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In this paper we briefly define distance vector routing algorithms, their advantages and
possible drawbacks. On these possible drawbacks, currently widely used methods split
horizon and poisoned reverse are defined and compared. The count to infinity problem is
specified and classified to be a halting problem, and a proposition stating that entangled
states used in quantum computation can be used to handle this problem is examined.
Several solutions to this problem by using entangled states are proposed and a very brief
introduction to entangled states is presented.
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1. Introduction

Distance vector routing is a popular dynamic routing algorithm which is used in
many applications due to its simplicity and ease of implementation. Although it is
not a technically superior algorithm, its availability even before it was standardized
has made it the most common algorithm used till now. Despite the advantages
of the distance vector routing algorithm, which was firstly proposed by Ford and
Fulkerson,1,2 the algorithm has a very critical problem embedded in it, which arises
when one of the nodes in the network goes down (or is isolated from the network).
Since distance vector routing simply depends on routing table exchange of a node
with its neighbors, the other nodes neighboring the node that has just gone down
still think that their other neighbors have a better path leading to that isolated
node, which in turn starts an endless exchange of data between the nodes, the well
known “count to infinity” problem.

A good standard in distance routing protocols is called RIP (Routing Informa-
tion Protocol)3 and it solves the count to infinity problem by adding more check
actions and limitations to the system; these methods are called split horizon and
poisoned reverse. Split horizon together with poisoned reverse solves loops in the
network up to and including two gateways, and if more than two gateways are in a
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loop, the problem is not eliminated. Poisoned reverse imposes a special meaning on
the infinite distance metric (16 for RIP) and updates other nodes’ routing tables
accordingly to avoid looping so that the neighboring nodes get infinite metric entry
into their corresponding tables to immediately prevent a loop. But poisoned reverse
has a serious problem in that it limits the bandwidth of the system since the packets
that prevent the loop get bigger and bigger as the network neighborhood enlarges.
For this reason, RIP is suggested to be implemented in networks no more than
15 hops (i.e. 15 gateways connecting asynchronous networks to each other is an
example). Therefore, the major ways of preventing the count to infinity problem
lead to more complications and changes in the protocol, which add overheads in
using time and space sources (i.e. more delays and less bandwidth with no improve-
ment in performance but some stabilization). Moreover, these preventing algorithms
are only applicable when the network size is small, which is due to the time consid-
erations in loop detection. To propose a method for avoiding the count to infinity
problem with minimal loss in time and space, we will approach the system as a
cause for the problem. The next section will show that the count to infinity prob-
lem is a very hard problem (in view of algorithmic complexity considerations) to
be efficiently avoided by classical computers if the case is imminent in a certain
algorithm.

2. Reduction of Counting to Infinity Problem to the
Halting Problem

The halting problem is one of the oldest unsolvable problems of computation the-
ory. It stems from Hilbert’s Entscheidungs problem (decision problem) which asks
whether there is an algorithm for the solution of any given problem. The halting
problem is Turing’s answer to this question and it is a well known issue that, unfor-
tunately, all problems do not have feasible algorithms for their solution. The halting
problem can be stated as followsa: there exists no procedure h(x) that determines
whether a Turing Machine Mx will halt upon input of a specific string x. In other
words, no algorithm can tell whether another procedure would halt or loop forever.

The count to infinity problem can also be defined in the class of problems that
have the characteristics of the halting problem, and to show this it is enough to show
a function derived from the count to infinity problem which models the function
h(x) above. Our h(x) for the count to infinity problem can be given as

h(x) =




0, if there is not a well-defined
route to a just isolated node with an
acceptable amount of metric used,

1, if there is a well-defined route
to a just isolated node with some optimum
finite amount of metric used.

aA proof can be found in Ref. 4.
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Here, the problem only covers the nodes that are on the path that is not available
just after the destination node is isolated. The halting problem is an open-ended
issue in computer science that implies no current solution with classical computers.
When one attempts to solve this problem based on a classical computer architecture,
one must either completely change the algorithm or take some precautions not to let
it happen, which in turn adds significant overheads and limitations to the system.
Split horizon with poisoned reverse is such a precaution, which still has problems
but works well in small networks to some extent. For these reasons we will propose
a new feature from quantum theory, entangled states, to prevent this problem for
larger networks, which change the hardware by using a phenomenon that has no
classical counterpart in physics. The main aim of this change in hardware is to design
a feasible system that extends to distant networks with minimum overhead, to
significantly reduce the time and space complexity of the system which is practically
applicable by the users of the network.

3. Application of Entanglement to the Counting to
Infinity Problem

Entanglement may be applied in many different ways to a classical network. We
will now study these applications, and then compare them with each other. During
these comparisons, we will assume that the entangled states can be transported via
a quantum channel so that nodes can share them.

We will fix the following convention on the communication via qubits. Assume
that two nodes A and B in a network have corresponding entangled pairs which are
represented by the state 1√

2
(|0〉|0〉+ |1〉|1〉) with them. If the sender A detects that

it is completely isolated from the network it does a measurement on its qubit by the
projection operator P0 = |0〉〈0|. When the receiver B sees that no information is
coming via classical channels it applies a projection operation of P1 = |1〉〈1| on its
entangled state. If the node A is isolated (i.e. the state has the form |0〉|0〉 after the
projection), node B will get zero output as a result of its measurement. If A is still
connected to the network, it does no operation on the system and B’s measurement
projects the system onto state |1〉|1〉.

One application may be implementing entangled states (there may be a lot of
pairs shared between two nodes) between neighboring nodes of a selected node A

and distant gateways. When that node A goes down, a neighboring node learns it
and then sets its entangled state accordingly and the distant gateway periodically
measures its entangled state. Since the count to infinity procedure has already
begun near the node A, this gateway is aware of the situation and it may guarantee
that the problem does not pass through it to outer networks and stays in a limited
area so that if split horizon with poisoned reverse is still active, the resolution of
the problem becomes faster. This can also help the distance vector routing to be
used in much larger networks since the count to infinity problem is guaranteed to
be limited in a smaller area if it occurs and split horizon with poisoned reverse
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can handle it up to some acceptable level. Here, infinity will be represented by the
number of hops to reach the distant gateway that knows the situation at node A

plus 1. This system requires periodic transportation of entangled pairs since the
distant gateway periodically consumes the states it has by measuring them to learn
whether node A has detected any problems around itself. This scenario is so simple
but even in this case the complexity of informing a distant node about a change
in topology becomes O(1). Variants of this type of informing a change in topology
may be continuously applied among nodes but this also adds an overhead of qubit
exchange on the network. However, this exchange does not significantly affect the
performance since we only send 0 or 1 data and qubits are independent of each
other due to the fact that each of them is discretely entangled, and this makes the
quantum channel error tolerant, i.e. if one or two qubits are mistakenly measured
on the way, they become useless but this does not affect the other qubits and this
is not a significant source of unreliability.

Another application that is more sophisticated is the exchange of entangled
qubits generated at a node while exchanging the distance vector routing data
between neighbors. When one node updates its table, it also gets corresponding
entangled qubits generated by its neighbors. Each node i generates and stores ni

pairs of qubits for each of the N possible destinations and for itself (since it may
be the destination of one of its neighbors), where ni is the number of neighbors of
node i. Thus, each node stores (N + 1) × ni qubits at most because for a specific
destination every neighbor of node i may pass through it in the worst case. If the
neighbor of node i decides to pass through it, node i also sends the one of the
reserved entangled qubits for the destination. This procedure can be explained on
a simple network lined up on a straight line which has the morphology

A −−−−B −−−−C −−−−− D −−−−E −− · · ·
The process for the case of node A can be described as follows:

(i) Node A goes down and measures qubits reserved for itself;
(ii) B could not get a distance vectorb from node A and measures the qubit in

the entry for node A as the destination in its routing table and learns that
A is offline.

(iii) B checks its neighbor C and sees that there is a path from C to A, without
knowing that this path passes through it (counting to infinity just starts).

(iv) Since B knows that it cannot reach A with its former path, it measures all
the nB qubits stored for node A as the destination.

(v) C sees that all its neighbors are three hops away from the destination node
and it measures the qubit reserved for node A in its routing table, which still
defines its former path through B and sees that A is not reachable through B.
Then it measures nC qubits for destination A and selects D as a path.

bMore information on distance vector routing can be found in Refs. 3 and 7.
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(vi) In a second exchange to update its routing table, B measures the qubit in its
entry for node A (this time the qubit has come from neighbor C) and learns
that A is not reachable through C and concludes that it cannot reach A in
any way.

(vii) After several exchanges, the system eventually updates itself correctly. In the
above network, if D is the last node in the linear chain, D’s update concludes
that none of the nodes are reachable.

Thus the system quickly and asynchronously (i.e. no periodic measurement of
qubits; they are measured just before each exchange of routing data and generated
and exchanged while exchanging the routing data) collapses to a stable system
with its new network topology. The protocol defined above can be applied on more
complex networks than the above example and it prevents the count to infinity
problem in an efficient way when it occurs.

4. Conclusions

In this paper we briefly defined the distance vector routing algorithm characteris-
tics and examined possible causes and results of the count to infinity problem. We
investigated the advantages, disadvantages and limitations of the most used meth-
ods to avoid the count to infinity problem or recover from it. These methods are
split horizon and poisoned reverse which can also be used together. The reduction
of the count to infinity problem to the halting problem lets us examine the problem
from the point of view of computation complexities and a decision problem. We
proposed to change the hardware to prevent counting to infinity in order to have a
more robust network algorithm without significantly increasing the complexity of
the distance vector routing algorithm. For this reason a statistical and nondeter-
ministic theory of computation, quantum computation theory, is used to develop
such algorithms. The novel states called entangled states enable the network nodes
to communicate with each other without depending on the network connectivity in
the case of network topology change, which is possible if a measurement protocol
of states is established. Moreover, the time complexity of learning any change (or
equivalently, making a measurement on an entangled state) between any node with
any amount of distance between them is O(1) in the case of a network topology
change, which significantly increases the size and quality of service of the network
on which distance vector routing can be applied.
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