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ABSTRACT 
 

 

COMPUTATIONAL ANALYSIS OF THE SEARCH BASED CUTS ON 

THE MULTIDIMENSIONAL 0-1 KNAPSACK PROBLEM 

 

Duygu Pekbey 

M. S. in Industrial Engineering 

Supervisor: Assoc. Prof. Osman Oğuz 

September 2003 

 

In this thesis, the potential use of a recently proposed cut (the search based 

cut) for 0-1 programming problems by Oguz (2002) is analyzed. For this 

purpose, the search based cuts and a new algorithm based on the search based 

cuts are applied to multidimensional 0-1 knapsack problems from the 

literature as well as randomly generated multidimensional 0-1 knapsack 

problems. The results are compared with the implementation of CPLEX v8.1 

in MIP mode and the results reported. 

 

Key Words: 0-1 Integer Programming, Multidimensional 0-1 Knapsack 

Problem 
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ÖZET 
 

 

ARAŞTIRMA TABANLI KESMELERİN ÇOK BOYUTLU 0-1 SIRT 

ÇANTASI PROBLEMLERİ ÜZERİNDE HESAPSAL ANALİZİ 

 

Duygu Pekbey 

Endüstri Mühendisliği Yüksek Lisans 

Tez Yöneticisi: Doç. Dr. Osman Oğuz 

Eylül 2003 

 

Bu çalışmada, yakın zamanda 0-1 programlama problemleri için Oguz (2002) 

tarafından önerilen bir kesmenin (araştırma tabanlı kesme) potansiyel faydası 

analiz edilmektedir. Bu amaçla, araştırma tabanlı kesmeler ve bunlar üzerine 

kurulan yeni bir algoritma literatürdeki çok boyutlu 0-1 sırt çantası 

problemlerine ve rastlantısal olarak oluşturulan çok boyutlu 0-1 sırt çantası 

problemlerine uygulanmaktadır. Sonuçlar CPLEX v8.1' in MIP biçimindeki 

uygulaması ve literatürdeki sonuçlarla karşılaştırılmaktadır. 

 

Anahtar Kelimeler: 0-1 tamsayılı programlama, çok boyutlu 0-1 sırt çantası 

problemleri 
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C h a p t e r  1 

 

Introduction 

In this thesis, a computational study on the potential use of a recently 

proposed cut for 0-1 programming problems by Oguz (2002) is presented. 

The cut is of a general type, and can be used for almost any 0-1 integer 

programming problem. We have chosen to focus on and limit the scope of 

the study to the multidimensional 0-1 knapsack problems for a couple of 

reasons. Firstly, extending the scope to cover several types of combinatorial 

optimization problems would require development of much more 

sophisticated and expert programming skills and effort, and longer time. 

Secondly, a wide array of test problems and computational results on this 

specific problem already exist in the literature and it is easier to carry out 

comparative analysis with this problem.  

In this study, in order to analyze the potential use of the search based cuts 

(see Oguz (2002)), we have applied them to 60 multidimensional 0-1 

knapsack problems (0-1 MDKP) from the literature as well as 25 randomly 

generated set covering problems. In addition, in order to check the efficiency 

of the partitioning algorithm-a new algorithm based on the search based 

cuts-, we have made computational experiments with 30 small-sized 0-1 

MDKP from the literature (Shih (1979)) as well as randomly generated 0-1 

MDKP with different numbers of variables and different numbers of 

constraints. 

In order to reduce the computational time and effort required by the 

partitioning algorithm, we presented a modification of the partitioning 
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algorithm which we named "one step partitioning algorithm" and made 

computational experiments with 60 randomly generated large sized 0-1 

MDKP as well as 30 large-sized 0-1 MDKP from the literature (Chu and 

Beasley (1998)). We compared our results with the implementation of 

CPLEX v8.1 in MIP mode and the results reported by Chu and Beasley 

(1998).  

The remaining part of this thesis is organized as follows: After introducing 

the multidimensional 0-1 knapsack problem briefly, we present a 

comprehensive survey of the work done for it in the literature in the next 

chapter. In chapter 3, the "search based cuts" and the "partitioning 

algorithm" are discussed. In chapter 4, computational analysis of the search 

based cuts is presented and in chapter 5, computational results of the 

application of one step partitioning algorithm to the large-sized 0-1 MDKP 

are reported. Finally, some conclusions and remarks for future works are 

given in chapter 5. 

The Multidimensional 0-1 Knapsack Problem 

The multidimensional 0-1 knapsack problem (0-1 MDKP) is an important 

combinatorial optimization problem which is widely studied in the literature 

and can be employed to formulate many practical problems such as capital 

budgeting or resource allocation. As an example, think that there are n 

projects with known profits cj and project j consumes aij units from resource 

i given bi as the capacity of resource i. The goal is to select a group of 

projects to allocate resources in such a way that the profit is maximized and 

the capacity of any resource is not exceeded. Other applications of the 

multidimensional 0-1 knapsack problem include cutting stock problems 
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(Gilmore and Gomory (1966)), cargo loading (Shih (1979)) and allocating 

processors and databases in distributed systems (Gavish and Pirkul (1982)). 

The 0-1 MDKP can be considered as a general 0-1 integer programming 

problem with non-negative coefficients and can be formulated as follows: 

      n 

maximize ∑ cj xj ,  
     j=1  

 
         n 

subject to ∑ aij xj ≤ bi , i = 1, . . . , m, 
                       j=1  

               xj Є {0, 1}, j = 1, . . . , n. 

where aij ≥ 0 for i = 1, . . . , m; j = 1, . . . , n;  bi > 0 for i = 1, . . . , m and       

cj > 0 for j = 1, . . .,n. 

In addition, for the problem to be meaningful, the following must be true:  

  n  

      bi < ∑ aij for i = 1, . . . , m (otherwise i th constraint will be redundant),  
 j=1 

      aij < bi for i = 1, . . . , m ; j = 1, . . . , n (otherwise xj will be fixed to zero). 

If m = 1, the problem is the standard knapsack problem which is proven to 

be NP-complete(see Garey and Johnson (1979)). Since the standard 

knapsack problem is NP-complete, the multidimensional 0-1 knapsack 

problem is also NP-complete.  
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Literature Review 

Most of the research on knapsack problems deals with the standard knapsack 

problem (m = 1) and a good review of exact and heuristic algorithms for the 

standard knapsack problem is given by Martello and Toth (1990). Below we 

review exact and heuristic algorithms designed to solve the multidimensional 

0-1 knapsack problem (0-1 MDKP). 

Gilmore and Gomory (1966), and Nemhauser and Ullmann(1969) developed 

dynamic programming based methods to solve the 0-1 MDKP. However, 

they were not able to solve large instances. Nemhauser and Ullmann(1969) 

reported that for the problems that they had solved the number of variables 

was at most 50. Weingartner (1967), and Weingartner and Ness (1967) also 

developed dynamic programming based methods to solve the 0-1 MDKP 

and Cabot (1970) developed an enumeration algorithm based on Fourier-

Motzkin elimination. 

Soyster, Lev, and Slivka (1978) developed an algorithm for solving zero-one 

integer programs with many variables and few constraints. In their 

algorithm, sub-problems were generated from the linear programming 

relaxation and solved through implicit enumeration. The variables in these 

sub-problems corresponded to the fractional variables obtained in the linear 

program. The number of variables in the sub-problems is much less than the 

number of variables in the original zero-one integer program because the 

number of fractional variables in the linear program is bounded by the 

number of constraints in the linear program.  
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Senju and Toyoda (1968) proposed a dual gradient method that starts with a 

possibly infeasible initial solution (all decision variables set to 1) and 

achieves feasibility by dropping the non-rewarding variables one by one, 

while following an effective gradient path.  

Zanakis (1977) compared three heuristic algorithms for the 0-1 MDKP from 

Hillier (1969); Kochenberger, McCarl, and Wymann (1974); Senju and 

Toyoda(1968) and reported that none was found to dominate the others 

computationally. 

In order to apply the greedy method for standard knapsack problem where 

items are picked from the top of a list sorted in decreasing order on cj/aj 

(Martello and Toth (1987)) to the 0-1 MDKP, Toyoda (1975) proposed a 

new measurement called aggregate resource consumption. He developed a 

primal gradient method that improves the initial feasible solution (all 

decision variables set to zero) by incrementing the value of the decision 

variable with the steepest effective gradient. Using the basic idea behind 

Toyoda’s primal gradient method, Loulou and Michaelides (1979) developed 

a greedy-like algorithm that expands the initial feasible solution by including 

the decision variable with the maximum pseudo-utility. The pseudo-utility is 

defined as uj = cj/vj , where vj is the penalty factor of variable j , which 

depends on the resource coefficients aij and can be defined in several ways. 

They tested this method on small-sized randomly generated problems as well 

as some larger real-world problems and showed that the average deviation 

from optimum ranged from 0.26% to 1.08% for smaller problems and up to 

14% for larger problems. 

Balas and Martin (1980) presented a heuristic algorithm for the 0-1 MDKP 

which utilizes linear programming by relaxing the integrality constraints xj Є 
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{0, 1} to 0 ≤ xj ≤ 1. The fractional xj are then set to 0 or 1 according to a 

heuristic which maintains feasibility.  

Shih (1979) proposed a branch and bound algorithm for the 0-1 MDKP. In 

this algorithm, estimation of an upper bound for a node was made by solving 

m single constraint knapsack problems with the same objective function. An 

optimal fractional solution (Dantzig (1957)) was found for each of the m 

single constraint knapsack problems separately. To find optimal fractional 

solution one must include as much as possible of each item in the order of 

decreasing cj/aij to the knapsack i until the constraint i is satisfied exactly as 

an equation. Minimum of the objective function values associated with each 

optimal fractional solution was chosen as the upper bound for that node. 

The node selected for next branching would be the end node whose upper 

bound is maximum of all end nodes and where the solution associated with 

such an upper bound is infeasible(if solution is feasible it is also an optimal 

solution). The branching variable would be the one whose cj/aij ratio is 

minimum of all non-zero free variables in this infeasible solution. 

Shih solved thirty 5-constraint knapsack problems with 30-90 variables (we 

also used this data to test our first algorithm) and reported that his algorithm 

is faster than original Balas and improved Balas additive algorithms (Balas 

(1965)) with respect to the total as well as the individual solution times.  

Using Senju and Toyoda 's dual gradient algorithm and Everett (1963) 's 

generalized lagrange multipliers approach, Magazine and Oguz (1984) 

proposed another heuristic that moves from the initial infeasible solution (all 

variables set to 1) towards a feasible solution by following a direction which 

reduces the aggregate weighted infeasibility among all resource constraints. 

Their algorithm was tested on randomly generated problems with sizes from 
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m = 20 to 1,000 and n = 20 to 1,000, and its computational efficiency is 

compared with two other well-known heuristics: the primal heuristic of 

Kochenberger, McCarl, and Wymann (1974) (1) and the dual approach of 

Senju and Toyoda (1968)(2). They reported that, in terms of solution quality, 

(1) produced slightly better results than their heuristic and their heuristic was 

superior to (2). Their heuristic and (2) were much better than (1) in terms of 

computation time.  

Fox and Scudder (1985) presented a heuristic based on starting from setting 

all variables to zero(one) and successively choosing variables to set to 

one(zero). They reported results for randomly generated test problems with 

sizes up to m = 100 and n = 100, and with cj = 1 and aij = 0 or 1. 

Gavish and Pirkul (1985) proposed another branch and bound algorithm in 

which they used tighter upper bounds obtained with relaxation techniques 

such as lagrangean, surrogate and composite relaxations. They tried to 

evaluate the quality of the bounds generated by these different relaxations 

and showed that the composite relaxation (which used a subgradient 

optimization procedure to determine the multipliers) yielded the best bounds 

overall, but needed extra computational effort. They developed new 

algorithms for obtaining surrogate bounds and suggested rules for reducing 

the problem size. They tested their algorithm on a set of randomly generated 

problems with sizes up to m = 5 and   n = 200 and reported that it is faster 

than the branch and bound algorithm of Shih (1979). They showed that if 

their algorithm is used as a heuristic by terminating it before the tree search 

is completed, then it is superior to the heuristic developed by Loulou and 

Michaelides (1979). 

In addition, Pirkul (1987) presented an efficient algorithm in which m 

knapsack constraints were transformed into a single knapsack constraint 
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using the dual variables (known as the surrogate multipliers) obtained from 

the linear programming relaxation of the 0-1 MDKP. He then obtained a 

feasible solution to this problem using a greedy algorithm based on the 

ordering of the profit to weight ratios. This ratio was defined as, 

       m  

cj / ∑ wi aij  
            i=1 
 

where wi is the surrogate multiplier for constraint i. Surrogate multipliers 

were determined using a descent procedure. He reported that the algorithm 

was considerably better than the heuristic of Loulou and Michaelides (1979) 

and similar to the pivot and complement heuristic of Balas and Martin 

(1980) in terms of solution quality.  

Lee and Guignard (1988) presented a heuristic that combined Toyoda’s 

primal heuristic (1975) with variable fixing, linear programming and a 

complementing procedure from Balas and Martin (1980). Computational 

experiments were done with standard test problems and randomly generated 

problems with sizes up to m = 20 and n = 200. They reported that their 

heuristic produced better results than Toyoda (1975) and Magazine and 

Oguz (1984), but is out-performed by Balas and Martin (1980). 

Drexl (1988) presented a heuristic based upon simulated annealing. They 

made experiments with 57 standard 0-1 MDKP test problems from the 

literature and found optimal solutions for 25 of these problems. 

Volgenant and Zoon (1990) extended Magazine and Oguz’s heuristic in two 

ways: (1) in each step, not one, but more multiplier values are computed 

simultaneously, and (2) at the end the upper bound is sharpened by changing 

some multiplier values. They showed that these extensions yielded an 
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improvement, on average, at the cost of only a modest amount of extra 

computing time.  

Crama and Mazzola (1994) showed that although the bounds obtained with 

relaxation techniques such as lagrangean, surrogate, or composite 

relaxations, are stronger than the bounds obtained from the linear 

programming relaxation, the improvement in the bound that can be achieved 

using these relaxations is limited. In fact, the improvement in the quality of 

the bounds using any of these relaxations cannot exceed the magnitude of 

the largest coefficient in the objective function. 

There are a few number of papers considering a statistical-asymptotic 

analysis of the 0-1 MDKP. Schilling (1990) presented an asymptotic analysis 

and computed the asymptotic objective function value of a particular m 

constraint, n variable 0-1 random integer programming problem as n 

increases and m remaining fixed. In this analysis, the aij 's and cj 's were 

uniformly and independently distributed over the unit interval and bi = 1. 

Szkatula (1994) generalized that analysis to the case where the bi were not 

restricted to be one (see also Szkatula (1997)). A statistical analysis was 

presented by Fontanari (1995) in which he investigated the dependence of 

the multidimensional knapsack objective function on the knapsack capacities 

and on the number of capacity constraints, in the case when all n objects 

were assigned the same profit value and the aij 's were uniformly distributed 

over the unit interval. A rigorous upper bound to the optimal profit was 

obtained employing the annealed approximation and then compared with the 

exact value obtained through a lagrangean relaxation method. 

Freville and Plateau (1994) presented an efficient preprocessing procedure 

for the 0-1 MDKP based on their previous work ((Freville and Plateau 
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(1986)) and they also proposed a heuristic for the bidimensional knapsack 

problem (Freville and Plateau (1997)).  

Dammeyer and Voss (1993) proposed a tabu search heuristic for the 0-1 

MDKP based on reverse elimination method. They made computational 

experiments with 57 standard test problems from the literature and reported 

that they found optimal solutions for 41 of these problems.  

Aboudi and Jörnsten (1994) combined tabu search with the pivot and 

complement heuristic of Balas and Martin (1980) in a heuristic for general 

zero-one integer programming. They made computational experiments with 

57 standard test problems and found optimal solutions for 49 of these 

problems.  

Løkketangen, Jörnsten, and Storøy (1994) presented a tabu search heuristic 

within a pivot and complement framework and gave computational results 

for the same set of test problems. They found optimal solutions for 39 of 

these problems. 

Glover and Kochenberger (1996) presented a heuristic based on tabu search. 

They employed a flexible memory structure that integrates recency and 

frequency information keyed to “critical events” in the search process. Their 

method was enhanced by a strategic oscillation scheme that alternates 

between constructive (current solution feasible) and destructive (current 

solution infeasible) phases. They define a “critical event” as the last feasible 

solution found after a transition between phases. They found optimal 

solutions for each of 57 standard test problems from the literature.  

Løkketangen and Glover (1996) presented a heuristic based on probabilistic 

tabu search for solving general zero-one mixed-integer programming 
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problems. They made computational experiments with 18 standard test 

problems and found optimal solutions for 13 of these problems. 

Løkketangen and Glover (1997) presented a tabu search heuristic for solving 

general zero-one mixed-integer programming problems. They made 

experiments with 57 standard test problems and found optimal solutions for 

54 of these problems. 

Hanafi and Freville (1997) presented an efficient tabu search approach for 

the 0-1 MDKP, a heuristic algorithm strongly related to the work of Glover 

and Kochenberger (1996). They described a new approach to tabu search 

based on strategic oscillation and surrogate constraint information that 

provides a balance between intensification and diversification strategies. 

New rules needed to control the oscillation process were given for the 0-1 

MDKP. They tested their approach on 54 instances from Freville and Plateau 

(1986) and 24 instances from Glover and Kochenberger(1996). Optimal 

solutions were obtained for the first set of problems and better results than 

Glover and Kochenberger (1996) were reported for the second set. 

Khuri, Bäck, and Heitkötter (1994) presented a genetic algorithm to solve 

the 0-1 MDKP. In their algorithm, infeasible solutions were allowed to 

participate in the search and a simple fitness function that uses a graded 

penalty term was used. They applied their algorithm on 9 test problems taken 

from the literature and reported moderate results. The problem sizes ranged 

from 15 objects to 105 and from 2 to 30 knapsacks.  

Thiel and Voss (1994) suggested an algorithm for the 0-1 MDKP by 

combining a genetic algorithm implementation with tabu search. They tested 

their heuristic on a set of standard test problems, but the results were not 
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computationally competitive with the results obtained using other heuristic 

methods. 

Hoff, Løkketangen, and Mittet (1996) presented a genetic algorithm for the 

0-1 MDKP in which only feasible solutions were allowed. They found 

optimal solutions for 56 of the 57 test instances from the literature. They also 

applied their algorithm on 9 test instances used by Khuri, Bäck and 

Heitkötter (1994) and obtained better results for all of them. They also 

compared their results to those obtained by Thiel and Voss (1993). When 

compared to their pure genetic algorithm approach, they got better results for 

44 of the 57 instances. With the genetic algorithm-tabu search approach of 

Thiel and Voss (1993), they got slightly better average results than Hoff, 

Løkketangen, and Mittet. One reason for this is that genetic algorithms have 

a problem on focusing on some types of local optima, but these are for these 

cases easily found by the tabu search component.  

Chu and Beasley (1998) presented a heuristic based upon genetic algorithms 

for solving the 0-1 MDKP. It appears to be the most successful genetic 

algorithm to date for the 0-1 MDKP. In their heuristic, a heuristic operator 

which utilises problem-specific knowledge is incorporated into the standard 

genetic algorithm approach.  

They initially tested the heuristic on 55 standard test problems and showed 

that it finds the optimal solution for all of them. However, these problems 

were solved in very short computing times using CPLEX, and Chu and 

Beasley generated a set of large 0-1 MDKP instances using the procedure 

suggested by Freville and Plateau (1994). These data contained randomly 

generated 0-1 MDKP 's with different numbers of constraints (m = 5, 10, 

30), variables (n = 100, 250, 500), and different tightness ratios (α = 0.25, 

0.5, 0.75). The coefficients cj were correlated to aij making the problems in 
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general more difficult to solve than uncorrelated problems, see (Gavish and 

Pirkul (1985), Pirkul (1987)). There were 10 problem instances for each 

combination of m, n, and α, and 270 test problems in total. 

Chu and Beasley solved 270 problems that they generated using both 

CPLEX and their genetic algorithm heuristic. They solved 30 of these 

problems to optimality using CPLEX and for the remaining 240 problems, 

they terminated CPLEX whenever tree memory exceeds 42 Mb or after 1800 

CPU seconds. The quality of the solutions generated were measured by the 

percentage gap between the best solution value found and the optimal value 

of the LP relaxation(100 * (optimal LP value-best solution value)/(optimal 

LP value)). The average percentage gap (over all 270 test problems) was 

much lower for their heuristic (0.54%) than for CPLEX (3.14%). 

They also compared the performance of their heuristic with the heuristic of 

Magazine and Oguz (1984), the heuristic of Volgenant and Zoon (1990) and 

the heuristic of Pirkul (1987) on the newly generated problems and reported 

that their heuristic was superior over these heuristic methods in terms of the 

solution quality. However, in terms of computation time, their heuristic 

required much more computation time than that required by the other 

heuristics.  

Günther R. Raidl (1998) improved a genetic algorithm for solving the 0–1 

MDKP by introducing a pre-optimized initial population, a repair and a local 

improvement operator. These new techniques were based on the solution of 

the linear programming relaxation of the 0-1 MDKP. The pre-optimization 

of the initial population and the repair and local improvement operators all 

contained random elements for retaining population diversity. The algorithm 

was tested on standard large-sized test data proposed by Chu and Beasley 

(1998) and compared to the genetic algorithm from Chu and Beasley (1998). 
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They showed that most of the time the new genetic algorithm converged 

much faster to better solutions, especially for large problems. 

Barake, Chardaire and McKeown (2001) presented the application of a new 

technique that they have proposed, known as PROBE(Population Reinforced 

Optimization Based Exploration), to the 0-1 MDKP. PROBE is a population 

based metaheuristic that directs optimization algorithms towards good 

regions of the search space using some ideas from genetic algorithms. They 

tested their algorithm on the 270 test problems generated by Chu and 

Beasley (1998). They showed that for problems with a small number of 

constraints and variables the genetic algorithm of Chu and Beasley was 

slightly better than PROBE in terms of solution quality. For problems with a 

large number of constraints, PROBE gave slightly better solutions than the 

genetic algorithm but the PROBE computing times were slightly larger than 

the genetic algorithm computing times on average.  

Osorio, Hammer and Glover (2000) used surrogate analysis and constraint 

pairing for solving the 0-1 MDKP to fix some variables to zero and to 

separate the rest into two groups, those that tend to be zero and those that 

tend to be one, in an optimal integer solution. They generated logic cuts 

based on their analysis using an initial feasible integer solution, before 

solving the problem with branch and bound.  

In order to test the efficiency of the logic cuts generated, they presented two 

experiments and solved the problems using CPLEX v6.5.2 both with and 

without the addition of their procedure. For the first experiment, they used 

270 large-sized test problems from the OR-library, and for the second one, 

they generated a new set of test problems which are harder.  
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They reported that in the first experiment, the average objective value for the 

genetic algorithm(Chu and Beasley(1998)) was 120153.1, for CPLEX, 

120162.5 and for their procedure, 120167.2. Their procedure was able to 

solve 100 problems to optimality, while CPLEX alone could solve only 95 

and in the rest of the problems, CPLEX usually terminated because the tree 

size memory (250 Mb) was exceeded. Their procedure kept the tree size 

memory within the limits for a larger number of instances and finished 

because the time limit (10800 sec) was reached. 

For the second experiment, they generated problems with 5 constraints and 

100, 250 and 500 variables, and examined tightness values of 0.25, 0.5 and 

0.75. They showed that CPLEX performed much better on average with the 

addition of their procedure and problems were solved by constructing 

smaller search trees. 

Vasquez and Hao (2001) presented a hybrid approach for the 0–1 MDKP. 

The proposed approach combines linear programming and tabu search. They 

tested their approach on the 56 test problems from OR-library for which n 

varies from 6 to 105 and m from 2 to 30. They showed that their approach 

finds the optimal value in an average time of 1 second. They also tested their 

approach on the 90 largest test problems (n = 500) of OR-library . They 

compared the best results they obtained for these problems to those obtained 

by Chu and Beasley (1998), by Osorio, Hammer and Glover (2000) and by 

the MIP solver CPLEX v6.5.2 alone. They reported that their approach 

outperforms all the other algorithms except for the instances m = 5 and α = 

0.75 (10 problems). 

Gabrel and Minoux (2002) described a constraint-generation procedure for 

systematically building strengthened formulations for the 0-1 MDKP, which 
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is based on a new scheme for exact separation of extended cover inequalities 

for knapsack constraints.  

In order to check the relevance of the separation scheme, they made 

experiments on a series of 80 randomly generated instances of sizes n = 120 

and m = 30, 60, 90; n = 150 and m = 30, 75, 100; n = 180 and m = 40, 60. 

They also used instances(with 100 variables, 5 and 10 constraints) from the 

OR-library defined by Chu and Beasley (1998) .  

In a majority of the test problems solved, the computing times obtained by 

the standard branch and bound procedure of CPLEX applied to the 

strengthened formulation (without automatic cover inequality generation) 

were improved over the time taken by CPLEX in MIP mode with automatic 

cover inequality generation. In addition, they showed that the fraction of 

total computing time taken by the constraint generation procedure was on 

average, less than 5% of total computation time. They also tried to 

strengthen the extended cover inequalities generated by constraint-

generation procedure by sequential lifting and reported that 97% of the 

inequalities could not be further strengthened. 

 

 

 

 

 



C h a p t e r  3 

 

The Partitioning Algorithm  

In this chapter, firstly the search based cuts are described and the integrality 

gap is defined. Then, the search and cut algorithm is introduced and how to 

partition a problem  for generating a sub-problem is explained. The 

partitioning algorithm and an application of this algorithm to a small 

example are presented. Finally, the computational results of the application 

of partitioning algorithm on multidimensional 0-1 knapsack problems are 

given and the one step partitioning algorithm is explained. 

3.1 Description of the Search Based Cuts 

Consider the following 0-1 integer programming problem: 
                            n 

maximize ∑ cj xj ,           (1) 
               j=1  
 
              n 

subject to ∑ aij xj ≤ bi , i = 1, . . . , m,    (2) 
                      j=1  

               xj Є {0, 1}, j = 1, . . . , n.    (3) 

 

Let X* = (x1*, x2*, . . . ,xn*) denote a solution to the linear programming 

relaxation of this problem. We generate Xint = (x1', x2', . . . ,xn') as our 

candidate solution by the following: xj' = 1 if xj* ≥ 0.5,  xj' = 0 if xj* < 0.5.  * 

                                                 
* The cuts and algorithms described in this chapter are from Oguz, 2002, "Search and Cut: 
New Class of Cutting Planes for 0-1 Programming". 
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The following equality  ∑ xj'  +  ∑ (1 - xj') = n holds for  S1 = { j | xj' = 1}  
   jЄS1        jЄS2 

and S2 = { j | xj' = 0}.   

The candidate solution (Xint) to our problem can be feasible or infeasible. 

Suppose that it is infeasible and there exists a feasible solution which is 

represented by X = (x1, x2, . . . ,xn) to the same problem, then  

∑ xj  +  ∑ (1 - xj) ≤ n - 1                          (4) 
    jЄS1        jЄS2 
 

must hold, because at least one xj must be different than xj' for j Є S1 U S2. 

Now, consider carrying out a one dimensional search on the vector Xint. That 

is, if xi' is equal to 1, we will change its value to zero while keeping all the 

other components of the vector Xint at their current values and then check the 

resulting vector for feasibility. If xi' is equal to 0, we will change its value to 

one and check the resulting vector for feasibility. If we repeat this process 

for i = 1, 2, . . . , n; either we can find one or several feasible solutions or we 

can't find any. If we find a feasible solution we can compare the objective 

value associated with this solution with the maximum objective value found 

so far and keep a record of the best solution encountered. After completing 

one dimensional search we can reduce the right hand side constant of the 

inequality (4) to n - 2.  

If t dimensional searches have been done for t = 1, . . . ,k, in the same way 

described above, then the inequality given in (4) is a valid inequality for the 

problem given in (1)-(3) with the right hand side value of n - k - 1. 

             n 

The difference δ = n - ∑ max [xj*, (1 - xj*)]  is called the integrality gap  
            j=1  
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associated with the vector X*. If X* is integer, then the integrality gap is 

zero, taking its smallest possible value. If all xj* = 1/2, j = 1, . . . , n, then the 

integrality gap is at its largest possible value, n/2. For a valid inequality 

resulting from a search with depth k to be a cut, we must have k ≥ δ  . 

Now, we can give an algorithm based on the search based cuts described 

above. 

The Search and Cut Algorithm 

1. Set the value of the incumbent solution zinc to -∞. 

2. Solve the LP relaxation of the problem given in (1)-(3) plus any cuts 

generated so far. Stop if the problem is infeasible, or the objective function 

value is less than zinc +1, concluding that the solution vector associated with 

zinc is optimal. Otherwise go to 3. 

3. Compute the value of the integrality gap (δ) and set k ≥ δ  . 

4. Carry out t dimensional searches on the vector Xint for t = 1, ... k. If a 

feasible solution is found, compare the objective value associated with this 

solution with zinc. If it is larger than zinc, then set zinc equal to this new value. 

5. Append a new cut as ∑ xj  +  ∑ (1 - xj) ≤ n - k - 1, and go to 2.                           
      jЄS1        jЄS2 
 

3.2 Partitioning the Problem  

Since it depends on enumerative search to generate a cut, the efficiency of 

the search and cut algorithm will decrease as the value of integrality gap (δ) 

gets larger. For this reason, if integrality gap is large, we suggest to partition 

the problem into smaller sub-problems instead of doing enumerative search 

to generate a cut. 
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Suppose that we have a subset of T of the components of the vector X* such 

that: 

T C N = {1, 2, . . . ,n}, and |T| - ∑ max [xj*, (1 - xj*)] < 1 
                jЄT  

Then if, 

maximize  ∑  cj xj ,        (5) 
               jЄN\T  
 

subject to  ∑  aij xj ≤ bi - ∑ aij xj'   , i = 1, . . . , m,  (6) 
                      jЄN\T                      jЄT 

                   xj Є {0, 1}, j Є N \ T    (7) 

has no solution , the following inequality is valid for the solution set of our 

problem: 

∑  xj  +  ∑   (1 - xj) ≤ |T| - 1   
           jЄT∩S1       jЄT∩S2 

 

Again, it is possible to improve the quality of this cut by carrying out one 

dimensional search on the components of Xint in the set T. 

Algorithm to obtain T: 

1. Order xj* with increasing max [xj*, (1 - xj*)] values so that                           

|xj(i)* - 1/2| ≤ |xj(i+1)* - 1/2|. Set Q = { }. (The subscript j(i) means that the jth 

component is in the ith position in the ordering.) 

2. Set k = 1.         

    n 

3. If  n -  ∑  max [xj(i)*, (1 - xj(i)*)]  ≥ 1 is true, 
  i=k+1 
 

set Q = Q U {j(k)}, k = k + 1, n = n - 1 and repeat 3. Otherwise go to 4. 
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4. Set T = N \ Q and stop.          

The Partitioning Algorithm 

Let's call the problem defined by the equations (5)-(7) P(T0) and the set T on 

which P(T0) is based T0. P(T0) is our initial sub-problem. This sub-problem 

may still have a large number of variables. Therefore, instead of solving it 

with the search and cut algorithm, we suggest to solve this problem with the 

aid of new cuts we are proposing. 

First, we solve the LP relaxation of P(T0), find the candidate solution vector 

and the integrality gap (δ) associated with this vector. Then, we apply the 

above algorithm to obtain T1 and P(T1). We have, 

T1 C N \ T0   and |T1| - ∑ max [xj*, (1 - xj*)] < 1. 
 jЄT1 

And P(T1) is defined as, 

maximize     ∑    cj xj ,       
       jЄN\T0UT1 

 

subject to     ∑    aij xj ≤ bi - ∑   aij xj'   , i = 1, . . . , m,  
       jЄN\T0UT1                             jЄT0UT1                                       

          

                            xj Є {0, 1}, j Є N \ T0 U T1                                       

Then, we solve P(T1),and when either it is found infeasible or an optimal 

solution to it is found, we add a cut to P(T0). This cut will be  

∑   xj  +  ∑  (1 - xj) ≤ |T1| - 1  
           jЄT1∩S1        jЄT1∩S2 

 

If  P(T1) has a large number of variables, instead of solving it directly, we 

can repartition it to P(T2) and attempt to solve P(T2) in order to add a cut to 

P(T1). 
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Now, suppose that we have used partitioning until we reached P(Ti) and we 

are able to solve it easily because it doesn't have a lot of variables. After 

solving P(Ti) we will go back to P(Ti-1) and add a new cut to it. Then, we 

will solve the LP relaxation of P(Ti-1) plus the cuts added so far and redefine 

P(Ti) using the solution of the LP relaxation of the new P(Ti-1). This process 

continues until P(Ti-1) is solved and a cut is generated for P(Ti-2). When 

either an optimal solution is found to P(Ti-2) or it is declared infeasible, we 

will append a cut to P(Ti-3) and continue to move back and forth recursively 

until P(T0) is solved by the aid of new cuts generated. After P(T0) is solved, 

we will add a new cut to our original problem, solve its LP relaxation and 

generate a new candidate solution. Then, we will redefine T0 and start 

partitioning again to solve P(T0). After P(T0) is resolved, we will append one 

more cut to our original problem. The algorithm stops when sufficient cuts 

are added to solve the original problem. 

3.3 An example 

Consider the following 0-1 MDKP, 

maximize 167 x1 + 207 x2 +  48 x3 + 142 x4 +  112 x5  

subject to 121 x1 + 46 x2 + 17 x3 + 91 x4 + 85 x5 ≤ 72 

       31 x1 + 330 x2 + 8 x3 + 77 x4 + 22 x5 ≤ 93 

xj Є {0, 1}, j = 1, . . . , 5 

The LP relaxation of this problem has the solution: (0.369832, 0.222834, 1, 

0, 0) with the objective value, 155.8885. The candidate integer solution 

associated with this vector is (0, 0, 1, 0, 0). This solution is feasible and 

becomes the first incumbent solution with Zinc
1 =  48. The integrality gap (δ) 

is 0.5926657. Since  δ <1, we add the following cut to the problem:  

- x1 - x2 + x3 - x4 - x5 ≤ 0 
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When we resolve the LP relaxation of our original problem together with the 

new cut we added, the solution is (0, 0.224820, 0.791843, 0, 0.567023) with 

the objective value, 148.0528. The candidate integer solution vector is (0, 0, 

1, 0, 1) which is infeasible. The integrality gap associated with the solution 

is 0.8659547 and we append one more cut to the original problem:  

- x1 - x2 + x3 - x4 + x5 ≤ 1 

Now our problem becomes, 

maximize 167 x1 + 207 x2 +  48 x3 + 142 x4 +  112 x5  

subject to 121 x1 + 46 x2 + 17 x3 + 91 x4 + 85 x5 ≤ 72 

       31 x1 + 330 x2 + 8 x3 + 77 x4 + 22 x5 ≤ 93 

            - x1 - x2 + x3 - x4 - x5 ≤ 0 

          - x1 - x2 + x3 - x4 + x5 ≤ 1 

xj Є {0, 1}, j = 1, . . . , 5. 

The solution to the LP relaxation of the above problem is (0.049426, 

0.225066, 0.774492, 0, 0.5) with the objective value, 148.0185 and the 

candidate solution vector, (0, 0, 1, 0, 1) which is infeasible. The integrality 

gap associated with the solution to the LP relaxation is 1 and we partition the 

problem with T0 = 1, 4; fixing x1 =0,  x4 = 0.   

We define P(T0) as, 

maximize 207 x2 + 48 x3 + 112 x5  

subject to   46 x2 + 17 x3 + 85 x5 ≤ 72 

          330 x2 + 8 x3 + 22 x5 ≤ 93 

          - x2 + x3 - x5 ≤ 0 

                      - x2 + x3 + x5 ≤ 1 

xj Є {0, 1}, j = 2, 3, 5. 
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and solve the LP relaxation. The solution is (0.226676, 0.627862, 0.598815). 

The candidate solution for this sub-problem is (0, 1, 1) and it is infeasible. 

Since the integrality gap is 1, we repartition the problem with T1 = 2, fixing 

x2 = 0.  

Now, P(T1) is, 

maximize  48 x3 + 112 x5  

subject to 17 x3 + 85 x5 ≤ 72 

       8 x3 + 22 x5 ≤ 93 

          x3 - x5 ≤ 0 

                      x3 + x5 ≤ 1 

          xj Є {0, 1}, j = 3, 5. 

The solution to the LP relaxation of the above problem is (0.191176 , 

0.808824). The candidate solution is (0, 1) which is infeasible. The 

integrality gap is 0.3823529 and we add the following cut to P(T1):  

- x3 + x5 ≤ 0 

At this point P(T1) becomes, 

maximize  48 x3 + 112 x5  

subject to  17 x3 + 85 x5 ≤ 72 

        8 x3 + 22 x5 ≤ 93 

               x3 - x5 ≤ 0 

           x3 + x5 ≤ 1 

         - x3 + x5 ≤ 0 

               xj Є {0, 1}, j = 3, 5. 

The solution to the LP relaxation of the above problem is (0.5, 0.5) with the 

associated candidate solution (1, 1) which is infeasible. Since the integrality 
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gap associated with the solution to the LP relaxation is 1, we repartition the 

problem with T2 =3, fixing x3 = 1. 

Now, P(T2) is defined as, 

maximize 112 x5  

subject to   85 x5 ≤ 55 

       22 x5 ≤ 85 

            x5 ≥ 1 

            x5 ≤ 0 

x5 Є {0, 1}. 

Since the above problem is infeasible, we add  x3 ≤ 0 to P(T1). 

The solution to the LP relaxation of the new P(T1) is (0, 0). Since the 

solution is integer with objective value equal to 0, we add the cut  x2 ≥ 1 to 

P(T0). 

The new P(T0) is infeasible, so we add the cut  x1 + x4 ≥ 1 to the original 

problem. 

Now our original problem becomes, 

maximize 167 x1 + 207 x2 +  48 x3 + 142 x4 +  112 x5  

subject to 121 x1 + 46 x2 + 17 x3 + 91 x4 + 85 x5 ≤ 72 

       31 x1 + 330 x2 + 8 x3 + 77 x4 + 22 x5 ≤ 93 

- x1 - x2 + x3 - x4 - x5 ≤ 0 

- x1 - x2 + x3 - x4 + x5 ≤ 1 

  x1 + x4 ≥ 1 

   xj Є {0, 1}, j = 1, . . . , 5. 

The above problem is infeasible, therefore we conclude that Zinc
1

 = 48 is 

optimal. 
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3.4 Computational Experimentation Results 

In order to check the efficiency of the partitioning algorithm, we have 

designed 3 computational experiments; the first experiment involved the 

application of the algorithm to small-sized test problems from the literature, 

the second experiment involved the application of the algorithm to randomly 

generated 0-1 MDKP with different numbers of variables (n) and different 

numbers of constraints (m) and finding out the largest values of n and m for 

which the algorithm could solve problems to optimality, and the third 

experiment involved the application of the algorithm to large-sized test 

problems from the literature.  

For the first experiment, we have chosen 30 small-sized test problems (Shih 

(1979)) from the literature which have been used in the computational 

experimentations of almost all of the algorithms designed for solving the 0-1 

MDKP. We were able to solve all of these problems to optimality using the 

partitioning algorithm, coded in C language. Our computational results 

regarding these problems are shown in the table below, 
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Table 3-4: Computational results for standard test problems (Shih (1979))  

Problem name # of var. # of cons. optimal solution 
value iteration time(s) 

weish01 30 5 4554 250 1.78 
weish02 30 5 4536 144 1.15 
weish03 30 5 4115 90 0.64 
weish04 30 5 4561 15 0.1 
weish05 30 5 4514 6 0.06 
weish06 40 5 5557 142 1.28 
weish07 40 5 5567 121 1.03 
weish08 40 5 5605 103 0.92 
weish09 40 5 5246 6 0.04 
weish10 50 5 6339 824 9.16 
weish11 50 5 5643 209 2.04 
weish12 50 5 6339 190 1.77 
weish13 50 5 6159 315 3.44 
weish14 60 5 6954 317 3.04 
weish15 60 5 7486 76 0.75 
weish16 60 5 7289 76 0.75 
weish17 60 5 8633 94 0.97 
weish18 70 5 9580 173 1.8 
weish19 70 5 7698 318 3.74 
weish20 70 5 9450 129 1.28 
weish21 70 5 9074 98 1.19 
weish22 80 5 8947 241 2.67 
weish23 80 5 8344 252 2.91 
weish24 80 5 10220 87 0.97 
weish25 80 5 9939 150 1.61 
weish26 90 5 9584 483 6.77 
weish27 90 5 9819 28 0.28 
weish28 90 5 9492 65 0.7 
weish29 90 5 9410 40 0.48 
weish30 90 5 11191 10 0.09 

   average 130 0.94 
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For the second experiment we randomly generated 0-1 MDKP as follows: 

 Each coefficient of the constraint matrix aij (i = 1, . . . , m and j = 1, . 

. . , n) and each coefficient of the objective function cj (j = 1, . . . , n) 

is an integer randomly chosen between 1 and 1000. 

 

 The right-hand side coefficients (bi ’s) are generated using                

        n 
bi = 0.5 ∑ aij 

                             j=1  
 

We made experiments for different values of m and n and found out that if 

we set m at 5, the largest value of n was 90 for which the algorithm could 

solve problems to optimality, this value was 40 if we set m at 10 and 25 if 

we set m at 20. The reason for this is that we limited our algorithm to 

partitioning the original problem at most 10 times, that is if the first sub-

problem is P(T0), then the algorithm stops when it reaches P(T10) (see 

section 3.2), due to computational and programming difficulties and to solve 

larger problems requires using the partitioning procedure more than 10 

times.  

Note that, the largest values of m and n for which the algorithm solves 

problems to optimality will be different if one generates easier or harder 

problems than the ones we generated using the procedure described above. 

Since the easiest large-sized test problems in the literature are harder than 

the problems we generated, we conclude that with its current design the 

partitioning algorithm is not an efficient algorithm to solve large-sized 0-1 

MDKP.  Therefore, we tried to modify it in such a way that it does not 

require to use the partitioning procedure a large number of times to solve a 
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problem. For this purpose, we chose to take advantage of the IP solver of 

CPLEX to solve sub-problems. Our computational experiments with larger 

problems showed us that this may be an efficient way to solve large-sized 0-

1 MDKP. As it can be seen in the Chapter 5, by this way we are able to find 

better quality solutions than CPLEX to 0-1 MDKP with large number of 

variables and few constraints.  

The description of the modified partitioning algorithm is given in the next 

section. 

3.5 One Step Partitioning Algorithm  

Consider the following 0-1 integer programming problem: 

                            n 

maximize ∑ cj xj ,           
                j=1  

 
              n 

subject to ∑ aij xj ≤ bi , i = 1, . . . , m,    
        j=1  
                            xj Є {0, 1}, j = 1, . . . , n.  

    

1. solve the LP relaxation of the above problem plus any cuts generated so 

far. Let X* = (x1*, x2*, . . . ,xn*) denote the solution to the LP relaxation. 

Stop, if either the problem is infeasible or the objective function value 

for X* is less than the best feasible integer solution value found so far 

(Zinc) plus one, declaring Zinc as optimal. 

 

2.  generate Xint = (x1', x2', . . . ,xn') as candidate solution by the following:  

xj' = 1 if xj* ≥ 0.5,  xj' = 0 if xj* < 0.5.  
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Check if this solution is feasible and update the incumbent solution if it is 

feasible and the objective function value associated with it is greater than 

Zinc.  

 

3. calculate the value of the integrality gap associated with the solution to the 

LP relaxation as follows: 
 n 

δ = n - ∑ max [xj*, (1 - xj*)]    
           j=1  
 

3.a. If the value of the integrality gap (δ) is less than 1, add the following 

cut to the problem: 

∑ xj  +  ∑ (1 - xj) ≤ n - 1                            
    jЄS1        jЄS2 
 

where S1 = { j | xj' = 1} and S2 = { j | xj' = 0}.   

 Go to 1. 

 

3.b. If the value of the integrality gap (δ) is greater than 1, 

3.b.1. partition the problem with T defined as: 

          T C N = {1, 2, . . . ,n}, and j Є T if max [xj*, (1 - xj*)] = 1, j = 1, . . .,n, 

and solve the associated problem P(T): 

maximize  ∑  cj xj ,       
      jЄN\T  
 

subject to  ∑  aij xj ≤ bi - ∑ aij xj'   , i = 1, . . . , m, 
      jЄN\T                      jЄT 

                xj Є {0, 1}, j Є N \ T    

by CPLEX v8.1 in MIP mode.  
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3.b.2. check the candidate solution for feasibility and if it is feasible 

and the objective function value associated with it is greater than Zinc, 

update the incumbent solution.  

 

3.b.3. append a new cut to the original problem as, 

∑  xj  +  ∑   (1 - xj) ≤ |T| - 1   
           jЄT∩S1       jЄT∩S2 

 

where S1 = { j | xj' = 1} and S2 = { j | xj' = 0}. 

Go to 1.  

 

As the number of iterations increases, the computational time increases 

rapidly at each iteration because the number of constraints increases and the 

sub-problems get larger. Since we use the IP solver of CPLEX to solve sub-

problems, the computational time of the algorithm rapidly increases as the 

sub-problems get larger. 
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C h a p t e r  4 

 

Computational Analysis of the Search Based 

Cuts 

4.1 Computational Analysis of the Search Based Cuts Applied 

to the 0-1 MDKP 

We used the multidimensional 0-1 knapsack problems generated by Chu and 

Beasley (1998) for the computational analysis of the search based cuts. We 

made two experiments. In the first experiment, we fixed the number of 

constraints and for different numbers of variables we calculated the absolute 

reduction in the objective value per cut after 100 cuts (generated by the one 

step partitioning algorithm) are added to the original problem. We used 10 

problems for each combination of m and n, while m is the number of 

constraints and n is the number of variables. The results for the first 

experiment are as follows: 
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Table 4-1a: Computational results for m=5, α=0.5 and n=100 OR-library instances (see [6]) 

pb z(1) z(2) |z(1)-z(2)| / 100 
Mkpcb1-11 42939.52 42830.36 1.0916 
Mkpcb1-12 42706.7 42613.85 0.9285 
Mkpcb1-13 42165.19 42095.35 0.6984 
Mkpcb1-14 45347.07 45234.88 1.1219 
Mkpcb1-15 42434.12 42328.64 1.0548 
Mkpcb1-16 43082.23 42988.35 0.9388 
Mkpcb1-17 42190.6 42069.72 1.2088 
Mkpcb1-18 45265.47 45171.75 0.9372 
Mkpcb1-19 43567.49 43507.01 0.6048 
Mkpcb1-20 44796.63 44680.97 1.1566 

  average 0.97414 
 

 

 

Table 4-1b: Computational results for m=5, α=0.5 and n=250 OR-library instances (see [6]) 

pb z(1) z(2) |z(1)-z(2)| / 100 
mkpcb2-11 109220.6 109186.6 0.340 
mkpcb2-12 109960.3 109917.4 0.429 
mkpcb2-13 108648.8 108607.1 0.417 
mkpcb2-14 109510.8 109472.7 0.381 
mkpcb2-15 110834.2 110805.7 0.285 
mkpcb2-16 110366.8 110336.1 0.307 
mkpcb2-17 109152.6 109126 0.266 
mkpcb2-18 109137.7 109113.1 0.246 
mkpcb2-19 110123.1 110075.3 0.478 
mkpcb2-20 107162.1 107136 0.261 

  average 0.341 
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Table 4-1c: Computational results for m=5, α=0.5 and n=500 OR-library instances (see [6]) 

pb z(1) z(2) |z(1)-z(2)| / 100 
mkpcb3-11 218500.1 218483.1 0.170 
mkpcb3-12 221272.4 221253.3 0.191 
mkpcb3-13 217615.8 217600.9 0.149 
mkpcb3-14 223653.2 223634.9 0.183 
mkpcb3-15 219067.5 219042.9 0.246 
mkpcb3-16 220617 220602.2 0.148 
mkpcb3-17 220076.5 220054.4 0.221 
mkpcb3-18 218282.7 218266.5 0.162 
mkpcb3-19 217059.9 217043.3 0.166 
mkpcb3-20 219812.8 219793.6 0.192 

  average 0.1828 
 

The first column of the tables above shows the problem name, in the second 

column the objective value for the LP relaxation of the original problem 

(z(1)) is given for each problem, z(2) is the objective value for the LP 

relaxation of the original problem plus 100 cuts generated by the one step 

partitioning algorithm and finally |z(1)- z(2)| /100 (absolute change in the 

objective value per cut) is given in column 4. 

As seen from the tables above we fixed m at 5 and made computational 

experiments for n = 100, 250, 500. The average value of the absolute 

reduction in the objective value per cut after 100 cuts are added is 0.97414 

for n = 100, 0.341 for n = 250 and 0.1828 for n = 500. These results are 

shown in the table and depicted in the graph below, 
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Table 4-1d: Average value of absolute reduction in objective value per cut for m=5, α=0.5  

n |z(1)- z(2)| / 100 
100 0.97414 
250 0.341 
500 0.1828 

    

  

Figure 4-1a: Absolute reduction in the objective value per cut as n increases 

 

As it can be seen from the table, the absolute reduction in the objective value 

per cut after 100 cuts are added decreases as the number of variables 

increases. That is, the effectiveness of the search based cuts decrease as the 

number of variables increases. 

In the second experiment, we fixed the number of variables and for different 

numbers of constraints we calculated the absolute reduction in the objective 

value per cut after 100 cuts (generated by the one step partitioning 

algorithm) are added to the original problem. We used 10 problems for each 
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combination of m and n, while m is the number of constraints and n is the 

number of variables. The results for the second experiment are as follows: 

 

Table 4-1e: Computational results for n=100, α=0.5 and m=5 OR-library instances (see [6]) 

pb z(1) z(2) |z(1)-z(2)| / 100 
mkpcb1-11 42939.52 42830.36 1.0916 
mkpcb1-12 42706.70 42613.85 0.9285 
mkpcb1-13 42165.19 42095.35 0.6984 
mkpcb1-14 45347.07 45234.88 1.1219 
mkpcb1-15 42434.12 42328.64 1.0548 
mkpcb1-16 43082.23 42988.35 0.9388 
mkpcb1-17 42190.6 42069.72 1.2088 
mkpcb1-18 45265.47 45171.75 0.9372 
mkpcb1-19 43567.49 43507.01 0.6048 
mkpcb1-20 44796.63 44680.97 1.1566 

  average 0.97414 
 

 

Table 4-1f: Computational results for n=100, α=0.5 and m=10 OR-library instances (see [6]) 

pb z(1) z(2) |z(1)-z(2)| / 100 
mkpcb4-11 41712.64 41622.68 0.8996 
mkpcb4-12 42597.32 42504.68 0.9264 
mkpcb4-13 42759.32 42643.13 1.1619 
mkpcb4-14 45959.36 45862.18 0.9718 
mkpcb4-15 42183.12 42076.02 1.0710 
mkpcb4-16 43377.96 43265.22 1.1274 
mkpcb4-17 43927.94 43820.5 1.0744 
mkpcb4-18 43335.83 43220.3 1.1553 
mkpcb4-19 42611.6 42494.93 1.1667 
mkpcb4-20 41542.79 41433.04 1.0975 

  average 1.0652 
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Table 4-1g: Computational results for n=100,α=0.5 and m=30 OR-library instances (see [6]) 

pb z(1) z(2) |z(1)-z(2)| / 100 
mkpcb7-11 41276.36 41173.16 1.0320 
mkpcb7-12 41866.73 41740.82 1.2591 
mkpcb7-13 42232.96 42124.72 1.0824 
mkpcb7-14 41634.88 41510.52 1.2436 
mkpcb7-15 41410.88 41323.66 0.8722 
mkpcb7-16 41603.16 41468.19 1.3497 
mkpcb7-17 41616.13 41500.70 1.1543 
mkpcb7-18 43388.05 43207.30 1.8075 
mkpcb7-19 42656.56 42533.10 1.2346 
mkpcb7-20 42262.70 42105.70 1.5700 

  average 1.26054 
 

As seen from the tables above we fixed n at 100 and made computational 

experiments for m = 5, 10, 30. The average value of the absolute reduction in 

the objective value per cut after 100 cuts are added is 0.97414 for m = 5, 

1.0652 for m = 10 and 1.26054 for m = 30. These results are shown in the 

table and depicted in the graph below, 

 

Table 4-1h: Average value of absolute reduction in objective value per cut for n=100, α=0.5 

m |z(1)-z(2)| / 100 
5 0.97414 

10 1.0652 
30 1.26054 
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Figure 4-1b: Absolute reduction in the objective value per cut as m increases 

 

As it can be seen from the table, the absolute reduction in the objective value 

per cut after 100 cuts are added increases as the number of constraints 

increases. That is, the effectiveness of the search based cuts increase as the 

number of constraints increases. 
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4.2 Computational Analysis of the Search Based Cuts Applied 

to the Set Covering Problem 

For the second part of the computational analysis of the search based cuts we 

used another well known combinatorial optimization problem which is the 

set covering problem. The set covering problem can be formulated as 

follows: 

      n 

minimize ∑ cj xj ,  
     j=1  

 
          n 

subject to ∑ aij xj ≥ 1 , i = 1, . . . , m, 
                           j=1  

               xj Є {0, 1}, j = 1, . . . , n. 

where aij Є {0, 1} for i = 1, . . . , m; j = 1, . . . , n; and  cj > 0 for j = 1, . . .,n. 

For our computational experiments, we randomly generated set covering 

problems by the following: 

  Each coefficient of the constraint matrix aij (i = 1, . . . , m and j = 1, . . 

. ,n) is 1 with probability 0.5 and 0 with probability 0.5 . 

  Each coefficient of the objective function cj (j = 1, . . . , n) is 1. 

In order to analyze the effectiveness of the search based cuts, we made two 

experiments. In the first experiment, we fixed the number of constraints and 

for different numbers of variables we calculated the absolute increase in the 

objective value per cut after 100 cuts (generated by the one step partitioning 

algorithm) are added to the original problem. We used 5 problems for each 
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combination of m and n, and the results for the first experiment are as 

follows: 

 

Table 4-2a: Computational results for m=5 and n=100 set covering problems 

pb z(1) z(2) |z(1)-z(2)| / 100 
sc1 1.25 1.661876 0.004119 
sc2 1.25 1.705390 0.004554 
sc3 1.25 1.735886 0.004859 
sc4 1.25 1.710705 0.004607 
sc5 1.25 1.771835 0.005218 

  average 0.004671 
 

 
Table 4-2b: Computational results for m=5 and n=150 set covering problems 

Pb z(1) z(2) |z(1)-z(2)| / 100 
Sc6 1.25 1.580607 0.003306 
Sc7 1.25 1.598384 0.003484 
Sc8 1.25 1.597140 0.003471 
Sc9 1.333333 1.538552 0.002052 
Sc10 1.25 1.597115 0.003471 

  average 0.003157 
 

 
Table 4-2c: Computational results for m=5 and n=200 set covering problems 

Pb z(1) z(2) |z(1)-z(2)| / 100 
Sc11 1.25 1.532358 0.002824 
sc12 1.25 1.518742 0.002687 
sc13 1.25 1.498249 0.002482 
sc14 1.25 1.504127 0.002541 
sc15 1.25 1.537601 0.002876 

  average 0.002682 
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The first column of the tables above shows the problem name, in the second 

column the objective value for the LP relaxation of the original problem 

(z(1)) is given for each problem, z(2) is the objective value for the LP 

relaxation of the original problem plus 100 cuts generated by the one step 

partitioning algorithm and finally |z(1)- z(2)| /100 (absolute change in the 

objective value per cut) is given in column 4. 

As seen from the tables above we fixed m at 5 and made computational 

experiments for n = 100, 150, 200. The average value of the absolute 

increase in the objective value per cut after 100 cuts are added is 0.004671 

for n = 100, 0.003157 for n = 150 and 0.002682 for n = 200. These results 

are shown in the table and depicted in the graph below, 

 

Table 4-2d: Average value of absolute increase in the objective value per cut for m=5 

n |z(1)- z(2)| / 100 
100 0.004671 
150 0.003157 
200 0.002682 
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Figure 4-2: Absolute increase in the objective value per cut as n increases 

 

As it can be seen from the table, the absolute increase in the objective value 

per cut after 100 cuts are added decreases as the number of variables 

increases. That is, the effectiveness of the search based cuts decreases as the 

number of variables increases as in the case of the 0-1 MDKP. 

In the second experiment, we fixed the number of variables and for different 

numbers of constraints we calculated the absolute increase in the objective 

value per cut after 100 cuts (generated by the one step partitioning 

algorithm) are added to the original problem. We used 5 problems for each 

combination of m and n, and below are the results for the second experiment: 
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Table 4-2e: Computational results for n=100 and m=5 set covering problems 

pb z(1) z(2) |z(1)-z(2)| / 100 
sc1 1.25 1.661876 0.004119 
sc2 1.25 1.705390 0.004554 
sc3 1.25 1.735886 0.004859 
sc4 1.25 1.710705 0.004607 
sc5 1.25 1.771835 0.005218 

  Average 0.004671 
 

 

Table 4-2f: Computational results for n=100 and m=10 set covering problems 

pb z(1) z(2) |z(1)-z(2)| /100 
sc16 1.2 1.883667 0.006837 
sc17 1.333333 1.889595 0.005563 
sc18 1.25 1.764056 0.005141 
sc19 1.2 1.821188 0.006212 
sc20 1.285714 1.857548 0.005718 

  Average 0.00589 
 

As seen from the tables above, we fixed n at 100 and made computational 

experiments for m = 5, 10. The average value of the absolute increase in the 

objective value per cut after 100 cuts are added is 0.004671 for m = 5, and 

0.00589 for m = 10. These results are shown in the table below, 

Table 4-2g: Average value of absolute increase in the objective value per cut for n=100 

m |z(1)-z(2)| / 100 
5 0.004671 

10 0.00589 
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As it can be seen from the table, the absolute increase in the objective value 

per cut after 100 cuts are added increases as the number of constraints 

increases. That is, the effectiveness of the search based cuts increases as the 

number of constraints increases as in the case of the 0-1 MDKP. 

 
 
 
 
 
 
 



 

C h a p t e r  5 

 

Application of the Partitioning Algorithm to the 

Multidimensional 0-1 Knapsack Problem 

In order to check the efficiency of the partitioning algorithm, the one step 

partitioning algorithm described in Section 3.5 and coded in C language was 

applied to 60 randomly generated 0-1 MDKP and 30 large-sized 0-1 MDKP 

from the literature (Chu and Beasley (1998)). The computational results 

were compared with the implementation of CPLEX v8.1 in MIP mode and 

the results reported by Chu and Beasley (1998). 

5.1 Problem generation 

We generated a set of large 0-1 MDKP instances using the procedure 

suggested by Freville and Plateau (1994) and used by Chu and Beasley 

(1998) to generate the standard test problems in OR-library. The number of 

constraints m was set to 10 and the number of variables n was set to 1000 

and 2000. We generated 30 problems for each m-n combination, giving a 

total of 60 problems. 

Each problem instance is randomly generated as follows: 

    Each coefficient of the constraint matrix aij (i = 1, . . . , m and j = 1, . 

. . , n) is an integer randomly chosen between 1 and 1000. 
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    The right-hand side coefficients (bi ’s) are found using                                 

         n 

 bi = α ∑ aij , where α is a tightness ratio and α = 0.25 for the first  
                 j=1  
 

ten problems, α = 0.50 for the next ten problems and α = 0.75 for the    

remaining ten problems.  

    The objective function coefficients (cj ’s) are correlated to aij and 

generated by: 

           n 

cj = ∑ aij /m + qj/2    
                 j=1  
 

where qj is an integer randomly chosen between 1 and 1000. In 

general, correlated problems are more difficult to solve than 

uncorrelated problems (Gavish and Pirkul (1985), Pirkul (1987)). 

5.2 Computational Results 

The results obtained are shown on Tables 5-2a, 5-2b and 5-2c where, for 

each problem instance, the following information is given: 

 n and m: number of variables and number of constraints. 

 α: tightness ratio. 

 z(lp): optimal value of the LP relaxation of 0-1 MDKP. 

 initial value (partitioning algorithm): first feasible integer solution 

value found by one step partitioning algorithm. 

 best value (partitioning algorithm): best feasible integer solution 

value found by one step partitioning algorithm in 225 iterations. 
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 iter.: the number of iterations required by one step partitioning 

algorithm to find the value in column 5. 

 time (partitioning algorithm): computation time (in CPU seconds) 

required by one step partitioning algorithm to find the value in 

column 5. 

 initial value (CPLEX): first feasible integer solution value found by 

CPLEX v8.1 in MIP mode. 

 best value (CPLEX): best feasible integer solution value found by 

CPLEX v8.1 in MIP mode before memory tree size of 250 Mb is 

exceeded. 

 time (CPLEX): computation time (in CPU seconds) required by 

CPLEX v8.1 in MIP mode until  250 Mb tree memory size is 

exceeded. 

 

 

 

 

 

 

 



 

Table 5-2a: Computational results for n=500 and m=10 OR-library instances (see [6]) 
Partition Algorithm CPLEX 

Prob. name z(lp) initial best iter. time initial best time  
mkpcb6-01 118019.5 117168 117779 72 9.6 116510 117712 603.98
mkpcb6-02 119437.3 118613 119165 172 135.2 118543 119158 650.96
mkpcb6-03 119405.7 118761 119194 210 443.87 118705 119211 532.23
mkpcb6-04 119066.1 118268 118813 156 82.35 118163 118813 631.62
mkpcb6-05 116698 115896 116509 188 171.01 115379 116423 557.77
mkpcb6-06 119710 118946 119463 188 197.7 118355 119448 577.63
mkpcb6-07 120033.3 119180 119777 168 114.77 118688 119777 576.10
mkpcb6-08 118545.7 117883 118323 128 63.12 117561 118266 611.74
mkpcb6-09 118001.6 117182 117776 170 85.31 116727 117779 561.42
mkpcb6-10 119440.6 118943 119163 160 80.45 118040 119191 613.79
mkpcb6-11 217552.9 217068 217341 190 336.27 216744 217312 633.38
mkpcb6-12 219255.2 218307 219030 164 255.73 218742 219027 536.46
mkpcb6-13 217987.8 217500 217792 146 57.75 216788 217792 537.22
mkpcb6-14 217040.7 216455 216851 154 75.83 215956 216851 678.05
mkpcb6-15 214010.3 212415 213830 200 229.71 213229 213827 590.07
mkpcb6-16 215261.3 214654 215041 224 260.1 214349 215034 582.36
mkpcb6-17 218109.2 217030 217899 194 307.45 217249 217875 622.92
mkpcb6-18 220175.6 219488 219984 102 27.49 218784 219965 606.38
mkpcb6-19 214561 213918 214329 212 449.42 213666 214312 508.71
mkpcb6-20 221083.6 220367 220852 204 186.4 219930 220846 596.21
mkpcb6-21 304555 304214 304334 156 70.76 303606 304344 582.11
mkpcb6-22 302553 301951 302333 176 49.2 302159 302326 461.06
mkpcb6-23 302581.5 300585 302416 82 12.65 302061 302386 581.82
mkpcb6-24 300956.7 300440 300747 128 56.9 300353 300719 455.72
mkpcb6-25 304584.7 303763 304349 196 371.82 303563 304346 548.79
mkpcb6-26 301952.5 301489 301767 148 81.18 301226 301742 537.43
mkpcb6-27 305139.7 304745 304949 128 29.1 304641 304949 538.1
mkpcb6-28 296636.6 296287 296441 158 50.21 296038 296441 551.31
mkpcb6-29 301547.6 301131 301326 164 211.01 300507 301353 606.75
mkpcb6-30 307250 306393 307072 218 138.5 306730 307038 564.21

   average 165 154.7  average 574.54
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Table 5-2b: Computational results for n=1000 and m=10 randomly generated instances 
Partition Algorithm CPLEX 

Pb      α z(lp) initial 
value best value iter. time  initial 

value 
best 
value  time  

1 0.75 611260.7 610733 611104 136 79.73 610458 611033 654.36
2 0.75 603299.3 602722 603116 222 292.13 602872 603104 610.09
3 0.75 610002.4 609457 609824 190 117.3 609194 609803 589.94
4 0.75 613492 613063 613346 194 531.78 612456 613298 622.37
5 0.75 607796.8 607015 607637 210 373.53 606953 607588 641.2
6 0.75 611377.4 610879 611220 122 39.68 610527 611187 708.7
7 0.75 610871.2 610309 610694 224 496.85 610311 610692 643.92
8 0.75 612942.5 611738 612775 220 205.07 612089 612775 720.16
9 0.75 609705.2 607772 609552 192 272.24 609332 609517 715.11

10 0.75 610033.3 609417 609848 180 163.5 609324 609841 727.14
11 0.5 440789.7 439405 440606 198 283.72 439700 440561 715.01
12 0.5 435590.5 434665 435395 186 197.47 434741 435369 721.07
13 0.5 438296.2 437666 438118 174 164.03 437306 438065 752.99
14 0.5 441503.3 440737 441309 174 308.3 440288 441279 709.54
15 0.5 437539.3 436162 437371 156 139.95 436344 437334 869.74
16 0.5 440013.6 439282 439804 194 351.66 438524 439763 783.7
17 0.5 439492.5 438595 439309 174 101.88 438336 439247 762.93
18 0.5 439402.8 438253 439238 144 64.44 438806 439252 842.44
19 0.5 439067.8 437994 438863 198 386.46 438164 438808 795.31
20 0.5 439244 438606 439052 210 202.56 438350 438993 750.47
21 0.25 239227.7 238356 238975 128 47.36 238002 238936 735.02
22 0.25 237326.8 236201 237119 190 205.96 236229 237114 609.29
23 0.25 236982.5 236343 236797 212 368.34 235534 236720 712.88
24 0.25 239075.9 236964 238867 216 446.47 237708 238840 707.86
25 0.25 237069.9 236293 236855 160 88.65 235870 236806 780.25
26 0.25 238893.5 238040 238702 154 110.56 237622 238647 724.3
27 0.25 239103.9 238458 238867 170 179.93 237887 238804 648.67
28 0.25 238664 237857 238429 194 118.99 236818 238380 713.71
29 0.25 237864.1 237307 237658 204 137.08 236823 237626 777.48
30 0.25 237876.8 236893 237633 180 104.78 236798 237607 761.34

    average 184 219.35  average 716.9
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Table 5-2c: Computational results for n=2000 and m=10 randomly generated instances 
Partition Algorithm CPLEX 

Pb α z(lp)  initial 
value 

Best 
value  iter. time initial 

value 
Best 
value time  

31 0.75 1217182 1216465 1217041 192 263.05 1216480 1217032 909.09
32 0.75 1218369 1217382 1218217 106 55.14 1217596 1218162 967.93
33 0.75 1217932 1217381 1217775 225 569.67 1217183 1217773 997.9 
34 0.75 1213535 1212941 1213368 196 301.3 1212806 1213319 898.43
35 0.75 1211499 1210662 1211360 168 308.95 1210750 1211292 989.95
36 0.75 1207297 1206708 1207146 198 617.6 1206424 1207084 949.73
37 0.75 1214952 1214411 1214805 190 132.25 1213721 1214744 985.58
38 0.75 1223266 1222627 1223132 174 297.32 1222621 1223078 1022.58
39 0.75 1212073 1211363 1211923 188 227.27 1211225 1211858 922.6 
40 0.75 1212673 1212122 1212536 206 314.03 1211838 1212540 1211.06
41 0.5 877762.9 876999 877575 194 223.82 876561 877532 1126.78
42 0.5 877040.3 876306 876886 154 266.08 875810 876825 1103.52
43 0.5 878138 877731 877972 206 845.94 877047 877979 1007.01
44 0.5 876632.1 875584 876439 146 95.23 875721 876400 1107.26
45 0.5 872384.7 871817 872230 146 144.55 870854 872180 1219.81
46 0.5 869359.7 868817 869194 188 425.72 868595 869176 1071.94
47 0.5 874566.5 873179 874393 220 290.75 873285 874371 964.39
48 0.5 882383.8 881554 882192 164 108.44 881508 882164 949.76
49 0.5 873367.5 872514 873208 196 356.6 872206 873086 1176.84
50 0.5 874945 874552 874774 166 116.32 873514 874755 1089.03
51 0.25 476021.4 473825 475790 172 184.27 474626 475740 959.23
52 0.25 476476.5 474800 476286 72 18.55 475338 476215 1077.08
53 0.25 478913.5 478155 478693 196 283.68 477504 478641 941.51
54 0.25 478085.6 477089 477893 222 1402.7 476277 477890 939.87
55 0.25 472611.5 471963 472361 138 61.43 470667 472307 938.64
56 0.25 472503 471910 472300 168 153.44 470834 472267 904.93
57 0.25 474556.1 473957 474377 200 647.23 473167 474362 1239.40
58 0.25 480101.8 478685 479958 158 117.54 477861 479924 1044.22
59 0.25 474772.3 474115 474605 172 189.36 473334 474476 960.34
60 0.25 477055.2 476342 476864 224 475.96 475430 476761 959.49

    Average 179 316.47  average 1021.2
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We terminated one step partitioning algorithm after 225 iterations and 

compared the best value of the objective function found so far with the best 

value of the objective function found by CPLEX before memory tree size of 

250 Mb was exceeded. The reason for terminating the one step partitioning 

algorithm after 225 iterations is that after 225 iterations, the algorithm takes 

a lot of time at each iteration with a little probability of improving the best 

feasible solution value found so far. 

For the first set of problems, which are from the literature, we also compared 

the best value of the objective function found by  the one step partitioning 

algorithm with the genetic algorithm of Chu and Beasley (1998). The 

comparison is given in Tables 5-2d, 5-2e, 5-2f. Note that the one step 

partitioning algorithm does not take too much time. As it can be seen on the 

last rows of Tables 5-2a, 5-2b, 5-2c on average it takes 154.7 seconds for n = 

500, 219.35 seconds for n = 1000 and 316.47 seconds for n = 2000 for the 

one step partitioning algorithm to find the best value in column 5. 

The following information is given for the tables below: 

 z(1): best feasible integer solution value found by one step 

partitioning algorithm in 225 iterations. 

 z(2): best feasible integer solution value found by CPLEX v8.1 in 

MIP mode before memory tree size of 250 Mb was exceeded. 

 z(3): best feasible integer solution value found by the genetic 

algorithm of Chu and Beasley (1998) 



 

Table 5-2d: Comparison of one step partitioning alg. (z(1)) with Cplex (z(2)) and genetic 

algorithm of Chu and Beasley (z(3)) 

Prob. name z(3) z(2) Z(1) z(1)-z(3) z(1)-z(2) 
Mkpcb6-01 117726 117712 117779 53 67 
Mkpcb6-02 119139 119158 119165 26 7 
Mkpcb6-03 119159 119211 119194 35 -17 
Mkpcb6-04 118802 118813 118813 11 0 
Mkpcb6-05 116434 116423 116509 75 86 
Mkpcb6-06 119454 119448 119463 9 15 
Mkpcb6-07 119749 119777 119777 28 0 
Mkpcb6-08 118288 118266 118323 35 57 
Mkpcb6-09 117779 117779 117776 -3 -3 
Mkpcb6-10 119125 119191 119163 38 -28 
Mkpcb6-11 217318 217312 217341 23 29 
Mkpcb6-12 219022 219027 219030 8 3 
Mkpcb6-13 217772 217792 217792 20 0 
Mkpcb6-14 216802 216851 216851 49 0 
Mkpcb6-15 213809 213827 213830 21 3 
Mkpcb6-16 215013 215034 215041 28 7 
Mkpcb6-17 217896 217875 217899 3 24 
Mkpcb6-18 219949 219965 219984 35 19 
Mkpcb6-19 214332 214312 214329 -3 17 
Mkpcb6-20 220833 220846 220852 19 6 
Mkpcb6-21 304344 304344 304334 -10 -10 
Mkpcb6-22 302332 302326 302333 1 7 
Mkpcb6-23 302354 302386 302416 62 30 
Mkpcb6-24 300743 300719 300747 4 28 
Mkpcb6-25 304344 304346 304349 5 3 
Mkpcb6-26 301730 301742 301767 37 25 
Mkpcb6-27 304949 304949 304949 0 0 
Mkpcb6-28 296437 296441 296441 4 0 
Mkpcb6-29 301313 301353 301326 13 -27 
Mkpcb6-30 307014 307038 307072 58 34 

   Total 684 382 
   Average 22.8 12.73 



 

Table 5-2e: Comparison of one step partitioning alg. (z(1)) with Cplex (z(2)) for n=1000 

randomly generated instances 

Pb Z(1) z(2) z(1)-z(2) 
1 611104 611033 71 
2 603116 603104 12 
3 609824 609803 21 
4 613346 613298 48 
5 607637 607588 49 
6 611220 611187 33 
7 610694 610692 2 
8 612775 612775 0 
9 609552 609517 35 

10 609848 609841 7 
11 440606 440561 45 
12 435395 435369 26 
13 438118 438065 53 
14 441309 441279 30 
15 437371 437334 37 
16 439804 439763 41 
17 439309 439247 62 
18 439238 439252 -14 
19 438863 438808 55 
20 439052 438993 59 
21 238975 238936 39 
22 237119 237114 5 
23 236797 236720 77 
24 238867 238840 27 
25 236855 236806 49 
26 238702 238647 55 
27 238867 238804 63 
28 238429 238380 49 
29 237658 237626 32 
30 237633 237607 26 

  Total 1094 
  Average 36.47 
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Table 5-2f: Comparison of one step partitioning alg. (z(1)) with Cplex (z(2)) for n=2000 

randomly generated instances 

Pb Z(1) z(2) z(1)-z(2) 
31 1217041 1217032 9 
32 1218217 1218162 55 
33 1217775 1217773 2 
34 1213368 1213319 49 
35 1211360 1211292 68 
36 1207146 1207084 62 
37 1214805 1214744 61 
38 1223132 1223078 54 
39 1211923 1211858 65 
40 1212536 1212540 -4 
41 877575 877532 43 
42 876886 876825 61 
43 877972 877979 -7 
44 876439 876400 39 
45 872230 872180 50 
46 869194 869176 18 
47 874393 874371 22 
48 882192 882164 28 
49 873208 873086 122 
50 874774 874755 19 
51 475790 475740 50 
52 476286 476215 71 
53 478693 478641 52 
54 477893 477890 3 
55 472361 472307 54 
56 472300 472267 33 
57 474377 474362 15 
58 479958 479924 34 
59 474605 474476 129 
60 476864 476761 103 
  Total 1360 

  Average 45.33 



Chapter 5. Application of the Partitioning Algorithm to the 0-1 MDKP 

As it is seen on the Table 5-2d, for 26 of 30 problems from the literature the 

best values found by the one step partitioning algorithm are greater than the 

best values reported by Chu and Beasley (1998), the average difference 

being 22.8. In addition, for 19 of these problems the best values found by the 

one step partitioning algorithm are greater than the best values found by 

CPLEX v8.1 in MIP mode, the average difference being 12.73. 

For the second set of problems (n=1000) which are randomly generated, the 

best values found by the one step partitioning algorithm are on average 36.47 

greater than the best values found by CPLEX v8.1 in MIP mode, and for 28 

of these 30 problems, the best values found by the one step partitioning 

algorithm are greater than the best values found by CPLEX v8.1 in MIP 

mode.  

For the third set of problems (n=2000), the best values found by the one step 

partitioning algorithm are on average 45.33 greater than the best values 

found by CPLEX v8.1 in MIP mode, and for 28 of these 30 problems, the 

best values found by the one step partitioning algorithm are greater than the 

best values found by CPLEX v8.1 in MIP mode.  

We repeated one step partitioning algorithm for 8 problems for which the 

best values found by the one step partitioning algorithm were less than the 

best values found by CPLEX v8.1 in MIP mode and give more time to the 

one step partitioning algorithm than before. For 6 of those problems the one 

step partitioning algorithm found better quality solutions and for the 

remaining 2 problems (pb: mkpcb6-09, 40) there was no improvement in 

2000 CPU seconds. These results are shown in the table below, 
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Table 5-2g: Computational results of the problems for which the experiment was repeated  

Partition Algorithm CPLEX 
Pb  z(lp) initial 

value 
Best value 
(improved) iter. time initial 

value 
best 
value time  

mkpcb6-03 119405.7 118761 119211 250 1180.83 118705 119211 532.23 
mkpcb6-10 119440.6 118943 119197 246 659.76 118040 119191 613.79 
mkpcb6-21 304555 304214 304353 240 474 303606 304344 582.11 
mkpcb6-29 301547.6 301131 301340 232 1222.99 300507 301353 606.75 

18 439402.8 438253 439251 274 1663.08 438806 439252 842.44 
43 878138 877731 877979 230 1442.33 877047 877979 1007.01



 

C h a p t e r  6 

 

Conclusion 

In this study, we have considered the analysis of the search based cuts -a 

recently proposed cut for 0-1 programming problems by Oguz (2002)- 

applied to the multidimensional 0-1 knapsack problems and the application 

of the partitioning algorithm -a new algorithm based on the search based 

cuts- to the same problem.  

In order to analyze the effectiveness of the search based cuts, we applied 

them to 60 multidimensional 0-1 knapsack problems from the literature as 

well as 25 randomly generated set covering problems with different numbers 

of variables and different numbers of constraints. As a result of our study, 

we showed that the effectiveness of the search based cuts decreases as the 

number of variables increases and increases as the number of constraints 

increases. 

In order to check the efficiency of the partitioning algorithm, we made 

computational experiments with 30 small-sized test problems (Shih (1979)) 

from the literature and showed that it found the optimal solution to each of 

these problems. In addition, we made computational experiments on 

randomly generated problems with different numbers of variables (n) and 

different numbers of constraints (m) and found out that the largest value of n 

was 90 and m was 20 for which the algorithm could solve problems to 

optimality. The inconvenience of the algorithm is that due to computational 

and programming difficulties, we limited our algorithm to partitioning the 
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original problem at most 10 times, and to solve larger problems requires 

using the partitioning procedure more than 10 times.  

Since the partitioning algorithm is not an efficient algorithm to solve the 

large-sized multidimensional 0-1 knapsack problems, we presented a 

modification of it, "the one step partitioning algorithm" for solving those 

problems.  

We tested the one step partitioning algorithm on 90 multidimensional 0-1 

knapsack problems (60 randomly generated and 30 from the literature) and 

compared its performance with CPLEX v8.1 in MIP mode. We showed that 

the one step partitioning algorithm performs better than CPLEX especially 

for the multidimensional 0-1 knapsack problems with a large number of 

variables and few constraints. One step partitioning algorithm found better 

quality solutions than CPLEX to the problems tested with less computational 

effort. The problems couldn't be solved to optimality, the solutions are 

approximate. We also compared our computational results with the ones 

reported by Chu and Beasley (1998) for the 30 problems from the literature 

and showed that for 87% of these problems the best values found by the one 

step partitioning algorithm were greater than the best values reported by Chu 

and Beasley (1998). One inconvenience of the one step partitioning 

algorithm is that as the number of constraints increases the computational 

time increases rapidly. The reason for this is that as the number of 

constraints increases the sub-problems get larger and since we use the IP 

solver of CPLEX to solve sub-problems, this takes more time and the 

computational time of the algorithm increases. 

Finally, we think that the algorithms and cuts tested in this study should 

prove useful when applied to other similar 0-1 integer programming 

problems.  
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