
Future Generation Computer Systems 146 (2023) 207–221

a

b

i
f
r
b
a
k
m
m
t
m
C
r
u

t
t
r
c

m
(

U

h
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Load balanced locality-aware parallel SGD onmulticore architectures
for latent factor based collaborative filtering
Selcuk Gulcan a, Muhammet Mustafa Ozdal b,1, Cevdet Aykanat a,∗

Computer Engineering Department, Bilkent University, Ankara, Turkey
Facebook Inc., Menlo Park, CA, USA

a r t i c l e i n f o

Article history:
Received 2 August 2022
Received in revised form 10 February 2023
Accepted 7 April 2023
Available online 20 April 2023

Keywords:
Matrix completion
Recommendation system
Stochastic gradient descent
Shared memory parallel systems
Load balancing
Locality-aware scheduling

a b s t r a c t

We investigate the parallelization of Stochastic Gradient Descent (SGD) for matrix completion on
multicore architectures. We provide an experimental analysis of current SGD algorithms to find out
their bottlenecks and limitations. Grid-based methods suffer from load imbalance among 2D blocks
of the rating matrix, especially when datasets are skewed and sparse. Asynchronous methods, on the
other hand, can face cache issues due to their memory access pattern. We propose bin-packing-based
block balancing methods that are alternative to the recently proposed BaPa method. We then introduce
Locality Aware SGD (LASGD), a grid-based asynchronous parallel SGD algorithm that efficiently utilizes
cache by changing nonzero update sequence without affecting factor update order and carefully
arranging latent factor matrices in the memory. Combined with our proposed load balancing methods,
our experiments show that LASGD performs significantly better than alternative approaches in parallel
shared-memory systems.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

Many real-life problems in various fields such as text process-
ng [1], recommendation systems [2], bioinformatics [3] can be
ormulated as a sparse matrix completion problem to explain the
elationship between two entities. Movie recommendation can
e given as an example of a matrix completion problem, which
ims to fill missing entries of a sparse matrix by using currently
nown values. Movie ratings given by users constitute a sparse
atrix in which rows represent users and columns represent
ovies. The task is to predict missing scores of the rating matrix,

hus have an idea on how likely a user will enjoy a particular
ovie and then recommend highly scored movies to the user.
ollaborative filtering achieve this by considering other users’
ating information to determine the rating values of an individual
ser.
Netflix competition [4–6] shows that low-rank matrix comple-

ion techniques, finding two low-rank P and Q matrices such that
heir product gives an approximation of nonzeros in the original
ating matrix, are quite useful for this type of problems. Exact
ompletion methods [7,8] are not effective due to the sparsity and

∗ Corresponding author.
E-mail addresses: selcuk.gulcan@bilkent.edu.tr (S. Gulcan), ozdal@fb.com,

ustafa.ozdal@cs.bilkent.edu.tr (M.M. Ozdal), aykanat@cs.bilkent.edu.tr
C. Aykanat).
1 This work was done while the author was a faculty member at Bilkent
niversity.
ttps://doi.org/10.1016/j.future.2023.04.007
167-739X/© 2023 Elsevier B.V. All rights reserved.
size of real datasets. So, many optimization algorithms [4–6] have
been proposed to tackle this problem, including alternating least
squares (ALS), cyclic coordinate descent (CCD), and stochastic
gradient descent (SGD). Being able to handle huge data and good
convergence rates make gradient descent methods such as SGD
superior. The SGD algorithm solves the problem by making noisy
but quick updates to the P- and Q -matrix rows.

Improving the algorithm’s execution time is important in both
production and training. If we continue with the recommendation
example, improving the execution time reduces the response
time. The system can give recommendations to the customer
faster with a better algorithm. Depending on the application, it
can be critical. In the training step, the SGD procedure is run many
times to find a good set of hyperparameters (hyperparameter tun-
ing). In this algorithm, important hyperparameters are learning
rate, regularization parameter, factor size, and P , Q weight initial-
ization. The standard steps to find a good set of hyperparameters
are (1) picking some hyperparameters randomly (e.g., factor size
f , regularization parameter λ and learning rate γ) (2) running the
algorithm to find P , Q matrices (model) (3) testing the model on
a different set of data, known as the validation set. Therefore,
the whole training process may take up days even if a single
execution of the algorithm is completed in minutes. The SGD
procedure deserves parallelization since reducing the execution
time of a single execution instance improves the overall training
time significantly.

The sequential nature of the algorithm and ever-increasing
data led researchers to search for better parallel methods for SGD.

https://doi.org/10.1016/j.future.2023.04.007
https://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2023.04.007&domain=pdf
mailto:selcuk.gulcan@bilkent.edu.tr
mailto:ozdal@fb.com
mailto:mustafa.ozdal@cs.bilkent.edu.tr
mailto:aykanat@cs.bilkent.edu.tr
https://doi.org/10.1016/j.future.2023.04.007

S. Gulcan, M.M. Ozdal and C. Aykanat Future Generation Computer Systems 146 (2023) 207–221

T
a
e
[
t
e
a
b
r
v
b
f

b
b
o

b
L
g
b
L
E
S

2

wo main concerns of the parallelization of the SGD algorithm
re task mapping and scheduling (i.e., mapping of tasks to differ-
nt computing units) as well as load-balancing. Previous studies
9–14] explore new methods to tackle those challenges. Many of
hem focus their research on distributed-memory systems; how-
ver, many real datasets [4,15–17] can fit into the main memory
nd can be computed faster in shared-memory multicore systems
ecause of low latency memory operations and fast access to
ecently modified data using caches. Shared memory studies offer
arious methods for improvements in accuracy and convergence,
ut they often lack quantitative analysis on underlying reasons
or such improvements.

The main contributions of the paper are listed below:

• We analyzed and compared the state-of-the-art shared-
memory SGD methods for matrix completion under the
same experimental setup on real datasets to form a better
understanding. Experimental findings show that the widely
used grid-based methods suffer from load imbalance among
2D blocks of the rating matrix especially for skewed and
sparse datasets and from memory underutilization due to
the random access pattern in each 2D block.
• In order to address the load imbalance bottleneck, we pro-

pose two bin-packing-based load balancing algorithms that
generate more balanced 2D blocks than the state-of-the-art
load balancing methods proposed in the literature for matrix
completion.
• In order to address the memory underutilization bottleneck,

we propose a locality-aware task scheduling algorithm to
utilize memory hierarchy better by carefully changing the
rating matrix memory layout and nonzero update sequence
without disturbing the stochastic nature of the algorithm.
• We perform extensive experiments on a wide range of ma-

trix completion datasets and show the validity of the pro-
posed load balancing and locality-aware scheduling

The proposed methods do not contradict each other, so load
alancing algorithms and LASGD can be used together to address
oth load balancing and cache utilization problems simultane-
usly.
The organization of the paper is as follows: Section 2 gives a

ackground on SGD for solving the matrix completion problem.
iterature survey and discussions are given in Section 3. Table 1
ives the notation used throughout the paper. The proposed load
alancing algorithms for 2D-grid partitioning and the proposed
ASGD algorithm are respectively described in Sections 4 and 5.
xperimental setup and results are given in Section 6. Finally,
ection 7 concludes the paper.

. Matrix completion with SGD

Given a sparse m × n matrix V = (vij), which holds the
observed entries of a matrix Ṽ = ṽij, the matrix completion
problem is finding an estimation matrix V̂ = (v̂ij) that is as
close as possible to the original matrix Ṽ . The distance between
the matrices is defined as the Frobenius norm of the difference
between the original matrix and the estimation matrix, which
leads to the following minimization:

minimizev̂ij

∑
ṽij∈Ṽ

(ṽij − v̂ij)2.

The challenge is to find a model that captures the patterns in the
original matrix Ṽ by using only a few entries of the matrix, stored
in V .

In the context of recommender systems, m denotes the num-
ber of users, n denotes the number of items, ṽ is a true rating
ij

208
Fig. 1. Rating matrix V and latent factor matrices P and Q .

Table 1
The Notation table.
Symbol Description

V Rating matrix
(Also denotes the set of nonzero ratings)

m, n Number of rows and columns of matrix V
vij Nonzero entry at row i and column j
v̂ij Estimate for vij

ri, cj ith row and jth column of matrix V .
Also denotes the set of nonzeros in ri and cj

P , Q Latent factor matrices
pi , qj ith and jth rows of P- and Q -matrix
f Factor size
T Number of threads
γ Learning rate
λ Regularization parameter
Π={V1. . .VT} T-way nonzero partitioning of matrix V
Vt Set of nonzeros assigned to thread t
⟨Π⟩ Set of local nonzero update sequence
⟨V ⟩ Given nonzero update sequence

for serial algorithm
⟨V ∗⟩ A nonzero update sequence

for serial algorithm
⟨Vt ⟩ Nonzero update sequence for thread t
Rα, Cβ αth row slice, βth column slice
Vα,β 2D block at the intersection of Rα and Cβ

cj,α Set of nonzeros in column-j that reside in Rα

Br
α , B

c
β Bin for row-slice α, bin for column-slice β

Bα,β Bin for 2D-block Vα,β

| · | Number of nonzeros in the respective set

value of the corresponding user–item pair, vij is the known rat-
ing value, and v̂ij is the estimated rating value in reconstructed
matrix V̂ .

Matrix completion-based collaborative filtering methods solve
this problem by finding two matrices, P and Q , such that their
matrix multiplication gives reconstructed matrix, V̂ . A row of Pn×f
and a row of Qm×f respectively represent a user and an item as
a latent factor vector of size f . The latent factor size, f , is much
smaller than n and m and tuned to get a better model. With this
setup, any rating ṽij in the matrix can be estimated by calculating
the dot product of its corresponding user vector, pi, and item
vector, qT (see Fig. 1).
j

S. Gulcan, M.M. Ozdal and C. Aykanat Future Generation Computer Systems 146 (2023) 207–221

t
t
a
A
e

b

e

H
a
S
m
s

i
i
o
d
m
d
t
p

3

a
F
p
d

d
i
V
e
⟨

s
i
a

Gradient descent methods are popular iterative optimization
echniques for finding a local minimum of multivariate differen-
iable functions. At each step, variables are updated proportion-
lly to their gradients. The learning rate hyperparameter seen in
lgorithm 1, α, controls how much the variables are changed at
ach step.
The loss function for P and Q matrices in matrix completion-

ased collaborative filtering methods can be written as

rror =
∑
i,j∈V

(vij − piqT
j)

2
+ β(∥P∥2 + ∥Q∥2).

ere, β is the regularization parameter for L2 normalization
dded to avoid overfitting problems. The main difference between
GD and other gradient methods is that SGD updates latent factor
atrices without computing the whole gradient. At each update
tep, the next nonzero in the given nonzero update sequence, ⟨V ⟩,
is fetched, and P- and Q -matrix rows are updated for this nonzero
only as shown in Algorithm 1. Each iteration computes the error
value through an inner product of pi and qj and then uses this
error value for updating both pi and qj vectors through AXPY-type
of operations.

Since other nonzero elements are not taken into account in a
single update, updates of SGD may not be directed towards the
point of convergence. However the performance gain of quick up-
dates can surpass the error caused by noisy gradient [18]. For this
reason, SGD converges faster than full gradient approaches for
matrix completion. This is especially true for web-scale matrices
where the number of training examples is huge but training time
is limited. So SGD can give better results due to the fact that it
can do many more updates in the given time.

Algorithm 1: SGD Algorithm
Input: Vm×n, ⟨V ⟩, f , α, β , iterCount
Initialize Pm×f and Qn×f ;
for c ← 0 to iterCount do

forall vij of V in ⟨V ⟩ order do
eij ← vij − piqT

j ;
pi ← pi + α(eijqj − βpi);
qj ← qj + α(eijpi − βqj);

One crucial property of the algorithm is the randomized order
n the nonzero update sequence. It is a theoretical constraint [19]
n order for the model to converge. Non-shuffled training points
r sequences sorted in a particular way may cause similar gra-
ient updates between subsequent iterations, and this situation
ay result in slower convergence or convergence to an un-
erwhelming local minimum [19]. The study [10] shows that
he following two properties should be ensured to get decent
ractical results:

• The selected nonzeros in iterations should cover a significant
portion of the whole rating set.
• The sequence of nonzero updates should be randomized.

. Literature survey and discussions

In this section, parallel SGD schemes proposed in the liter-
ture are analyzed. Each subsection follows a similar format;
irst, a brief introduction to the method is given. Second, the
roblems the method tries to solve are explained. Third, the main
rawbacks of the method are shown.
209
3.1. Simple-parallel SGD (spSGD)

The main problem of threads concurrently updating the same
P- and Q -matrix rows is data dependencies. When a thread tries
to operate on a P- or Q -matrix row that is being processed by
another thread, the following problems may occur depending on
the execution order of instructions: A thread may disregard the
latest value of the P- or Q -matrix row in its gradient calculation
and operates on the old data. A thread may overwrite the P- or
Q -matrix row. Hence, the previous update on the corresponding
row is wasted.

Dependency problems cause threads to do extra computations
to reach convergence. To avoid this, spSGD locks the rows of
the P and Q matrices before doing the read or write operation
and unlock them after it completes updating them as shown in
Algorithm 2. Because each V -matrix nonzero is processed in a
critical section, no data dependency problem can occur in this
method.

The serializability of a parallel SGD algorithm is an important
feature since it refers to the fact that there exists a sequential SGD
execution for which parallel SGD algorithms show convergence
to the same solution with the same convergence rate. We discuss
the serializability of the spSGD algorithm in the following two
paragraphs.

For a given parallel SGD instance, let Π = {V1, V2 . . . VT }

denote the partitioning of the nonzeros of the rating matrix
among T threads. Here Vt denotes the subset of nonzeros assigned
to thread t for processing. The parts of Π (Vt ∈ Π) are mutually
nonzero disjoint and exhaustive.

For a given nonzero partition Π , let ⟨Π⟩ = {⟨V1⟩, ⟨V2⟩ . . . ⟨VT ⟩}

enote the set of local nonzero update sequences of threads. That
s, ⟨Vt⟩ denotes the local update sequence of the nonzeros in
t . spSGD ensures the serializability of the algorithm. That is, it
nsures the existence of a sequential nonzero update sequence
V ∗⟩ so that serial SGD using ⟨V ∗⟩ and spSGD using ⟨Π⟩ produce
the same P and Q matrices. Note that although the overall update
equence ⟨V ∗⟩ depends on the local update sequence set ⟨Π⟩,
t cannot be determined apriori to the execution of the parallel
lgorithm. That is different parallel runs for a given ⟨Π⟩may lead

to different ⟨V ∗⟩′s.

Algorithm 2: spSGD Algorithm
Input: ⟨Π⟩, Π , f , α, β , iterCount
Initialize Pm×f and Qn×f ;
for each thread t in parallel do

for c ← 0 to iterCount do
forall vij of Vt in ⟨Vt⟩ order do

Lock P- and Q -matrix rows, pi and qj;
Update P- and Q -matrix rows, pi and qj;
Unlock P- and Q -matrix rows, pi and qj;

Although this naive parallelization leads to an inefficient al-
gorithm, it provides some insights when the performances of the
methods discussed in the following sections are analyzed against
the performance of spSGD. In the following two paragraphs, we
investigate the bottlenecks and potential improvements by using
Intel’s vTune profiling tool [20].

Table 2 reports average total spin time and overhead time as
percentage values. The spin time is defined as the time spent
waiting for another thread to release the synchronization object,
and the overhead time is the time spent on acquiring an available
lock object or releasing the lock object. Fig. 2 shows the lock
wait percentage of a single nonzero on a single iteration. It is
calculated as follows: the wait count value is incremented by one
whenever a thread tries to access a P- or Q -matrix row when

S. Gulcan, M.M. Ozdal and C. Aykanat Future Generation Computer Systems 146 (2023) 207–221

i
c
o
c
o

a
9
t
p

i

Table 2
Percentage of CPU time spent on spin and overhead.
Dataset Number of threads

2 4 8 16 28 56

amazon_items 87.3 87.3 87.4 87.2 87.1 87.7
amazon_books 91.6 91.4 91.6 91.9 91.2 91.3
amazon_clothings 92.3 92.8 92.1 91.9 91.8 92.7
amazon_electronics 90.1 88.8 90.1 90.4 89.7 91.1
amazon_movies 87.0 86.0 87.6 89.3 88.8 88.0
lastfm 82.9 85.8 86.9 86.9 87.2 83.4
movielens_20 m 80.9 84.2 85.9 86.2 85.8 83.7
movielens_latest 81.4 82.5 83.4 89.2 85.5 85.7
netflix 76.4 81.8 83.7 84.5 84.6 80.0
yahoo_music 83.8 85.7 86.2 86.1 85.5 81.9

Fig. 2. Wait percentage for a nonzero update.

t is locked by another thread. At the end of execution, the wait
ount value is divided by the total number of nonzero updates to
btain normalized results. The total number of nonzero updates
orresponds to the number of epochs multiplied by the number
f nonzeros.
As seen in Fig. 2, lock waits are rare and vary between 0%

nd 0.04% depending on the density of the dataset. Around 75%–
0% of CPU time is wasted to prevent data dependency problems
hat occur less than 0.04% of the time so we can gain significant
erformance if we can somehow avoid row synchronization on P

and Q matrices.

3.2. Hogwild: Asynchronous SGD

Hogwild [11] states that possible data dependency problems
which occur in parallel SGD are rare, and SGD can be imple-
mented without any locking. Hogwild theoretically proves that
even though data dependencies degrade the convergence rate,
the convergence is still guaranteed given the assumption that the
data matrix is sufficiently sparse. As Algorithm 3 shows, the only
difference between the Hogwild and spSGD is the absence of locks
on P- and Q -matrix rows.

Algorithm 3: Hogwild Algorithm
Input: ⟨Π⟩, Π , f , α, β , iterCount
Initialize Pm×f and Qn×f ;
for each thread t parallelly do

for c ← 0 to iterCount do
forall vij of Vt in ⟨Vt⟩ order do

Update P- and Q -matrix rows, pi and qj;
210
The problem with this approach is cache underutilization due
to cache coherence between private caches. When a nonzero is
processed in the sequential algorithm, its corresponding P- and
Q -matrix rows are fetched from the memory and cached. The
thread can read and write them on the cache quickly without
accessing long latency DRAM until those rows are evicted since
there no other threads trying to access those rows. However,
this is not always possible in multicore systems because of the
possibility of multiple cores trying to access/update the same P-
or Q -matrix rows concurrently.

In multicore systems, cores have private caches, so there are
cache coherence protocols to preserve data consistency across
all cores. When a cache line is modified, lines having the same
address in the cache(s) of other cores are invalidated through a
snooping mechanism, so other cores need to fetch them from
the DRAM or the core having the modified value. Since each
thread has an equal chance to access a particular row or col-
umn in the Hogwild algorithm, the chance that a cache line is
invalidated increases as more threads are used. Although this data
migration does not affect the algorithm in terms of correctness, it
degrades the performance since accessing P- and Q -matrix rows
take longer times.

3.3. 2D grid partitioning

2D grid partitioning eliminates data migrations by dividing
the rating matrix into independent 2D blocks. A 2D block is
the intersection of a row slice and a column slice on the rating
matrix. Two 2D blocks are said to be independent if they do
not share any V -matrix rows or columns. Although this scheme
is originally proposed for distributed-memory SGD in [10], we
utilize it for shared-memory parallelization. A set of independent
2D blocks concurrently updated by different computing units is
called a stratum. Since nonzeros of different 2D blocks in a single
stratum do not incur updating the same P- and Q -matrix rows,
the threads can operate on them without any data conflict.

The rating matrix should be divided into at least T×T blocks
to ensure that all threads can work on independent blocks for
a system with T threads. Besides the T×T 2D grid partitioning
n [10], there are (T+1)×(T+1) [12], T×2T [21], and T×dnT [13]
partitioning schemes in the literature.

In this work, we consider T×T partitioning, where each row
slice is assigned to a distinct thread. Fig. 3 displays a sample
4× 4 2D grid partition with two different block scheduling for a
system with 4 threads/cores. In the figure, letters show the thread
assignments so that the first, second, third, and fourth-row slices
are processed by threads A, B, C, and D, respectively. The numbers
show different strata so that {Ak, Bk, Ck, Dk} denotes the set of
blocks constituting stratum k for k = 1, 2, 3, 4. At each epoch,
the 2D blocks constituting stratum k are processed concurrently
in the kth time period/subepoch.

The motivation behind row-wise partitioning of the V matrix
is to exploit cache locality if P-matrix rows corresponding to
nonzeros in the same row slice can fit the private cache of the
core. That is, a thread will update the same P-matrix rows after
it completes updating each block. However, it is not a constraint
to mitigate the data migration problem. As long as cores work on
independent blocks, any partitioning and block scheduling can be
used [10].

Each thread in a stratum needs to wait for other threads after
processing a block to avoid updates on the same P- and Q -matrix
rows. This type of scheduling will be called synchronous block
scheduling. On the other hand, Hogwild shows that synchroniza-
tion points can be removed without any convergence concerns.

S. Gulcan, M.M. Ozdal and C. Aykanat Future Generation Computer Systems 146 (2023) 207–221

T
t
s
d
c
2
t
s
t
a
s

i
r
i
d

t
g

m
t

m
q
c
u

3

i
p
p
s
H
n
c
q
s

g
a
f
n
f
p
s
b

Fig. 3. Two different block scheduling for 4 × 4 partitioning.

his kind of scheduling in which threads continue operating on
heir blocks of the next stratum will be called asynchronous block
cheduling. Our experiments show that there is no significant
ifference between these approaches in terms of throughput,
onvergence rate, and accuracy if nonzero distribution among
D blocks is sufficiently balanced. Some studies [12,22] make
his block assignment decision in the run time referred to as
tandalone scheduling. In this dynamic block scheduling, when a
hread finishes updating all nonzeros in a block, a new block is
ssigned to the thread by finding an independent block from the
et of blocks that are not being processed by other threads.
One of the key factors in the performance of the method utiliz-

ng 2D grid partitioning is the imbalance in the number of nonze-
os among different blocks. Different problems may arise depend-
ng on the existing block scheduling mechanisms if nonzeros are
istributed unevenly among blocks.
Synchronous block scheduling: Since threads need to wait for

he slowest thread to complete its update, thread utilization
reatly suffers from uneven nonzero partition.
Asynchronous block scheduling: Working on the same P- or Q -

atrix rows creates data migrations that slow the execution due
o cache coherence delays.

Standalone scheduling: Blocks with fewer ratings are updated
ore often than denser blocks because they will be updated
uickly and become available to assign. This situation hurts the
onvergence performance because some portion of data is rarely
sed in iterative learning.

.4. Load balancing in 2D grid partitioning

A common approach is to adopt random 2D grid partition-
ng. In this method, the rows and columns of V are randomly
ermuted. Then a uniform 2D grid partition is imposed on the
ermuted matrix so that the number of rows and columns as-
igned to each row slice and column slice differ by at most 1.
owever, random partitioning scales poorly with the increasing
umber of threads. Also, nonzero distribution among rows and
olumns in real datasets usually follows the power law. It re-
uires more intelligent techniques to attain balanced blocks on
cale-free datasets when the number of threads is large.
In order to obtain better-balanced blocks, [23] proposed a

reedy partitioning algorithm (BaPa) that balances row slices
nd column slices separately. The algorithm assigns rows to the
irst available row slice in arbitrary order. When the number of
onzeros in the row slice reaches a threshold that can attain
airly balanced row slices, the row slice is considered full. The
rocedure continues until all rows are assigned. Columns are
imilarly assigned to column slices. Then, 2D blocks are created
y meshing the row slices and column slices.
211
3.5. Other related studies

[24,25] proposed parallel SGD algorithms for GPUs. [26] pro-
posed a lock-based SGD method for transactional memory in
which data conflicts are handled in the hardware level. [27]
applied Hogwild and DSGD ideas on the pairwise learning to
rank problems. In this problem, instead of explicit ratings, the
model utilizes the ranking of items to complete the matrix. [28]
parallelized SGD algorithm on streaming data. [29,30] proposed
parallel disk-based solutions for datasets that are too large for the
main memory.

The articles we reviewed so far are focused on the speeding
up the epoch processing time by parallelizing the SGD proce-
dure, which reduces the total execution time eventually. Another
way to reduce the total execution time is to make more ef-
fective updates so that the model converges in less number of
epochs. In this regard, Momentum SGD [31] can be considered
as a pioneer work in the context of recommender systems. In
Momentum SGD, incorporating previous updates to P and Q
matrices into the current update increases the convergence rate
of the model. Following this idea, NF-SGD [32] improves the
performance considerably by tuning the learning rate parameter
adaptively. MISGD [33] utilizes the aggregate of past and current
update information in a defined length of interactions efficiently
in order to improve the convergence rate of SGD. GFSGD [34]
adds fractional order gradient term to the update rules in order
to improve the effect of previous updates by capturing rating
history more effectively. Although this study uses basic SGD up-
date rules without any momentum for the sake of simplicity, we
should point out that our proposed methods and the mentioned
solutions can be combined to get even more powerful models.

4. Proposed load balancing methods

In this section, we propose two load balancing algorithms for
2D grid partitioning. The proposed algorithms are based on bin-
packing (BP) with a fixed number of bins [35]. These BP-based
algorithms share the following common features:

• They apply a two-phase approach, where rows are assigned
to row slices in one phase and columns are assigned to
column slices in the other phase.
• Rows and columns are assigned to bins in decreasing order

of their degrees.

The degree of a row/column refers to the number of nonzeros
in the row/column. The motivation behind this row/column-to-
bin assignment order is as follows: The relatively large number of
sparse rows/columns have the potential of correcting the imbal-
ance incurred by the assignment of the relatively small number
of dense rows/columns at the initial steps.

These algorithms differ in the best-fit assignment heuristic
utilized for row/column assignments in different phases.

4.1. Independent row and column partitioning (BPr+c)

In Algorithm 5, rows and columns are respectively assigned
to row and column slices independently in two phases. For this
purpose, in each phase, we maintain T bins, which correspond
to either row or column slices. That is, in the row assignment
phase, bin Br

α represents row slice Rα , whereas in the column
assignment phase bin Bc

β represents column slice Cβ . In each
phase, the weights of the bins are initialized to zero. Then in
the row/column assignment phase, the best-fit heuristic utilized
is assigning a row/column to the bin with the least weight as

shown in Algorithm 4. After each assignment, the weight of

S. Gulcan, M.M. Ozdal and C. Aykanat Future Generation Computer Systems 146 (2023) 207–221

t
r

i
i
r
o

f

s
r
m

m
n

C

H
n
i
t

c

c

Π

n

c

5

p

D
u
s
a
N

t
f
s
Q

E
l
o
⟨

he respective bin is incremented by the degree of the assigned
ow/column.

The assignment of a V -matrix nonzero vij to a 2D block is
nduced by the assignment of row ri and column cj to the bins
n row and column assignment phases. That is, the assignment of
ow-ri to bin Br

α and column cj to bin Bc
β induces the assignment

f nonzero vij to 2D block Vα,β .

Algorithm 4: Decreasing order row/column assignment
procedure (BP)

Input: Vm×n, T
for α← 1 to T do

Br
α ← Ø

Sort rows in decreasing order
for i← 1 to m do

Find min s.t. |Br
min| ≤ |B

r
α|, α = 1, 2, . . .m

Br
min ← Br

min ∪ {ri}
map(ri)← min

Algorithm 5: BPr+c Algorithm
Input: Vm×n, T
Assign rows with BP procedure
Assign columns with BP procedure
Vα,β ← Ø
forall vij ∈ V do

α← map(ri)
β ← map(cj)
Vα,β ← Vα,β ∪ {vij}

4.2. First row then column partitioning (BPr→c)

BPr+c does not utilize the row-to-slice assignment information
obtained in one phase for the column-to-slice assignments in
the other phase or vice versa. We propose a BP-based algorithm
BPr→c which utilizes the assignment information obtained in the
irst phase for the assignment in the second phase.

The first phase of BPr→c is exactly the same as the row as-
ignment phase of BPr+c . The output of the first phase is the
ow-to-slice assignment shown by the function map() where
ap(ri) denotes the row-slice containing row-ri.
We propose a novel best-fit heuristic for the column assign-

ent phase by defining a sum-of-squares cost of a given 2D
onzero-to-bin partition Π :

ost(Π) =
T∑

α=1

T∑
β=1

|Bα,β |
2. (1)

ere |Bα,β | denotes the current load of bin Bα,β in terms of
umber of nonzeros. The sum-of-squares term enables the min-
mization of the cost function to encode minimizing the load of
he most heavily loaded bin of the 2D bin array.

According to the cost function in (1), the cost of assigning a
olumn cj to column slice Cβ can computed as follows:

ost(cj, Cβ) = Cost(Πnew)− Cost(Πcur)

=

T∑
α=1

((|Bα,β | + |cj,α|)2)−
T∑

α=1

|Bα,β |
2

=

T∑
α=1

(
|cj,α|2 + 2|Bα,β | · |cj,α|

)
. (2)

cur denotes the current nonzero-to-bin distribution. Πnew de-
otes the nonzero-to-bin distribution to be obtained by assigning
212
j to Cβ in Πcur . So, cost(cj, Cβ) shows the increase in the overall
cost of the current nonzero-to-bin partition Πcur to be incurred if
we assign cj to Cβ . In (2), |cj,α| denotes the number of nonzeros
of column cj in row block Rα , i.e.,

|cj,α| = |{vij ∈ V : map(ri) = Rα}|.

The details of BPr→c is given in Algorithm 6. The algorithm
starts with initially empty T×T bins. Then, the columns are
considered for assignment to column slices in decreasing order
of their degrees in a similar way with the general framework.
Then at each assignment step, we consider assigning the current
column to each of T column slices (Cβ , for β = 1 · · · T) and
then realize the assignment that incurs the smallest amount of
increase according to (2).

Algorithm 6: BPr→c Algorithm
Input: Vm×n, T
Assign rows with BP procedure
for α← 1 to m do

for β ← 1 to n do
Bα,β ← Ø

Sort columns in descending order
for j← 1 to n do

for β ← 1 to T do
Costj,β ←

∑T
α=1

(
|cj,α|2 + 2|Bα,β | · |cj,α|

)
▷ computed according to the Eq. (2)

Find min s.t. Costj,min ≤ Costj,β , β = 1, 2, . . . T
for α← 1 to T do

Bα,min ← Bα,min ∪ cj,min
map(cj)← min

forall vij ∈ V do
α← map(ri)
β ← map(cj)
Vα,β ← Vα,β ∪ {vij}

As mentioned earlier, the algorithm performs row assignment
in the first phase and the column assignment in the second
phase. However, it can be easily modified to perform column
assignments first and then row assignments. We call this variant
of the algorithm as BPc→r .

. Locality Aware SGD (LASGD)

Two definitions are given to express the motivation of the
roposed LASGD algorithm.

efinition 1 (Valid Nonzero Update Sequence). For a given nonzero
pdate sequence, there can be different nonzero update sequences
uch that the update order of P- and Q -matrix rows will be the same
s the original sequence. Each such sequence is defined as a Valid
onzero Update Sequence.
Therefore, any valid nonzero update sequence can be used in

he SGD process instead of the original one. This is because latent
actor matrices P and Q will be the same as the original update
equence produces since the order of updates on each P- and
-matrix row is exactly the same.

xample 1. Fig. 4 shows a sample rating matrix with two rows
abeled as x and y and two columns labeled as z and w. The
riginal update sequence is given in the left part of the figure as
vxz, vyw, vyz⟩. First vxz , then vyw and finally vyz is updated in the
original sequence. The right part of the figure shows a different
valid nonzero update sequence, ⟨vyw, vxz, vyz⟩.

All update calculations on P- and Q -matrix rows are displayed
in the bottom part of Fig. 4 to show that ⟨v , v , v ⟩ and
xz yw yz

S. Gulcan, M.M. Ozdal and C. Aykanat Future Generation Computer Systems 146 (2023) 207–221

a

D
m
G
F
i

a
b
e
n
S
f
t
p

b

Fig. 4. The original SGD update sequence and a valid nonzero update sequence
on a 2× 2 sample matrix with three nonzeros.

⟨vyw, vxz, vyz⟩ update sequences modify P- and Q -matrix rows in
exactly the same way. We encapsulate SGD calculation for P- and
Q -matrix updates with functions called sgdP and sgdQ respec-
tively, for the sake of clarity. sgd function takes a rating value and
the corresponding P- and Q -matrix rows as arguments in order
to compute a single rating update. In the calculations, p(t)x shows
the state of row x of P-matrix after the row is updated t times.
Although P- and Q -matrix rows are updated in different orders,
each P-matrix row, as well as each Q -matrix row, is updated in
the same order. So, these latent matrix rows are exactly the same
after all three nonzero updates. This shows that ⟨vyw, vxz, vyz⟩ is
valid nonzero update sequence.

efinition 2 (Nonzero Update Graph (NUG)). For a given rating
atrix V and nonzero update sequence ⟨V ⟩, NUG is a directed graph,
(V , ⟨V ⟩)= (U, E), where each node ua ∈ U represents nonzero va.
or a pair of nonzeros va and vb, there is a row edge (ua, ub)∈E only
f the following 3 conditions are met:

(i) Nonzeros va and vb reside in the same row.
(ii) va appears before vb in the nonzero update sequence.
(iii) There is no nonzero vc in the same row such that vc is

between va and vb in the nonzero update sequence.

The same construction logic applies to column edges as well.
A NUG is a directed acyclic graph. By the definition of NUG,

ny edge (ua, ub)∈E refers to the fact that nonzero va is updated
efore nonzero vb in the given update sequence. This property
xtends to any directed path by transitivity so that a path from
ode ua to node ub refers to the fact that va is updated before vb.
ince either va is before vb or vice versa, either ua is reachable
rom ub or ub is reachable from ua in the NUG. This excludes
he existence of any cycle in NUG. A NUG satisfies the following
roperties:

• Each node has at most two incoming edges.
• Each node has at most two outgoing edges.
• Two nodes sharing the same incoming neighbor cannot have

an edge between them.

A NUG is a sparse graph as the total number of edges is upper
ounded by two times the number of nonzeros.
213
Fig. 5. Left: A sample 5 × 3 rating matrix with 6 nonzeros and the original
update sequence ⟨v1, v2, v3, v4, v5, v6⟩. Right: Respective NUG with 6 vertices
and four edges.

Fig. 6. Three possible valid nonzero update sequences for the sample NUG in
Fig. 5.

Example 2. Fig. 5 shows an example 5 × 3 rating matrix
and its corresponding NUG for the original update sequence
⟨v1, v2, v3, v4, v5, v6⟩. Nonzero v2 does not share any row or col-
umn with any other nonzero; therefore, node 2 has no incoming
or outgoing edges. Other nodes are connected with row and/or
column edges according to the given rules. Note that there is no
edge between nodes 1 and 6 because of rule (iii) although they
reside on the same column.

Since NUG G is acyclic, topological ordering(s) exists, where for
every directed edge (ua, ub)∈E, vertex ua comes before vertex ub
in the sorted order. Therefore any topological order of the NUG
gives a valid nonzero update sequence according to Definition 1.
In other words, a nonzero update sequence generated from any
topological order of the nonzero update graph can be used in SGD
updates instead of the original sequence, and the same result will
be achieved, which is the main motivation of LASGD.

Example 3. Fig. 6 shows three different valid nonzero update
sequences for the example NUG in Fig. 5. There can be many other
update sequences as well.

LASGD tries to pick a valid update sequence that enables
more effective use of memory hierarchies. Although LASGD is
inherently an optimization over sequential SGD algorithm, it can
be adapted for parallel algorithms as well. We describe LASGD in
detail on the sequential case in the next section. Then, we discuss
how it can be extended to cover parallel SGD methods that use
grid-based partitioning.

5.1. LASGD on a single thread

Algorithm 7 shows the steps of the LASGD algorithm. As the
nodes represent nonzeros, node and nonzero will be used inter-

changeably to refer to the same entity. The first step of LASGD

S. Gulcan, M.M. Ozdal and C. Aykanat Future Generation Computer Systems 146 (2023) 207–221

i
s
w
P
i
d
v
s
v
a

f
t
i
c
r
v
d
u

l

c
T
c
S
a
i
m
r
P
c
e
s
a

s
t

.

s to create the NUG for a given V matrix and a given update
equence ⟨V ⟩. NUG is stored in compressed out-adjacency format,
here OutAdj(u) returns the set of vertices adjacent to vertex u.
Q denotes the priority queue that maintains the nodes with no
ncoming edges, which are effectively detected through zero in-
egree values. Nodes in PQ are keyed with respect to the score
alues computed according to the criteria mentioned below. PQ
upports extract max and insert operations. ⟨V ∗⟩ denotes the
alid nonzero update sequence to be generated by the LASGD
lgorithm.
The nodes in PQ constitute the set of candidate nonzeros

or appending to the end of current ⟨V ∗⟩ without disturbing
he validity of ⟨V ∗⟩. When a nonzero with the highest score
s extracted from PQ , it is appended to the end of ⟨V ∗⟩ being
onstructed, and the outgoing edges of the respective node are
emoved from the graph through decrementing the in-degree
alues of its out-adjacent nodes. The neighbor nodes whose in-
egree values reduce to zero are inserted into PQ . This is repeated
ntil PQ becomes empty.
The criteria considered while selecting a nonzero from PQ are

isted below.

(i) The corresponding P- or Q -matrix rows are cached Since
access time to data in caches is much faster than access
time to DRAM, among two candidate nonzeros, the one
whose latent factor rows are more probable to be in the
cache is preferred. A least recently used (LRU) cache struc-
ture is used to simulate the real cache of the hardware.
In this way, LASGD can predict whether a P- or Q -matrix
row is in the cache. The logic of the real hardware is more
complex, but our experiments show that an LRU cache
structure can model the behavior of the hardware caches
reasonably well.

(ii) The corresponding P- or Q -matrix rows are close to re-
cently used rows in DRAM According to our microbench-
marks [36], write and read operations on 2 KB DRAM
windows in which the last used data resides is much faster
than other regions of DRAM. Therefore, if P- or Q -matrix
rows are not found in the cache, LASGD prefers nonzeros
whose latent factors are close to the last used memory
location. These decisions are taken in the preprocessing
step by modeling core caches and DRAM.

(iii) The corresponding P- or Q -matrix rows are encoun-
tered the first time in the ordering step It is directly
related to the previous point. If P- or Q -matrix rows are
not updated by any previous nonzeros in the modified
sequence, it means that their location in DRAM is not fixed
yet. So, we can move these rows near the recently used
DRAM location. By doing so, SGD can update the rows more
quickly.

The score of a nonzero is calculated by considering where
orresponding P- and Q -matrix rows are located in the memory.
he calculation method is summarized in Table 3. In the table,
ache means that P- or Q -matrix row can be found in the cache.
o, it refers to the criterion (i). For example, if both P-matrix
nd Q -matrix rows are in the cache, the score of the nonzero
s calculated as 9. close means that the corresponding P- or Q -
atrix row is not in the cache, but it is close to last accessed

ow (criterion (ii)). new refers to criterion (iii). none means that
- or Q -matrix row does not satisfy any condition given in the
riteria. Although we used the scores given in the table for all our
xperiments, it is possible to get different results with different
coring systems. How scoring affects the performance of LASGD
lgorithm can be explored further in a future work.
The LRU cache simulation is conducted with a custom data

tructure that uses doubly linked list and hash map data struc-
ures to execute lookup, insertion, and eviction operations in
214
Table 3
LASGD Score calculation. The states in the first two columns are interchangeable
P-matrix row Q -matrix row Score

cache cache 9
cache close 8
cache new 7
close close 6
close new 5
new new 4
cache none 3
active none 2
new none 1
none none 0

constant time. Half of the L3 cache size is set as the size of the
LRU cache. Since the number of unique score values is low, we
store elements of PQ in buckets (implemented with hash sets)
that are assigned to a unique score. Each element also has a
reference to the bucket it is contained in. This setup allows us to
insert elements to PQ , extract elements from PQ , and update the
score of the elements quickly. It should be noted that updating
the score of an element means that the node is moved from
one bucket to another. While extracting the element with the
maximum score, ties are broken arbitrarily.

Algorithm 7: LASGD Algorithm
Input: V , ⟨V ⟩
Construct the NUG, G(V , ⟨V ⟩) = (U, E) ;
foreach u ∈ U do

InDeg[u] ← 0;
▷ Compute the number of incoming edges of nodes
foreach u ∈ U do

foreach x ∈ OutAdj(u) do
InDeg[x] ← InDeg[x] + 1;

PQ ← ∅ ;
foreach u ∈ U do

if InDeg[u] = 0 then
▷ u is safe to add to PQ
PQ ← PQ ∪ {u} ;

foreach u ∈ U do
▷ Assign the score according to Table 3
Calculate the score of u ;

▷ Initialize the new nonzero update order ⟨V ∗⟩
⟨V ∗⟩ ← ⟨⟩
while PQ ̸= ∅ do

u← EXTRACT-MAX(PQ) ;
⟨V ∗⟩ ← ⟨⟨V ∗⟩, u⟩ ;
foreach x ∈ OutAdj(u) do

InDeg[x] ← InDeg[x] − 1 ;
if InDeg[x] = 0 then
▷ x is safe to add to PQ
INSERT(PQ , x) ;

foreach u ∈ PQ do
Calculate the score of u ;

SGD(V , ⟨V ∗⟩)

5.2. LASGD on multiple threads

The problem encountered when adapting LASGD to parallel
methods is that the actual update sequence is not known before-
hand. For two nonzeros assigned to different threads, one nonzero
can be processed earlier in one execution, and the other one
can be processed earlier in another execution depending on the
processing speed of the local SGD computations. This situation

S. Gulcan, M.M. Ozdal and C. Aykanat Future Generation Computer Systems 146 (2023) 207–221

m
l
u
a
t
u
n
s
G
t
a
b
a
m
a

Table 4
Dataset Properties.
Dataset Number of Density Row degree Column degree

rows columns nonzeros min max mean cv min max mean cv

amazon_item_dedup 21,176,522 9,874,211 82,677,131 3.9e−07 1 44,557 3.90 4.93 1 25,368 8.37 7.76
amazon_books 8,026,324 2,330,066 22,507,155 1.2e−06 1 43,201 2.80 8.20 1 21,398 9.65 6.66
amazon_clothing 3,117,268 1,136,004 5,748,920 1.6e−06 1 349 1.84 1.32 1 3,047 5.06 4.59
amazon_electronics 4,201,696 476,002 7,824,482 3.9e−06 1 520 1.86 1.54 1 18,244 16.43 6.85
amazon_movies 2,088,620 200,941 4,607,047 1.0e−05 1 2,654 2.20 5.15 1 11,906 22.92 5.33
lastfm 359,349 268,758 17,559,530 1.8e−04 1 166 48.86 0.17 1 77,348 65.33 10.71
yahoo_music 249,012 296,111 61,944,406 8.4e−04 17 107,936 248.76 3.27 16 118,308 209.19 6.52
movielens_latest 270,896 45,115 26,024,289 2.1e−03 1 18,276 96.06 2.14 1 91,921 576.84 5.26
movielens_20m 138,493 26,744 20,000,263 5.3e−03 20 9,254 144.41 1.59 1 67,310 747.84 4.12
netflix 480,189 17,770 100,480,507 1.1e−02 1 17,653 209.25 1.14 13 232,944 5654.5 2.99
makes it difficult to construct a NUG since we cannot determine
edges and their directions.

We can resolve this problem by using 2D grid-based parallel
ethods, in which nonzero update sequence is known in block

evel, instead of using methods like Hogwild, whose nonzero
pdate sequence is more chaotic. If the NUG generation rules
re analyzed carefully, it can be seen that LASGD does not need
o know the nonzero update sequence completely. The relative
pdate order between independent nonzeros, nonzeros that do
ot share a P- or Q -matrix row, is insignificant for the algorithm
ince corresponding nodes in the NUG are not connected at all.
rid-based methods with synchronous block scheduling ensure
hat threads work on independent blocks at all times. If blocks
re sufficiently balanced, the execution of threads on independent
locks is expected to be satisfied for grid-based methods with
synchronous scheduling as well. If we go over Fig. 3, P- and Q -
atrix updates incurred by nonzeros in blocks At , Bt , Ct and Dt
re independent from each other in the same time interval t .
Because of this observation, LASGD can create a NUG by as-

suming that there exists some relative order between nonzeros
processed in the same time interval as long as the update order
in a single block is preserved. Only one NUG can be generated,
regardless of the order in which blocks are processed within the
same time interval. Therefore, the rating matrix is partitioned
with a grid partitioning method in order to apply LASGD when
multiple threads are used. Then, an arbitrary processing order
is assumed to exist between blocks that are updated at the
same time interval. Then, the same LASGD procedure given in
Algorithm 7 for a single thread is applied in the multicore context.
Any load balancing method can be used in the grid partitioning
step. The performance of the load balancing method becomes
important for the performance of LASGD ordering procedure in
the multicore setting.

6. Experimental setup and results

6.1. Experimental framework

All algorithms are implemented in C++11, and OpenMP [37]
library is used for parallelization. Some of the relevant papers
do not offer an open implementation, or they are developed for
distributed systems only but still applicable to shared memory
systems. Therefore, we coded those methods. In fact, we have
coded all compared methods from scratch even if implementa-
tion(s) already exists because our intention is not to compare
exact implementations but to investigate the main ideas behind
those methods and what makes them slower or faster than the
others. For example, AVX2 SIMD instructions are used in both
proposed algorithms and baseline algorithms to optimize the
running the times.

P and Q matrices are initialized uniformly random between 0
and 1. The latent factor size f is chosen as 16. Since the aim is
215
to estimate unseen ratings as correctly as possible, 20% of data,
known as the test set, is set aside and used only to evaluate the
quality of the solution. All evaluation error results are calculated
with the root mean squared error (RMSE) [38] metric on the test
set.

We use dual Intel Xeon Platinum 8280 CPUs having 28 phys-
ical cores each for performance experiments. Each core has a
private 32 KB L1 data cache and 1024 KB L2 cache. 38.5 MB L3
cache is shared by all cores in a socket.

6.2. Datasets

The selected rating matrices and their properties are reported
in Table 4. The main categories are shopping, movies, and music.
Netflix and yahoo datasets are used in competitions of Netflix
Challenge and KDD cup, respectively. Besides them, we tried to
use less commonly known datasets like amazon-electronics
[15]. Although they have extra attributes like timestamp, only rat-
ing, user id, and item id values are considered in the experiments.

In Table 4, the rating matrices are listed in increasing density
order, where the density of a matrix refers to the ratio of the total
number of nonzeros to m×n. The first five matrices, amazon ma-
trices, are considered as sparse matrices, whereas the remaining
five matrices are considered as dense matrices. In the table, ‘‘CV’’
refers to the coefficient of variation in the degrees of the rows
and columns. Higher CV values refer to more irregular nonzero
distribution on rows and columns.

We prefer using coordinate list (COO) sparse matrix format
to store the rating matrix as it is more flexible for permuting
nonzero elements. We permute the update sequence of nonzeros
to achieve two stochastic properties mentioned in Section 2.
Thanks to this permutation, sequential SGD guarantees that each
nonzero is used for updates exactly once at each iteration. In
addition to permuting the order of updates, we also permute rows
and columns of the rating matrix in order to prevent the effect
of a particular distribution imposed by the original row/column
ordering on the performance of the algorithms.

6.3. Load balancing performance analysis

Table 5 compares the performance of the proposed load bal-
ancing algorithms BPr+c and BPr→c against random partitioning
(RP) and BaPa [23]. In our experiments, we did not find any con-
siderable differences between load imbalance values attained by
BPr→c and BPc→r . So, we do not report BPc→r results in this table
and the following figures. However, load balancing performances
of BPr→c and BPc→r may differ if rows and columns of the rating
matrix have a substantially different nonzero distributions.

In the table, load imbalance values are computed as the ratio
of the number of nonzeros in the block with the largest number
of nonzeros to the number of nonzeros in the block with the least
number of nonzeros. RP gives decent load balancing performance

S. Gulcan, M.M. Ozdal and C. Aykanat Future Generation Computer Systems 146 (2023) 207–221

t
n

i

i

Table 5
Load balancing performance comparison of 2D-grid partitioning algorithms with increasing grid dimensions.
Dataset 4 × 4 16 × 16 64 × 64

RP BaPa BP RP BaPa BP RP BaPa BP

r + c r → c r + c r → c r + c r → c

amazon_item_dedup 1.013 1.001 1.001 1.000 1.059 1.009 1.009 1.000 1.172 1.047 1.048 1.000
amazon_books 1.037 1.002 1.003 1.000 1.112 1.020 1.018 1.000 1.361 1.110 1.096 1.000
amazon_clothing 1.015 1.005 1.003 1.000 1.083 1.032 1.034 1.000 1.368 1.190 1.184 1.001
amazon_electronics 1.038 1.003 1.003 1.000 1.175 1.031 1.029 1.000 1.639 1.177 1.156 1.001
amazon_movies 1.067 1.008 1.004 1.000 1.227 1.041 1.031 1.000 1.834 1.356 1.189 1.000
lastfm 1.083 1.003 1.001 1.000 1.490 1.048 1.021 1.000 2.366 1.282 1.108 1.000
yahoo_music 1.101 1.001 1.001 1.000 1.336 1.014 1.009 1.000 1.855 1.110 1.059 1.000
movielens_latest 1.143 1.002 1.002 1.000 1.449 1.039 1.015 1.000 3.330 1.197 1.085 1.000
movielens_20m 1.071 1.009 1.001 1.000 1.443 1.039 1.015 1.000 3.902 1.189 1.088 1.000
netflix 1.127 1.003 1.001 1.000 1.491 1.015 1.006 1.000 2.543 1.129 1.046 1.001

geometric average 1.068 1.003 1.002 1.000 1.276 1.029 1.019 1.000 1.985 1.176 1.104 1.000

RP: Random partitioning. BaPa: Greedy independent row and column partitioning [23] BPr+c : Independent BP-based row and column partitioning. BPr→c : First row
hen column BP-based partitioning. Load imbalance values indicate the ratio of the number of nonzeros in the block with the largest number of nonzeros to the
umber of nonzeros in the block with least number of nonzeros.
Fig. 7. Sequential LASGD compared to Sequential SGD.

n small grid dimension (4 × 4); however, its performance de-
grades significantly with increasing grid dimensions (16×16 and
64× 64) especially for dense matrices. For sparse rating matrices
(amazon datasets), the load imbalance ratio attained by the RP
remains below 1.9 even for 64 × 64 partitioning. BaPa performs
much better than RP, especially in larger grid dimensions.

BPr+c performs slightly better than BaPa where the perfor-
mance gap increases with increasing grid dimensions in favor of
BPr+c . Both BaPa and BPr+c attain rather low imbalance values
even for large grid dimensions. For example, BaPa attains average
load imbalance values of 1.029 and 1.176 on 16 × 16 and 64 ×
64 grid dimensions respectively, whereas, BPr+c attains 1.019
and 1.104. It may seem counter-intuitive that independent row
and column partitioning (BaPa and BPr+c) gives balanced blocks.
These algorithms assume that nonzero distribution in a column
is independent of the number of nonzeros in the column. This
looks like a strong assumption, but BPr+c provides a significant
mprovement over RP.

BPr→c performs better than BPr+c and BaPa, where the per-
formance gap increases with increasing grid dimensions. For ex-
ample, BPr→c achieves 0.3%, 2.9%, 17.6% better load balancing
performance than BaPa on 4 × 4, 16 × 16, 64 × 64 grid dimen-
sions, respectively. This shows the benefit of using the partition
216
Fig. 8. Average speedup curves for f = 16. The y axis shows the throughput
values which are computed as the number of nonzero updates per second. The
proposed load balancing algorithms (BPr+c , BPr→c) outperform the other load
balancing algorithms on average. Our proposed algorithm, LASGD, improves the
performance significantly with better scalability.

information obtained over one matrix dimension in the first
phase for the partitioning decisions to be performed over the
other dimension in the second phase.

6.4. Throughput performance analysis

Figs. 7–9 compare the performance of the algorithm in terms
of throughput values. The throughput values are computed as the
number of nonzero updates per second.

Fig. 7 shows the performance improvement attained by LASGD
algorithm in a sequential setting (single thread) for each dataset.
As seen in the figure, LASGD attains considerably higher through-
put than SGD in all datasets. On the other hand, LASGD performs
significantly better than SGD on sparse datasets. For example, the
improvement of LASGD over SGD varies between 14% and 101%
on the sparse amazon matrices, whereas it remains between 2%
and 8% on the dense matrices. This is because LASGD is expected
to have larger freedom in nonzero selection on sparse matrices

S. Gulcan, M.M. Ozdal and C. Aykanat Future Generation Computer Systems 146 (2023) 207–221

i

a
H
c
i
t
o
s
c
i
a
p
t

f
b

s
a

Fig. 9. Speedup curves. The y axis shows the throughput values which are computed as the number of nonzero updates per second. The proposed algorithms (LASGD,
BPr+c , BPr→c) perform better than the other algorithms and the performance gap increases with increasing number of threads in favor of the proposed algorithms.
In dense matrices, the proposed algorithms approach the ideal speedup curve.
a

compared to dense matrices. That is, on sparse matrices, the
priority queue is expected to contain a larger number of candidate
nonzeros (nodes with zero in-degrees) for selection compared to
dense matrices. In graph-theoretic view, this corresponds to the
expectation that sparse acyclic graphs will have a larger num-
ber of different topological orderings compared to dense acyclic
graphs with the same number of nodes.

Figs. 8 and 9 display the results of the strong scaling exper-
iments as speedup curves in terms of increase in throughput
with the increasing number of threads. Fig. 8 shows the average
speedup curves, whereas Fig. 9 shows speedup curves for the
individual datasets. All algorithms except spSGD and Hogwild uti-
lize 2D-grid partitioning. LASGD utilizes BPr→c for load balancing
n grid partitioning.

As seen in Figs. 8 and 9, spSGD shows the worst performance
s expected. Hogwild performs significantly better than spSGD.
owever, the average throughput attained by Hogwild does not
hange between 28 threads and 56 threads. When code profil-
ng results and the architecture of the system are considered
ogether, we conclude that data migrations between L3 caches
f sockets cause this behavior. There are 28 cores on each socket,
o when 56 threads are used, data migrations between L1 or L2
aches become migrations between L3 caches. Since L3 latency
s much higher than L1 and L2 latency, almost no speedup is
chieved. On the other hand, this problem does not occur in grid
artitioning methods because data migration is avoided due to
hreads running on independent blocks.

All three grid-based methods show much better speedup per-
ormance than Hogwild. Among the grid-based methods, both
in-packing-based algorithms (BPr+c and BPr→c) perform consid-

erably better than RP, where BPr→c is the winner. BPr→c performs
lightly better than BaPa, but the difference is not distinguish-
ble for most datasets. The difference becomes noticeable as P

increases, especially when the dataset is dense. The significant
difference of 34.4% more throughput achieved by BPr→c com-
pared to BaPa for netflix dataset on 56 threads, which has a
small number of rows/columns but a large number of nonzeros,
confirms this claim. On average, BP achieves 1.2% and 7.3%
r→c

217
more throughput than BaPa on 28 and 56 threads, respectively.
These relative speedup results conform with the relative load
balancing comparison given in Table 5.

The proposed LASGD algorithm performs significantly better
than all other algorithms. For example, on 56 threads, LASGD
achieves 200% and 50% more throughput than Hogwild and RP,
respectively. The performance gap between LASGD and other
algorithms increases with increasing number of threads in favor
of LASGD. As seen in Fig. 9, LASGD performs significantly better
than BaPa in every dataset. This improvement gap increases with
increasing number of processors in favor of LASGD. For example,
LASGD achieves 20%, 21%, 18% and 33% more throughput than
BaPa on 7, 14, 28 and 56 threads, respectively. These results show
that LASGD increases the scalability of SGD.

In Fig. 9, when speedup curves for different datasets are exam-
ined separately, it becomes easier to understand why some ideas
work better for some datasets. BPr→c as well as LASGD (which
lso utilizes BPr→c) approach the ideal speedup for the three

most dense matrices (netflix, movielens_20m and movie-
lens_latest). On these datasets, there is an immense improve-
ment gained through proposed BP-based load balancing algo-
rithms over the random permutation. As seen in Table 5, netflix
and movielens datasets suffer the most from load imbalance so
it is logical to see that intelligent load balancing methods like
BPr+c and BPr→c affect the performance significantly.

Table 6 shows code profiling results obtained with vTune code
profiler about memory accesses of BaPa and LASGD. Here, BaPa
partitioning is used in the grid partitioning phase of LASGD so
that the improvement of LASGD over BaPa will result from the
nonzero update ordering and memory access patterns utilized
in LASGD. The memory bound column shows the percentage of
pipeline slots wasted due to the stalls during memory accesses.
Columns L1, L2, and L3 show the percentage of stalled CPU
clockticks due to read/write operations on L1, L2, and L3 caches,
respectively. Similarly, the DRAM column gives the bound of
DRAM-related operations in terms of the percentage of stalled
CPU clockticks. The last column shows the number of last level
cache (LLC) misses. LLC miss occurs when a requested cache line

S. Gulcan, M.M. Ozdal and C. Aykanat Future Generation Computer Systems 146 (2023) 207–221

T

b
A
c
C
F
a
r
i
m
i
r
T
m

Fig. 10. Average speedup curves for different f values. The y axis shows the throughput values which are computed as the number of nonzero updates per second.
he performance gap between LASGD and the other grid-based algorithms decreases with increasing f values.
Table 6
vTune code profiling results of BaPa and LASGD on 56 cores with 2000 iterations.
Dataset Method Memory L1 (%) L2 (%) L3 (%) DRAM (%) LLC Miss

Bound (%)

amazon_item_dedup BaPa 74.0 2.1 0.8 10.3 61.4 306,989,686,424
LASGD 68.8 2.5 2.3 10.6 54.1 193,636,394,682

amazon_books BaPa 66.4 2.6 0.9 12.9 50.7 58,172,900,361
LASGD 55.6 3.9 3.2 15.5 33.7 24,205,170,992

amazon_clothing BaPa 61.8 3.1 0.8 13.7 44.7 13,575,605,624
LASGD 46.2 4.7 4.4 19.7 18.2 2,286,232,826

amazon_electronics BaPa 61.3 3.0 1.0 16.1 41.8 14,480,298,104
LASGD 42.5 5.2 3.4 19.1 15.6 2,494,259,912

amazon_movies BaPa 49.5 4.3 1.2 23.9 20.9 3,130,426,050
LASGD 33.6 6.2 2.3 20.0 5.9 178,909,436

lastfm BaPa 34.9 6.0 2.2 24.8 3.1 389,425,400
LASGD 22.2 7.1 2.2 12.3 1.3 84,273,774

yahoo_music BaPa 32.1 5.8 2.5 23.7 1.3 777,830,897
LASGD 27.1 6.6 2.0 18.4 1.2 861,245,662

movielens_latest BaPa 21.4 6.2 2.0 12.9 1.4 157,607,890
LASGD 14.2 7.1 1.9 5.5 0.7 10,574,117

movielens_20m BaPa 22.4 6.1 1.9 13.9 1.6 157,528,825
LASGD 14.6 7.3 1.9 5.9 0.5 10,583,199

netflix BaPa 18.0 6.2 2.2 9.4 1.2 986,055,979
LASGD 12.8 7.2 2.4 3.8 0.4 167,809,989
cannot be found in L1, L2, and L3 caches, so it needs to be fetched
from the DRAM.

As seen in Table 6, LASGD considerably decreases the memory
ound of the program in all datasets (37.2% decrease on average).
s also seen in the table, LASGD decreases LLC miss rates signifi-
antly in all datasets except yahoo_music. This results in fewer
PU cycles wasted on DRAM and consequently faster executions.
or example, LASGD reduces LLC miss count by around 94% in
mazon_movies dataset. This improvement in LLC miss count
eflects as a decrease in DRAM bound from 20.9% to 5.9%. The
ncrease in the lower-level cache bounds of LASGD suggests that
ore cache lines can be retrieved from L1 and L2 caches directly

nstead of fetching from DRAM. In order words, LASGD moves
ead/write operations from high latency DRAM to fast caches.
hat is why locality-aware ordering adopted in LASGD utilizes
emory better and gives better execution performance.
218
6.5. Convergence and factor size analysis

LASGD on a single thread gives the same RMSE values as the
sequential SGD algorithm since it does not affect the update order
on individual P- and Q -matrix rows. Table 7 compares RMSE val-
ues of sequential SGD algorithm (run on 1 thread) and the LASGD
algorithm run on 56 threads for various epoch numbers. As seen
in the table, the differences between RMSE values are so small,
thus showing that LASGD does not deteriorate the convergence
rate.

The factor size parameter f directly affects the accuracy and
the performance of the algorithm. Smaller or larger values than
the optimal value produce poor accuracy results. When small
f values are used, the model (P and Q matrices) is not strong
enough to capture the underlying patterns in the rating matrix.
Larger f , on the other hand, may overfit the training data. So,
it again cannot predict unseen ratings correctly even though its

accuracy on known values will be good. Therefore, f should be

S. Gulcan, M.M. Ozdal and C. Aykanat Future Generation Computer Systems 146 (2023) 207–221

1

Table 7
RMSE convergence values for LASGD on 56 threads and sequential SGD.
Dataset Method Epoch No

5 10 15 20 25 30 35 40 45 50

amazon_item_dedup S.SGD 1.2796 1.2468 1.2337 1.2276 1.2250 1.2242 1.2246 1.2257 1.2273 1.2292
LASGD 1.2795 1.2467 1.2335 1.2274 1.2248 1.2240 1.2244 1.2255 1.2271 1.2290

amazon_books S.SGD 1.1792 1.1426 1.1261 1.1174 1.1126 1.1099 1.1086 1.1082 1.1084 1.1089
LASGD 1.1792 1.1424 1.1260 1.1173 1.1124 1.1098 1.1084 1.1080 1.1081 1.1087

amazon_clothing S.SGD 1.3693 1.3419 1.3292 1.3227 1.3194 1.3179 1.3175 1.3179 1.3188 1.3199
LASGD 1.3693 1.3418 1.3292 1.3226 1.3193 1.3178 1.3174 1.3178 1.3186 1.3198

amazon_electronics S.SGD 1.4223 1.3980 1.3872 1.3821 1.3801 1.3798 1.3807 1.3822 1.3843 1.3866
LASGD 1.4222 1.3978 1.3871 1.3820 1.3799 1.3796 1.3805 1.3821 1.3840 1.3864

amazon_movies S.SGD 1.2397 1.2124 1.2000 1.1936 1.1902 1.1886 1.1881 1.1884 1.1892 1.1904
LASGD 1.2396 1.2123 1.2000 1.1934 1.1900 1.1884 1.1879 1.1882 1.1890 1.1900

lastfm S.SGD 1.9942 1.9535 1.9359 1.9280 1.9246 1.9233 1.9228 1.9227 1.9227 1.9228
LASGD 1.9944 1.9535 1.9358 1.9280 1.9245 1.9236 1.9228 1.9229 1.9230 1.9230

yahoo_music S.SGD 27.5526 25.2026 24.2676 23.8323 23.5999 23.4661 23.3860 23.3372 23.3079 23.2912
LASGD 27.5581 25.1934 24.2580 23.8197 23.5852 23.4510 23.3716 23.3222 23.2923 23.2735

movielens_latest S.SGD 0.8836 0.8658 0.8530 0.8425 0.8334 0.8261 0.8203 0.8158 0.8123 0.8097
LASGD 0.8835 0.8661 0.8530 0.8423 0.8331 0.8257 0.8198 0.8153 0.8117 0.8091

movielens_20m S.SGD 0.8699 0.8583 0.8448 0.8342 0.8246 0.8167 0.8106 0.8060 0.8024 0.7996
LASGD 0.8697 0.8581 0.8445 0.8339 0.8243 0.8164 0.8102 0.8055 0.8020 0.7991

netflix S.SGD 0.9336 0.9223 0.9075 0.9019 0.8980 0.8944 0.8916 0.8893 0.8871 0.8850
LASGD 0.9335 0.9225 0.9074 0.9019 0.8983 0.8947 0.8918 0.8895 0.8872 0.8852
picked in such a way that it should give good results on unseen
data.

In the literature, we encountered studies using 10, 40, 50 or
00 [10,12,13,21,24,38] f values. Fig. 10 compares the perfor-

mance of the algorithm for f values of 4, 16, 64, and 100. The
LASGD algorithm improves the latency of reading/writing latent
factor rows. So, the value f affects the performance of LASGD. For
large f values, it is difficult for the algorithm to apply the same
cache locality optimizations and DRAM locality optimization be-
cause the algorithm will place fewer P- and Q -matrix rows to
the caches and to the active DRAM row. As a result, the larger
f values reduce the performance gain of the LASGD algorithm,
whereas the smaller f values increase the performance gain.

BaPa algorithm and the proposed load balancing algorithms
(BPr+c , BPr→c) reduce the threads’ idle time, their optimization is
not directly related to the factor size.

To verify the generality of the proposed algorithms, we ran-
domly picked 10 datasets from SuiteSparse [39]. The throughput
speedup curves for the selected 10 datasets and the average
speedup curves of the algorithms are given in Figs. 11 and 12
respectively. It can be seen that the performance improvement of
BaPa, BPr+c and BPr→c over RP is negligible. This is an expected
result. Since the randomly picked matrices are not necessary
scale-free, even RP algorithm yields a good load balance. Mean-
while, LASGD improves throughput performance by around 14%
with respect to other grid-based algorithms on average. This
shows that LASGD performs better even if the matrix does not
show any specific nonzero pattern.

7. Conclusion

We investigated the load balancing and cache underutilization
problems of parallel SGD methods for matrix completion on
multicore systems. We proposed bin-packing-based algorithms
for balancing the nonzero counts of the 2D blocks in 2D-grid
partitioning. We proposed a memory-access improving method,
LASGD, without disturbing the stochastic nature of the algorithm.
Extensive experiments performed on a wide range of matrix
completion datasets lead to the following findings:

• The proposed load-balancing algorithms perform better
than the state-of-the-art load-balancing algorithms and the
219
Fig. 11. Average speedup curves of the algorithm on a randomly selected
datasets.

performance gap increases with increasing grid dimensions
in favor of the proposed algorithms.
• In 2D grid based partitioning, instead of independent row

and column partitioning, using the row partitioning infor-
mation obtained in the first phase for the column parti-
tioning to be performed in the second phase, or vice versa,
significantly increases the load balancing performance.
• Both the proposed load balancing methods and LASGD fa-

vor skewed matrices. Although the proposed load balancing
methods favor dense datasets more than sparse ones, LASGD
favors sparse datasets.
• The proposed load-balancing and LASGD algorithms sig-

nificantly increase the scalability of the SGD algorithms
compared to existing state-of-the-art SGD algorithms.

S. Gulcan, M.M. Ozdal and C. Aykanat Future Generation Computer Systems 146 (2023) 207–221
Fig. 12. Speedup curves of the algorithm on a randomly selected datasets.
As a future work, we consider exploring and experimenting
with different scoring schema to find better nonzero orderings
used in the LASGD algorithm.

CRediT authorship contribution statement

Selcuk Gulcan: Software, Validation, Investigation, Visualiza-
tion, Writing – original draft, Writing – review & editing.Muham-
met Mustafa Ozdal: Conceptualization, Methodology, Supervi-
sion, Writing – original draft. Cevdet Aykanat: Conceptualization,
Methodology, Supervision, Funding acquisition, Writing – original
draft, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgment

This work was supported by the Scientific and Technologi-
cal Research Council of Turkey (TUBITAK) under Project EEEAG-
119E035.

References

[1] O. Levy, Y. Goldberg, Neural word embedding as implicit matrix factor-
ization, in: Advances in Neural Information Processing Systems, 2014, pp.
2177–2185.

[2] J. Lu, D. Wu, M. Mao, W. Wang, G. Zhang, Recommender system application
developments: a survey, Decis. Support Syst. 74 (2015) 12–32.

[3] H. Kim, H. Park, Sparse non-negative matrix factorizations via alternating
non-negativity-constrained least squares for microarray data analysis,
Bioinformatics 23 (12) (2007) 1495–1502.

[4] J. Bennett, S. Lanning, et al., The netflix prize, in: Proceedings of KDD Cup
and Workshop. Vol. 2007, Citeseer, 2007, p. 35.

[5] R.M. Bell, Y. Koren, C. Volinsky, All together now: A perspective on the
netflix prize, Chance 23 (1) (2010) 24–29.

[6] R.M. Bell, Y. Koren, Lessons from the Netflix prize challenge, SiGKDD

Explorations 9 (2) (2007) 75–79.

220
[7] E.J. Candès, B. Recht, Exact matrix completion via convex optimization,
Found. Comput. Math. 9 (6) (2009) 717.

[8] P. Jain, P. Netrapalli, Fast exact matrix completion with finite samples, in:
Conference on Learning Theory, 2015, pp. 1007–1034.

[9] J. Langford, A. Smola, M. Zinkevich, Slow learners are fast, 2009, arXiv
preprint arXiv:0911.0491.

[10] R. Gemulla, E. Nijkamp, P.J. Haas, Y. Sismanis, Large-scale matrix factor-
ization with distributed stochastic gradient descent, in: Proceedings of the
17th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, ACM, 2011, pp. 69–77.

[11] B. Recht, C. Re, S. Wright, F. Niu, Hogwild: A lock-free approach to par-
allelizing stochastic gradient descent, in: Advances in Neural Information
Processing Systems, 2011, pp. 693–701.

[12] Y. Zhuang, W.-S. Chin, Y.-C. Juan, C.-J. Lin, A fast parallel SGD for matrix
factorization in shared memory systems, in: Proceedings of the 7th ACM
Conference on Recommender Systems, ACM, 2013, pp. 249–256.

[13] H. Yun, H.-F. Yu, C.-J. Hsieh, S. Vishwanathan, I. Dhillon, NOMAD:
Non-locking, stochastic multi-machine algorithm for asynchronous and
decentralized matrix completion, Proc. VLDB Endow. 7 (11) (2014)
975–986.

[14] F. Petroni, L. Querzoni, GASGD: stochastic gradient descent for distributed
asynchronous matrix completion via graph partitioning, in: Proceedings
of the 8th ACM Conference on Recommender Systems, ACM, 2014,
pp. 241–248.

[15] H. Lakkaraju, J. McAuley, J. Leskovec, What’s in a name? understanding
the interplay between titles, content, and communities in social media,
in: Seventh International AAAI Conference on Weblogs and Social Media,
2013.

[16] T. Bertin-Mahieux, D.P. Ellis, B. Whitman, P. Lamere, The million song
dataset, in: Proceedings of the 12th International Conference on Music
Information Retrieval, ISMIR 2011, 2011.

[17] F.M. Harper, J.A. Konstan, The movielens datasets: History and context,
Acm Trans Inter. Intell. Syst. (Tiis) 5 (4) (2015) 1–19.

[18] L. Bottou, Large-scale machine learning with stochastic gradient descent,
in: Proceedings of COMPSTAT’2010, Springer, 2010, pp. 177–186.

[19] J. Kiefer, J. Wolfowitz, et al., Stochastic estimation of the maximum of a
regression function, Ann. Math. Stat. 23 (3) (1952) 462–466.

[20] J. Reinders, VTune Performance Analyzer Essentials, Intel Press, 2005.
[21] F. Makari, C. Teflioudi, R. Gemulla, P. Haas, Y. Sismanis, Shared-memory

and shared-nothing stochastic gradient descent algorithms for matrix
completion, Knowl. Inf. Syst. 42 (3) (2015) 493–523.

[22] Y. Yu, D. Wen, Y. Zhang, X. Wang, W. Zhang, X. Lin, Efficient matrix
factorization on heterogeneous CPU-GPU systems, 2020, arXiv preprint
arXiv:2006.15980.

[23] R. Guo, F. Zhang, L. Wang, W. Zhang, X. Lei, R. Ranjan, A. Zomaya, BaPa: A
novel approach of improving load balance in parallel matrix factorization
for recommender systems, IEEE Trans. Comput. (2020).

[24] X. Xie, W. Tan, L.L. Fong, Y. Liang, CuMF_SGD: Parallelized stochastic gra-
dient descent for matrix factorization on GPUs, in: Proceedings of the 26th
International Symposium on High-Performance Parallel and Distributed
Computing, 2017, pp. 79–92.

http://refhub.elsevier.com/S0167-739X(23)00141-3/sb1
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb1
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb1
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb1
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb1
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb2
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb2
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb2
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb3
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb3
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb3
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb3
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb3
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb4
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb4
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb4
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb5
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb5
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb5
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb6
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb6
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb6
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb7
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb7
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb7
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb8
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb8
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb8
http://arxiv.org/abs/0911.0491
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb10
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb10
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb10
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb10
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb10
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb10
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb10
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb11
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb11
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb11
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb11
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb11
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb12
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb12
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb12
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb12
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb12
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb13
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb13
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb13
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb13
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb13
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb13
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb13
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb14
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb14
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb14
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb14
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb14
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb14
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb14
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb15
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb15
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb15
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb15
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb15
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb15
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb15
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb16
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb16
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb16
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb16
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb16
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb17
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb17
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb17
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb18
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb18
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb18
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb19
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb19
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb19
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb20
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb21
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb21
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb21
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb21
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb21
http://arxiv.org/abs/2006.15980
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb23
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb23
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb23
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb23
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb23
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb24
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb24
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb24
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb24
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb24
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb24
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb24

S. Gulcan, M.M. Ozdal and C. Aykanat Future Generation Computer Systems 146 (2023) 207–221
[25] H. Li, K. Li, J. An, K. Li, MSGD: A novel matrix factorization approach
for large-scale collaborative filtering recommender systems on GPUs, IEEE
Trans. Parallel Distrib. Syst. 29 (7) (2017) 1530–1544.

[26] Z. Wu, Y. Luo, K. Lu, X. Wang, Parallelizing stochastic gradient descent
with hardware transactional memory for matrix factorization, in: 2018 3rd
International Conference on Information Systems Engineering, ICISE, IEEE,
2018, pp. 118–121.

[27] M. Yagci, T. Aytekin, F. Gurgen, On parallelizing SGD for pairwise learning
to rank in collaborative filtering recommender systems, in: Proceedings of
the Eleventh ACM Conference on Recommender Systems, 2017, pp. 37–41.

[28] Z.A. Khan, N.I. Chaudhary, S. Zubair, Fractional stochastic gradient descent
for recommender systems, Electr. Mark. 29 (2) (2019) 275–285.

[29] J. Oh, W.-S. Han, H. Yu, X. Jiang, Fast and robust parallel SGD matrix
factorization, in: Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ACM, 2015,
pp. 865–874.

[30] D. Lee, J. Oh, C. Faloutsos, B. Kim, H. Yu, Disk-based matrix completion
for memory limited devices, in: Proceedings of the 27th ACM Inter-
national Conference on Information and Knowledge Management, 2018,
pp. 1093–1102.

[31] X. Luo, Y. Xia, Q. Zhu, Applying the learning rate adaptation to the matrix
factorization based collaborative filtering, Knowl.-Based Syst. 37 (2013)
154–164.

[32] Z.A. Khan, S. Zubair, N.I. Chaudhary, M.A.Z. Raja, F.A. Khan, N. Dedovic, De-
sign of normalized fractional SGD computing paradigm for recommender
systems, Neural Comput. Appl. 32 (2020) 10245–10262.

[33] Z.A. Khan, M.A.Z. Raja, N.I. Chaudhary, K. Mehmood, Y. He, MISGD: Moving-
information-based stochastic gradient descent paradigm for personalized
fuzzy recommender systems, Int. J. Fuzzy Syst. (2022) 1–27.

[34] Z.A. Khan, N.I. Chaudhary, M.A.Z. Raja, Generalized fractional strategy
for recommender systems with chaotic ratings behavior, Chaos Solitons
Fractals 160 (2022) 112204.

[35] E. Horowitz, S. Sahni, Fundamentals of Computer Algorithms, Computer
Science Press, 1978.

[36] S. Gulcan, Parallel Stochastic Gradient Descent on Multicore Architectures,
Bilkent University (Turkey), 2020.

[37] L. Dagum, R. Menon, OpenMP: An industry-standard API for shared-
memory programming, Comput. Sci. Eng. (1) (1998) 46–55.

[38] H.-F. Yu, C.-J. Hsieh, S. Si, I. Dhillon, Scalable coordinate descent approaches
to parallel matrix factorization for recommender systems, in: 2012 IEEE
12th International Conference on Data Mining, IEEE, 2012, pp. 765–774.

[39] T.A. Davis, Y. Hu, The University of Florida sparse matrix collection, ACM
Trans. Math. Softw. 38 (1) (2011) 1–25.
221
Selcuk Gulcan received the B.S. and M.S. degrees in
computer engineering from Bilkent University, Turkey,
in 2016 and 2020, respectively. He is currently working
toward the Ph.D. degree at Bilkent University. His
research interests include recommender systems and
parallel computing in distributed and shared memory
systems.

Muhammet Mustafa Ozdal received the Ph.D. degree
in computer science from the University of Illinois at
Urbana-Champaign, in 2005. He is currently a research
scientist at Facebook’s AI Systems Software/Hardware
Co-Design group. Previously, he was an associate pro-
fessor at the Computer Engineering Department of
Bilkent University and a research scientist at the strate-
gic CAD Labs of Intel Corporation. He has served in
the executive and technical program committees of
several conferences. He is a recipient of the IEEE/ACM
William J. McCalla ICCAD Best Paper Award (2011),

ACM SIGDA Technical Leadership Award (2012), TUBITAK Postdoctoral Rein-
tegration Fellowship (2016), and the European Commission MSCA Individual
Fellowship (2016). His research interests include high performance computing
and software/hardware codesign of large scale AI problems.

Cevdet Aykanat received the B.S. and M.S. degrees
from Middle East Technical University, Turkey, both in
electrical engineering, and the Ph.D. degree from Ohio
State University, Columbus, in electrical and computer
engineering. He worked at the Intel Supercomputer
Systems Division, Beaverton, Oregon, as a research
associate. Since 1989, he has been affiliated with the
Department of Computer Engineering, Bilkent Univer-
sity, Turkey, where he is currently a professor. His
research interests mainly include parallel computing
and its combinatorial aspects. He is the recipient of the

1995 Investigator Award of The Scientific and Technological Research Council of
Turkey and 2007 Parlar Science Award. He has served as an Associate Editor of
IEEE Transactions of Parallel and Distributed Systems between 2009 and 2013.

http://refhub.elsevier.com/S0167-739X(23)00141-3/sb25
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb25
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb25
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb25
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb25
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb26
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb26
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb26
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb26
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb26
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb26
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb26
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb27
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb27
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb27
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb27
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb27
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb28
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb28
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb28
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb29
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb29
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb29
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb29
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb29
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb29
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb29
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb30
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb30
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb30
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb30
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb30
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb30
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb30
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb31
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb31
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb31
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb31
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb31
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb32
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb32
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb32
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb32
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb32
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb33
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb33
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb33
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb33
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb33
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb34
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb34
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb34
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb34
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb34
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb35
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb35
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb35
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb36
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb36
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb36
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb37
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb37
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb37
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb38
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb38
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb38
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb38
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb38
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb39
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb39
http://refhub.elsevier.com/S0167-739X(23)00141-3/sb39

	Load balanced locality-aware parallel SGD on multicore architectures for latent factor based collaborative filtering
	Introduction
	Matrix Completion with SGD
	Literature Survey and Discussions
	Simple-Parallel SGD (spSGD)
	Hogwild: Asynchronous SGD
	2D Grid Partitioning
	Load Balancing in 2D Grid Partitioning
	Other Related Studies

	Proposed Load Balancing Methods
	Independent Row and Column Partitioning (BPr+c)
	First Row Then Column Partitioning (BPr→c)

	Locality Aware SGD (LASGD)
	LASGD on a single thread
	LASGD on multiple threads

	Experimental Setup and Results
	Experimental Framework
	Datasets
	Load Balancing Performance Analysis
	Throughput Performance Analysis
	Convergence and Factor Size Analysis

	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgment
	References

