4-16 43377.96 43265.22 1.1274
mkpcb4-17 43927.94 43820.5 1.0744
mkpcb4-18 43335.83 43220.3 1.1553
mkpcb4-19 42611.6 42494.93 1.1667
mkpcb4-20 41542.79 41433.04 1.0975

 average 1.0652

Chapter 4. Computational Analysis of the Search Based Cuts

 37

Table 4-1g: Computational results for n=100,α=0.5 and m=30 OR-library instances (see [6])

pb z(1) z(2) |z(1)-z(2)| / 100
mkpcb7-11 41276.36 41173.16 1.0320
mkpcb7-12 41866.73 41740.82 1.2591
mkpcb7-13 42232.96 42124.72 1.0824
mkpcb7-14 41634.88 41510.52 1.2436
mkpcb7-15 41410.88 41323.66 0.8722
mkpcb7-16 41603.16 41468.19 1.3497
mkpcb7-17 41616.13 41500.70 1.1543
mkpcb7-18 43388.05 43207.30 1.8075
mkpcb7-19 42656.56 42533.10 1.2346
mkpcb7-20 42262.70 42105.70 1.5700

 average 1.26054

As seen from the tables above we fixed n at 100 and made computational

experiments for m = 5, 10, 30. The average value of the absolute reduction in

the objective value per cut after 100 cuts are added is 0.97414 for m = 5,

1.0652 for m = 10 and 1.26054 for m = 30. These results are shown in the

table and depicted in the graph below,

Table 4-1h: Average value of absolute reduction in objective value per cut for n=100, α=0.5

m |z(1)-z(2)| / 100
5 0.97414

10 1.0652
30 1.26054

Chapter 4. Computational Analysis of the Search Based Cuts

 38

Figure 4-1b: Absolute reduction in the objective value per cut as m increases

As it can be seen from the table, the absolute reduction in the objective value

per cut after 100 cuts are added increases as the number of constraints

increases. That is, the effectiveness of the search based cuts increase as the

number of constraints increases.

Chapter 4. Computational Analysis of the Search Based Cuts

 39

4.2 Computational Analysis of the Search Based Cuts Applied

to the Set Covering Problem

For the second part of the computational analysis of the search based cuts we

used another well known combinatorial optimization problem which is the

set covering problem. The set covering problem can be formulated as

follows:

 n

minimize ∑ cj xj ,
 j=1

 n

subject to ∑ aij xj ≥ 1 , i = 1, . . . , m,
 j=1

 xj Є {0, 1}, j = 1, . . . , n.

where aij Є {0, 1} for i = 1, . . . , m; j = 1, . . . , n; and cj > 0 for j = 1, . . .,n.

For our computational experiments, we randomly generated set covering

problems by the following:

 Each coefficient of the constraint matrix aij (i = 1, . . . , m and j = 1, . .

. ,n) is 1 with probability 0.5 and 0 with probability 0.5 .

 Each coefficient of the objective function cj (j = 1, . . . , n) is 1.

In order to analyze the effectiveness of the search based cuts, we made two

experiments. In the first experiment, we fixed the number of constraints and

for different numbers of variables we calculated the absolute increase in the

objective value per cut after 100 cuts (generated by the one step partitioning

algorithm) are added to the original problem. We used 5 problems for each

Chapter 4. Computational Analysis of the Search Based Cuts

 40

combination of m and n, and the results for the first experiment are as

follows:

Table 4-2a: Computational results for m=5 and n=100 set covering problems

pb z(1) z(2) |z(1)-z(2)| / 100
sc1 1.25 1.661876 0.004119
sc2 1.25 1.705390 0.004554
sc3 1.25 1.735886 0.004859
sc4 1.25 1.710705 0.004607
sc5 1.25 1.771835 0.005218

 average 0.004671

Table 4-2b: Computational results for m=5 and n=150 set covering problems

Pb z(1) z(2) |z(1)-z(2)| / 100
Sc6 1.25 1.580607 0.003306
Sc7 1.25 1.598384 0.003484
Sc8 1.25 1.597140 0.003471
Sc9 1.333333 1.538552 0.002052
Sc10 1.25 1.597115 0.003471

 average 0.003157

Table 4-2c: Computational results for m=5 and n=200 set covering problems

Pb z(1) z(2) |z(1)-z(2)| / 100
Sc11 1.25 1.532358 0.002824
sc12 1.25 1.518742 0.002687
sc13 1.25 1.498249 0.002482
sc14 1.25 1.504127 0.002541
sc15 1.25 1.537601 0.002876

 average 0.002682

Chapter 4. Computational Analysis of the Search Based Cuts

 41

The first column of the tables above shows the problem name, in the second

column the objective value for the LP relaxation of the original problem

(z(1)) is given for each problem, z(2) is the objective value for the LP

relaxation of the original problem plus 100 cuts generated by the one step

partitioning algorithm and finally |z(1)- z(2)| /100 (absolute change in the

objective value per cut) is given in column 4.

As seen from the tables above we fixed m at 5 and made computational

experiments for n = 100, 150, 200. The average value of the absolute

increase in the objective value per cut after 100 cuts are added is 0.004671

for n = 100, 0.003157 for n = 150 and 0.002682 for n = 200. These results

are shown in the table and depicted in the graph below,

Table 4-2d: Average value of absolute increase in the objective value per cut for m=5

n |z(1)- z(2)| / 100
100 0.004671
150 0.003157
200 0.002682

Chapter 4. Computational Analysis of the Search Based Cuts

 42

Figure 4-2: Absolute increase in the objective value per cut as n increases

As it can be seen from the table, the absolute increase in the objective value

per cut after 100 cuts are added decreases as the number of variables

increases. That is, the effectiveness of the search based cuts decreases as the

number of variables increases as in the case of the 0-1 MDKP.

In the second experiment, we fixed the number of variables and for different

numbers of constraints we calculated the absolute increase in the objective

value per cut after 100 cuts (generated by the one step partitioning

algorithm) are added to the original problem. We used 5 problems for each

combination of m and n, and below are the results for the second experiment:

Chapter 4. Computational Analysis of the Search Based Cuts

 43

Table 4-2e: Computational results for n=100 and m=5 set covering problems

pb z(1) z(2) |z(1)-z(2)| / 100
sc1 1.25 1.661876 0.004119
sc2 1.25 1.705390 0.004554
sc3 1.25 1.735886 0.004859
sc4 1.25 1.710705 0.004607
sc5 1.25 1.771835 0.005218

 Average 0.004671

Table 4-2f: Computational results for n=100 and m=10 set covering problems

pb z(1) z(2) |z(1)-z(2)| /100
sc16 1.2 1.883667 0.006837
sc17 1.333333 1.889595 0.005563
sc18 1.25 1.764056 0.005141
sc19 1.2 1.821188 0.006212
sc20 1.285714 1.857548 0.005718

 Average 0.00589

As seen from the tables above, we fixed n at 100 and made computational

experiments for m = 5, 10. The average value of the absolute increase in the

objective value per cut after 100 cuts are added is 0.004671 for m = 5, and

0.00589 for m = 10. These results are shown in the table below,

Table 4-2g: Average value of absolute increase in the objective value per cut for n=100

m |z(1)-z(2)| / 100
5 0.004671

10 0.00589

Chapter 4. Computational Analysis of the Search Based Cuts

 44

As it can be seen from the table, the absolute increase in the objective value

per cut after 100 cuts are added increases as the number of constraints

increases. That is, the effectiveness of the search based cuts increases as the

number of constraints increases as in the case of the 0-1 MDKP.

C h a p t e r 5

Application of the Partitioning Algorithm to the

Multidimensional 0-1 Knapsack Problem

In order to check the efficiency of the partitioning algorithm, the one step

partitioning algorithm described in Section 3.5 and coded in C language was

applied to 60 randomly generated 0-1 MDKP and 30 large-sized 0-1 MDKP

from the literature (Chu and Beasley (1998)). The computational results

were compared with the implementation of CPLEX v8.1 in MIP mode and

the results reported by Chu and Beasley (1998).

5.1 Problem generation

We generated a set of large 0-1 MDKP instances using the procedure

suggested by Freville and Plateau (1994) and used by Chu and Beasley

(1998) to generate the standard test problems in OR-library. The number of

constraints m was set to 10 and the number of variables n was set to 1000

and 2000. We generated 30 problems for each m-n combination, giving a

total of 60 problems.

Each problem instance is randomly generated as follows:

 Each coefficient of the constraint matrix aij (i = 1, . . . , m and j = 1, .

. . , n) is an integer randomly chosen between 1 and 1000.

Chapter 5. Application of the Partitioning Algorithm to the 0-1 MDKP

 46

 The right-hand side coefficients (bi ’s) are found using

 n

 bi = α ∑ aij , where α is a tightness ratio and α = 0.25 for the first
 j=1

ten problems, α = 0.50 for the next ten problems and α = 0.75 for the

remaining ten problems.

 The objective function coefficients (cj ’s) are correlated to aij and

generated by:

 n

cj = ∑ aij /m + qj/2
 j=1

where qj is an integer randomly chosen between 1 and 1000. In

general, correlated problems are more difficult to solve than

uncorrelated problems (Gavish and Pirkul (1985), Pirkul (1987)).

5.2 Computational Results

The results obtained are shown on Tables 5-2a, 5-2b and 5-2c where, for

each problem instance, the following information is given:

 n and m: number of variables and number of constraints.

 α: tightness ratio.

 z(lp): optimal value of the LP relaxation of 0-1 MDKP.

 initial value (partitioning algorithm): first feasible integer solution

value found by one step partitioning algorithm.

 best value (partitioning algorithm): best feasible integer solution

value found by one step partitioning algorithm in 225 iterations.

Chapter 5. Application of the Partitioning Algorithm to the 0-1 MDKP

 47

 iter.: the number of iterations required by one step partitioning

algorithm to find the value in column 5.

 time (partitioning algorithm): computation time (in CPU seconds)

required by one step partitioning algorithm to find the value in

column 5.

 initial value (CPLEX): first feasible integer solution value found by

CPLEX v8.1 in MIP mode.

 best value (CPLEX): best feasible integer solution value found by

CPLEX v8.1 in MIP mode before memory tree size of 250 Mb is

exceeded.

 time (CPLEX): computation time (in CPU seconds) required by

CPLEX v8.1 in MIP mode until 250 Mb tree memory size is

exceeded.

Table 5-2a: Computational results for n=500 and m=10 OR-library instances (see [6])
Partition Algorithm CPLEX

Prob. name z(lp) initial best iter. time initial best time
mkpcb6-01 118019.5 117168 117779 72 9.6 116510 117712 603.98
mkpcb6-02 119437.3 118613 119165 172 135.2 118543 119158 650.96
mkpcb6-03 119405.7 118761 119194 210 443.87 118705 119211 532.23
mkpcb6-04 119066.1 118268 118813 156 82.35 118163 118813 631.62
mkpcb6-05 116698 115896 116509 188 171.01 115379 116423 557.77
mkpcb6-06 119710 118946 119463 188 197.7 118355 119448 577.63
mkpcb6-07 120033.3 119180 119777 168 114.77 118688 119777 576.10
mkpcb6-08 118545.7 117883 118323 128 63.12 117561 118266 611.74
mkpcb6-09 118001.6 117182 117776 170 85.31 116727 117779 561.42
mkpcb6-10 119440.6 118943 119163 160 80.45 118040 119191 613.79
mkpcb6-11 217552.9 217068 217341 190 336.27 216744 217312 633.38
mkpcb6-12 219255.2 218307 219030 164 255.73 218742 219027 536.46
mkpcb6-13 217987.8 217500 217792 146 57.75 216788 217792 537.22
mkpcb6-14 217040.7 216455 216851 154 75.83 215956 216851 678.05
mkpcb6-15 214010.3 212415 213830 200 229.71 213229 213827 590.07
mkpcb6-16 215261.3 214654 215041 224 260.1 214349 215034 582.36
mkpcb6-17 218109.2 217030 217899 194 307.45 217249 217875 622.92
mkpcb6-18 220175.6 219488 219984 102 27.49 218784 219965 606.38
mkpcb6-19 214561 213918 214329 212 449.42 213666 214312 508.71
mkpcb6-20 221083.6 220367 220852 204 186.4 219930 220846 596.21
mkpcb6-21 304555 304214 304334 156 70.76 303606 304344 582.11
mkpcb6-22 302553 301951 302333 176 49.2 302159 302326 461.06
mkpcb6-23 302581.5 300585 302416 82 12.65 302061 302386 581.82
mkpcb6-24 300956.7 300440 300747 128 56.9 300353 300719 455.72
mkpcb6-25 304584.7 303763 304349 196 371.82 303563 304346 548.79
mkpcb6-26 301952.5 301489 301767 148 81.18 301226 301742 537.43
mkpcb6-27 305139.7 304745 304949 128 29.1 304641 304949 538.1
mkpcb6-28 296636.6 296287 296441 158 50.21 296038 296441 551.31
mkpcb6-29 301547.6 301131 301326 164 211.01 300507 301353 606.75
mkpcb6-30 307250 306393 307072 218 138.5 306730 307038 564.21

 average 165 154.7 average 574.54

 49

Table 5-2b: Computational results for n=1000 and m=10 randomly generated instances
Partition Algorithm CPLEX

Pb α z(lp) initial
value best value iter. time initial

value
best
value time

1 0.75 611260.7 610733 611104 136 79.73 610458 611033 654.36
2 0.75 603299.3 602722 603116 222 292.13 602872 603104 610.09
3 0.75 610002.4 609457 609824 190 117.3 609194 609803 589.94
4 0.75 613492 613063 613346 194 531.78 612456 613298 622.37
5 0.75 607796.8 607015 607637 210 373.53 606953 607588 641.2
6 0.75 611377.4 610879 611220 122 39.68 610527 611187 708.7
7 0.75 610871.2 610309 610694 224 496.85 610311 610692 643.92
8 0.75 612942.5 611738 612775 220 205.07 612089 612775 720.16
9 0.75 609705.2 607772 609552 192 272.24 609332 609517 715.11

10 0.75 610033.3 609417 609848 180 163.5 609324 609841 727.14
11 0.5 440789.7 439405 440606 198 283.72 439700 440561 715.01
12 0.5 435590.5 434665 435395 186 197.47 434741 435369 721.07
13 0.5 438296.2 437666 438118 174 164.03 437306 438065 752.99
14 0.5 441503.3 440737 441309 174 308.3 440288 441279 709.54
15 0.5 437539.3 436162 437371 156 139.95 436344 437334 869.74
16 0.5 440013.6 439282 439804 194 351.66 438524 439763 783.7
17 0.5 439492.5 438595 439309 174 101.88 438336 439247 762.93
18 0.5 439402.8 438253 439238 144 64.44 438806 439252 842.44
19 0.5 439067.8 437994 438863 198 386.46 438164 438808 795.31
20 0.5 439244 438606 439052 210 202.56 438350 438993 750.47
21 0.25 239227.7 238356 238975 128 47.36 238002 238936 735.02
22 0.25 237326.8 236201 237119 190 205.96 236229 237114 609.29
23 0.25 236982.5 236343 236797 212 368.34 235534 236720 712.88
24 0.25 239075.9 236964 238867 216 446.47 237708 238840 707.86
25 0.25 237069.9 236293 236855 160 88.65 235870 236806 780.25
26 0.25 238893.5 238040 238702 154 110.56 237622 238647 724.3
27 0.25 239103.9 238458 238867 170 179.93 237887 238804 648.67
28 0.25 238664 237857 238429 194 118.99 236818 238380 713.71
29 0.25 237864.1 237307 237658 204 137.08 236823 237626 777.48
30 0.25 237876.8 236893 237633 180 104.78 236798 237607 761.34

 average 184 219.35 average 716.9

 50

Table 5-2c: Computational results for n=2000 and m=10 randomly generated instances
Partition Algorithm CPLEX

Pb α z(lp) initial
value

Best
value iter. time initial

value
Best
value time

31 0.75 1217182 1216465 1217041 192 263.05 1216480 1217032 909.09
32 0.75 1218369 1217382 1218217 106 55.14 1217596 1218162 967.93
33 0.75 1217932 1217381 1217775 225 569.67 1217183 1217773 997.9
34 0.75 1213535 1212941 1213368 196 301.3 1212806 1213319 898.43
35 0.75 1211499 1210662 1211360 168 308.95 1210750 1211292 989.95
36 0.75 1207297 1206708 1207146 198 617.6 1206424 1207084 949.73
37 0.75 1214952 1214411 1214805 190 132.25 1213721 1214744 985.58
38 0.75 1223266 1222627 1223132 174 297.32 1222621 1223078 1022.58
39 0.75 1212073 1211363 1211923 188 227.27 1211225 1211858 922.6
40 0.75 1212673 1212122 1212536 206 314.03 1211838 1212540 1211.06
41 0.5 877762.9 876999 877575 194 223.82 876561 877532 1126.78
42 0.5 877040.3 876306 876886 154 266.08 875810 876825 1103.52
43 0.5 878138 877731 877972 206 845.94 877047 877979 1007.01
44 0.5 876632.1 875584 876439 146 95.23 875721 876400 1107.26
45 0.5 872384.7 871817 872230 146 144.55 870854 872180 1219.81
46 0.5 869359.7 868817 869194 188 425.72 868595 869176 1071.94
47 0.5 874566.5 873179 874393 220 290.75 873285 874371 964.39
48 0.5 882383.8 881554 882192 164 108.44 881508 882164 949.76
49 0.5 873367.5 872514 873208 196 356.6 872206 873086 1176.84
50 0.5 874945 874552 874774 166 116.32 873514 874755 1089.03
51 0.25 476021.4 473825 475790 172 184.27 474626 475740 959.23
52 0.25 476476.5 474800 476286 72 18.55 475338 476215 1077.08
53 0.25 478913.5 478155 478693 196 283.68 477504 478641 941.51
54 0.25 478085.6 477089 477893 222 1402.7 476277 477890 939.87
55 0.25 472611.5 471963 472361 138 61.43 470667 472307 938.64
56 0.25 472503 471910 472300 168 153.44 470834 472267 904.93
57 0.25 474556.1 473957 474377 200 647.23 473167 474362 1239.40
58 0.25 480101.8 478685 479958 158 117.54 477861 479924 1044.22
59 0.25 474772.3 474115 474605 172 189.36 473334 474476 960.34
60 0.25 477055.2 476342 476864 224 475.96 475430 476761 959.49

 Average 179 316.47 average 1021.2

Chapter 5. Application of the Partitioning Algorithm to the 0-1 MDKP

We terminated one step partitioning algorithm after 225 iterations and

compared the best value of the objective function found so far with the best

value of the objective function found by CPLEX before memory tree size of

250 Mb was exceeded. The reason for terminating the one step partitioning

algorithm after 225 iterations is that after 225 iterations, the algorithm takes

a lot of time at each iteration with a little probability of improving the best

feasible solution value found so far.

For the first set of problems, which are from the literature, we also compared

the best value of the objective function found by the one step partitioning

algorithm with the genetic algorithm of Chu and Beasley (1998). The

comparison is given in Tables 5-2d, 5-2e, 5-2f. Note that the one step

partitioning algorithm does not take too much time. As it can be seen on the

last rows of Tables 5-2a, 5-2b, 5-2c on average it takes 154.7 seconds for n =

500, 219.35 seconds for n = 1000 and 316.47 seconds for n = 2000 for the

one step partitioning algorithm to find the best value in column 5.

The following information is given for the tables below:

 z(1): best feasible integer solution value found by one step

partitioning algorithm in 225 iterations.

 z(2): best feasible integer solution value found by CPLEX v8.1 in

MIP mode before memory tree size of 250 Mb was exceeded.

 z(3): best feasible integer solution value found by the genetic

algorithm of Chu and Beasley (1998)

Table 5-2d: Comparison of one step partitioning alg. (z(1)) with Cplex (z(2)) and genetic

algorithm of Chu and Beasley (z(3))

Prob. name z(3) z(2) Z(1) z(1)-z(3) z(1)-z(2)
Mkpcb6-01 117726 117712 117779 53 67
Mkpcb6-02 119139 119158 119165 26 7
Mkpcb6-03 119159 119211 119194 35 -17
Mkpcb6-04 118802 118813 118813 11 0
Mkpcb6-05 116434 116423 116509 75 86
Mkpcb6-06 119454 119448 119463 9 15
Mkpcb6-07 119749 119777 119777 28 0
Mkpcb6-08 118288 118266 118323 35 57
Mkpcb6-09 117779 117779 117776 -3 -3
Mkpcb6-10 119125 119191 119163 38 -28
Mkpcb6-11 217318 217312 217341 23 29
Mkpcb6-12 219022 219027 219030 8 3
Mkpcb6-13 217772 217792 217792 20 0
Mkpcb6-14 216802 216851 216851 49 0
Mkpcb6-15 213809 213827 213830 21 3
Mkpcb6-16 215013 215034 215041 28 7
Mkpcb6-17 217896 217875 217899 3 24
Mkpcb6-18 219949 219965 219984 35 19
Mkpcb6-19 214332 214312 214329 -3 17
Mkpcb6-20 220833 220846 220852 19 6
Mkpcb6-21 304344 304344 304334 -10 -10
Mkpcb6-22 302332 302326 302333 1 7
Mkpcb6-23 302354 302386 302416 62 30
Mkpcb6-24 300743 300719 300747 4 28
Mkpcb6-25 304344 304346 304349 5 3
Mkpcb6-26 301730 301742 301767 37 25
Mkpcb6-27 304949 304949 304949 0 0
Mkpcb6-28 296437 296441 296441 4 0
Mkpcb6-29 301313 301353 301326 13 -27
Mkpcb6-30 307014 307038 307072 58 34

 Total 684 382
 Average 22.8 12.73

Table 5-2e: Comparison of one step partitioning alg. (z(1)) with Cplex (z(2)) for n=1000

randomly generated instances

Pb Z(1) z(2) z(1)-z(2)
1 611104 611033 71
2 603116 603104 12
3 609824 609803 21
4 613346 613298 48
5 607637 607588 49
6 611220 611187 33
7 610694 610692 2
8 612775 612775 0
9 609552 609517 35

10 609848 609841 7
11 440606 440561 45
12 435395 435369 26
13 438118 438065 53
14 441309 441279 30
15 437371 437334 37
16 439804 439763 41
17 439309 439247 62
18 439238 439252 -14
19 438863 438808 55
20 439052 438993 59
21 238975 238936 39
22 237119 237114 5
23 236797 236720 77
24 238867 238840 27
25 236855 236806 49
26 238702 238647 55
27 238867 238804 63
28 238429 238380 49
29 237658 237626 32
30 237633 237607 26

 Total 1094
 Average 36.47

 54

Table 5-2f: Comparison of one step partitioning alg. (z(1)) with Cplex (z(2)) for n=2000

randomly generated instances

Pb Z(1) z(2) z(1)-z(2)
31 1217041 1217032 9
32 1218217 1218162 55
33 1217775 1217773 2
34 1213368 1213319 49
35 1211360 1211292 68
36 1207146 1207084 62
37 1214805 1214744 61
38 1223132 1223078 54
39 1211923 1211858 65
40 1212536 1212540 -4
41 877575 877532 43
42 876886 876825 61
43 877972 877979 -7
44 876439 876400 39
45 872230 872180 50
46 869194 869176 18
47 874393 874371 22
48 882192 882164 28
49 873208 873086 122
50 874774 874755 19
51 475790 475740 50
52 476286 476215 71
53 478693 478641 52
54 477893 477890 3
55 472361 472307 54
56 472300 472267 33
57 474377 474362 15
58 479958 479924 34
59 474605 474476 129
60 476864 476761 103
 Total 1360

 Average 45.33

Chapter 5. Application of the Partitioning Algorithm to the 0-1 MDKP

As it is seen on the Table 5-2d, for 26 of 30 problems from the literature the

best values found by the one step partitioning algorithm are greater than the

best values reported by Chu and Beasley (1998), the average difference

being 22.8. In addition, for 19 of these problems the best values found by the

one step partitioning algorithm are greater than the best values found by

CPLEX v8.1 in MIP mode, the average difference being 12.73.

For the second set of problems (n=1000) which are randomly generated, the

best values found by the one step partitioning algorithm are on average 36.47

greater than the best values found by CPLEX v8.1 in MIP mode, and for 28

of these 30 problems, the best values found by the one step partitioning

algorithm are greater than the best values found by CPLEX v8.1 in MIP

mode.

For the third set of problems (n=2000), the best values found by the one step

partitioning algorithm are on average 45.33 greater than the best values

found by CPLEX v8.1 in MIP mode, and for 28 of these 30 problems, the

best values found by the one step partitioning algorithm are greater than the

best values found by CPLEX v8.1 in MIP mode.

We repeated one step partitioning algorithm for 8 problems for which the

best values found by the one step partitioning algorithm were less than the

best values found by CPLEX v8.1 in MIP mode and give more time to the

one step partitioning algorithm than before. For 6 of those problems the one

step partitioning algorithm found better quality solutions and for the

remaining 2 problems (pb: mkpcb6-09, 40) there was no improvement in

2000 CPU seconds. These results are shown in the table below,

Chapter 5. Application of the Partitioning Algorithm to the 0-1 MDKP

 56

Table 5-2g: Computational results of the problems for which the experiment was repeated

Partition Algorithm CPLEX
Pb z(lp) initial

value
Best value
(improved) iter. time initial

value
best
value time

mkpcb6-03 119405.7 118761 119211 250 1180.83 118705 119211 532.23
mkpcb6-10 119440.6 118943 119197 246 659.76 118040 119191 613.79
mkpcb6-21 304555 304214 304353 240 474 303606 304344 582.11
mkpcb6-29 301547.6 301131 301340 232 1222.99 300507 301353 606.75

18 439402.8 438253 439251 274 1663.08 438806 439252 842.44
43 878138 877731 877979 230 1442.33 877047 877979 1007.01

C h a p t e r 6

Conclusion

In this study, we have considered the analysis of the search based cuts -a

recently proposed cut for 0-1 programming problems by Oguz (2002)-

applied to the multidimensional 0-1 knapsack problems and the application

of the partitioning algorithm -a new algorithm based on the search based

cuts- to the same problem.

In order to analyze the effectiveness of the search based cuts, we applied

them to 60 multidimensional 0-1 knapsack problems from the literature as

well as 25 randomly generated set covering problems with different numbers

of variables and different numbers of constraints. As a result of our study,

we showed that the effectiveness of the search based cuts decreases as the

number of variables increases and increases as the number of constraints

increases.

In order to check the efficiency of the partitioning algorithm, we made

computational experiments with 30 small-sized test problems (Shih (1979))

from the literature and showed that it found the optimal solution to each of

these problems. In addition, we made computational experiments on

randomly generated problems with different numbers of variables (n) and

different numbers of constraints (m) and found out that the largest value of n

was 90 and m was 20 for which the algorithm could solve problems to

optimality. The inconvenience of the algorithm is that due to computational

and programming difficulties, we limited our algorithm to partitioning the

Conclusion

 58

original problem at most 10 times, and to solve larger problems requires

using the partitioning procedure more than 10 times.

Since the partitioning algorithm is not an efficient algorithm to solve the

large-sized multidimensional 0-1 knapsack problems, we presented a

modification of it, "the one step partitioning algorithm" for solving those

problems.

We tested the one step partitioning algorithm on 90 multidimensional 0-1

knapsack problems (60 randomly generated and 30 from the literature) and

compared its performance with CPLEX v8.1 in MIP mode. We showed that

the one step partitioning algorithm performs better than CPLEX especially

for the multidimensional 0-1 knapsack problems with a large number of

variables and few constraints. One step partitioning algorithm found better

quality solutions than CPLEX to the problems tested with less computational

effort. The problems couldn't be solved to optimality, the solutions are

approximate. We also compared our computational results with the ones

reported by Chu and Beasley (1998) for the 30 problems from the literature

and showed that for 87% of these problems the best values found by the one

step partitioning algorithm were greater than the best values reported by Chu

and Beasley (1998). One inconvenience of the one step partitioning

algorithm is that as the number of constraints increases the computational

time increases rapidly. The reason for this is that as the number of

constraints increases the sub-problems get larger and since we use the IP

solver of CPLEX to solve sub-problems, this takes more time and the

computational time of the algorithm increases.

Finally, we think that the algorithms and cuts tested in this study should

prove useful when applied to other similar 0-1 integer programming

problems.

 59

Bibliography

[1] Aboudi, R. and K. Jörnsten. (1994). “Tabu Search for General Zero

One Integer Programs Using the Pivot and Complement Heuristic,”

ORSA Journal on Computing 6, 82–93.

[2] Balas, E. (1965). “An Additive Algorithm for Solving Linear Programs

with Zero-One Variables,” Operations Research 13, 517–546.

[3] Balas, E. and C.H. Martin. (1980). “Pivot and Complement-A Heuristic

for 0-1 Programming,” Management Science 26, 86–96.

[4] Barake, M., P. Chardaire and G. P. McKeown. (2001). “Application of

PROBE to the Multiconstraint Knapsack Problem,” MIC 2001,

Kluwer.

[5] Cabot, A.V. (1970). “An Enumeration Algorithm for Knapsack

Problems,” Operations Research 18, 306–311.

[6] Chu, P. C. and J.E. Beasley. (1998). “A Genetic Algorithm for the

MultidimensionalKnapsack Problem,” Journal of Heuristics 4, 63-86.

[7] Crama, Y. and J.B. Mazzola. (1994). “On the Strength of Relaxations of

Multidimensional Knapsack Problems,” INFOR 32, 219–225.

[8] Dammeyer, F. and S. Voss. (1993). “Dynamic Tabu List Management

Using Reverse Elimination Method,” Annals of Operations Research

41, 31–46.

[9] Dantzig, G.B. (1957). “Discrete Variable Problems,” Operations

Research 5, 266–277.

[10] Drexl, A. (1988). “A Simulated Annealing Approach to the

Multiconstraint Zero-One Knapsack Problem,” Computing 40, 1–8.

Bibliography

 60

[11] Everett, H. (1963). “Generalized Lagrange Multiplier Method for

Solving Problems of Optimum Allocation of Resources,” Operations

Research 11, 399–417.

[12] Fontanari, J.F. (1995). “A Statistical Analysis of the Knapsack

Problem,” Journal of Physics A—Mathematical and General 28,

4751–4759.

[13] Fox, G.E. and G.D. Scudder. (1985). “AHeuristic with Tie Breaking for

Certain 0-1 Integer Programming Models,” Naval Research Logistics

Quarterly 32, 613–623.

[14] Freville, A. and G. Plateau. (1986). “Heuristics and Reduction Methods

for Multiple Constraints 0-1 Linear Programming Problems,”

European Journal of Operational Research 24, 206–215.

[15] Freville, A. and G. Plateau. (1994). “An Efficient Preprocessing

Procedure for the Multidimensional 0-1 Knapsack Problem,” Discrete

Applied Mathematics 49, 189–212.

[16] Freville, A. and G. Plateau. (1997). “The 0-1 Bidimensional Knapsack

Problem: Toward an Efficient High-Level Primitive Tool,” Journal of

Heuristics 2, 147–167.

[17] Gabrel, V. and M. Minoux. (2002). “A Scheme for Exact Separation of

Extended Cover Inequalities and Application to Multidimensional

Knapsack Problems,” Operations Research Letters 30, 252-264.

[18] Garey, M. R. and D. S. Johnson. (1979). Computers and

Intractability:A Guide to the Theory of NP-Completeness. W. H.

Freeman and Company, San Fransisco.

[19] Gavish, B. and H. Pirkul. (1982). “Allocation of Databases and

Processors in a Distributed Computing System.” In J. Akoka (ed.)

Management of Distributed Data Processing, North-Holland, pp. 215–

231.

Bibliography

 61

[20] Gavish, B. and H. Pirkul. (1985). “Efficient Algorithms for Solving

Multiconstraint Zero-One Knapsack Problems to Optimality,”

Mathematical Programming 31, 78–105.

[21] Gilmore, P.C. and R.E. Gomory. (1966). “The Theory and

Computation of Knapsack Functions,” Operations Research 14, 1045-

1075.

[22] Glover, F. and G.A.Kochenberger. (1996). “Critical Event Tabu

Search for Multidimensional Knapsack Problems.” In I.H. Osman and

J.P. Kelly (eds.), Meta-Heuristics: Theory and Applications. Kluwer

Academic Publishers, pp. 407–427.

[23] Hanafi, S. and A. Freville. (1997). “An Efficient Tabu Search

Approach for the 0-1 Multidimensional Knapsack Problem,” To

appear in European Journal of Operational Research.

[24] Hillier, F.S. (1969). “Efficient Heuristic Procedures for Integer Linear

Programming with an Interior,” Operations Research 17, 600–637.

[25] Hoff, A., A. Løkketangen, and I. Mittet. (1996). “Genetic Algorithms

for 0/1 Multidimensional Knapsack Problems.” Working Paper, Molde

College, Britveien 2, 6400 Molde, Norway.

[26] Khuri, S., T. Bäck, and J. Heitkötter. (1994). “The Zero/One Multiple

Knapsack Problem and Genetic Algorithms,” Proceedings of the 1994

ACM Symposium on Applied Computing (SAC’94), ACM Press, pp.

188–193.

[27] Kochenberger, G.A., B.A. McCarl, and F.P. Wymann. (1974). “A

Heuristic for General Integer Programming,” Decision Sciences 5, 36–

44.

[28] Lee, J.S. and M. Guignard. (1988). “An Approximate Algorithm for

Multidimensional Zero-One Knapsack Problems—a Parametric

Approach,” Management Science 34, 402–410.

Bibliography

 62

[29] Løkketangen, A. and F. Glover. (1996). “Probabilistic Move Selection

in Tabu Search for Zero-One Mixed Integer Programming Problems.”

In I.H. Osman and J.P. Kelly (eds.), Meta-Heuristics: Theory and

Applications. Kluwer Academic Publishers, pp. 467–487.

[30] Løkketangen, A. and F. Glover. (1997). “Solving Zero-One Mixed

Integer Programming Problems Using Tabu Search,” to appear in

European Journal of Operational Research.

[31] Løkketangen, A., K. Jörnsten, and S. Storøy. (1994). “Tabu Search

Within a Pivot and Complement Framework,” International

Transactions of Operations Research 1, 305–316.

[32] Loulou, R. and E. Michaelides. (1979). “New Greedy-Like Heuristics

for the Multidimensional 0-1 Knapsack Problem,” Operations

Research 27, 1101–1114.

[33] Magazine, M.J. and O. Oguz. (1984). “A Heuristic Algorithm for the

Multidimensional Zero-One Knapsack Problem,” European Journal of

Operational Research 16, 319–326.

[34] Martello, S. and P. Toth. (1987). “Algorithms for Knapsack Problems,”

Annals of Discrete Mathematics 31, 70-79.

[35] Martello, S. and P. Toth. (1990). Knapsack Problems: Algorithms and

Computer Implementations. John Wiley & Sons.

[36] Nemhauser, G.L. and Z. Ullmann. (1969). “Discrete Dynamic

Programming and Capital Allocation,” Management Science 15, 494–

505.

[37] Oguz, O. (2002). “Search and Cut: New Class of Cutting Planes for 0-

1 Programming,”

http://www.optimization-online.org/DB_HTML/2002/05/484.html

Bibliography

 63

[38] Osorio, M. A., F. Glover, and P. Hammer. (2000). “Cutting and

surrogate constraint analysis for improved multidimensional knapsack

solutions,” Technical report, Hearin Center for Enterprise Science,

Report HCES-08-00.

[39] Pirkul, H. (1987). “A Heuristic Solution Procedure for the

Multiconstraint Zero-One Knapsack Problem,” Naval Research

Logistics 34, 161–172.

[40] Raidl, Günther R. (1998). “An Improved Genetic Algorithm for the

Multiconstrained 0–1 Knapsack Problem,” In Proceedings of the 5th

IEEE International Conference on Evolutionary Computation, 207-

211.

[41] Schilling, K.E. (1990). “The Growth of m-Constraint Random

Knapsacks,” European Journal of Operational Research 46, 109–112.

[42] Senju, S. and Y. Toyoda. (1968). “An Approach to Linear

Programming with 0-1 Variables,” Management Science 15, 196–207.

[43] Shih,W. (1979). “A Branch and Bound Method for the Multiconstraint

Zero-One Knapsack Problem,” Journal of the Operational Research

Society 30, 369–378.

[44] Soyster, A.L., B. Lev, and W. Slivka. (1978). “Zero-One Programming

with Many Variables and Few Constraints,” European Journal of

Operational Research 2, 195–201.

[45] Szkatula, K. (1994). “The Growth of Multi-constraint Random

Knapsacks with Various Right-hand Sides of the Constraints,”

European Journal of Operational Research 73, 199–204.

[46] Szkatula, K. (1997). “The Growth of Multi-constraint Random

Knapsacks with Large Right-hand Sides of the Constraints,”

Operations Research Letters 21, 25–30.

Bibliography

 64

[47] Thiel, J. and S. Voss. (1994). “Some Experiences on Solving

Multiconstraint Zero-One Knapsack Problems with Genetic

Algorithms,” INFOR 32, 226–242.

[48] Toyoda, Y. (1975). “A Simplified Algorithm for Obtaining

Approximate Solutions to Zero-One Programming Problems,”

Management Science 21, 1417–1427.

[49] Vasquez, M. and J.-K. Hao. (2001). “A Hybrid Approach for the 0-1

Multidimensional Knapsack Problem,” In Proc. of IJCAI-01, 328-333.

[50] Volgenant, A. and J.A. Zoon. (1990). “An Improved Heuristic for

Multidimensional 0-1 Knapsack Problems,” Journal of the

Operational Research Society 41, 963–970.

[51] Weingartner, H.M. (1967). Mathematical Programming and the

Analysis of Capital Budgeting Problems. Chicago: Markham

Publishing.

[52] Weingartner, H.M. and D.N. Ness. (1967). “Methods for the Solution

of the Multidimensional 0/1 Knapsack Problem,” Operations Research

15, 83–103.

[53] Zanakis, S.H. (1977). “Heuristic 0-1 Linear Programming: An

Experimental Comparison of Three Methods,” Management Science

24, 91–104.

