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Abstract: We use quadratic penalty functions along with some recent ideas from linear 11 estimation 
to arrive at a new characterization of primal optimal solutions in linear programs. The algorithmic 
implications of this analysis are studied, and a new, finite penalty algorithm for linear programming 
is designed. Preliminary computational results are presented. 
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1 Introduction 

W e  cons ide r  the  p r i m a l  l inear  p r o g r a m m i n g  p r o b l e m  

FP] m i n i m i z e  cTx 
X 

subject  to A x  = b 

x > 0  

where  x ~ 9~", A is a m x n mat r ix ,  b E ~tl" a n d  c ~ ~l", a n d  its dual :  

[D] maximize - b r y 

Y 

subject to  ATy -t- c >_ 0 

where  y ~ 9W. 
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The first purpose of this paper is to give a new characterization of optimal 
solutions to a linear program using quadratic penalty functions and some recent 
ideas from linear 11 estimation. The second purpose is to investigate the algo- 
rithmic implications of this result for linear programming. Consider the follow- 
ing piecewise quadratic functional: 

F(x,  t) =- tc~:x + �89 + �89 , (1) 

where r(x) = A x  - b, t is a positive scalar and O(x)  is a diagonal matrix with 
diagonal entries Ou: 

O,(x) = {10 ifxi < 0 
otherwise , (2) 

and the unconstrained minimization problem: 

[CP] min F(x,  t) (3) 
XE ~ n  

for decreasing positive values of t. Let xt denote a minimizer of F(x,  t). It is 
well-known [-4] that 

lim cTxt = f *  , (4) 
t -*O 

where f *  is optimal value in [P]. 
In the present paper we characterize the solution set of [CP] and show that 

an optimal solution of the linear program can be obtained by following any one 
of the infinitely many piecewise linear paths that lead to the solution set of [P]. 
This leads to a characterization of the solution set of IP]. I.e., we give a descrip- 
tion of the solution set of I-P] using information from the minimization of the 
unconstrained function for sufficiently small t > 0. To the best of our knowl- 
edge, this is the first such result in the literature for linear programs. Following 
this analysis, we define a new penalty algorithm for linear programs, and ana- 
lyze its finiteness. The algorithm produces infeasible primal and feasible dual 
iterates. The primal feasibility is obtained upon termination. A preliminary 
implementation and numerical results are discussed at the end of the paper. For 
previous work on penalty methods for linear programming see also [1, 2, 5, 11]. 

This analysis is made possible by adapting some recent ideas from linear 11 
estimation [10]. In [10] the following problem was tackled: 

[L1] min G(x) == I[Erx - dllx , (5) 
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where E is n x m, d e 91". In [10] a smooth approximation of [L1] was 
considered: 

[SL1] min G~(x) - ~ p(z,(x)) , (6) 
i=1 

where z~(x) = eirx - di, 

f 
p(zi) = i ~ 2~ 

L i z~ i -~  

if izil ~ 

otherwise . 

(7) 

The function p is known as the "Huber" function in robust regression [8]. 
Clearly, Gr is also a piecewise quadratic functional. By analyzing the behavior of 
the set of minimizers of G~ for decreasing values of 7, characterizations of the 
solutions sets of both IL l ]  and [SL1] were given in [10]. It is precisely against 
this background that we develop our results in the present paper. Our proofs 
follow the same lines as in [10] with the necessary modifications. The contribu- 
tion of the paper is to broaden the domain of application of these recent ideas, 
and in the process to obtain new results on the linear programming problem. 
For  an alternative dual approach, the reader is referred to [15]. 

2 Primal Pathways to Optimal Solutions 

We will assume throughout the paper that A has rank m, and that A contains 
no row or column that is identically zero. The following result shows that the 
unconstrained minimization of F is well-defined. 

Theorem 1: I f  [P] has a finite optimal value there exists a finite point that 
minimizes F(x, t) for all positive t. 

Proof: Assume that the conclusion is false, i.e., that there exists a sequence 
of points {xt} with limz-.~o IIx~ll = + o o  such that l i m l ~  tcrxz = -o e .  The un- 
boundedness of F also implies that there does not exist j ~ {1 . . . .  ,m} where 
limt-.| Irj(xz)f = oo and there does not exist i ~ {1 . . . .  , n} where limz_.o~ xi = 
-oo .  However, this implies that [P]  is unbounded since t > 0, which contra- 
dicts our assumption that [P] has a finite optimal value. �9 
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~(x) = �89 + �89 

The following is well-known; see e.g., [-4, 14]: 

lim ~(xt) = 0 . (8) 
t--}O 

Let us now define a binary vector 0 ~ 91" where the entries are either 0 or  1 
according to the rule: 

0i(x) = {~ ifxi  < 0 
otherwise . (9) 

Hence the diagonal matrix O defined earlier in (2) can be expressed 

O = diag(01 . . . . .  0.) . 

In  what  follows Ox, and O" x are both  used to denote the multiplication of  a 
vector x with the diagonal  matrix O to avoid confusion with O(x) where x is the 
a rgument  of  O. We denote by X the set of optimal solutions to [P] .  

2.1 The Minimizers of F 

We observe that  F(x, t) is composed  of  a finite number  of  quadrat ic  functions. 
In  each domain  D _c 91, where O(x) is constant  F is equal to a specific quadrat ic  
function as seen from its definition. These domains are separated by the union 
of  hyperplanes, 

B = {x e 91"13i: x~ = 0} . (lO) 

Given a point  x e 9t" and the associated binary vector O(x) Qo is the quadrat ic  
function which equals F on the subset 

rg o = cl{z ~ 91"[0(z) = O} . (11) 
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% corresponds to an orthant of 9~". Notice that any x e 9~"\B has exactly one 
corresponding orthant whereas a point x e B belongs to two or more orthant. 
Therefore, we must specify a binary vector 0 in addition to x in order to specify 
which quadratic function we are currently considering as representative of F. 

Qo can be defined as follows: 

Qo(z, t) = �89 - x ) r ( A r  A + O)(z  - x) + F ' r (x ,  t)(z - x) + F(x ,  t) . (12) 

The gradient of the function F(x,  t) is given by 

F'(x ,  t) = ( A r  A + O ) x  -- ATb  + tc . (13) 

For x e 9t"'\B, the Hessian of F(x,  t) exists, and is given by 

F ' ( x ,  t) = A TA + O . (14) 

The set of minimizers of F(x,  t) is denoted by Mr. Now, we have the following 
lemma. 

L e m m a  1: L e t  P -~ A r  A + O. Then  for  any  x e 9t" the fo l lowing holds: 

P x  = O ::~ O x  = O . 

Proof:  

x r p x  = ( A x ) r ( A x )  + x r O x  = llAxt]2 2 + xrOx . 

Suppose 

{I0 f ~  
Ou = for i ~ So �9 

Then, we have 

{; (Ox)i = i f o r i e S 1  
for i e So , 
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and 

x T O x  = x ~ .  
i~St 

Now, since []AxU2 ~ 0 and NTOx ~ 0 it follows that 

P x  = 0 ~ x T p x  = 0 ~ A x  = 0 and x T O x  = 0 . 

M. (~. Pinar 

But 

x r O x  = O ~ Vi ~ S lx i  = O ~ Ox  = O . 

Lemma  2: O(xt) is constant  f o r  x t ~ M t. Furthermore (xt) i is constant  fo r  x t e Mt  

i f0 ,=  1. 

Proof:  Let xt ~ Mt and let 0 = O(xO, i.e., F(x ,  t) = Qo(x, t) for x e %. If x s % c~ 
M~ then Q~(x - xt) = 0. Therefore, i f(xt)i  < 0 then xi - (xt)i = 0 by the previous 
Lemma. Thus x~ is constant in % c~ Mr. Using the fact that Mt is connected and 
x~ is continuous, it is easily seen by repeating the argument above that xi is 
c6nstant in Mr. Next suppose (xt)i >-O. Then xi >_ 0 for all x e M t because 
existence of x ~ M t with xi < 0 is excluded by the convexity of Mr, continuity of 
x~, and the first part of the lemma. This completes the proof. �9 

Following the lemma we use the notation O(Mt) = O(xt), xt ~ Mt as the binary 
vector corresponding to the solution set. Now, Lemma 2 has the following 
consequences which characterize the solution set Mr. 

Corollary 1: Mt  is a convex set which is contained in one orthant: cg o where 

0 = O(Mt). 

Proof'. Follows immediately from the linearity of the problem and Lemma 2. 

Corollary 2: L e t  xt ~ Mt ,  and 0 = O(Mt). Le t  ~ be the null space o f  P - A r  A + 

O, where O = diag(01 . . . . .  On). Then  

M, = (x, + ~ o ) n  % . 



Linear Programming via a Quadratic Penalty Function 351 

Proof: I t  follows f rom (13) that  F'(xt + u, t) = 0 if u e S o  and  xt + u e %. Thus  

Mr -- (xt + ~0)  n cg0 . 

If  x e M t then by the previous corol lary x e %.  Also, F'(x, t) = 0. This implies 
that  P(x - xt) = 0. Therefore,  we have 

M,~- (x t  + Wo) n %  

which proves  the result. �9 

An impor t an t  consequence of the previous character izat ion of Mt is that  it 
provides a sufficient condit ion for the uniqueness of  x,. 

Corollary 3: Let 0 = O(Mt). xt ~ Mt is unique if  rank(Ar A + O) = n. 

Notice  that  this condi t ion is not  necessary for uniqueness of  the minimizer  in 
[CP]  as the following example  demonstrates:  

Example 1: Consider  the linear p r o g r a m  of the form [P]  where 

A = 5 6 0 - 1  

8 9 0 0 

and b = (7, 5, 10) r, and c = ( -  75, - 87, - 102, 0, 5, - 8) r. Fo r  t = 1, the unique 
minimizer  o f F  occurs at x t = ( - 1 ,  - 2 ,  4, 0, 0, 5) r, where r ank (ArA + O) = 5. 

2.2 Characterization of Optimal Solutions 

In this section we show how the solution set M t approx imates  the solution set 
X of [P]  as t approaches  0. 

Assume x, e Mr, and  let 0 = O(Mt). Let X0 be defined as in Corol la ry  2. 

Lemma 3: Let x t ~ Nit, and 0 = O(Mt). Then 
consistent, 

the following linear system is 

(ATA + O)d = c . (15) 
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P r o o f :  Since x t satisfies the necessary condition for a minimizer, we have the 
following: 

0 = ( A T A  + ~9)x t - A r b  + tc . 

Observing that O. O = O, (16) can be rewritten as: 

where 0 denotes a vector identically zero in 91". We observe that the system 

(16) 

(17) 

(18) 

is consistent since it corresponds to normal equations for the overdetermined 
system: 

(:)h (:) ,19  

Hence, the result. �9 

Let d be a solution to (15). Then, it is easily verified by inserting (15) into (16) 
that xt + td is the least squares solution to the overdetermined system of linear 
equations: 

(:) 
L e m m a  4: L e t  x t e M t, and 0 = O(Mt). I f  the overdetermined sys tem (19) is consis- 

tent  then 

1 
t (Ax t  -- b) = - A d  , (20) 

and 
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1 
- O x t  = - O d  (21) 
t 

for  any solution d to (15). 

Proof: The proof follows by inserting the solution (x t + td) into (19). �9 

Now let d solve (15) and assume O(xt + ed) = 0, i.e., xt + ed E % for some ~ > 0. 
The linearity of the problem implies xt + 6d ~ % for 0 < 6 < e. Therefore (16) 
and (15) show that (xt + 6d) is a minimizer of F(x, t - 3). Using Corollary 2 we 
have proved the following: 

Lemma 5: Le t  x t ~ M t and let 0 = O(Mt). Let  d solve (15). I f  O(x t + ed) = 0 for  
e > 0 then O(x t + 6d) = O, and 

Nit_ a = (x, + 6d + Jfo)c~ % (22) 

for  O < a < e. 

Theorem 2: There exists t o > 0 such that O(Mt) is constant for  0 < t <_ to. 
Furthermore, 

M,_ a = (xt + 6d + ~o)c~ cg o 

where 0 = O(Mt) and d solves (15). 

for  O _ < b < t _ < t  o 

Proof." Since there is only a finite number of different binary vectors the theorem 
is a consequence of the previous lemma. �9 

The analysis shows that the minimizers of F form a family of piecewise-linear 
paths as a function of t. 

Corollary 4: O(Mt) is a piecewise constant function o f  t. 

Corollary 5: Let  0 < t < t o, where t o is given in Theorem 2 and let 0 = O(Mt). 
Then 
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O.(x,+ t~)=0, (23) 

and 

r(x,+t~)=O, (24) 

where ~t is any solution of (15). Furthermore, 

{ ( A x  t - b) = - A~l , (25) 

and 

l o x t  - O~l (26) _ ~ _ _  . 

t 

I.e., r(xt)/t and Ox/t  are constant. 

Proof: Let x,_~ e Mt-~ for 0 < 6 < t. By Theorem 2 there exists d that solves 
(15) such that xt-~ = xt + 6d. Hence, there exists d* that solves (15) such that 
xt + 6d* ~ Mt-o for all 0 < 6 < t. Now, using (8) 

O'(x t  + td*) = 0 . (27) 

Any solution d of (15) can be expressed as d = d* + ~/where r/r oA/'(ATA + 0). 
Now, (23) follows from (27) and Lemma 1. Using (8) we have: 

r(xt + td*) = 0 . (28) 

Now, (24) follows since 

(ArA + O ) q = O ~  A r A q = O ~  A r l = O  . 

The second part follows from Lemma 4 since (23) and (24) imply that (19) is 
consistent. �9 

We notice that if xt ~ Mt then Yt = r(xt)/t, where 0 = O(Mt), is feasible in [D] as 
it is seen from (16). Now we recall a classical result from linear programming 
known as the complementary slackness theorem; see for instance [12]. 
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Theorem 3: Le t  x ~ 9P and y ~ ~R" be feasible solutions in [P] and [D], respec- 

tively. Then x and y are optimal solutions in their respective problems [P] and [D] 
i f  and only i f  the following conditions hold: 

0 < x~ =. airy + ci = 0 . 

a~'y + ci > 0 ~ xi = 0 . 

(29) 

(30) 

For the purposes of our next theorem we rewrite the constraints of [D] in the 
form of equality constraints by introducing a non-negative vector u e tRm: 

ATy  -- U = --C . 

Now, for xt E Mr we define 

y ,  - -  r(xt)/ t  , (31) 

and 

ut = - O x J t  (32) 

where 0 = O(MO, and O is defined accordingly. Then it is easy to see that (Yt, u~) 
is feasible in [D] from (16). 

Let Jo = {i]Oi = 0}, and ~o = {x ~ 9t"[x~ > 0 ^ i e Jo}. Now we are ready to 
state the new characterization of optimal solution to [P]. 

Theorem 4: Le t  0 < t <_ to, where t o is given in Theorem 2 and let 0 = O(Mt). Le t  
x t ~ Mr, and d solve (15). Then 

Mo = X 

where 

Mo = (xt + td + Sffo) c~ ~o (33) 

and 
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1 
y *  = ~r(x,) 

solve [D]. 
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u* = - l - o x t  (34) 
t 

Proof: First, Mo is non-empty as a consequence of the constant binary vector 
property of Theorem 2. Assume Xo e Mo. Then there exists a solution do to (15) 
such that x o = xt + tdo. Therefore using Corollary 5 

Oxo = 0 . (35) 

Furthermore, (y*, u*) is feasible for [D]. Therefore, using (24), (32), and (35) we 
have 

crxo  = x g ( - A r y  * + u*) 

= - x r A r y  * + xgu*  

= - b r y *  . 

Now, x o is a non-negative vector following (35) and the fact that x o e 90. 
Hence, Xo and (y*, u*) are solutions to [P] and I-D], respectively. Since this 
holds for any Xo e Mo, Mo _c X and (y*, u*) solves [D]. 

If X is a singleton, the proof is complete. Therefore, assume the contrary. It 
remains to show that x e Mo for any x s X. Since Xo and (y*, u*) are primal- 
dual solutions it follows from Theorem 3 that O x  = 0 for any x e X. Now, let 
x e X and xt ~ Mr. Hence, 

O x  = 0 . (36) 

Then using (16), (36), and the feasibility of x we have: 

(ATA + O)(x - x,) = (ATA + O)x - (ATA + O)x  t 

= (ATA + O)x - (ATb - tc) 

- = t c  , 

which shows that ( x -  xt) solves (15). Therefore we have shown that x ~ x t + 
t 

td + SV'o. Now, observing that x e 90 by virtue of feasibility the proof is 
complete. �9 
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Hence, all the optimal solutions to [P] can be computed from any xt ~ Mt for 
t E (0, to]. This can be performed - at least in theory - by choosing any solution 
d to (15) and varying ~/~ X0 such that xt + ta + rl ~ 90. 

Note that since r(xt)/t and OxJt  are constant for all t ~ (0, to], no matter what 
xt is picked in Theorem 4 the same pair (y*, u*) is obtained. 

An immediate consequence of the characterization theorem is the following 
sufficiency condition for the uniqueness of solution in l-P]: 

Corollary 6: X is a singleton/f ~0 = {0} where 0 = O(Mt) for t e (0, to]. 

Proof: Since ~0 = {0} x t e M t is unique by Corollary 3. Hence (ATA + O)d = c 
has a unique solution, do say. Therefore, xt + tdo + ~o is a singleton. Hence, by 
Theorem 4, X is a singleton. �9 

Conjecture 1: The sufficiency condition for uniqueness of solution in the previous 
corollary is also necessary. 

3 Extended Binary Vectors 

To inquire into the algorithmic implications of Theorem 4 in this section we 
define a new binary vector referred to as an "extended binary vector". An 
"extended binary vector" 0 ~ ~R" is defined as: 

~i(x) = {10 ifxi_< 0 (37) 
otherwise . 

It is well-known that there should exist an optimal solution to [P] where (at 
least) m components of x are zero (basic solutions), and the submatrix of A 
formed by picking the columns corresponding to the zero components of x has 
full rank. A similar property holds for the minimizers of F. Note that the two 
binary vector definitions only differ for those points that are on the boundary, 
i.e., for x ~ B. We define the following active set of indices: 

d ( x )  - -  { i l l  _ i _< n ^ = 1} (38) 

Theorem 5: There exists a minimizer x t of F(x, t) for which rank(Ar A + O(xt)) = 
n. 
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Proof: Let x be a minimizer of F where rank(ArA + -O(x)) < n. Therefore there 
exists a vector h e ~4r(ArA + "O(x)) with h r 0. Consider a point x + eh, e e 91. 
By Lemma 1 i f j  e d (x ) ,  then h i = 0. This implies that xj + hj = x i, and hence 

.~(x + ah) __ d ( x )  (39) 

for ~ ~ ~fl. By definition of h and (13) it follows that if x + eh e cg~ then 
F'(x + ah) = F'(x) = 0, and hence we have 

F(x + ah, t) = F(x, t) (40) 

for x + eh ~ cg~ where 0 = O(x). By the definition o fh  there exists p ~ {1 . . . . .  n}\ 
~4(x) such that h v v ~ 0. On the other hand, there exists e e 91 such that xp + 
ehp = 0. Therefore, the active set must change along the line x + eh, e e 91. The 
first time this happens when e increases (or decreases) form zero, the point 
x + eh is a minimizer of F as a result of (40). Further, (39) implies that the first 
change in the active set must be an expansion of the set. So far, it has been 
shown that if there exists a minimizer for which that matrix ArA + O(x) has 
rank less than n, there exists another  minimizer for which the corresponding 
active set has one more element. If  the new matrix is also rank deficient, we can 
repeat the above process from the new point until we finally have an active set 
where the matrix ArA + 0 has rank n since ArA + I has rank n. �9 

3.1 Behavior of the Set of Minimizers Near the Feasible Boundary 

In this section we analyze the behavior of extended binary vectors associated 
with the minimizers of F(x, t) in the range (0, to] where to is as defined in 
Theorem 4. This is important  in establishing the finite termination property of 
the penalty algorithm defined in section 4. First, we introduce some new con- 
cepts and efinitions. 

Let o- 0 = {i]O i = 1} for any binary vector 0. 
A "derived-extended-binary-subset" (debs) 5 ~ of a binary vector 0 (as defined 

in (9)) is a set of distinct extended binary vectors 0 such that ao ~_ a o and there 
exists x ~ 9l" with 0(x) = 0. 

An "extended-binary-set" (ebs) 5r of a set minimizers Mt is defined as the 
set of all distinct extended binary vectors corresponding to the elements of M r 
I.e., for any x~ e Mt O(xt) ~ 5P(M~). Since O(xt) is constant for all x, ~ M, clearly 
the ebs 5~(Y/t) of M t is a debs of O(Mt) for any t > 0. 
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E x a m p l e  2: In the problem of Example 1, 
(1, 1, 0, 0, 0, 0) for t �9 (0, 1]. The sets 

5~ - {(1, 1, 0, 0, 0, 0), (1, 1, 0, 0, 1,0)} , 

= {(1, 1, o, o, o, o), (1, 1,o,  1, 0, o), (1, 1, o, o, 1,0)}  

are sample derived-extended-binary-subset 's  of 0 = (l, 1, 0, 0, 0, 0). 
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O(Mt) remains constant  at 0 -  

L e m m a  6: I f  5"(Mt~ ) = 5e(Mt2 ) where 0 < t 2 < t 1 then Y ( M t )  = 5P(Mtl ) = 
5P(Mt2 ) f o r  t2 < t <_ t 1. 

Proof :  Let xt,  �9 Mt , ,  xt~ �9 Mt~ with -O(xtl ) = O(xt2). Define 

xt = (1 - e)xt2 + ex, 1 , 

where e = (t - t2)/(tl  - t2). Since 0 < e < 1 it follows that O(xt) = -O(xtl) = 
O(xt2) and xt satisfies the necessary condition (16) for a minimizer ofF(x ,  t). N o w  
the result follows from the linearity of the problem and Lemma 2. �9 

Theorem 6: There  ex is ts  t such that  5a(MO is constant  f o r  t �9 (0, t )  where 
O < t _ < t o .  

Proof :  Since O(Mt) remains constant  in (0, to] following Theorem 2 and the 
number  of different derived-extended-binary-subsets of O(Mt) is finite, the result 
is a consequence of the previous lemma. �9 

E x a m p l e  3: In the problem of Example 1, O(Mt) remains constant  at 0 -  
(1, 1, 0, 0, 0, 0) for t �9 (0, 1] whereas the ebs remains constant  at 

= {(1, 1, O, O, O, 0), (1, 1, O, O, 1, 0), (1, 1 ,0 ,0 ,0 ,  1)} 

for t �9 (0, 0.6875). 

1 
Theorem 7: L e t  t E (0, ?) and x t e M t with 0 = O(xt) Also,  let y*  - ~r(xt ) ,  and 

u* - - 1_ Oxt .  Then  
b 

t 
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O ' ( x t  + td) = 0 , (41) 

r(x t + td) = 0 , (42) 

and 

bry  * + r t ~- td) = 0 , (43) 

for  any solution d to (15). Furthermore, i f  d is unique or x t + td >_ 0 then x t + td 
solves [P].  

Proof: Let t e (0, ?) and xt ~ M~ with 0 = O(xt), and O = diag('O 1 . . . . .  0,). Con-  
sider the system 

(Ar  A + O)d = c . (44) 

This is a consistent system of linear equat ions as we have shown in L e m m a  3. 
By Theo rem 6 there exists x t e M t such that  0(xt) = 0 for all t e (0, ?). This 
implies that  there exists d that  solves (44) such that  x t + rid ~ Mr_ a for all 

~ (0, t]. A consequence of this using (4) and (8) is that  x~ + td solves [P] ,  and 

r(x~ + td)  = 0 , 

and 

~.(x~ + td) = o .  

Since d can be replaced by d + t / in  the above  identity where t/E JV(ATA + 0),  
it follows that  

r(xt + tel) = 0 , (45) 

and 

O. (x ,  + td) = 0 . (46) 

for any solution d to (44). Clearly, if the solution to (44) is unique, d* say, then 
x t + td* solves [P] .  
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Let 

361 

y *  = ~r(x,) , 

and 

1 
u ,  - - -  . 

t 

Let x o = x t + td. Using (46) and (45) and since (y*, u*) is feasible for [D] we 
have, as in the proof of Theorem 4, 

c r x o  = x g ( - A r y  * + u*) 

= - - x T A T y *  + x r u  * 

= - b r y *  . 

This completes the proof. �9 

4 The Penalty Algorithm 

Based on the analysis of the previous sections, we now construct a penalty 
algorithm for linear programming. 

We consider the following algorithm: 

Choose t and compute a minimizer x t of F 
while not STOP 

reduce t 
compute a minimizer xt of F 

end while. 

In the above iteration STOP is a function that returns TRUE if the duality gap 
is zero (within rundoff) and primal feasibility is achieved. Otherwise, t is de- 
creased according to some criteria; see section 4.2. To complete the description 
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we need an algorithm to compute a minimizer of F. Such an algorithm is 
adapted from the Newton algorithm of [9] for robust linear regression using 
Huber functions. This algorithm is a standard Newton iteration with a simple 
line search to solve the nonlinear system of equations F'(x, t) = 0. However, 
special care must be given to the case where the matrix ATA + -0 is rank- 
deficient. We give a brief description of the modified Newton algorithm below. 

4.1 Computin9 an Unconstrained Minimizer 

The algorithm for computing a minimizer xt of F is based on a modified Newton 
algorithm given in [9]. The idea is to inspect to orthants of ~a" to locate the 
orthant where the local quadratic Qo contains its own minimizer. This is accom- 
plished by means of the Newton iteration. At a given iterate, the Newton step is 
computed using the expansion (12) of F. If a unit step in this direction yields a 
point in the same orthant, then the global minimizer has been found. I.e., the 
quadratic representation of F which contains the global minimizer has been 
located: Otherwise, the algorithm proceeds with a line search. 

A search direction h is computed by minimizing the quadratic Q~ where 
0 = O(x) and x is the current iterate. More precisely, we consider the equation 

Q~h = - Q~(x) (47) 

where Q~ and Q~ denote the Hessian and gradient of Qo, respectively. This 
system is expressed as 

(ArA  + "O)h = - ( A T A  + "O)x + Arb  - tc . (48) 

For ease of notation let C - ATA + 0 and g - - C x  + ATb - tc. Further- 
more, let ~U(C) denote the null space of C. If C has full rank, then h is the 
solution to (48). Otherwise, if the system of equations (48) is consistent, a mini- 
mum norm solution is computed. If the system is inconsistent the projection of 
g on dV'(C) is computed. These choices are motivated and justified in [9]. The 
next iterate is found through a line search aiming for a zero of the directional 
derivative. This procedure is computationally cheap as a result of the piecewise- 
linear nature of F'. It can be shown using the analysis in [9] that the iteration is 
finite, i.e., after a finite number of iterations we have x + h ~ C~. Therefore, 
x + h is a minimizer of F as a result of (11), (12) and the convexity of F. We 
summarize below the modified Newton algorithm: 
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repeat  

"0 = O(x) 
if (48) consistent then 

find h from (48) 
if x + h ~ cg~ then 

x ~ x + h  
stop = true 

else 
x ~ x + eh (line search) 

endif 
else 

compute  h = null space projection of g 
x ~- x + eh (line search) 

endif 
until stop. 

4.2 Reducing t 

Let x~ be a minimizer of  F(x, t) for some t > 0 and 0 = O(xt). Consider the 
system 

(Ar  A + O)d = c . (49) 

Let d be a solution to (49). We distinguish between two cases: 

Case 1: The duality gap cT(xt + td) + bry  * is zero but  x t + td is infeasible in 
[P] ,  i.e., there existsj  such that  (xt + td)j < 0. In  this case we reduce t as follows. 
Let q~ --- {"k, k = 1, 2 . . . . .  q} be the set of  positive kink points where the compo-  
nents o f x t  + td change sign, i.e., the set ~t = {0 < a < 113i ~ Jl(xt)i + taidi = O} 
where J = {i]1 < i _< n ^ dl ~ 0}. I f ~  is non-empty  we choose 

* = m i n  ~k 
k 

and we let 

tnext = (1 -- ~*)t , 

and 
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x t , ~  ~ -- x t + c~*td 

Otherwise, we let 

M. ~;. Pinar 

t . ~ t  - 0.9t , 

and 

x,  . . . .  =- xt + 0.9td 

In both cases, x,.~.~ is used as the starting point of the modified Newton algo- 
rithrn of section 4.1 with the reduced value of t. 

Case 2: The duality gap is not zero. This is an indication that t is not in the 
interval (0, to]. In this case we reduce t as follows. Let r -= {ak, k = 1, 2 . . . .  , q} 
be the set of positive kink points where the components of x t + td change sign, 
i.e., the set ~b = {0 < ~ < l l 3 i e J l ( x t )  ~ + te~d i = 0} where J = {ill _< i_< n A 
d, r 0}. The set r is non-empty as a consequence of Theorem 4. Let at = 
min~,>o,~,~a / and ~2 = max~,>o,~r and ~* = max{0.1, 0.5(~1 + c~2)}. We 
u s e  

t . ~ ,  = ( t  - ~ * ) t  , 

xt . . . .  =- xt + ~*td . 

For  robustness we search only in the interval [OAt, t] so that tnext <_ 0.9t. 

5 Finite Convergence 

In this section we show that the penalty algorithm of section 4 converges 
finitely. In the following analysis, an iteration of the algorithm means either a 
modified Newton iteration or an execution of the t-reduction procedure. 

L e m m a  7: A s s u m e  t e (0, ?). L e t  x ~ Mt  wi th  0 = O(x). L e t  d solve (49), and x,ex~ be 

generated by one iteration o f  the penal ty  algorithm. Then  either 
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X n e x t  ~- X -t- td �9 X 
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and the algorithm stops, or 

Xnext = x + e*td �9 Mt.ex t , 

tn~.t = (1 -- a*)t 

where ~* is as defined in Case 1 of the reduction procedure, and d(X.ext ) is an 
extension of x4 (x). 

Proof: Let y = ~r(x). Clearly cr(xt + td) + bry = 0 from Theorem 7. Hence we 
are in Case 1 of the reduction procedure of section 4.2. If x + td > 0 then 
X,ext-  x + td is a solution to [P] by Theorem 7 and the algorithm stops. 
Otherwise, Theorem 7 implies that ~r c_ d ( x  + td). Hence, using the defini- 
tion of e*, 

M(x + etd) = s4(x) 

for e e [0, ct*). Since there exists j �9 {1 . . . . .  n } \ d ( x )  such that (x + e*td b = O, 
d ( x  + ct*td) is an extension of ~r Furthermore x + e*td e cg~. Therefore, 
using the continuity of the gradient F', (13) and the definition of d, we have 

F'(x, t) = F'(x + e*td, (1 - e*)t) = 0 . 

Thus, x,ext minimizes F(x, (1 - e*)t). �9 

Theorem 8: The penalty algorithm defined in section 4 terminates in a finite 
number of iterations with a primal-dual optimal pair. 

Proof." Let x ~ Mt for some t > 0. Unless the stopping criteria are met and the 
algorithm stops with a primal-dual optimal pair, t is reduced by at least a factor 
of 0.9 as discussed in section 4.2. Since the modified Newton iteration of section 
4.1 is a finite process, t will reach the range (0, t--) where ~is as defined in Theorem 
6 in a finite number of iterations. Now assume t �9 (0, t-). From Lemma 7 either 
the algorithm terminates or the active set sr is expanded. Repeating this argu- 
ment, in a finite number of iterations the matrix ArA + -0 will finally have rank 
n since A has rank m and ArA + I has rank n. When ArA + -0 has full rank 
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the solution d to the system (49) is unique, and x,e~t = x + td solves [P] by 
Theorem 7. �9 

6 Numerical Results 

In this section we report our numerical experience with a preliminary imple- 
mentation of the penalty algorithm, which does not exploit sparsity. The imple- 
mentation was made using the matrix manipulation environment OCTAVE [6] 
on a SUN 4 Workstation. The purpose of the experiments is to test the viability 
of the algorithm in solving non-trivial problems. To accomplish this we choose 
a set of small test problems from the Netlib collection. To get an idea on the 
relative standing of the penalty algorithm we also compare our results to a 
linear programming simplex subroutine, E04MBF, from the NAG subroutine 
library. E04MBF is based on the package LSSOL from Stanford Systems 
Optimization Library. It is a Fortran 77 package for constrained linear least 
squares problems, linear programming and convex quadratic programming, 
[7]. It does not exploit sparsity. Hence, it provides a fair comparison to our 
numerical results. We perform this comparison only on basis of the number of 
iterations since (1) we do not yet have an implementation of our algorithm in 
Fortran 77, and (2) the cost per iteration of the simplex algorithm and the new 
penalty algorithm are comparable. 

Note that the major effort in the Newton algorithm of section 4.1 is spent in 
solving the systems (48). It is observed that normally only a few entries of the 
diagonal matrix O change between two consecutive iterations. This implies that 
the factorization of Ck = A T A  --k Ok at iteration k can be obtained by relatively 
few up- and down-dates of the factorization of Ck_ 1. Using the methods of [13] 
it can be verified that the computational cost of a typical iteration step is O(n2). 

Occasionally, a refactorization may be performed when there is indication of 
numerical instability or when the estimated computational cost of up- and 
down-dating the previous factorization outweighs the cost of a refactorization. 
This is an O(n a) process. Since, a typical iteration of the simplex method in- 
volves O(m z) operations, we can conclude that a typical iteration of the penalty 
method is somewhat more expensive than the simplex method for problems 
where n > m. In OCTAVE, we have not implemented the up- and down-dating 
of factorization. This will be done using the ideas of [13] in the future when we 
have a Fortran 77 implementation of the algorithm. 

To initiate the algoritiJm, we choose a starting point x ~ and t o as follows. Let 
x be a solution to 

( A T A  q- I ) x  = A T b  - c . 
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Then t o is chosen using the following formula: 

t o = f l  m i n  - x i  
xi #O 

where fl ~ (0, 1]. Then, we let x ~ as the solution of 

( A r A  + I ) x  ~ = A r b  _ tOc . 

Our test problem characteristics are described in Table 1 below (the source 
for Netlib is [3]). We consider seven problems from the Netlib collection. We 
also used a test problem from a civil engineering application at the Technical 
University of Denmark, referred to as plate. All the test problems are put into 
the form [P] using slack columns. 

In Table 2, we show the solution statistics of the penalty method. The columns 
"iter" and "reduc" refer to the number of iterations and the number of reduc- 
tions of the parameter t, respectively. The columns t o and t* report the initial 
and final values of t, respectively. Our stopping criteria are based on the relative 
duality gap: 

Table 1. Characteristics of the test problems 

Problem Name Variables Slack Variables Nonzeros in A 

afiro 

sc50b 

sc50a 

scl05 

adlittle 

stocforl 

blend 

plate 

Constraints 

27 32 

50 48 

50 48 

105 103 

56 97 

117 111 

74 83 

61 73 

19 

30 

30 

60 

41 

54 

31 

60 

83 

118 

130 

280 

383 

447 

491 

209 

Table 2. Solution statistics of the new penalty algorithm on the test set 

Problem Name iter reduc t o t* 

afiro 

sc50b 

sc50a 
sc105 
adlittle 

stocforl 
blend 

plate 

14 

30 

31 
71 

143 
62 

57 

7 

1 
1 
1 

11 
7 

3 

2 

2.46 x 10 -2 

2.45 x 10 ~ 
4.47 x 10 -1 
2.41 x 10 -3 
1.56 x 10 -2 

2.40 x 10 -3 
2.08 x 10 -2 

4.24 x 10 -2 

2.46 x 10 -1 

2.45 x 10 ~ 
4.47 x 10 -1 
2.41 x 10 -3 
3.88 x 10 -6 

8.44 x 10 -4 
4.13 x 10 -3 

2.05 x 10 -2 



368 M.G. Pinar 

lcrxl - t b r y ]  

1 + Icrx l  + Ibry[ ' 

the values of the components of x, and the smallest component of the residual 
in the primal constraints: 

r = A x - b  . 

I.e., we stop when the above quantities are less than some tolerances. In all cases 
reported below, the relative duality gap tolerance is 10 -s, and the feasibility 
tolerance is 10 -11 In all test cases, the penalty algorithm achieves at least ten 
correct digits in the optimal objective function value with respect to the known 
optimal value [3]. 

We observe that the final value of the penalty parameter varies in the range 
between 0(10 -6) and O(1). It is also noticed that the half of the problems were 
solved without the need to reduce t. The problem adlittle required the largest 
number of t-reduction steps. 

In Table 3 below we provide a comparison of the number of iterations of the 
penalty algorithm with the code LSSOL of [7]. We note that the conclusions we 
make based on Table 3 are limited since the cost per iteration of the two 
algorithms are not identical. As we have remarked already, a typical iteration of 
the penalty algorithm involves operations proportional to O(n 2) whereas a 
typical iteration of the simplex algorithm can be performed in time proportional 
to O(m2). 

We notice that the penalty method converged in smaller number of iterations 
than LSSOL. In particular, the convergence of the penalty algorithm on the civil 
engineering design problem plate is very fast (7 iterations) compared to the 150 
iterations of LSSOL. The total number of iterations for the test set was 415 for 
the new algorithm, and 641 for LSSOL. This corresponds approximately to a 
value of 1.5 for the ratio LSSOL/new algorithm. 

Table 3. Comparison of iteration numbers for the penalty method and LSSOL on the test set 

Problem Name Penalty Algorithm LSSOL 

afiro 
sc50b 
sc50a 
scl05 
adlittle 
stocforl 
blend 
plate 

14 
30 
31 
71 

143 
62 
57 
7 

19 
47 
40 
78 

149 
73 
85 

I50 

Total 415 641 
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We showed in this paper that the recent ideas from linear 11 estimation [-10] can 
be successfully used to analyze primal continuous non-interior paths leading to 
the optimal set of a linear program. Interestingly, these paths yield new charac- 
terizations of optimal solutions. We adapted a finite algorithm to perform the 
unconstrained minimization of F from [-9] where it was developed to solve 
problems of the form [-SL1]. Using this Newton algorithm we defined a new 
penalty algorithm for linear programming and proved its finiteness. The compu- 
tational results indicate that the algorithm is numerically stable and accurate. 
This suggests that further research is necessary to establish the true potential of 
the penalty algorithm. Several aspects of the algorithm need further study. 
Among those, the most important are: 

�9 A careful implementation of numerical linear algebra 
�9 Experimenting with different initialization procedures 
�9 Experimenting with alternative t-reduction procedures. 
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