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ABSTRACT

MECHATRONIC DESIGN OF A MODULAR
THREE-AXIS SLIDER SYSTEM FOR

HIGH-PRECISION POSITIONING APPLICATIONS

Erva Ulu

M.S. in Mechanical Engineering

Supervisor: Assist. Prof. Dr. Melih Çakmakçı

August, 2012

Following the recent improvements in precision engineering related technol-

ogy, interest for micro/nano-engineering applications are increased and various

micro/nano-scale operations and products are developed. For micro/nano-scale

applications, high-precision equipment including micro/nano-positioning devices

with high accuracy and precision are required. In this thesis, mechatronic design

of a three axes micro/nano-positioning device is discussed in detail. In order to

satisfy nanometer level precision, an adaptive method to increase the available

measurement resolution of quadrature encoders is presented.

Performance characteristics of micro/nano-positioning devices usually include

positioning accuracy of their each individual axis, operation range, maximum

velocity and maximum acceleration. For this reason, permanent magnet linear

motors (PMLM) are chosen as actuators in the presented design due to their

outstanding characteristics. Moreover, in order to provide high-flexibility in terms

of applications and simplify the control of the system, modularity is one of the

main concerns while designing the micro/nano-positioning system presented here.

Building the modular single axis slider system, three axes positioning device is

constructed by assembling three of them perpendicularly. In this design, linear

optical encoders are used as feedback sensors. Movement range of the designed

system is 120mm in each direction.

Since the available linear optical encoders have measurement resolution of

1µm, resolution of them is to be improved in software for sub-micron level po-

sitioning applications. For this purpose, a new method to increase the available

measurement resolution of quadrature encoders is presented in this thesis. This

method features an adaptive signal correction phase and an interpolation phase.
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Imperfections in the encoder signals including amplitude differences, mean offsets

and quadrature phase shift errors are corrected by using recursive least squares

(RLS) with exponential forgetting and resetting. Interpolation of the corrected

signals is accomplished by a quick access look-up table calculated offline to sat-

isfy linear mapping from available sinusoidal signals to higher order ones. With

the conversion of the high-order sinusoids to binary pulses, position information

is derived. By using the presented method, 10nm measurement resolution is

achieved with an encoder with 1µm off-the-shelf resolution. Experiment results

demonstrating the effectiveness of the proposed method are presented. Valida-

tion of the method is accomplished for several cases including the best resolution

obtained. Practical constraints limiting the maximum interpolation number are

also discussed in detail.

Keywords: Precision positioning, encoder resolution, adaptive systems, measure-

ment interpolation, quadrature encoder signals, modular design.



ÖZET

YÜKSEK HASSASİYETLİ POZİSYONLAMA
UYGULAMALARI İÇİN MODÜLER ÜÇ-EKSENLİ
KIZAK SİSTEMİNİN MEKATRONİK TASARIMI

Erva Ulu

Makine Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Assist. Prof. Dr. Melih Çakmakçı

Ağustos, 2012

Hassas mühendislik alanındaki teknolojik ilerlemeyi takiben mikro/nano-

mühendislik uygulamalarına olan ilgi artmış, son yıllarda mikro/nano-boyutlu

birçok süreç ve ürün geliştirilmiştir. Mikro/nano boyutlarda işlem yapabilmek

için kullanılacak makinaların yüksek doğruluk ve hassasiyete sahip mikro/nano-

pozisyonlama cihazları içermesi gerekmektedir. Bu tezde bir üç eksenli

mikro/nano-pozisyonlama cihazının mekatronik tasarımı detaylı bir biçimde an-

latılmaktadır. Ayrıca, nanometre seviyesinde hassasiyet değerlerine ulaşabilmek

için dört evreli enkoderlerin mevcut çözünürlük değerlerinin arttırılmasını

sağlayan uyarlamalı bir metod sunulmaktadır.

Mikro/nano-pozisyonlama cihazlarının performans karakteristiği genellikle ek-

senlerin konumlama hassasiyetleri, hareket aralığı, maksimum hız ve ivmelen-

meleri olmaktadır. Bu sebeple, bu tezde bahsedilen tasarımda eyleyici olarak

üstün karakteristiklerinden dolayı sürekli mıknatıs lineer motorlar (PMLM)

seçilmiştir. Ayrıca, kullanıcıya uygulamalarda esneklik sağlaması ve sistem

kontrolünü kolaylaştırması amacıyla burada sunulan mikro/nano-pozisyonlama

sisteminin tasarımı yapılırken modülerite ana kriterler arasında tutulmuştur.

Modüler tek eksenli kızak sisteminin tasarımından sonra bu kızaklardan üç

tanesinin birbirine dik olarak montajı ile üç eksenli pozisyonlama cihazı

oluşturulmuştur. Bu tasarımda geri besleme sensörü olarak lineer optik enkoder-

ler kullanılmıştır. Geliştirilen sistemin hareket aralığı her eksende 120mm’dir.

Mevcut lineer optik enkoderlerin ölçüm çözünürlükleri 1µm olduğundan

mikron altı seviyelerdeki pozisyonlama uygulamaları için enkoderlerin çözünürlükleri

yazılım üzerinde arttırılmalıdır. Bu amaçla, dört evreli enkoderlerin mevcut
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çözünürlüklerini arttırmak üzere geliştirilen yeni bir metod bu tezde sunulmak-

tadır. Bu metod uyarlamalı sinyal düzeltme ve interpolasyon aşamalarından

oluşmaktadır. Enkoder sinyallerindeki büyüklük farkları, ortalama değer sap-

maları ve dört evreli faz farkı hataları üssel unutmalı ve sıfırlamalı tekrarla-

malı en küçük kareler yöntemi (RLS) kullanılarak düzeltilmektedir. Düzeltilmiş

sinyallerin interpolasyonu ise çevrim dışı oluşturulmuş bir hızlı erişimli tara-

malı tablo sayesinde yapılmaktadır. Bu tablo ile orijinal enkoder sinyalleri ile

yüksek dereceli sinüzoidler arasında doğrusal eşleştirme yapılmıştır. Yüksek

dereceli sinüzoidlerin ikili pulslara dönüştürülmesi sonucunda pozisyon bilgisi

elde edilmiş olur. Sunulan metod kullanılarak 1µm orijinal çözünürlüğü olan

bir enkoder ile 10nm’lik ölçüm çözünürlüğü elde edilmiştir. Önerilen metodun

etkinliğini gösteren deneyler tez içerisinde verilmiştir. Metodun doğrulaması elde

edilen en yüksek çözünürlük dahil olmak üzere çeşitli çözünürlük değerleri için

başarıyla yapılmıştır. Maksimum interpolasyon sayısını sınırlandıran pratikteki

kısıtlamalar da detaylıca incelenmiştir.

Anahtar sözcükler : Hassas pozisyonlama, enkoder hassasiyeti, uyarlamalı sistem-

ler, ölçüm aradeğerlemesi, dört evreli enkoder sinyalleri, modüler dizayn.
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Chapter 1

Introduction

There is a growing interest for precision positioning systems from various

micro/nano-technology applications [4]. Micro/nano manufacturing and assem-

bly, optical component alignment systems, scanning microscopy applications,

nano-particle placement applications, biotechnology applications and cell/tissue

engineering are some examples of the applications that precision positioning de-

vices are commonly used [5, 6, 7]. High precision positioning devices are required

for any operations in micro/nano-scale applications. Performance characteristics

of these devices depend on positioning accuracy, maximum velocity and accelera-

tion that they can operate with acceptable performance based on the application.

These characteristics are mostly determined by the actuator that gives motion to

the slider and the feedback sensor that supplies the position information.

Commonly used actuators for micro/nano-positioning systems are piezoelec-

tric actuators [8, 9, 10], ballscrew mechanisms [5, 11] and permanent magnet

linear motors (PMLM) [11, 12]. Piezoelectric actuators have the motion range

of just tens of micrometers and they are limited in terms of acceleration and

velocity capabilities [5]. Also, for a ballscrew mechanism, a ballscrew is coupled

with a DC motor to convert the motor rotary motion into linear motion. Thus,

ballscrew driven mechanisms have accuracy limitations due to backlash and wear

of the mechanical components, and their acceleration and velocity capabilities

are limited as a result of the ballscrew mechanism [12]. On the other hand, linear
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Figure 1.1: Closed Loop System Setup of a Typical Positioning Device

motors are gaining popularity for precision positioning applications due to their

superior characteristics. Due to their designs, there is no contact between the

stationary and moving parts of PMLMs. Hence, backlash or wear is not concern

and nonlinearity due to the contact mechanism is also eliminated. With the lin-

ear motors, high acceleration and velocity values can be achieved in long ranges

(greater than 100mm).

As feedback sensors, high-resolution sensors are required in micro/nano-

positioning systems in order to satisfy high-precision. Commonly used sensors are

laser interferometers, capacitive sensors and optical encoders [12, 13]. Although

laser interferometers and capacitive sensors can reach up to sub-nanometer level

measurement resolutions, their sensing range is limited to micrometer level

[14, 13]. Conversely, measurement ranges of linear optical encoders are higher

(hundreds of milimeters) but their resolutions are usually in micrometer level

[15].

In this thesis, the main objective is to design a three-axis micro/nano-

positioning device that can operate in long ranges (120mm x 120mm x 120mm).

Due to their outstanding characteristics PMLM is used as the actuator in single

axis slider design. Moreover, linear optical encoders are used as feedback sensors

since their measurement range is suitable for the desired system. For the design

process, modularity is one of the main concerns in order to provide high flexibility

in terms of applications and simplify the control of the system. For this purpose,

the three-axis positioning system is designed as combination of modular single-

axis sliders. With the modular design, range of the possible applications can be

2



increased with adjustable operation spaces. Several example assembly configu-

rations of modular single axis sliders are supplied. For the cases with vertical

slider arrangement including the three-axis positioning system presented in this

thesis, a counter balance subsystem is presented. Design processes of mechanical

components of the three-axis slider system is explained.

Closed loop system setup illustration of a typical positioning device is given

in Figure 1.1. As it can be observed from this figure, performance characteristics

of positioning devices depend highly on the precision and resolution that can be

obtained from the encoders. Yet, achievable resolution with decreasing the pitch

of scale grating is limited by the available manufacturing technologies used for

the optical encoders [16, 17]. For example, with the current available manufac-

turing technologies, commercially available linear optical encoders can have 0.512

micrometers scale grating in pitch satisfying 0.128 micrometers of optical reso-

lution. Hence, in order to achieve high performance with the overall positioning

system, it is crucial to increase the resolution of the encoders. Signal processing

techniques for interpolation of the available encoder signals serves further im-

provement of the encoder resolution by deriving intermediate position values out

of the original sinusoidal encoder signals.

In this thesis, a new adaptive approach to obtain high-resolution position in-

formation using the original encoder signals is presented. Our motivation here

is to generate high-order quadrature sinusoids from the original encoder signals

so that any deviations or distortions in these signals can be tolerated. Moreover,

the approach is to be suitable for modular sliders in such a manner that appli-

cation of the method on different encoders do not require any modifications in

the algorithm. For this purpose, an adaptive signal conditioning step to obtain

ideal sinusoids with quadrature phase difference is applied before the interpo-

lation process. Then, mapping of the first-order signals to higher-order ones is

accomplished by a quick-access look-up table. This table is generated offline by

using the mathematical values of high-order sinusoids to increase the flexibility of

the method for the application on modular slider systems. With the conversion

of the high-order sinusoids to binary pulses, high-resolution position information

is obtained. External validation of the presented encoder resolution improvement

3



method is accomplished using a laser vibrometer with known measurement res-

olution. Moreover, practical constraints limiting the application of the method

is discussed. Performance of the method is examined by various experiments

conducted on single, two and three axis positioning systems.

The remainder of this thesis is organized as follows. In Chapter 2, background

information and previous works in the literature on high-precision positioning sys-

tem design and encoder resolution improvement methods are reviewed. Chapter

3 presents design processes of the modular single-axis micro/nano-positioning de-

vice. Then, a specific three-axis configuration of single axis sliders is introduced.

Chapter 4 proposes a new adaptive approach to obtain high-resolution position

information out of the original encoder signals. Proposed signal correction and

interpolation methods are discussed. Chapter 5 provides detailed information

about the real-time implementation of encoder resolution improvement method

using the Labview programming environment. In Chapter 6, validation of the

encoder resolution improvement method is performed. Experiment results on the

new method is also presented in this chapter. Effects of the presented method on

positioning performance is examined. Conclusions and future work are discussed

in Chapter 7.

4



Chapter 2

Background Information

In this thesis, development of a three axes high-precision positioning system and

an encoder resolution improvement method proposed for this system is discussed.

This chapter reviews the background information and previous work in these

areas. For this purpose, firstly, current technologies on micro/nano-positioning

systems is presented. Then, basic idea behind the encoder resolution improvement

methods is explained and literature survey on this subject is introduced.

2.1 Micro/Nano-Positioning Systems

Micro/nano-scale applications require micro/nano-positioning devices with high

precision and accuracy. High precision positioning devices are generally con-

structed as assembly of separately manufactured single axis slider systems [7, 5, 6].

Performance characteristics of these systems depend on positioning accuracy,

maximum velocity and maximum acceleration that they can operate with ac-

ceptable performance based on the application. These characteristics are mostly

determined by the actuator that gives motion to the slider. There is a strong rela-

tionship between properties of the actuator used and performance of the position-

ing system. Commonly used actuator types for positioning devices are ballscrew

mechanisms [5, 11], piezoelectric actuators [8, 9, 10] and permanent magnet linear
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Figure 2.1: Ballscrew Mechanism [1]

motors [11, 18, 19, 20, 21, 12].

Ballscrew driven linear actuators are powered by a DC-motor and they can

operate in long ranges. In these systems, a ballscrew is coupled with a DC-motor

to convert the motor rotary motion into linear motion. An example ballscrew

mechanism is given in Figure 2.1 showing the components of the system. As

mentioned in literature, ballscrew mechanism driven linear stages have accuracy

limitations due to backlash and wear of the mechanical components, and their

acceleration and velocity capabilities are limited as a result of the ballscrew mech-

anism [19, 20, 22, 23, 24]. In this type of linear stages, one of the commonly used

methods to calculate displacement of the slider is that angular position of the

motor is measured and this measurement is simply multiplied by the pitch of the

ballscrew. Due to the wear of the mechanical components in time, position, ve-

locity and acceleration measurements obtained using this indirect measurement

method may not be reliable [4, 5, 19].

Piezoelectric actuator (Figure 2.2) is another commonly used actuator type

in precision positioning devices. Ceramic piezoelectric actuators convert volt-

age into displacement. Piezoelectric stage design includes flexures deflected by

piezoelectric actuators. Although high accuracy and high precision values can

be reached with piezoelectric stages, they cannot be used in many applications

since they have limited work-space (less than 1 mm in each direction) and limited
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Figure 2.2: Piezoelectric Actuator [2]

acceleration/velocity response [8, 4, 25].

With the recent commercial introduction of the linear motors, linear motor

driven stages have been gaining popularity in precision engineering applications

due to their superior characteristics [26]. A linear motor is an actuator that

operates on a flat plane. Similar to working principle of DC motor, a linear

motor converts electromagnetic force into mechanical motion. A linear motor

is made of a coil and a magnet rail as shown in Figure 2.3. When current is

applied on the coil, the magnetic force moves the motor on the magnet rail. The

coil does not touch the magnet rail so that backlash or wear is not a concern.

Moreover, nonlinearity due to contact mechanism is eliminated. Since linear

motor driven stages do not require ballscrews, high acceleration and velocity

values can be achieved [11, 27]. Furthermore, permanent magnet linear motors

can operate in long ranges (typically greater than ten centimeters) compared to

the piezoelectric motors. Position is measured directly on the stage with a linear

encoder making the positioning extremely reliable. However, there are nonlinear

disturbances in a permanent magnet linear motor due to force ripples that are

caused by imperfections in the underlying components. These nonlinearities can

be compensated through various control methods [18].

Another important component affecting the performance of a micro/nano-

positioning device is the feedback sensor that supplies the position, velocity and

acceleration information to the system. As feedback sensors, high-resolution sen-

sors are used in micro/nano-positioning systems in order to satisfy high-precision.
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Motor Core 

Magnet Rail 

Figure 2.3: Permanent Magnet Linear Motor [3]

For this purpose, commonly used sensors are laser interferometers, capacitive sen-

sors and optical encoders [12, 16, 17, 13]. Commercially available laser interfer-

ometers and capacitive sensors can reach up to sub-nanometer level measurement

resolutions [28, 14]. However, their sensing range is very limited (usually smaller

than one milimeter) [28, 14, 13]. On the other hand, measurement ranges of linear

optical encoders may be around hundreds of milimeters. Yet, their resolutions

are limited to micrometer level [15]. Maximum resolution value of a commer-

cially available linear optical encoders is 0.128µm due to current manufacturing

technologies. Hovewer, using signal processing techniques for interpolation of

available encoder signals, nanometer level resolution can be obtained with linear

optical encoders [16, 17, 29, 30]. Hence, linear optical encoders are advantageous

over laser interferometers and capacitive sensors when long range of motion is

main focus of interest.

2.2 Encoder Resolution Improvement Methods

As mentioned previously, precision and resolution of feedback sensor in the

system have significant influence on performance characteristics of micro/nano-

positioning devices. Therefore, it is important to have high resolution feedback

sensors to obtain high positioning performance. However, available manufactur-

ing technologies allow only micrometer level of scale grating for linear optical

encoders (i.e. maximum 0.128µm optical resolution). Hence, further improve-

ment in resolution of optical encoders is only possible with signal processing
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Figure 2.4: Ideal and Interpolated Encoder Signals

techniques. In order to increase the available resolution of an optical encoder,

encoder signals should be interpolated to reach intermediate position values.

Basic idea behind an interpolation method is that high order sinusoidal sig-

nals can be generated from original first order analog encoder signals by using a

suitable mapping function between them. Converting the calculated high order

sinusoids to binary pulses and counting the zero-crossings, intermediate position

information can be obtained. In Figure 2.4, an example interpolated signal pair

is given with the ideal encoder signals to demonstrate the basic idea of an inter-

polation method. In this figure, u1n and u2n are high order signals (10th order for

this case) obtained as a result of interpolation process and u1i and u2i are ideal

quadrature encoder signals.

Although it is possible to achieve high resolution values using various kinds

of interpolation techniques, both hardware and software interpolation methods

require ideal encoder signals with a quadrature phase difference between them.

However, the encoder signals usually contain some noise and errors due to en-

coder scale manufacturing tolerances, assembly problems, operation environment

conditions, and electrical grounding problems. Interpolation errors occur while
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Figure 2.5: Exaggerated Illustration of Original Encoder Signals

extracting intermediate position information from the distorted pair of sinusoidal

encoder signals. Therefore, these errors and noises have to be compensated before

the interpolation method is applied. Common errors affecting the quadrature en-

coder signals are amplitude difference, mean offsets, and quadrature phase shift

errors. In Figure 2.5, an exaggerated illustration of these errors are shown on an

encoder signal pair, u1 and u2. In this figure, mean offsets are denoted as m1

and m2, amplitudes are A1 and A2 and φ is the phase shift error. For an ideal

encoder signal pair, values of m1 and m2 should be 0V , A1 and A2 should be 1V

and φ should be 0degree. Hence, the basic idea behind a correction method is to

compensate these errors using mathematical relationship between distorted and

ideal signal pair.

So far, many different approaches have been developed to correct the distorted

encoder signals containing amplitude errors, mean offsets, and quadrature phase

shift errors. The first introduced method was proposed by Heydemann [31]. In

this method, errors in the encoder signal pairs are determined effectively using

least squares minimization. Then, correction is done based on the calculated error

values. Since the correction parameters are calculated offline, this method does

not offer an effective compensation when the errors are changing dynamically
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throughout the motion. Applications of this correction method can be found

in [16] and [30]. In order to compensate the dynamic errors in encoder signals,

several online compensation methods are developed. In [32], Balemi used gradient

search method to calculate the correction parameters online, but performance of

this method is not effective in low frequencies and noisy signals as mentioned

in [33]. Another online error compensation method proposed in [17] corrects

the sinusoidal signals obtained from a linear optical encoder by making use of

an adaptive approach based on radial basis functions neural network. Then,

authors use the similar procedure to increase the resolution of the encoder by

mapping the original encoder signals to high-order sinusoids using another set

of radial basis functions. Although high-resolutions can be achieved with this

method, it requires a training period for every new encoder. Also, changes in the

environmental conditions may require a new training period. Other interpolation

methods also exist. In [34], Cheung proposed a sine-cosine interpolation method

using logic gates and comparators. In [35], interpolation of encoder signals is

accomplished by using digital signal processing (DSP) algorithms followed by

digitization of sinusoidal encoder signals with analog-to digital converters (ADC).

However, these interpolation approaches require external hardware such as high

precision ADCs and DSPs to obtain high resolution from the encoder. Hence,

their applicability to typical servo controllers with a digital incremental encoder

interface is limited [17]. Another interpolation approach used so far is based

on look-up tables. Tan et al. [16] obtained high-order sinusoids from original

encoder signals using mathematical relationship between them. Then, they stored

the values of high-order sinusoids in a look-up table. Using this table for online

mapping of original encoder signals to higher-order ones, they managed to achieve

intermediate position values leading high resolution values. Some other hardware

and software based interpolation methods are also applied on magnetic encoders

and resolver sensors [33, 36, 37].
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Chapter 3

Design of

Micro/Nano-Positioning Device

In this thesis, a specific design of a three-axis micro/nano-positioning device

with 120mm x 120mm x 120mm operation space is the main focus of interest.

However, this device is constructed by using three of the same modular single axis

sliders perpendicular to each other. In this chapter, first, design of the modular

single axis slider system is discussed in detail with its components and closed

loop control setup. Improvements made on mechanical components during the

design process of single axis slider are also summarized. Next, possible assembly

configurations of designed modular single axis sliders are examined. Then, the

specific three-axis configuration of sliders is introduced including the counter

balance system, manufacturing and assembly tolerances of the system.

3.1 Modular Single-Axis Slider System

Our three-axis positioning system will be composed of three modular single axis

stages assembled perpendicularly as shown in Figure 3.1. As a first step to de-

velop this system, a modular linear slider that can achieve micro/nano-meter

level positioning over 120mm operation range is built. In Figure 3.2, a 3D model
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Figure 3.1: 3D Drawing of Three-Axis Positioning System

of designed single axis linear slider is given. While designing this slider sys-

tem, components are chosen elaborately to accomplish their specific purpose for

micro/nano-positioning tasks. In this section, mechanical and electrical compo-

nents of the single axis slider system is given. Control setup of the closed loop

system is also introduced. Then, details of design improvements of mechanical

components are explained with reasoning.

Figure 3.2: 3D Drawing of Single-Axis Slider
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3.1.1 Components and Control Setup

Performance of a micro/nano positioning device can be evaluated by its working

range, maximum velocity and acceleration, positioning resolution and positioning

accuracy values. Components of the single axis slider presented in this thesis are

chosen considering these performance characteristics. Moreover, modularity is

another concern while designing the mechanical components of the slider.

As illustrated in Figure 3.3 and Figure 3.4, modular single axis slider is de-

signed with a stationary base and a moving slider that are connected to each other

via cross-roller linear bearings from THK. The stage is actuated by a brushless

permanent magnet linear motor from Aerotech Inc. (BLMUC-95 and MTUC-

224) whereas the position feedback is taken from an optical linear incremental

encoder from Heidenhain Corp. (LIP 481R). In addition to linear motor, opti-

cal encoder and linear bearings, eight mechanical components are designed and

manufactured for the modular single axis slider.

Moving Slider 

Linear Cross-Roller Bearings 

Stoppers 

Motor Core Holder  

Motor Core  

Encoder 
Readhead 

Encoder Readhead 
Holder 

Figure 3.3: Top View of the Designed Single Axis Slider

In design of the single axis slider, linear bearings are chosen to satisfy linear

motion of the sliding part with minimum friction. Cross-roller bearings are used

to carry both vertical and horizontal loads effectively. In order to satisfy high
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Figure 3.4: Bottom View of the Designed Single Axis Slider

precision motion, VR model low-friction, high-accuracy, precision roller bearings

[38] are preferred.

As the actuator, permanent magnet linear motor is chosen due to its out-

standing characteristics in precision positioning applications. The most impor-

tant feature of this type of actuator is that long ranges (more than 100mm) can be

traveled with high velocity and acceleration. The chosen linear motor, BLMUC-

95, is a very compact linear motor with 52.0mm x 20.8mm cross section and

224mm track length. This feature makes it suitable for compact systems. In or-

der to satisfy desired 120mm motion, track length is chosen as 224mm since linear

motors can operate effectively only when the motor coil is inside of the magnet

track completely. As mentioned in [3], backlash, windup, wear and maintenance

issues associated with ball screws, belts, and rack and pinions are eliminated by

non-contact design of the motor. Moreover, more than 25N force can be gener-

ated by this motor. Some important specifications of the linear motor used in

the single axis slider system is given in Table 3.1.

In the single axis slider design, position is measured directly on the stage with
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Table 3.1: Specifications of BLMUC-95 Linear Motor

Specifications Units BLMUC-95

Continuous Force 1.4 bar N 40.5

Continuous Force, No Air N 23.0

Peak Force N 161.9

Coil Weight kg 0.12

Coil Length mm 96

Magnet Track Weight kg/m 3.33

an optical linear incremental encoder (LIP 481R) so that positioning measure-

ments become extremely reliable. This encoder has 4µm scale grating in pitch

satisfying 1µm original measurement resolution. However, this resolution is in-

creased up to 10nm using a new encoder interpolation technique presented in

Chapter 4. As described in [15], the readhead and scale of the optical encoder

are assembled on the system so that the distance between them is approximately

0.6mm for effective measurements with low noise levels. In order to satisfy this

assembly requirement, a specific plastic sheet with 0.6mm thickness is placed

between the readhead and the scale so that mounting screws can be tighten in

correct positions.

As mentioned previously, eight mechanical components are designed and man-

ufactured for the single axis slider. These parts are stationary bottom base, mov-

ing slider, stopper parts, motor core holder, encoder readhead holder and encoder

scale holder. All of these parts can be seen in Figure 3.3 and Figure 3.4. While

designing these parts, the main concerns are ease of assembly, modularity and

compactness. Moreover, geometrical properties of these parts are designed to

keep their rigidity during the manufacturing processes. For modularity purposes,

each part is designed so that a single axis slider can be assembled on another one

in various configurations to build single, two or three axis systems for different
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Figure 3.5: Single Axis Slider with its Components

applications. Here, any of the configurations can be built without making any

modifications in the single axis slider. In Figure 3.5, designed single axis slider is

given with all of its components.

Amplifier+ 
Linear Motor Slider 

Optical 
Encoder 

Desired  
Position 

Actual  
Position 

PLANT 

Control 
Algorithm 

Analog Input 

Analog Output 

Interpolation
Algorithm 

CONTROLLER 

Command 
Voltage 

Encoder  
Signals 

Axial 
Force 

u1, u2 

Position 

Figure 3.6: Closed Loop Control System Setup of the Single Axis Slider

In addition to a suitable mechanical design for micro/nano-positioning appli-

cations, an appropriate control setup is required to control the single axis slider

system with high precision. Closed loop configuration of the control system for
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Figure 3.7: Photograph of Testbed for the Single Axis Slider

single axis slider is given in Figure 3.6. As it is shown in this figure, a controller

and an amplifier is required in the control system. In our system, control algo-

rithm is developed on a PC using NI Labview programming environment. Several

control schemes are used to control the system including the basic PID control

and more complex control techniques such as iterative learning [39], model ref-

erence adaptive control. A standard current commanded six-point commutation

amplifier from Aerotech Inc. (BA20) is used as an amplifier. In this setup, liner

optical encoder data is acquired using an analog data acquisition card attached on

the PC. Same data acquisition card is used to send control inputs to the system.

All of these components can also be seen in the testbed photograph for single

axis slider in Figure 3.7.

3.1.2 Design Improvements of Mechanical Components

During design process of the single axis slider system, several improvements are

made on the mechanical components to be manufactured. These improvements

are made to increase the performance of the system, to make the assembly easier

and to increase the rigidity and modularity of the slider. In Figure 3.8, top view
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(a)

(b)

Figure 3.8: (a) Top and (b) Bottom View of the Previous Single Axis Slider
Design
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(a)

(b)

Figure 3.9: Moving Sliders and Stationary Bottom Bases of (a) Previous and (b)
New Single Axis Slider Designs

and bottom view of the first design for single axis slider is given to illustrate the

modifications on the components clearly.

One of the main modifications is accomplished on moving slider and station-

ary bottom base to decrease the system weight. This process was required to

increase the positioning performance of the system. For this purpose, thickness

of these parts are reduced and partial removal of material is done in specific areas.

These areas are determined considering the positions of mounting screws so that

the rigidity of the component is not affected. Moreover, number of mounting

screw holes on top of moving sliders are reduced without changing modularity

characteristics of the slider. Another major change in moving slider and station-

ary bottom base is that encoder scale holder and motor holder are manufactured

as separate parts in the new design. Reason of this modification is to make the

assembly and manufacturing easier. In Figure 3.9, previous and new moving slid-

ers and stationary bottom bases are given to show the main modifications. As it

can be seen in this figure, there are three holes at each side of new moving slider

design and stationary bases. These holes are added in order to assemble linear
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(a) (b)

Figure 3.10: (a) Previous and (b) New Scale Holder Designs

bearings easily. Using these holes, fine adjustments of three mounting screws

at the middle of linear bearings can be done even after whole slider system is

assembled together.

Another important modification is made on encoder scale holder. In previous

designs, encoder scale is supported by a simple beam attached under it and sides

of the encoder scale were open as shown in Figure 3.10a. Hence, assembly of the

encoder scale to the desired position was not possible. For this purpose, in the

most recent design, encoder scale holder is modified as shown in Figure 3.10b.

In this design, the support beam is removed and a single piece scale holder is

designed so that the sides are closed and encoder scale can only fit to the correct

place. There is also a screw on the one side of the scale holder to tighten up the

scale.

Since one of the stopper parts is attached to the encoder scale holder, screws

between stopper and encoder scale holder and screws between scale holder and

moving slider may exposed to sudden forces if any uncontrolled motion happens.

In order to eliminate this risk, some steel pins with diameter of 4mm and 5mm are

placed in these critical areas to carry those forces. For these pins, tight tolerance

is used. Positions of the pins are shown in Figure 3.11.

The last major change applied on the single axis slider is about the design of

encoder readhead holder. In the first design, since length of the encoder readhead

holder is small as shown in Figure 3.8a, it is almost impossible to adjust 0.6mm

distance between the encoder readhead and the scale without disassembling the

moving slider from the stationary base. In order to overcome this problem, length

of the readhead holder is increased so that the mounting screws of the holder can

21



Pins with  
4mm 
diameter 

Pins with  5mm 
diameter 

Figure 3.11: Safety Pins on Encoder Scale Holder
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Figure 3.12: Single Axis Slider

be reached when the moving slider part is at one of its utmost positions. Final

design of the encoder readhead holder can be seen in Figure 3.3.

After the mentioned design improvement processes, manufacturing and assem-

bly of single axis slider is accomplished for the final design. A picture showing

the modular single axis slider is given in Figure 3.12. This design is also used for

two and three axis configurations in this thesis.
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(a) (b) (c)

Figure 3.13: Example Single Axis Assembly Configurations with a One, (b) Two
and (c) Three Sliders

(a) (b)

(c)

Figure 3.14: Example Two Axis Assembly Configurations Using Two Sliders in
a X-Y (b) Oblique X-Y and (c) X-Z Arrangements
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3.2 Assembly Configurations of Modular Slider

As mentioned in previous sections, modularity was one of the main concerns while

designing the single axis slider. In this section, modularity feature of designed

single axis slider system is illustrated. Several possible configurations are given

for single, two and three axis systems.

(a) (b)

(c)

Figure 3.15: Example Two Axis Assembly Configurations Using Three Sliders in
a X-Y (b) Oblique X-Y and (c) X-Z Arrangements

Due to the modularity property of the designed single axis slider, couple of

them can be assembled to built a single, two or three axis positioning system for

different applications. By assembling the single axis sliders in different forms,

systems with various reachable operation areas can be obtained for many specific

applications. In Figure 3.13, Figure 3.14, Figure 3.15 and Figure 3.16, several

possible assembly configurations for single, two and three axis systems are given.

In all of these design, maximum three number of sliders are used. However,

it is possible to built different systems by assembling more than three single

axis sliders to satisfy specific applications. As it can be observed from Figure
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(a) (b)

Figure 3.16: Example Three Axis Assembly Configurations Using Three Sliders
in a X-Y-Z (b) Oblique X-Y-Z Arrangements

3.13, range of the system increases to its triple value with the addition of two

other sliders. Similarly, reachable operation areas of the two axis systems shown

in Figure 3.14 and Figure 3.15 increase as the number of sliders are increased.

Moreover, it is possible to adjust the limits of the reachable operation area in

each axis by assembling one or couple of sliders obliquely. By adjusting the angle

of the oblique sliders, a rectangular working area can be obtained instead of a

square one.

As it can be observed from Figure 3.14b, Figure 3.15b and Figure 3.16, config-

urations including vertical arrangements of single axis sliders, a support system is

required to keep the slider in vertical position. An example support system design

including a compensation system for the weight of vertical slider is explained in

Section 3.3.1.

Although there are various possible assembly configurations as summarized

in this section, the systems used in real time experiments are the ones shown in

Figure 3.13a, Figure 3.14a and Figure 3.16a. Photographs of manufactured single

axis slider and two axis slider system are given in Figure 3.12 and Figure 3.17,

respectively. Details of three-axis slider system is given in Section 3.3.
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Figure 3.17: Two Axis Slider System

3.3 Three-Axis Slider System

In Figure 3.18, manufactured three axis micro/nano-positioning device is shown.

As mentioned previously, this specific design is composed of three of the same

modular single axis sliders that are assembled perpendicular to each other. For

the vertical axis, a support system is used to keep the slider in vertical position

and to compensate the weight of the moving part. This system is called as

counter-balance system in this thesis. In this section, details of designed three-

axis micro/nano-positioning device is discussed. First, counter balance subsystem

is presented. Then, details on manufacturing tolerances and assembly technique

are summarized.

3.3.1 Counter Balance Subsystem

A counter balance subsystem is used in three axis positioning system for assembly

of third slider. This subsystem is designed as an adapter for the single axis slider

to be used in vertical position. It is composed of two main parts: an L shaped

beam structure and an air piston. The purpose of the L shaped beam is to
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Figure 3.18: Three Axis Micro/Nano-Positioning System

support the slider in vertical position. On the other hand, air piston is used to

compensate the weight of the sliding part so that similar control inputs can be

used in both directions in vertical for high precision positioning. In addition to

these main parts, a connector, a spherical joint and a pressure regulator are also

used in counter balance system. The connector is used to connect the moving

slider of vertical stage to the air piston via a spherical joint. On the other hand,

pressure regulator is used to adjust the air pressure going to the air piston.

In Figure 3.19, counter balance subsystem used in three-axis positioning sys-

tem is shown. In this subsystem, air pressure coming from the common source to

the piston is adjusted using an analog pressure regulator. Hence, when a part is

assembled on the vertical slider for a specific application, difference in the weight

of the vertical sliding part can be compensated by using the regulator to adjust

the pressure coming to the piston. In the three axis positioning system, when
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Figure 3.19: Counter Balance Subsystem

there is no additional part is assembled, 6 bar of pressure coming from the com-

mon source is reduced to approximately 1 bar using the pressure regulator and

fed into the air piston to compensate the weight of the moving slider in vertical

axis.

3.3.2 Manufacturing and Assembly Tolerances

Tolerances are crucial while designing, manufacturing and assembling a system

to work in nanometer level precision. In order to obtain maximum performance

from actuator and sensor units, manufacturing and assembly tolerance values

should be determined carefully for the assembly regions of these parts.

A 3D drawing of the slider is given in Figure 3.20 showing the tolerance critical

sections. As it can be observed in this figure, the important sections in terms of

tolerances are the ones that encoder and linear motor are attached to the system.

Moreover, top and bottom surfaces of the slider are also important in terms of
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Figure 3.20: (a) Tolerance Critical Sections of Single Axis Slider with Detail
Views of (b) Section A and (c) Section B

their flatness and surface roughness values since these surfaces are the contact

regions while mounting the slider on the optical table or another slider.

Figure 3.20c shows the assembly region of the encoder readhead and the scale.

In order to obtain measurements with minimum error from the encoder, they

should be assembled according to some predefined specifications. For this pur-

pose, tolerances for the regions where the encoder readhead and the scale attached

are determined according to the instructions supplied by the encoder manufac-

turer [15]. Therefore, surface flatness tolerance is chosen to be 0.01mm for these

regions. Moreover, distance between the encoder readhead and the scale is to be

0.6mm, hence tolerance for this distance is determined as 0.02mm to be satisfied

during the assembling process. Tolerances for positions of screw holes that the

encoder head and the scale are to be attached are chosen as 0.05mm in each

direction.
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Similar to encoder assembly, flatness of the surfaces that the linear motor is

attached is critical. Flatness tolerance of the assembly surfaces shown in Figure

3.20b is chosen to be 0.01mm. Position of the motor is also be arranged by using

0.05mm tolerance in the locations of the mounting screw holes.

Flatness properties of the top and bottom surfaces of single axis sliders are

also important for them to be assembled on the optical table or to be assembled

together to built three axis positioning system with nanometer level positioning

precision. Therefore, as in encoder and linear motor assembly, geometric tolerance

for flatness of these surfaces is chosen to be 0.01mm.
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Chapter 4

Encoder Resolution Improvement

Method

In this thesis, presented single axis slider system includes a linear incremental

optical encoder as a feedback sensor to obtain position information. However,

measurement resolution of the encoder used in the system is 1µm since the scale

grating is 4µm in pitch. Precision positioning in sub-micrometer level is impos-

sible using this encoder. Hence, in order to achieve nanometer level positioning

performance with overall system, it is crucial to increase the resolution of the

encoder used. Signal processing techniques for the interpolation of the available

encoder signals serves further improvement of the encoder resolution by deriving

intermediate position values out of the original encoder signals.

In this chapter, a new adaptive approach to obtain high-resolution position

information out of the original encoder signals is presented. First, the overview of

the approach is given to give the basic idea behind it. Next, the adaptive encoder

signal correction technique used before the interpolation process is presented with

the mathematical foundation. Then, signal interpolation method is discussed in

detail. Generation of binary pulses from the interpolated signals and deriving

position information using these binary pulses are explained. Lastly, practical

constraints that limit the application of this approach is summarized.

31



4.1 Overview of the Proposed Approach

As briefly discussed in [29], our motivation in this approach is to generate high-

order quadrature sinusoids from the original encoder signals so that any deviations

or distortions in these signals can be tolerated. For this purpose, an adaptive sig-

nal conditioning step to obtain ideal sunusoids with quadrature phase difference is

applied before the interpolation process. Then, mapping of the first-order signals

to higher-order ones is accomplished by a quick access look-up table. With the

conversion of the higher-order sinusoids to binary pulses, high-resolution position

information is obtained.

Proposed method features two main steps: (1) correction of signal errors

and (2) interpolation of corrected signals. For the correction step, an adaptive

correction method is adopted to compensate the encoder signal errors including

amplitude difference, mean offsets, and quadrature phase shift errors. Adaptation

is performed by the recursive least squares (RLS) with exponential forgetting

and resetting. The need for adopting an adaptive correction technique is due to

the dynamic characteristics of the errors as well as the applicability on different

encoders without any modification.

For high precision positioning applications, assembly and alignment of the

encoder is very important to attain required accuracy and precision. However,

for closed systems or long range positioning systems, it may not be possible to

align the encoder to obtain perfect quadrature signals. Characteristics of the

resulting signal may change through the motion. Hence, adaptive approach used

in this section is more suitable for the systems where the signal errors change

dynamically. Moreover, adaptive characteristics of the correction step makes the

method applicable to different encoders without requiring any modification in

the algorithm. Due to the adaptive approach in the correction method, different

error characteristics of different encoders can be compensated without changing

any parameter in the algorithm.

In the second step of the proposed method, interpolation of the corrected sig-

nals is satisfied by a look-up table based approach. In this approach, the basic
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idea is to obtain high-order sinusoids from original encoder signals by mapping the

original signals to high-order ones online with the help of a quick access look-up

table. Since the look-up table is formed offline, computational effort is consid-

erably less compared to the previously mentioned online interpolation methods.

At the end of the interpolation stage, position information can be derived from

conversion of the high-order sinusoids to binary pulses. This conversion is also im-

plemented on the software hence it is accomplished without using any additional

hardware such as high precision ADCs.

An overall flow diagram for the proposed approach is shown in Figure 4.1.

In this figure, signal correction and interpolation steps are labeled as Step 1 and

Step 2, respectively. The correction step takes the encoder signals u1 and u2

and generates signals û1 and û2 as corrected quadrature signals. In order to

compensate the errors in u1 and u2, a set of correction parameters θ is calculated

using RLS with exponential forgetting and resetting in the parameter adjustment

stage. Here, our parameter adjustment rule uses the current encoder signals

u1 and u2 and corrected signals û1 and û2 from previous iteration. λ is the

forgetting factor or discounting factor. When the correction step is completed,

index calculator generates index, i, for signals to obtain corresponding high-

order sinusoid values, u1n and u2n, from the look-up table. The look-up table is

constructed using the correct values of high-order sinusoids since the corrected

signals coming from the Step 1 are calculated with sufficient precision through the

adaptive correction scheme. Therefore, the look-up table can be generated offline

without requiring high computational effort. Using high-order sinusoids, pulse

generator generates quadrature binary pulses A and B. As mentioned previously,

this process is performed in the software part without requiring high-precision

ADCs. Finally, position value is calculated by detecting zero crossings of high-

resolution binary pulses.
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4.2 Adaptive Encoder Signal Correction

(Step 1)

Before the interpolation stage, it is crucial to correct the errors in the original

encoder signals to prevent high interpolation errors. Common errors affecting

the quadrature encoder signals are the amplitude difference, the mean offsets and

the quadrature phase shift errors. In Figure 2.5, an exaggerated illustration of

these errors are given. In this figure, mean offsets are denoted as m1 and m2,

amplitudes are A1 and A2 and φ is the phase shift error.

In this section, an adaptive approach is used to correct the errors. In some

applications, it is possible to have similar error characteristics throughout the

motion. In these cases, the error can be compensated using offline correction

methods given in [16] and [31]. On the other hand, in some cases where the

encoder alignment cannot be performed effectively or where the systems have

long range of movement track, the errors change throughout the motion. For such

cases, adaptive approaches may be adopted to track the errors better in order to

obtain high-resolution. Moreover, with an adaptive approach, applicability of the

method on different encoders with different error characteristics can be satisfied

without requiring any modification in the algorithm. For this purpose, RLS with

exponential forgetting and resetting method is developed to adjust correction

parameters online.

In order to develop the mathematical foundation (i.e. (4.1)-(4.15)) for our

proposed method, we will start with the formulation given in [31].

An ideal set of quadrature encoder signals with amplitude of A, u1i and u2i,

can be expressed as

u1i = A cosα

u2i = A sinα
(4.1)

where α is the instantaneous phase of the signals with phase difference of π/2.
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Relation between real (u1 and u2) and ideal encoder signals (u1i and u2i) can

be written as

u1 = u1i +m1

u2 =
1

R
(A1 cos(α− φ)) +m2

(4.2)

where m1 and m2 are mean offset values and φ is the quadrature phase shift

error. In (4.2), R is the gain ratio (A1/A2) where A1 and A2 are amplitudes

of actual encoder signals. Using (4.1) and (4.2), a conventional least squares

formulation can be obtained as shown in (4.3) and (4.4).

θ1u1
2 + θ2u2

2 + θ3u1u2 + θ4u1 + θ5u2 = 1 (4.3)

where

θ1 = (A2
1 cos2 φ−m2

1 −R2m2
2 − 2Rm1m2 sinφ)−1

θ2 = θ21R
2

θ3 = 2θ1R sinφ

θ4 = −2θ1(m1 +Rm2 sinφ)

θ5 = −2θ1R(Rm2 +m1 sinφ)

(4.4)

It is possible to calculate θi (i = 1, 2, , 5) constants offline using least squares.

In order to use a Recursive Least Squares (RLS) approach with exponential for-

getting, (4.3) can be re-written as shown in (4.5).

ϕ1(t)θ1(t) + ϕ2(t)θ2(t) + ϕ3(t)θ3(t) + ϕ4(t)θ4(t)

+ ϕ5(t)θ5(t) = 1

or

ϕT (t)θ(t) = 1

(4.5)

where superscript T denotes transpose of a matrix, t is time index, θ′is are
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parameters to be determined and ϕ′is are known functions depending on actual

encoder signal values. Then, the parameter update and regressor vectors given

in (4.6) are obtained.

ϕT (t) = [u21(t), u
2
2(t), u1(t)u2(t), u1(t), u2(t)]

θ(t) = [θ1(t), θ2(t), θ3(t), θ4(t), θ5(t)]
T

(4.6)

The objective of a RLS with exponential forgetting and resetting algorithm

is to determine the parameters so that (4.5) is satisfied with minimum possible

error. For this purpose, a loss function given in (4.7) is determined so that the

chosen θ should minimize its value.

V (θ, t) =
1

2

t∑
k=1

λt−k(1−ϕT (k)θ)2 (4.7)

where k is index and λ is forgetting factor such that 0 < λ ≤ 1. By adjusting

the value of λ, contribution of old data to loss function is controlled so that most

recent data is given unit weight whereas old data is weighted by λs, where s is

number of time intervals elapsed from the old data.

Then, the recursive parameter adjustment law can be obtained as follows:

θ(t) = θ(t− 1) +K(t)(1−ϕT (t)θ(t− 1))

K(t) = P (t− 1)ϕ(t)(λ+ϕT (t)P (t− 1)ϕ(t))−1

P (t) = (I −K(t)ϕT (t))P (t− 1)/λ

(4.8)

where I is identity matrix and P is a non-singular matrix which can be chosen

as P = κI, κ is a large number.

For simplicity, time index t will be dropped from the equations from this point

forward, although each correction parameter is time-varying. For calculating θ′is

using (4.8), the correction parameters (i.e.A1, R,m1,m2 and φ) can be obtained

using (4.4) as shown in (4.9):
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Figure 4.2: Encoder Signal Parameters Recorded Through 120mm Motion of the
Single Axis Slider

φ = arcsin(θ3/
√

4θ1θ2)

R =
√
θ2/θ1

m1 = (2θ2θ4 − θ5θ3)/(θ23 − 4θ1θ2)

m2 = (2θ1θ5 − θ4θ3)/(θ23 − 4θ1θ2)

A1 =

√√√√4θ2(1 + θ1m2
1 + θ2m2

2 + θ3m1m2)

4θ1θ2 − θ23

(4.9)

As a result, the corrected quadrature signals, û1 and û2 can be calculated

using the correction parameters obtained in (4.9) as follows:

û1 =
1

A1

(u1 −m1)

û2 =
1

A1 cosφ
((u1 −m1) sinφ+R(u2 −m2))

(4.10)

Using this method, correction parameters are adjusted with each iteration re-

cursively considering the effects of parameter values from the previous iterations.
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Figure 4.3: Corrected Encoder Signals Using RLS (a) with and (b) without Re-
setting

Hence, slow changes in the parameters can be covered efficiently. In Figure 4.2,

changes in the signal amplitude, gain ratio, mean offsets, and phase shift errors

recorded through 120mm motion of our single axis slider are shown. For short

range movements (less than couple of hundreds of micrometers), parameters can

be assumed to change smoothly and continuously. However, as it is also observed

in Figure 4.2, these parameters may change more dramatically for long range

motions. For such cases, a standard RLS with exponential forgetting cannot es-

timate the parameters effectively. Hence, in long range motions, resetting is used

to cover the significant parameter changes. For this purpose, the matrix P in the

RLS algorithm given in (4.8) is reset periodically to its initial value of κI. As a

result of resetting, parameter estimate is updated with a larger step size so that

significant changes in the parameters can be estimated well since the gain K(t)

in (4.8) gets larger [40]. In Figure 4.3, corrected encoder signal data obtained

through the end of 120mm motion of the slider is given for RLS with resetting

and without resetting cases. It is obvious that a better correction of the encoder

signals is accomplished using RLS with resetting where long range motion is the

39



0 0.5 1 1.5 2 2.5 3 3.5

x 10
−3

−1

−0.5

0

0.5

1

Time [s]

A
m

pl
itu

de
 [V

]

û
1
 and û

2
u

1
 and u

2

Figure 4.4: Corrected and Original Encoder Signals

focus of interest. As shown in Figure 4.3b, when there is no resetting of matrix

P in the RLS algorithm, corrected signals still contain amplitude, mean offset

and phase shift errors at the end of long range motions. The amplitude error for

no resetting case is measured around 14% − 16%. Mean offset errors can reach

up to 0.1V and phase shift error is about 2.5 − 3 degrees. Although the phase

shift error seems small, when high-resolution measurements are concerned, it is

not acceptable. Moreover, these errors will be amplified when an interpolation

method is applied to obtain high-resolution. Illustration of the encoder signals

obtained before and after correction using RLS with exponential forgetting and

resetting is given in Figure 4.4. In order to illustrate the quadrature phase shift

of the corrected signals more clearly, variation of amplitude of corrected signals

between 0 and π/2 radians are given in Figure 4.5. As it can be observed in this

figure, corrected signals have a phase difference of π/2 as desired.

4.3 Look-up Table Based Signal Interpolation

(Step 2)

In order to derive intermediate position values, corrected encoder signals are

interpolated. For this purpose, high-order sinuoids are generated by mapping

the corrected sinusoidal encoder signals to high-order ones. Here, calculation

of higher order sinusoids using general formulations in (4.11) can be a tedious
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Figure 4.5: Verification of Quadrature Phase Difference Between Corrected Sig-
nals

operation.

sin(nα) =
n∑
k=0

cosk(α) sinn−k(α) sin(
1

2
(n− k)π)

cos(nα) =
n∑
k=0

cosk(α) sinn−k(α) cos(
1

2
(n− k)π)

(4.11)

where the first parenthesized term is a binomial coefficient and n is the order.

Calculating values of high-order sinusoids using original first order sinusoids may

reduce accuracy. Moreover, real time performance of the interpolation process can

be low due to high computational burden. In our method presented here, we use a

look-up table based interpolation method for mapping of original encoder signals

to high-order sinusoids at high process speeds. For this purpose, a quick access

look-up table is populated offline. The look-up table used in this section directly

uses the actual numerical values of high-order sinusoids since the corrected signals

coming from the adaptive signal correction step are sufficiently close to the real

sinusoidal signal values. Moreover, as previously mentioned, signal characteristics

change significantly in long ranges and different encoders may have different signal

characteristics. Hence, it is much more practical to use the mathematical values

of high-order sinusoids. Also, the look-up table generation task in this method

is practical and the same look-up table is applicable to different encoders or

operation conditions.
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Table 4.1: A Generic Look-up Table

Index cos(nα) sin(nα)

0 1 0

1 cos( nπ
8N

) sin( nπ
8N

)

2 cos( nπ
4N

) sin( nπ
4N

)

: : :

i cos(niπ
8N

) sin(niπ
8N

)

: : :

8N 1 0

In the interpolation step, index calculator shown in Figure 4.1 uses the values

of corrected signals, û1 and û2, as inputs and generates an index number, i. Using

the index number as an addressing data, values of nth order sinusoids, u1n and

u2n, corresponding to û1 and û2 are obtained from the quick access look-up table.

For our research, we construct our look-up table by dividing each octants

(i.e. interval of π/4 radians) of a set of nth order sinusoidal signals, cos(nα)

and sin(nα), into N samples leading 8N samples over one period of a high-order

sinusoids. Then, values of these samples are stored in the look-up table prior

to the process. A generic look-up table for an nth order interpolation is given in

Table 4.1. In this table, i denotes the index number generated by index calculator

for û1 and û2.

After the look-up table is constructed, index number should be calculated for

mapping of corrected signals to the nth order sinusoids. As also observed in [16],

when the index calculation is based on just one signal, û1 or û2, poor resolution

will be obtained around û1 ≈ 1 or û2 ≈ 1 due to the highly nonlinear relationship

between amplitude and angle α of sinusoidal signals. Although it is sufficient to

use high N values to solve this problem, it will also increase the size of look-up
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table. Hence, index number may be calculated using the one of the signals, û1 or

û2, which is outside of that poor resolution region. Poor resolution regions can

be explained mathematically as

|û1| > sin(
π

4
)

|û2| > sin(
π

4
)

(4.12)

Defining the poor resolution region as in 4.12, index can be calculated by

using almost linear relationship between amplitude and angle α outside of these

regions in combination with the signs and magnitudes of the signals û1 and û2.

Signs and magnitudes of the signals are only used to find the correct octant of the

current angle. For example, for 0 < α ≤ π/4, sign(û1) > 0 and û2 ≥ sin(π/4).

Since û2 is in the poor resolution area mentioned above, it is suitable to use the

value of û1 to calculate the index value. Using the linear relationship between

amplitude of signal û1 and the angle, it can be calculated as

i =
û1N

sin(π/4)
(4.13)

Similarly, for π/4 < α ≤ π/2, sign(û2) ≥ 0 and û1 > sin(π/4). Hence, since

û2 is at outside of the poor resolution region, it can be used in the calculation

leading the index value of

i = 2N − û2N

sin(π/4)
(4.14)

However, using (4.13), (4.14) and similar ones given in Table 4.2 for the other

octants of sinusoids, index numbers obtained may not be integers. Therefore,

calculated index values should be rounded to the closest integer values while

calculating the index value in order to read the correct value in the look-up table.

In Table 4.2, there are two conditions to define the index calculation. These

are called as sign and magnitude conditions. Once a row which concurs with the

sign and magnitude conditions is identified, the corresponding formula is used
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Table 4.2: Index Calculation Table

Sign Magnitude Index, i Angle, α

sign(û1) > 0 û2 ≥ sin(π
4
) û1N

sin(π/4)
0 < α ≤ π

4

sign(û2) ≥ 0 û1 > sin(π
4
) 2N − û2N

sin(π/4)
π
4
< α ≤ π

2

sign(û2) < 0 û1 ≥ sin(π
4
) 2N − û2N

sin(π/4)
π
2
< α ≤ 3π

4

sign(û1) ≥ 0 û2 < − sin(π
4
) 4N − û1N

sin(π/4)
3π
4
< α ≤ π

sign(û1) < 0 û2 ≤ − sin(π
4
) 4N − û1N

sin(π/4)
π < α ≤ 5π

4

sign(û2) ≤ 0 û1 < − sin(π
4
) 6N + û2N

sin(π/4)
5π
4
< α ≤ 3π

2

sign(û2) > 0 û1 ≤ − sin(π
4
) 6N + û2N

sin(π/4)
3π
2
< α ≤ 7π

4

sign(û1) ≤ 0 û2 > sin(π
4
) 8N + û1N

sin(π/4)
7π
4
< α ≤ 2π

to calculate the index value as described above. Since the table is constructed

by considering only the signs and magnitudes of the available encoder signals,

it is easier to understand and implement in real time applications compared to

the ones mentioned in the literature. It also serves as a quick access tool for the

look-up table. Moreover, round off error is minimized by eliminating extra index

numbers proposed in [16].

Using Table 4.2 for calculation of index and obtaining the corresponding val-

ues from the look-up table, nth order sinusoidal signals can be obtained. An

example interpolation results for n = 25 is given in Figure 4.6. For the inter-

polation, N is chosen to be 1000. Considering the results shown in Figure 4.6,

it is clearly seen that high-order sinusoids can be obtained effectively using the

presented correction and interpolation methods. The calculated index number,

i, corresponding to the corrected signals, û1 and û2, is given in Figure 4.7. In
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Figure 4.6: Interpolation Results for n = 25
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Figure 4.7: Variation of Index Number for n = 25

this figure, amplitudes of sinusoidal signals are set to 8000 deliberately to show

the relationship between signal amplitudes and index clearly. Expectedly, index

number varies from 0 to 8000 (8N) linearly in one period of signals. Linear re-

lationship shown in this figure also illustrates the effectiveness of the proposed

interpolation method. More detailed experiments and results for the proposed

interpolation method are given in the experiments section.
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4.4 Binary Pulse Generation and Position In-

formation

In order to use the interpolated encoder signals, u1n and u2n, as position infor-

mation in a system, quadrature signals should be converted to the binary pulses.

Then, the position information can be derived by counting the zero-crossings of

these binary pulses. Although it is possible to use extra hardware for this pur-

pose, it can be accomplished in software by generating A and B binary pulses (as

illustrated in Figure 4.1) using the following equations.

A =


1 if u1n ≥ ε

−1 if u1n ≤ −ε

B =


1 if u2n ≥ ε

−1 if u2n ≤ −ε

(4.15)

In (4.15), ε is a small threshold value. This value should be chosen consid-

ering the noise level of the interpolated signals coming from the interpolation

stage. With the proper selection of this number, undesired zero crossings can be

eliminated although encoder signals contain significant amount of error.

In Figure 4.8, binary pulses generated using (4.15) are shown. In this figure,

corrected (û1 and û2) analog signals are also given. Interpolation is conducted for

n = 25 and threshold value, ε, of 0.05V is used. In order to prevent confusion,

amplitudes of binary pulses are set to 0.4 and 0.6 for A and B, respectively.

After the binary pulses are generated, the sign changes or zero crossings in

these pulses are counted. Then, multiplying this number with the intended dis-

tance between two zero crossings, the position information can be calculated. In

(4.16), mathematical relationship between the number of zero-crossings and the

position information, x, is given.
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Figure 4.8: Binary Pulses Obtained for n = 25

x =
nzclp
4n

(4.16)

where nzc is the number of zero crossings, lp is the pitch of scale grating

and n is the number of interpolation. For example, the presented interpolation

technique is applied on a linear optical encoder with scale grating of lp = 4µm

in pitch and the number of interpolation is chosen to be n = 5. For without

interpolation case, 4 zero-crossings of signals mean 4µm of displacement since

between two scale grating one period of each signal passes. However, when the

interpolation method is applied, detection of 4 zero-crossings imply 4/5µm of

displacement. In Figure 4.9, an illustration of this example showing the encoder

signals without interpolation (first order signals) and signals with interpolation

(for n = 5) is given. In this figure, the binary pulses created using encoder

signals are also shown. However, their magnitudes are deliberately set to 0.6V

and 0.8V to prevent any confusion in the signals. In this example, when 1000

number of zero crossings in positive direction are detected in the binary pulses

for interpolation case, 1000x4/(4x5) = 200µm of displacement is accomplished.

Using the same procedure for both directions, the position information can be

derived from the binary pulses by counting zero-crossings.
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Figure 4.9: Example Showing Encoder Signals and Binary Pulses for (a) Without
Interpolation (b) With Interpolation Cases

4.5 Practical Limitations

Application of the proposed method to generate high-resolution quadrature en-

coder signals is limited due to some practical constraints such as number of sam-

ples recorded, velocity of movement to be measured and signal noise.

Linear optical encoders generate sinusoidal signals with a period equal to the

grating pitch of the encoder scale, lp. With the implementation of proposed

method for n number of interpolations, high-order sinusoids (nth order) with a

period equal to lp/n are generated. Hence, when N1 samples are recorded in one
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period of original first order sinusoidal encoder signal, interpolation number can

be expressed as

n =
N1

Nn

(4.17)

where Nn is defined as the number of samples in one period of nth order

sinusoid. Following the same idea, maximum interpolation number, nmax, can be

defined as

nmax =
Nmax

1

Nmin
n

(4.18)

where Nmax
1 is the maximum number of samples to be recorded in one period

of original encoder signals and Nmin
n is the minimum number of samples to present

in nth order sinusoid. Considering the expression in (4.18), interpolation number

is limited by available sampling performance.

Another constraint for the number of interpolation is velocity of the movement

to be measured. Defining the loop time, tloop, as the time required to process one

sample of encoder signal, relation between the maximum interpolation number

and maximum velocity of the motion, vmax, can be expressed as in (4.19). In this

equation, limit on the number of interpolation due to maximum velocity of the

system through a motion is considered.

nmax =
lp

vmaxNntloop
(4.19)

Noise in encoder signals is also an important factor limiting the number of in-

terpolation. In order to obtain high-resolution via proposed interpolation method,

noise in the encoder signals should be minimized by shielding, grounding and fil-

tering. After these processes, effect of remaining small level noise on resulting

position value can be eliminated with the proper selection of the threshold value

for binary pulse generation in (4.15) as mentioned previously.
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Chapter 5

Real-Time Implementation

Although the encoder resolution improvement technique presented in this thesis

is expressed mathematically, real time implementation of it requires a special

effort due to some practical constraints in the programming software and other

equipment. For the real time implementation of the presented encoder resolution

improvement method, Labview software is used. Moreover, control algorithms

developed for multi-axis precision positioning systems presented in [39] are also

implemented.

In this chapter, details of the real-time implementation of encoder resolution

improvement method are given. For this purpose, first, Labview implementation

of the method is discussed including the encoder signals correction, look-up table

based interpolation, binary pulse generation and position information derivation

parts. Next, Labview implementation of the control algorithm used to control

the single, two and three axis slider systems is also shown while explaining the

overall control system.
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5.1 Real-Time Implementation of Encoder Res-

olution Improvement Method

In this section, real-time implementation of the encoder resolution improvement

technique presented in Chapter 4 is discussed in detail. For the implementation

process, Labview software is used and the same algorithm is employed for all

systems including single, two and three axis positioning systems.

In Figure 5.1, encoder resolution improvement loop is given for single axis

positioning system. In this figure, encoder signal correction, look-up table based

interpolation, binary pulse generation and position information derivation parts

are labeled to illustrate the data flow clearly. As it can be observed in this figure,

after the initialization for the loop is done, acquired analog encoder signals are

corrected in the correction part. Then, the corrected signals are sent to the look-

up table based interpolation section. After the interpolation, high order sinusoids

are converted to binary pulses so that the position information can be derived
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by counting the zero crossings. All of these processes are inserted in a while

loop so that the procedure continues until the user stops it using the front panel

(Appendix A).

For the initialization part, there are two tasks to accomplish before the signal

correction process starts. These are data acquisition and data filtering. Using

daqmx.vi’s in Labview, encoder signal voltage data is acquired from two chan-

nels as continuous samples. Here, acquisition rate is adjusted to 300000Hz for

our system and data is obtained as waveform. Advantage of acquiring data as

waveform is that samples are stored as packages so that the same number of

sample can be delivered in shorter time leading smaller loop time. Moreover,

time information is also supplied in the waveform. After the data acquisition

accomplished, electrical noise in the encoder signal is filtered using filter.vi’s. By

filtering the encoder signals effect of noise in the interpolation stage is reduced.

For our system, Butterworth low pass filter is used for both encoder signals.

In Figure 5.2, a detail view of encoder signal correction part of Labview VI

documentation is given. Part I of this figure shows the real time implementation of

mathematical expression for RLS with exponential forgetting and resetting given
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in (4.8). In this part, first, initial conditions for θ and P are defined for RLS

process. In the real time implementation, ki’s represent θi’s (i = 1, 2, .., 5). For the

encoders used in our positioning systems, initial condition for θ and P are chosen

as [3.40, 3.40, 0,−0.1,−0.1] and 100I, respectively. These initial conditions are

determined roughly by experiments. Since the correction algorithm is adaptive,

there is no need to fine tune the initial conditions. After the initial conditions

are defined signals are processed to calculate parameter update vector, θ, as in

(4.8). In the implementation of recursive parameter adjustment law, exponential

forgetting factor, λ, is chosen as 1 in order to have maximum contribution of

old data to parameter adjustment. In order to satisfy resetting property, P is

defined inside of the while loop so that it is reset to its initial value of 100I at the

beginning of each iteration. In Part I, parameter update is limited by a switch in

order to reduce the computation burden. For this purpose, difference between the

signal values of the current and previous iteration is calculated. When magnitude

of this difference is lower than a specific value, θ is not updated. This limit is

an empirical value and it is determined as 0.001V for our system. After the

parameter update vector is defined, correction parameters are calculated using

θi’s in a mathscript in Part II. Here, Part II is the real time implementation of

(4.9). Since this process requires complex mathematics, it is accomplished in

a mathscript. Using the correction parameters calculated in Part II, distorted

encoder signals are corrected in Part III. In this part, (4.10) is implemented to

the Labview environment.

After the encoder signals are corrected, the corrected signals are fed into the

look-up table based interpolation section as shown in Figure 5.1. In Figure 5.3,

zoomed view of look-up table based interpolation section of Labview document is

given. In this figure, Part IV is the offline look-up table generation part and it is

the real time implementation of Table 4.1. In this part, using a mathscript, a look-

up table including mathematical values of high-order sinusoids is formed. Order

of the sinusoids depend on the desired interpolation number. While calculating

the high-order sinusoids, each octant of them are divided into N samples leading

8N samples over one period of the high-order signals. For our experiments,

N = 1000 is used. When the value of N is increased, the size of look-up table
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also increases. Hence, there is a trade-off between the sample number and the

computation effort. After the look-up table for high-order sinusoids are generated

offline, corrected signals are mapped to high-order sinusoids by calculating index

numbers for the look-up table. In Figure 5.3, Part V shows the index number

calculation process. This part is the implementation of Table 4.2 to the Labview

environment. Here, a for loop is used to calculate an index number for each

sample in the waveform data package. Using the signs and magnitudes of the

corrected signals, index numbers are calculated for each sample in a mathscript.

Then, using the index number, corresponding look-up table value is obtained as

the high-order sinusoids by using array.vi’s.

When the interpolation process is completed, calculated high-order sinusoids

are sent to the binary pulse generation loop so that the position information can

be derived. In Figure 5.4, Labview implementation of binary pulse conversion

and position information derivation processes are shown as Part VI and Part

VII, respectively. For binary pulse conversion, (4.15) is implemented. However,

in order to prevent any data loss, signals with amplitudes between −ε and ε is

converted to 0. In our system, ε is chosen to be 0.05V for all encoders. Similar to

index generation loop, binary pulse conversion and position information deriva-

tion processes are accomplished inside of for loops in order to process each sample

in a waveform. After the binary pulses are generated in Part VI, zero crossings

are counted to obtain position information in Part VII. However, direction of the

motion should be determined for correct position information. For this purpose,

in Part VII, leading signal is determined by comparing the signs of the signals.

If sin(nα) is the leading signal, number of zero crossings are added to the total
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view Implementation

value, otherwise, it is subtracted. Then, multiplying the counter value by a po-

sition constant, position information is obtained. Here, position constant is the

displacement value corresponding to the distance between two zero crossings and

it is directly related to the interpolation number. Mathematical expression of the

relation between the position and the number of zero crossings implemented in

Part VII is given in (4.16).

Real time implementations of the encoder resolution improvement method for

two and three axis systems are similar. They are also given in Appendix A with

the overall control diagrams.

5.2 Real-Time Implementation of Overall Con-

trol System

In this section, Labview implementation of overall control system including the

encoder resolution improvement loop and the control loop is summarized. As an

example, overall control system implementation of single axis slider is given in

Figure 5.5. In this figure, iterative learning controller (ILC) is implemented as
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controller. Details of the controller can be found in [39]. In the figure, encoder

resolution improvement loop and the control loop is labeled. Since these two

loops are processed at different speeds, position information is supplied to the

control loop only when it is desired. For this purpose, a cache is used to store

the position values coming from the encoder resolution improvement loop.

In Figure 5.6, detailed view of the control loop is given. In this loop,

daqmx.vi’s are used to send control output to the system. Iterative learning

controller is implemented by using a mathscript. In this script, control signal

data from previous iterations are used to calculate the new feedforward control

signals. Previous iteration data is stored in lvm files and read back when neces-

sary.

In Appendix A, Labview front panels used to control single, two and three

axis positioning systems are supplied with Labview VI documentations of overall

control systems for two and three axis systems.
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Chapter 6

Validation and Experiments

In this thesis, an encoder resolution improvement technique is presented to in-

crease the available resolution of the encoder used in the positioning system. In

order to show the performance and effectiveness of this technique, experiments

with different interpolation numbers should be conducted. In Chapter 4, some

experiment results are supplied to illustrate the working principle of the method

including the adaptive signal correction and signal interpolation parts. In addi-

tion to experiments showing the performance of encoder resolution improvement

technique itself, experiments showing the effects of encoder resolution improve-

ment on positioning performance of our slider systems are important. Moreover,

an external validation is also required to express the performance of the encoder

resolution improvement method numerically.

In this chapter, first, validation of proposed encoder resolution improvement

method is explained. Experimental setup used for the validation tests are de-

scribed in detail. Validation test results obtained for several cases with different

interpolation numbers are provided. Next, results of several experiments con-

ducted on single axis slider are shown to illustrate the effectiveness of the pre-

sented adaptive signal correction and interpolation methods. Moreover, effects of

encoder resolution improvement on positioning performance of presented single,

two and three axis positioning systems are tested.
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6.1 Validation of Encoder Resolution Improve-

ment Method

In order to prove that the presented encoder resolution improvement method is

working properly, an external validation is required. For this purpose, an external

displacement sensor with known resolution can be used. However, resolution of

this sensor should be higher than the intended measurement resolution of the

encoder that the signal interpolation method is applied.

In this section, validation study for presented encoder resolution improvement

approach is summarized. Testbed for validation experiments is explained with

its components. Experimental results for several cases with different resolution

values including the best resolution we have obtained are supplied. Experiments

are conducted for all axes in order to show that the same method can be applied

on different encoders without any modification.

6.1.1 Experimental Setup

In order to validate the presented encoder resolution improvement method, a

two-arm differential laser vibrometer with adjustable resolution is used as an ex-

ternal measurement device. In the validation experiments, the aim is to compare

the displacement values obtained using the linear encoder and the vibrometer.

Calculating the RMS error levels by taking the vibrometer readings as reference,

a numerical expression for performance of the encoder resolution improvement

method is obtained. In order to show the performance clearly, validation ex-

periments are conducted for several cases with different interpolation numbers

leading different resolution values.

In Figure 6.1, the test setup prepared for validation experiments on x-axis

is shown. Here, a Polytech OFV-552 two-arm laser vibrometer is used with

OFV-5000 vibrometer controller as an external measurement device. OFV-5000

vibrometer controller can be tailored with various decoders to reach the desired
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Figure 6.1: Testbed for Validation Experiments

performance [28]. In our system, DD-900 broadband digital displacement decoder

and VD-09 broadband digital velocity decoders are used. With this combination,

it is possible to adjust measurement resolution between 15pm and 1500µm by ad-

justing the measurement range. As the resolution is increased, the measurement

range decreases. For example, it is possible to reach 15pm measurement resolu-

tion when measurement range is adjusted to 1µm whereas when the resolution is

chosen as 150nm, measurement range increases to 10000µm. However, when the

resolution is increased, effect of noise on the measurement signals also increases

depending on the electrical noise characteristics of the test environment. Con-

sidering this fact, for our validation experiments, we used 3nm resolution with

200µm measurement range.

As it can be seen in Figure 6.1, one of the laser arms is directed to the

stationary base of the slider as the reference and the other laser arm is positioned

to point at the moving slider. Purpose of this arrangement of the laser arms is to

reduce the effect of environmental vibrations on our displacement measurements.

With this arrangement, the measured vibrometer reading is differential and free

from undesired common vibrations. Moreover, the whole system including the
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sliders and laser arm mounts is mounted on an optical table to obtain noise-

free displacement measurements. As laser arm mounts, Thorlabs six degree-of-

freedom (DOF) kinematic mounts are used to obtain required orientation and

position of the lasers.

For the laser vibrometer to measure the displacement with minimum error

and maximum accuracy, lasers should be positioned so that bar shaped signal

strength indicator on OFV-552 is full. Full strength indicator means that the

laser beam is perpendicular to the surface to be measured. Hence, laser beams

are positioned using 6-DOF kinematic mounts so that full strength is obtained

for validation experiments.

6.1.2 Validation Test Results

Although the measurement range of the laser vibrometer is chosen as 200µm

for 3nm resolution, displacements with couple of micrometers are given in or-

der to illustrate the validation results clearly. Moreover, validation experiments

are conducted on each axis separately to prove that the proposed encoder res-

olution improvement method can be applied on different encoders without any

modification in the algorithm.

In Figure 6.2, Figure 6.3 and Figure 6.4, displacement measurements obtained

on x-axis slider with the vibrometer and the linear encoder with increased mea-

surement resolution are given for interpolation numbers of n = 10, n = 50 and

n = 100, respectively. Resulting measurement resolutions are 100nm , 20nm

and 10nm for these interpolation numbers. Similar validation experiment results

obtained on y-axis and z-axis sliders are given in Figure 6.5, Figure 6.6, Figure

6.7 and Figure 6.8, Figure 6.9, Figure 6.10, respectively.

For all cases including the best resolution we obtained (10nm), interpolation

results match with the displacement measurements measured with laser vibrom-

eter. In order to show the effectiveness of the encoder resolution improvement
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Figure 6.2: Validation Results on x-Axis Slider for Interpolation Number of n =
10 Resulting 100nm Measurement Resolution
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Figure 6.3: Validation Results on x-Axis Slider for Interpolation Number of n =
50 Resulting 20nm Measurement Resolution
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Figure 6.4: Validation Results on x-Axis Slider for Interpolation Number of n =
100 Resulting 10nm Measurement Resolution
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Figure 6.5: Validation Results on y-Axis Slider for Interpolation Number of n =
10 Resulting 100nm Measurement Resolution
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Figure 6.6: Validation Results on y-Axis Slider for Interpolation Number of n =
50 Resulting 20nm Measurement Resolution
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Figure 6.7: Validation Results on y-Axis Slider for Interpolation Number of n =
100 Resulting 10nm Measurement Resolution
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Figure 6.8: Validation Results on z-Axis Slider for Interpolation Number of n =
10 Resulting 100nm Measurement Resolution
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Figure 6.9: Validation Results on z-Axis Slider for Interpolation Number of n =
50 Resulting 20nm Measurement Resolution
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Figure 6.10: Validation Results on z-Axis Slider for Interpolation Number of
n = 100 Resulting 10nm Measurement Resolution
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method numerically, root mean square (RMS) of measurement differences be-

tween the vibrometer and linear encoder with interpolation are obtained for all

of these cases. These values are calculated for x-axis slider as 43.5nm, 8.3nm

and 7.2nm for n = 10, n = 50 and n = 100, respectively. Similarly, RMS of

measurement difference values for y-axis slider are calculated as 36.8nm, 10.6nm

and 7.9nm. For z-axis, the RMS differences are obtained as 62.0nm, 12.3nm

and 7.1nm. Since these error values are below the intended measurement resolu-

tions achieved with the application of presented encoder resolution improvement

method on linear optical encoders for each case, it can be concluded that the per-

formance of the method is validated successfully. Moreover, these results show

that presented approach can be applied on different encoders without any change

in the algorithm.

6.2 Experimental Results

In this section, performance of the encoder interpolation technique explained in

this thesis is presented. For this purpose, results of the experiments conducted

for different interpolation numbers are given. In these experiments, single axis

slider is used. Moreover, effects of encoder resolution improvement method on

tracking and contouring performance of single, two and three axis slider systems

are also discussed.

In the experiments, signals coming from Heidenhain LIP 481R linear optical

encoders are collected using NI PXIe-6358 X series data acquisition card attached

on the PXIe-1062Q series chasis. In this chasis NI PXIe-8133 series controller is

embedded. Labview programming environment is used to implement the encoder

resolution improvement method algorithm. Data acquisition is accomplished for

each encoder simultaneously at a rate of 300000samples/s/channel. Since one

encoder gives two sinusoidal signals, two channels are used for each encoder.

Original measurement resolutions of the encoders used in the experiments are

1µm.
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Figure 6.11: Interpolation Results for n = 16

0 0,001 0,002 0,003 0,004 0,005
−1.5

−1

−0.5

0

0.5

1

1.5

Time [s]

A
m

pl
itu

de
 [V

]

u
1n

 and u
2n

û
1
 and û

2

Figure 6.12: Interpolation Results for n = 50

Raw signals are collected using the linear encoder attached on the slider.

Then, the proposed adaptive correction and look-up table based interpolation

methods are used to obtain high resolution. Figure 6.11, Figure 6.12 and Figure

6.13 show the interpolation results with n = 16, n = 50 and n = 100, respec-

tively. In Figure 4.6, interpolation with n = 25 is also given. In these figures,

interpolated signals and corrected signals are shown to illustrate the performance

of the presented method. In these figures, effectiveness of the correction method

can be observed by looking at the signal magnitudes, phase differences and mean

values of the signals. As it can be observed, both corrected signals have magni-

tudes of 1V . Moreover, when one of the corrected signals is at the maximum or

minimum value (1V or −1V ), the other one is at 0V . Hence, it can be said that
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Figure 6.13: Interpolation Results for n = 100
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Figure 6.14: Tracking Performance of the Single Axis Slider

phase difference between the corrected signals is 90 degrees as desired. Similarly,

performance of the interpolation can be observed from these figures by checking

the signal magnitudes, phase differences and mean values of the interpolated sig-

nals. Validation tests given in Section 6.1.2 also show the effectiveness of both

correction and interpolation methods presented in this thesis.

In the experiments, N = 1000 samples per octant is used for interpolation

process. As it can be observed from the experiment results, sensitivity to noise

increases with increasing interpolation number. Hence, as mentioned previously,

it is very important to select a proper threshold value, ε, for binary pulse gen-

eration. With the proper selection of ε, undesired switching due to the interpo-

lation noise can be eliminated. Therefore, resulting position value will not be
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Figure 6.15: Reference Input Trajectory for Two-Axis Slider System

affected from the noise generated during the interpolation. In the experiments,

this threshold value is chosen as 0.05V . On the other hand, in order to achieve

higher interpolation values (more than n = 100), noise in the encoder signals

should be minimized by proper shielding, grounding and filtering processes.

In this section, results of the experiments on single, two and three axis slider

systems are also given to illustrate the effects of encoder resolution improvement

on tracking and contouring performance of the systems. Positioning performance

of the single axis slider system is tested to compare the cases with and without

interpolation of the encoder signals. For this purpose, same reference inputs

are applied to the system. A conventional PID controller is used as a feedback

controller. For the interpolation case, n = 100 is used so that the resolution of

the measured position is 10nm. In Figure 6.14, performance of the system for a

reference input of 7µm is illustrated. In order to compare the tracking errors and

obtain a smooth motion, the reference input is given as an S-curve [41]. From

this figure, it is obvious that the tracking performance is increased significantly

considering the focus of interest is micro/nano-meter level positioning. For no

interpolation case the tracking error is 312.14nm. On the other hand, when

the encoder resolution is increased to 10nm, the tracking error is reduced to

121.53nm.

The encoder resolution improvement method is also successfully implemented
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Figure 6.16: Tracking, (a) and (b), and Contouring, (c), Performance of Two-Axis
Positioning System
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on the two axis positioning system achieving high-tracking and contouring accu-

racy. For experiments conducted on two axis system, parameters in the interpo-

lation algorithm are the same for both encoders since the adaptive feature of the

correction scheme compensates the differences in the encoder signals effectively.

In Figure 6.15, reference input trajectory applied to the two-axis positioning sys-

tem is given. Shape of the input is designed to observe tracking and contouring

performance of the system. Figure 6.16 shows the resulting tracking and con-

touring errors for the cases with no interpolation and interpolation with n = 40.

Here, the contour error is defined as the distance between actual position and

the nearest position on the contour. For this experiment, cross coupled control

with iterative learning is implemented as controller. When there is no encoder

signal interpolation, both tracking and contouring errors are at micrometer scale.

However, when the encoder signal interpolation is employed, RMS of contouring

error, x-axis and y-axis tracking errors are obtained as 27nm, 21nm and 66nm,

respectively. Details on this study can be found in [39].
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Figure 6.17: Three Dimensional Reference Input Trajectory for Three-Axis Slider
System

Another experiment is conducted on three-axis positioning system to show the

importance of encoder resolution improvement on tracking and contouring perfor-

mance of a positioning system. Similar to the two-axis experiments, parameters

in the interpolation algorithm are the same for all of three encoders. In Figure

6.17, three dimensional reference input trajectory applied to the system is given

and resulting tracking and contour errors are shown in Figure 6.18 for both with

and without interpolation cases. In this experiment, n = 100 is chosen as the
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interpolation number so that the encoder resolution is 10nm for the interpolation

case. As the controller, cross-coupled control [39] is implemented for both cases.

When there is no interpolation in the encoders, tracking errors for x, y and z axis

are 647.77nm, 695.18nm and 1171.58nm, respectively and the contour error is

measured as 548.83nm. However, when resolution of the encoders is increased to

10nm, tracking errors are reduced to 82.34nm, 95.90nm and 234.09nm for x, y

and z axis. Similarly, contour error is also reduced to 83.51nm.
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Figure 6.18: Tracking, (a), (b)and (c), and Contouring, (c), Performance of
Three-Axis Positioning System

72



Chapter 7

Conclusion and Future Works

The goal of this work was to design a three-axis high precision positioning device

that can operate in 120mm range for each axis. For this purpose, a modular

single axis slider is designed so that three of them can be assembled to form the

three-axis positioning device. Here, modularity of the single axis slider allows

to be used in various configurations leading different operation spaces. In this

manner, several possible configurations of single axis sliders are discussed. In the

single axis slider design, permanent magnet linear motor is used as actuator and

linear optical encoder is chosen as feedback sensor. Design criteria for mechan-

ical components of the single axis slider is discussed. A counter balance system

designed for the vertical arrangement of a slider in three-axis positioning system

is presented.

Since the linear optical encoders have original measurement resolution of 1µm,

a new adaptive approach is proposed to increase the resolution. In this approach,

correction of the signal errors including amplitude difference, mean offsets and

quadrature phase shift errors is accomplished adaptively by using recursive least

squares with exponential forgetting and resetting. Due to the adaptive character-

istics of this correction method, even dynamically changing errors are effectively

compensated. Then, a quick access look-up table based interpolation method

is proposed for mapping of original sinusoids to high-order ones. Since the ta-

ble is constructed offline, computational effort is minimal. By converting the
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high-order sinusoids into binary pulses, high resolution position information is

obtained. Since all of these processes are performed in software, external hard-

ware requirements are eliminated. External validation of the method presented

here is accomplished for several cases including the best resolution obtained us-

ing a differential laser vibrometer with known resolution. Limitations on the

proposed method due to the practical constraints are also discussed and theo-

retical relations are supplied. Effectiveness of the proposed method is illustrated

with the experimental results. Using the proposed encoder interpolation method,

up to 100 interpolations have been accomplished successfully. As a result, 10nm

measurement resolution is obtained with an optical encoder having 1µm original

resolution. Effect of the encoder resolution improvement on positioning perfor-

mance is illustrated by the experiments conducted on single, two and three-axis

slider systems. Significant improvements on the tracking and contouring perfor-

mance for all systems are observed. Since the encoder resolution improvement

technique is adaptive, the same method is applied on different encoders on two

and three axis systems without any change in the parameters.

Although nanometer level resolutions are accomplished with the presented

encoder resolution improvement method, its sensitivity to noise cannot be ignored

for high interpolation numbers (larger than 100). Hence, in future, sensitivity to

noise can be reduced to obtain high resolution numbers by employing either a

hardware or software based modification in the system. Although the presented

encoder signal interpolation method is mathematically suitable for any encoders

with sinusoidal outputs, it is only used for linear optical encoders so far. Hence,

applicability and performance of the method can be examined on different type

of sinusoidal encoders such as magnetic encoders.

In terms of the designed positioning system, only specific configurations are

examined so far. Therefore, effectiveness of some other possible configurations

can be tested. Moreover, three-axis positioning system presented in this thesis

can be used in several applications such as micro/nano-machining in order to

observe its performance under specific conditions.
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Appendix A

Labview Implementations

Figure A.1: Labview Front Panel for Single Axis Slider
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Figure A.2: Labview Front Panel for Two-Axis Slider System
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Figure A.3: Labview Implementation of Overall Control System for Two-Axis
Slider System
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Figure A.4: Labview Front Panel for Three-Axis Slider System
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Figure A.5: Labview Implementation of Overall Control System for Three-Axis
Slider System
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