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ABSTRACT 

Lipotoxic endoplasmic reticulum stress-associated inflammation:   

 molecular mechanisms and modification by a bioactive lipokine 

Şeyma Demirsoy 

M.Sc.in Molecular Biology and Genetics 

Supervisor Assist. Prof. Dr. Ebru Erbay 

September 2012, 127 Pages 

 

Physiologic or pathologic processes that disturb protein folding in the endoplasmic 

reticulum (ER) activate a signaling pathway named the unfolded protein response 

(UPR). UPR promotes cell survival by reducing misfolded protein levels. The three 

proximal stress sensors of the UPR are known as PKR-resemble like ER kinase 

(PERK), inositol-requiring enzyme-1 (IRE1) and activating transcription factor 6 

(ATF6), which monitor the quality of protein folding in the ER membrane and relay that 

information to the rest of the cell. If ER homeostasis can not be restored, prolonged 

UPR signaling can lead to cell death.   

 

Recent studies have shown metabolic overload, particularly high levels of fatty acids 

and cholesterol can induce ER stress and activate UPR signaling. These studies also 

demonstrated ER stress is a central mechanism that underlies the pathogenesis of 

metabolic diseases including obesity, type 2 diabetes, insulin resistance, atherosclerosis 

and hepatosteatosis. Understanding how nutrient excess activates the UPR and its novel 

molecular mechanisms of operation during metabolic stress could facilitate the 

development of novel and effective future therapeutics aiming to restore ER 

homeostasis.  
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The molecular mechanisms of lipid induced activation of UPR and how the three 

proximal UPR stress sensors are linked to lipid metabolism and inflammation is not 

well understood. One of the UPR stress sensors, PERK, is a trans-membrane 

serine/threonine kinase with only two known downstream substrates, the eukaryotic 

translation initiation factor (eIF2) that controls translation initiation, and an anti-

oxidant transcription factor, Nuclear factor eryhthroid-2-related factor-2 (Nrf2), that 

keeps redox homeostasis. One of the existing road blocks in studying PERK signaling 

has been the lack of molecular or chemical tools to regulate its activity. For my thesis 

studies, I developed a chemical-genetic approach to specifically modify PERK’s kinase 

activity.  In this approach, the ATP binding pocket of a particular kinase is altered via 

site-directed mutagenesis in order to accommodate a bulky ATP analog that is not an 

effective substrate for the wild type kinase. Thus, only the mutated kinase can be 

targeted by the activatory or inhibitory bulky ATP analogs and this form of the kinase is 

referred to as ATP analog sensitive kinase (ASKA). Furthermore, I identified specific 

siRNA sequences that can be efficiently delivered to mouse macrophages and 

significantly reduce PERK expression. Both of these methods can be applied to study 

the direct impact of PERK activity on lipotoxic ER stress- associated inflammation. The 

results of the siRNA mediated PERK expression silencing experiments showed that 

PERK has a direct contribution to lipid-induced pro-inflammatory response in 

macrophages.  

 

Finally, I examined whether palmitoleate, a bioactive monounsaturated fatty acid 

previously shown to reduce lipid-induced ER stress and death, could also modify 

lipotoxic ER stress-associated inflammation. Based on the results from my experiments, 
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palmitoleate is highly effective in preventing lipid induce inflammation. Unexpectedly, 

I also observed that palmitoleate could significantly block LPS-induced inflammation, 

too.   

 

In summary, during my thesis study I generated several useful tools including siRNA 

mediated knock-down of PERK and a novel chemical-genetic tool to directly and 

specifically modify PERK kinase activity. The findings from my studies demonstrate 

that PERK plays a significant role in lipid-induced inflammation, suggesting 

modification of PERK activity or its direct pro-inflammatory substrates could become 

desirable approaches to inhibit obesity-induced inflammation that contributes to the 

pathogenesis of diabetes and atherosclerosis. The outcome of my studies also showed 

that palmitoleate can significantly reduce lipotoxic-ER stress associated inflammation, 

which may explain its beneficial impact on both insulin resistance and atherosclerosis. 

Furthermore, the ATP-analog sensitive PERK mutant developed in my thesis can be 

coupled with proteomics to identify the full repertoire of PERK substrates during 

metabolic stress. In conclusion, the findings and tools developed in my thesis studies 

can form the basis of future studies to identify the molecular details of PERK’s 

involvement in lipid induced inflammation, the identification of novel PERK substrates 

during metabolic stress and the development of new therapeutic strategies against 

metabolically induced inflammation in obesity, diabetes and atherosclerosis. 
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ÖZET 

Lipotoksik endoplazmik retikulum stresine bağlı inflamasyon: Bir 

biyoaktif lipokine tarafından gerçekleştirilen moleküler mekanizmalar 

ve modifikasyonlar 

Şeyma Demirsoy 

Moleküler Biyoloji ve Genetik Yüksek Lisansı 

Tez Yöneticisi: Yrd.Doç. Dr. Ebru Erbay 

Eylül 2012, 127 Sayfa 

 

Endoplazmik retikulumdaki (ER) protein katlanmasını bozan fizyolojik ya da patolojik 

süreçler katlanmamış protein yanıtı (KPY) adı verilen bir sinyal yolağını aktifleştirir.  

KPY yanlış katlanmış protein seviyelerini düşürerek hücre kurtuluşunu sağlar. KPY’nin 

3 yakınsal sensörü PKR’yi anımsatan ER kinazı (PERK), inositol-gerektiren enzim-1 

(IRE1) ve aktifleştiren transkripsiyon faktör 6’dır. Bunlar ER zarındaki protein 

katlanmasının kalitesini gözlemler ve bu bilgiyi hücrenin geri kalanına yayar. Eğer ER 

dengesi yeniden sağlanamazsa, uzun süre devam eden KPY hücre ölümüne neden 

olabilir. 

 

Son zamanlarda yapılan çalışmalar göstermiştir ki metabolik aşırı yüklenme, özellikle 

yüksek seviyede bulunan yağ asitleri ve kolesterol, ER stresi tetikleyebilir ve KPY 

sinyal yolağını aktifleştirebilir. Bu çalışmalar aynı zamanda ER stresinin obezite, tip 2 

diyabet, insülin direnci, aterozkleroz ve karaciğer yağlanması da dâhil olmak üzere 

metabolik hastalıkların patolojilerinin temelinde yatan merkezi bir mekanizma olduğunu 

da göstermiştir. Besin maddelerinin fazlasının KPY’yi nasıl aktifleştirdiğini ve buna 
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bağlı özgün stres mekanizmalarının metabolik stres sürecinde nasıl çalıştığını anlamak, 

gelecekte ER dengesini yeniden sağlamaya yönelik özgün ve etkili tedavi yöntemlerinin 

gelişimini kolaylaştıracaktır. Yağ fazlasının, bu stres sensörlerini nasıl aktive ettiği ve 

özellikle de yağ metabolizması ve inflamasyon olmak üzere değişmiş hücresel yanıtlarla 

nasıl ilişkilendirileceği konusu halen araştırılmayı gerektirmektedir. 

 

KPY’nin yağlarla aktifleştirilen moleküler mekanizması, ve KPY’nin üç yakınsal 

sensörünün yağ metabolizması ve inflamasyonla olan bağlantısı henüz anlaşılamamıştır. 

KPY’nin sensörlerinden biri olan PERK, translasyon mekanizmasının başlayışını 

kontrol eden ökaryotik translasyon başlatan faktör α (eIF2α) ve redoks dengesini 

sağlayan bir antioksidan transkripsiyon faktörü olan çekirdeksel faktör eritroid-2-ilgili 

faktör-2 (Nrf2) olmak üzere yalnızca iki bilinen substrata sahip hücre zarına gömülü 

serine/threonin kinazdır.  PERK’den kaynaklanan sinyal yolağını çalışmadaki var olan 

en büyük engellerden biri onun aktivitesini düzenleyen kimyasal ve moleküler bir 

tekniğin eksikliği olmuştur. Bu çalışmada PERK’ün özellikle kinaz aktivitesini 

modifiye eden kimyasal-genetik bir yaklaşım geliştirdim. Bu yaklaşıma göre belirli bir 

kinazın ATP bağlayan paketi, mutasyona uğratılmamış doğal kinaz için etkin bir 

substrat olmayan iri hacimli ATP analoğuna uyum sağlayabilmesi için mutasyona 

uğratılır. Böylece sadece mutasyona uğramış kinaz, aktive edici veya engelleyici 

özelliğe sahip iri hacimli ATP analogları tarafından hedeflenebilir ve buna da ATP 

analoğuna duyarlı kinaz (AZKA) denilmektedir. Bunun dışında fare makrofajlarına 

etkili bir şekilde ulaştırılabilecek ve PERK ifadesini önemli ölçüde azaltabilecek özel 

siRNA dizileri tespit ettim.  Bu iki metot da PERK aktivitesinin, lipotoksik ER stresine-

bağlı inflamasyon üzerindeki doğrudan etkisinin araştırılması için kullanılabilir. PERK 
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ifadesini azaltmaya yönelik siRNA deney sonuçları, makrofajlarda palmitat uyarısına 

bağlı pro-inflamatuvar yanıta PERK’ün doğrudan bir katkısının olduğunu göstermiştir.  

 

Son olarak yağlara bağlı ER stresi ve ölümünü azaltmak için daha önceden de gösterilen 

bir  biyoaktif tekli doymamış yağ asidi olan palmitoleatın, lipotoksik ER stresine-bağlı 

inflamasyonu modifiye edip edemeyeceğini de inceledim. Yapmış olduğum deneylerin 

sonuçlarına göre palmitoleat, yağa bağlı inflamasyonun engellenmesinde oldukça 

etkilidir. Beklenmeyen bir şekilde palmitoleatın LPS’e bağlı inflamasyonu da önemli 

ölçüde engellediği gözlemlenmiştir.  

 

Özet olarak tez çalışmam boyunca PERK kinaz aktivitesini doğrudan ve özel olarak 

modifiye etmek için etkin bir kimyasal-genetik mekanizması ve PERK ifadesini 

azaltabilen siRNA dizileri gibi yararlı araçlar geliştirdim. Yapmış olduğum çalışmanın 

sonuçları PERK’ün yağa bağlı inflamasyonda önemli bir rol oynadığını göstermiştir. Bu 

da PERK aktivitesinde veya PERK’ün doğrudan pro-inflamatuvar hedeflerinde 

yapılacak modifikasyonun, diyabet ve aterozkleroz patogenezine katkıda bulunan 

obeziteye bağlı inflamasyonun engellenmesinde arzu edilen yaklaşımlardan biri 

olabileceği anlamına gelmektedir. Bu sonuçlar aynı zamanda palmitoleatın lipotoksik 

ER stresine bağlı inflamasyonu azaltabileceğini göstermiştir ve bu da hem insülin 

direncini hem de aterozkleroz üzerinde yarattığı yararlı etkiyi açıklayabilir. Ayrıca, 

geliştirmiş olduğum bu ATP-analoglarına duyarlı PERK mutantı, metabolik stres 

sırasında PERK’ün hedeflerinin tümünü tespit etmek için proteomik çalışmaları ile 

birleştirilebilir. Sonuç olarak, tez çalışmamda geliştirdiğim bulgular ve araçlar, yağa 

bağlı inflamasyonda PERK’ün rolünün moleküler mekanizmasının tanımlanması, 

metabolik stress sırasında PERK’e özgün hedeflerinin tespiti ve obezite, diyabet ve 
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aterozkleroz hastalıklarında metabolik inflamasyona karşı yeni tedavi yöntemlerinin 

geliştirilmesi yönünde yapılacak olan çalışmalara temel  oluşturabilir. 
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1. Introduction 
 

1.1 Endoplasmic Reticulum Function and Biogenesis 

The endoplasmic reticulum (ER), an extended membrane network, is the main organelle 

for protein folding and secretion, lipid synthesis and lipid droplet formation and a major 

store for calcium (Ca
++

). The ER controls a wide range of cellular process such as 

organogenesis, transcriptional activity, stress responses and apoptosis due to its many 

homeostatic functions
9
. 

 

Secreted and transmembranes proteins are folded and reach maturation in the ER, which 

is the major gateway for the secretory pathway. The translation of proteins occurs in the 

ribosomes located on the cytosolic surface of the rough ER
1
. The proteins in the ER 

lumen or the newly synthesized, unfolded proteins being translocated into ER by Sec61 

complex
118 

are covered with chaperones and associate with folding enzymes in the 

oxidizing and Ca
++

 rich environment of the ER. These nascent chains become N-

glycosylated and assume their secondary and tertiary structures with the assistance of 

stabilizing protein disulfide isomerase (PDI).  Endoplasmic reticulum oxidoreductin 1α 

and β (Ero1α and Ero1β) are responsible for the oxidation of PDI
19, 113

. In the first step, 

a disulfide is introduced into the substrate protein with the concomitant reduction of a 

disulfide within the active site in PDI
79

. Then Ero1α or Ero1β catalyzes the reoxidation 

of the PDI active site in a reaction involving the reduction of oxygen to liberate 

hydrogen peroxide
132, 43

. In addition to these, the amino acid cis-trans isomerases, the 

chaperones such as the glucose regulated protein (GRP) 94 and immunoglobulin (Ig) 

heavy chain binding protein (BiP), N-glycosylation enzymes and the lectins, calnexin 
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and calreticulin; all reside in the ER and function in protein maturation. Mature proteins 

that pass quality control are transferred to Golgi, while the unqualified proteins become 

targets ER-associated degradation (ERAD). ER-associated degradation (ERAD) 

includes a translocation into cytosol by a translocon channel for proteosomal 

degradation. Recent studies show that the mammalian translocon associated proteins, 

with the help of Sec 61, can bind to improperly folded proteins and accelerate their 

degradation
103

. The other proteins as a translocon channel are derlins 
86, 87, 168, and 155

. 

Taken together, ER is an important organelle for cell homeostasis and protein 

metabolism. 

 

ER is also a major store for Ca
++

; the concentration of Ca
++

 in rested ER can reach to 

three to four times higher than that in the cytosol. This difference is generated by the 

sarco (endo) plasmic reticulum Ca
++

 ATPase (SERCA) proteins that pump the Ca
++

 into 

ER lumen. The latter release of Ca
++ 

is controlled by the signaling molecule, Ins (1, 4, 

5) P3, and the ryanodine receptors
9
.  

 

Furthermore, it was recently suggested that lipid droplet formation from ER membrane 

is mediated by ER resident proteins such as calnexin and the immunoglobulin heavy 

chain binding protein BiP
117

.  Lipid droplets are the main intracellular storage sites for 

esterified fatty acids and neutral lipids such as triglycerides (TG) and cholesterol esters 

(CE).  While the outer layer involves amphipathic lipids such as phospholipids (PL) and 

cholesterol (CL), the core is made of only neutral lipids
93

. The lipid droplets provide 

building blocks for biological membranes through hormone-dependent and 

independent-pathways
33

. The biogenesis mechanism of lipid droplets is not clear, but 

data shows it is mainly derived from the ER. The ER may assume a central role in lipid 
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droplet biogenesis through its enzymes like the diacylglycerol acyltransferase 1(DGAT) 

or 1-acylglycerol-3-phosphate acyltransferase (AGAT), which synthesize neutral lipids 

residing on the ER membrane. Additionally, Robenek and colleagues observed that a 

large portion of lipid droplets are covered by ER membranes 
127

. When fatty acids 

accumulate in the cell, TG is formed as a form of storing these fatty acids for future 

energy and neutralization. For this purpose, three fatty acids and one glycerol molecule 

are joined by enzymes resident in the ER membrane such as acyltransferases. The newly 

formed TG molecules are stored in lipid droplets that are surrounded by a single PL 

membrane layer and associated proteins. One hypothesis is that the lipid droplet 

originates from between two membranes of the ER and moves toward the outer 

cytoplasmic layer of the ER membrane via bud formation. This hypothesis could 

explain why the lipid droplet is surrounded by a PL monolayer 
15

. A contrasting second 

theory explains that the lipid droplet occurs outside of the ER but with the ER 

facilitating synthesis of the surrounding PL monolayer
127

. Regardless of the model, ER 

membranes and associated proteins are found to be integral components of lipid 

droplets. 

 

Another crucial function of the ER is in lipid biosynthesis; ER is a major site for the 

production of phospholipids, cholesterol and ceramides
96

. For example, low 

intracellular cholesterol levels activate the ER resident sterol regulatory element-

binding protein (SREBP 1 and 2), a transcriptional regulator of the fatty acid and 

cholesterol synthesis pathway, respectively, which works to upregulate the expression 

of enzymes responsible for cholesterol synthesis. Stearoyl coenzyme A (CoA) 

desaturase (SCD), which catalyzes the delta-9 desaturation of saturated free fatty acids 

(FFAs) is another enzyme located on the ER membranes. Furthermore, serine 
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palmitoyltransferase, which is rate –limiting enzyme of de novo ceramide production, is 

found on the ER membrane. Fatty acid elongation beyond the 16-Carbons (length of the 

palmitate) produced by the cytoplasmic Fatty acid synthase (FAS) is mainly catalyzed 

by enzymes such as DGATs [DAG (diacylglycerol) acyltransferases] for triacyl- 

glycerols) and/or ASATs (acyl-CoA: sterol acyltransferases) for SEs (steryl esters) 

associated with the ER
48

. These ER enzymes lengthen not only fatty acids produced by 

FAS but also the dietary polyunsaturated fatty acids. Formation of a double bond in a 

fatty acid involves the following endoplasmic reticulum membrane proteins such as 

desaturases, NADH-cyt b5 Reductase and Cytochrome b5.  

 

The expansion of ER based on the increased demands on the exocytic pathway was 

documented in some specialized cells including the β cells of the pancreas and 

antibody-secreting plasma cells. However, the molecular mechanisms coordinating the 

protein and lipid components of the ER during this process remain unclear
48

. A study 

conducted by Sriburi and colleagues showed that spliced XBP-1 (X box binding 

protein-1) activated by UPR was enough to stimulate synthesis of phosphatidylcholine, 

the primary PL of the ER membrane
138

. Overexpression of the spliced XBP-1 in cells 

resulted in increased membrane PLs, surface area and volume of the rough ER, and 

enhanced activity of the cytidine diphosphocholine pathway of phosphatidylcholine 

biosynthesis
138

. This data showed that coordinating induction of phospholipid 

biosynthesis with up-regulated expression of ER resident proteins allows the 

mammalian UPR to both build and equip the ER, at least via XBP-1 activity. These 

findings demonstrate ER plays an important role in the maintenance of its own 

biogenesis. 
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The ER plays a role on insulin biosynthesis from pre-pro-insulin to pro-insulin
90

. The 

newly synthesized and signal tagged pre-pro-insulin in the cytoplasm is translocated 

into the lumen of the ER
124, 125

. After the signal peptide is cleaved in the ER by the 

endopeptidase called proprotein convertase 1, pro-insulin undergoes folding process in 

the ER lumen and the newly formed disulfide bonds lead to its stabilization and 

bioactivity
124, 125

. Then, this processed pro-insulin passes into secretory granules 

through Golgi apparatus. In final step, it gets native structure and then is secreted. 

 

1.2 Endoplasmic Reticulum Stress 

1.2.1 Endoplasmic Reticulum Stress : The Causes and Consequences 

The ER participates in wide range of cellular activity from protein folding, lipid 

synthesis, calcium homeostasis to its own biogenesis. That’s why many factors that 

negatively impact cellular homeostasis leads to ER dysfunction and stress. Protein 

overload, accumulation of unfolded proteins, protein trafficking defects, chaperones 

deficiency, environmental toxins, viral infections, aging and chemicals such as 

tunicamycin, thapsigargin, and DTT destroy the balanced environment of the ER 

leading to a unique signaling cascade emanating from the ER and known as the 

accumulation of unfolded protein response (UPR)
 30, 35

. Physiological and pathological 

processes including aging
105

, glucose deprivation, aberrant calcium regulation, viral 

infection and hypoxia may alter the protein folding and cause ER stress
70, 128

. In the 

stressed ER, the misfolded or unfolded proteins are targeted for destruction through the 

ER-associated degradation (ERAD) pathway, which leads to their translocation to the 

cytosol for proteasomal degradation where they are degraded by ubiquitin-proteasome 

machinery
70

.  Such proteins become subject to the ER quality system (ERQC), in which 

molecular chaperones are the main players aiding in proper folding and evaluation of 
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protein damage
30

. If the screened substrates fail to pass this quality test, they are marked 

as substrates for ERAD with the help of 76 amino acid peptide- specific E3 ubiquitin 

near or in ER membrane and then targeted to the proteasome, which is a multi-catalytic 

protease that resides in cytoplasm. If the ER stress can not be relieved, a specific stress 

response pathway, the UPR, is activated. A major function of the UPR is to combat with 

the accumulation of unfolded proteins through three complementary signaling pathways 

activated depending on the duration and the degree of the cellular insult. These 

functions of the UPR include reducing the protein load, increasing the capacity of the 

ER to handle the unfolded proteins and the decision to commit the cell to apoptotic 

death. This response is made of three signaling arms each governed by a proximal stress 

sensor: Inositol requiring enzyme 1 (IRE1), PKR resemble ER kinase (PERK) and 

activating transcription factor 6 (ATF6).  

 

Recent studies showed that metabolic stress during obesity leads to ER stress and 

activation of the UPR especially in metabolically active sites such as liver, adipose 

tissues and pancreatic cells
57

. Nutrient or energy deprivation, in addition to its excess in 

obesity, can lead to ER stress.  How obesity leads to ER stress remains a question of 

great interest. The maintenance of ER membrane function is supported by lipid 

metabolism, so one possibility is that obesity-driven perturbations in lipid metabolism 

can cause stress in the ER and lead to its metabolic dysfunction
37

. ER stress is a marker 

of early consequences of nutrient excess and a causally linked to the development of 

inflammation and insulin resistance in metabolic tissues including hepatocytes, 

cardiomyoblasts, pancreatic β cells and macrophages
17, 18, 75, 158

. Based on its duration, 

ER stress can be categorized as acute, periodic and chronic. The acute form of ER stress 

can be induced experimentally through treatments of chemicals such as tunicamycin, 
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DTT, calcium ionophores, thapsigargin and high levels of lipids such as saturated fatty 

acids or free cholesterol. An example of periodic ER stress is related to the rhythmic 

and transient physiological changes that occur during feeding and fasting cycles
17, 116

. 

After each cycle, the activation of the UPR is completely restored back to the basal 

levels. On the other hand, chronic ER stress indicates that the stress cannot be resolved 

and is continuous due to the presence of an ER stress inducer or as part of a vicious 

cycle, such as that created during obesity
38

. 

 

1.2.2 The Unfolded Protein Response 

Kozutsumi and colleagues suggested for the first time that unfolded proteins can 

activate a signal transduction pathway emanating from the ER
78

. This study observed 

that the expression of mutant influenza hemagglutinin lead to the induction of both 

unfolded proteins and the expression of ER resident proteins
78

. The delineation of this 

signaling pathway was first depicted in yeast, Saccharomyces cerevisiae, in which a 22-

bp cis-acting element termed the UPR element was identified in the promoter of most 

genes up-regulated by UPR
98, 99

.  The screening of the yeast mutants that induced this 

UPR element helped identify an ER trans-membrane protein, IRE1p. IRE1p turned out 

to be a bifunctional enzyme with both Ser/Thr kinase and endoribonuclease activities, 

which cleaves a transcriptional factor HAC1, in its C terminal domain
26, 98

. Originally, 

the IRE1p was identified as a gene required for inositol prototrophy in S. cerevisiae and 

hinting to its mammalian counterpart’s diverse functions in lipid metabolism
107

. In 

eukaryotic cells, ER homeostasis is controlled and communicated through the unfolded 

protein response (UPR) initiated by three ER membrane associated proteins, PERK 

(PKR-like eukaryotic initiation factor 2 α kinase), IRE1 (Inositol requiring enzyme 1), 

and ATF 6 (activating transcriptional factor 6) (Figure 1.1). To maintain ER 
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homeostasis, these proteins keep a dynamic control over the ER chaperones- 

BiP/GRP78
10, 134

. However, when ER homeostasis cannot be maintained, IRE1 and 

PERK are oligomerized and become fully activated to engage the downstream adaptive 

or destructive signaling pathways
129

. Furthermore, the ER resident transcription factor, 

ATF6, translocates to the Golgi where it is cleaved by a serine protease site -1 protease 

(S1P) and the metalloprotase site-2 protease (S2P) for full activation
23

 (Figure 1.1). 

 

 

Figure 1. 1   ER stress and Unfolded Protein Response (reprinted with permission from Simone F., 

Gorman AM., Hori O., and Samali A. (2010). Cellular Stress Responses: Cell Survival and Cell 

Death.  International Journal of Cell Biology, vol. 2010, Article ID 214074, 23 pages.) 

ER stress caused by various disturbances leads to the activation of the three arms of unfolded protein 

response regulated by PERK (PKR resemble ER kinase), activating transcription factor 6 (ATF 6) and 

Inositol requiring enyzme 1 (IRE1). PERK phosphorylates eukaryotic initiation factor 2 alpha (eIF2) 

followed by global translation silencing and activation of activating transcription factor 4 (ATF 4) 

resulting in the expression of UPR target genes such as protein chaperones. ATF 6 goes to Golgi and is 

cleaved into the mature form, followed by transportation of nucleus where it regulates the expression of 
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UPR related genes. IRE1 phosphorylates itself and also catalyzes splicing of XBP-1 (X-box binding 

protein 1) mRNA through its RNAase activity. 

 

Historically, the first discovered and conserved branch of the UPR is regulated by IRE1, 

which regulates the production of key ER chaperons through processing and activating 

the XBP1 mRNA
20, 15

. IRE1 has two homologs: IRE1α is expressed in a variety of 

tissues including placenta, liver, skeletal muscle, lung and especially pancreas
145

, but 

IRE1β is expressed only in the intestinal epithelia
145, 156

.  IRE1 is activated by homo-

oligomerization followed by auto-phosphorylation of the C-terminal kinase domain at 

serine 724
114, 133, 159,161

. The kinase activity of IRE1 has only one known substrate, itself. 

Although poorly understood, IRE1 has a unique effector function which leads to the 

endonucleolytic cleavage of its main substrate: mRNA encoding a transcription factor 

called HAC1 in yeast and XBP1 (X-box binding protein 1) in metazoans.  IRE1’s 

endonucleolytic activity cleaves 26 nucleotides from the intron of XBP1-mRNA
81, 135, 

171
, resulting in a 41 kDA frameshift variant (sXBP1) that is an active transcription 

factor. XBP-1 regulates the expression of ER chaperones and the components of ERAD 

machinery
92, 123

. Furthemore, XBP1 upregulates the phospholipid synthesis enzymes 

leading to ER expansion, a hallmark of UPR. IRE1 also has a nonspesific RNAse 

activity that degrades mRNAs localized on ER membrane, reducing the synthesis and 

import of the corresponding proteins into the ER lumen
53

. Additionally, XBP-1 can 

upregulate the expression of P58
IPK

; a member of the Hsp40 (heat shock protein 40 kD) 

known as DNAJ in short name that is responsible of proper protein folding, acts as a co-

chaperones and also negatively regulates PERK activity forming one of the many 

intersections between the three UPR braches
167

. The IRE1 dimers also interact with 

adaptor proteins such as TNF receptor-associated factor 2 (TRAF2) to induce the 
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apoptosis signal regulating kinase (ASK1) and subsequently activate the pro-apoptotic 

cJUN NH2-terminal Kinase (JNK) and p38 mitogen activated kinase (p38MAPK)
 149

 

and caspase 12 Pro-caspase 12 forms a complex with TRAF2, but with activation of ER 

stress these two proteins dissociate leading to the activation of caspase 12 and resulting 

in cell death
169

. IRE1 can also modulate the activation of extracellular signal regulated 

kinases (ERKs) and nuclear factor қB (NF-қB) pathways
62, 106

 via JNK-AP1 pathways 

(Figure 1.2). 

 

 

Figure 1. 2 IRE1 signaling (reprinted with permission from Ron, D., and Walter, P. (2007). Signal 

integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8, 

519–529. © Nature publishing Group, 2007) 

While inositol requiring enzyme 1 (IRE1) is in nonoligomerization state in unstressed conditions, IRE1 

oligomerizes and autophosphorylates itself in stressed conditions.  Upon stress induced activation, the 

RNAse activity of IRE1 cleaves X-box binding protein (XBP-1) in higher eukaryotes (HAC1 

(homologous to ATF/CREB1) in yeast) into small RNA fragment encoding the active form of XBP-1 

transcription factor, while unspliced XBP-1 encodes XBP1u, an inhibitor of UPR
171

. This is followed by 

the transcriptional upregulation of unfolded protein response (UPR) related genes. XBP-1 is also controls 

ER biogenesis. Alternatively, phosphorylated IRE1 recruits TRAF2 (tumour necrosis factor receptor 

(TNFR)-associated factor-2 resulting in activation of Jun N-terminal kinase (JNK)
 149

 and change 
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intracellular signaling such as insulin resistance
109

. Additionally, the IRE1-TRAF2 complex acts on 

caspase 12 activation and cell death
171

. ER stress can also lead to an ER-associated degradation (ERAD) 

of misfolded proteins. 

 

Another arm of the UPR is initiated by the stress sensor known as the activating 

transcription factor 6 (ATF6), which is a 90kDA bZIP protein that becomes active after 

specific post-translational modifications. The disulfide and glycosylation bound luminal 

domain of ATF6 participates in sensing ER stress
54, 102

. Activation of ATF6 leads to its 

translocation to the Golgi, where it gets processed by site-1 and site-2 protease (S1P and 

S2P), which sequentially remove the luminal domain and the trans-membrane anchor of 

ATF6, respectively. After cleavage, now a 50 kDA protein, ATF6 translocates into the 

nucleus, where it binds to ER stress response element (ERSE; CCAAT(N)9CCACG)
171

 

found in genes especially involved in the ERAD pathway, as well as some involved in 

lipid biosynthesis, ER  expansion and protein folding
45

. A regulatory step for ATF6 

activity involves the Wolfram Syndrome 1 (WSF1) protein, which marks ATF6 as a 

target for ubiquitination and proteasomal degradation by E3 ubiquitin ligase, HMG-

CoA reductase degradation protein 1 (HRD1)
36

. Recent studies identified some 

homologs of ATF6 such as OASIS, CREBH, LUMAN, CREB4 and BBF2H7 can 

undergo similar processing at the Golgi and may have a role at tissue-specific cellular 

stress responses
129

 (Figure 1.3). 
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Figure 1. 3  ATF6 signaling (reprinted with permission from Ron, D., and Walter, P. (2007). Signal 

integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8, 

519–529. © Nature publishing Group, 2007).  

In unstressed conditions, activating transcription factor 6 (ATF6) and cylic AMP response element 

binding protein hepatocyte (CREBH) are located in the ER. Also, ATF6 is tethered to the ER by an ER 

chaperone immunoglobulin –binding protein (BiP) found in the lumenal domain of ER membrane. In 

stressed conditions, both ATF6 and CREBH translocate to the Golgi apparatus with the help of unknown 

vesicular transport system and are cleaved by first the lumenal site-1 protease and then the intra-

membrane site 2 protease. After this activating cleavage, both proteins move to the nucleus, where ATF 6 

activates UPR target genes and CREBH activates acute phase genes. 

 

The third UPR arm is governed by the PKR-like eukaryotic initiation factor 2 α kinase 

(PERK), also known as pancreatic eIF2-alpha kinase (PEK). This is a type-1 trans 

membrane protein with ER luminal stress sensor and a cytosolic protein kinase domain. 

Under stress conditions, BiP dissociates from the N terminal of PERK, leading to its 

dimerization and autophosphorylation at the Threonine 981 on its kinase domain
73

. The 

C terminal kinase domain PERK shares similarities with other eukaryotic initiation 

factor 2 α a kinase such as double stranded RNA-dependent protein kinase R (PKR), 

activated by double stranded RNAs derived from viral infections, the general control 

non-depressible kinase 2 (GCN2), activated by uncharged tRNAs during amino acid 

deprivation, and the heme regulated inhibitor kinase (HRI), activated by heme 

limitation
51, 136, 137

. Under stress conditions, PERK phosphorylates α subunit of eIF2 at 
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serine 51
52

. The eIF2α is a heterodimer protein that is required for the transport of the 

initiating protein methoinyl-transfer RNA (met-tRNA) to the ribosome. Under stress 

conditions, PERK phosphorylates eIF2α, which inhibits translation initiation
70, 52

. PERK 

activity also stimulates some stress induced genes including the activating transcription 

factor-4 (ATF-4), the nuclear erythroid 2 p45-related factor 2 (Nrf-2)
27

 and nuclear 

factor kappa β (NF-қB)
 28

. ATF-4 regulates the expression of genes involved in amino 

acid import, glutathione biosynthesis, resistance to oxidative stress
50

 as well as the pro-

apoptotic genes such as the CCAAT/enhancer binding protein (C/EBP) homologous 

protein (CHOP) and activating transcription factor-3 (ATF 3) 
90, 65, 119

. PERK dependent 

phosphorylation of the Nuclear factor eryhthroid-2-related factor-2) Nrf2/Keap1 (Kelch-

like ECH-associated Protein 1) complexes leads to dissociation of this complex 

followed by Nrf2’s import into the nucleus
27

. The dephosphorylation of eIF2α is 

mediated by the growth arrest and DNA damage inducible gene (GADD34) interacting 

with catalytic subunit of protein phosphatase (PP) 1
108

 (Figure 1.4). Additionally, P58
IPK

 

that is induced by the activation of ATF6 binds to the cytosolic kinase domain of PERK 

and represses its activity
151, 167

.  Interestingly, P58
PIK

 expression occurs several hours 

after PERK activation and eIF2α phosphorylation. Thus, P58
IPK

 induction may be 

thought as a marking the end of UPR and the beginning of the alarm/apoptosis phase of 

response
140

 since at this point, if the ER stress can be handled, ER returns to normal 

function and the cell survives; but if the stress keeps going on, the blocking of the 

translational suppression by P58IPK might lead to apoptosis
140
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Figure 1. 4 PERK signaling pathway (reprinted with permission from Ron, D., and Walter, P. 

(2007). Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. 

Cell Biol. 8, 519–529. © Nature publishing Group, 2007) 

Under stress conditions, protein kinase RNA (PKR) - like ER kinase (PERK) is activated, resulting in the 

phosphorylation of eukaryotic initiation factor 2 alpha (eIF2alpha) followed by general translation 

inhibition but selective translational activation of several UPR related genes. eIF2alpha can also be 

phosphorylated by other kinases including protein kine RNA (PKR), heme regulated inhibitor kinase 

(HRI) and general control non-derepressible-2 (GCN2) in an independent manner from ER stress. Hence, 

the larger stress response to a multitude of cellular insults and that includes the UPR is known as the 

integrated stress response (ISR). 

 

1.2.3 The Adaptive and Destructive Outcomes of the Unfolded Protein Response 

UPR response involves three phases: adaptation, alarm and apoptosis (Figure 1.5). In 

the adaptation phase, UPR tries to re-establish homeostasis in cells by upregulating the 

expression of chaperone proteins that aid in protein folding. While the unfolded proteins 

degradation increases, global translation is attenuated in order to reduce the build up of 

further misfolded proteins in the ER. If this stage fails, UPR stimulates an alarm phase, 
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followed by the execution of the apoptosis program
122

. The alarm phase includes several 

signal transduction events, leading to the suppression of the expression and activity of 

pro-survival factors such as the B-cell lymphoma (Bcl2) protein. Beyond this stage, the 

stressed cell will undergo apoptosis. In addition ER stress can induce autophagy
8, 39, 61, 

69, 77, 111, and 170
. This fate decision from survival to death can be due to unresolved stress 

and incomplete recovery from the accumulation of misfolded proteins in the ER, ER 

Ca
++

 depletion, hampered disulfide formation and perturbed in redox state. All these 

stressors result in ER dysfunction and when prolonged, in apoptosis through the up 

regulation of the pro-apoptototic CCAAT/enhancer binding protein (CHOP), activation 

of JNK kinase and caspase 12 and via the interaction of IRE1 with other ER-localized 

pro-apoptotic B-cell lymphoma 2 (Bcl-2) family proteins
141

.  However, the decision 

from survival to death in UPR may change from cell to cell since UPR is cell 

autonomous and context-dependent
47

. As an example, salubrinal, an inhibitor of eIF2α   

de-phosphorylation, protects pheochromocytoma cells from ER stress whereas it 

induces apoptosis in pancreatic β cells and renders them sensitive to free fatty acids
25, 80

. 

 

 

Figure 1. 5  The switch from survival to apoptosis during ER stress (reprinted with permission 

from Jӓger R., Mathieu J.M., Bertran, Gorman A.M., Vandenabeele P., and Samali A. (2012).  The 

unfolded Protein Response at the crossroads of cellular life and death during endoplasmic 

reticulum stress. Biol. Cell; 104, 259–270. © John Wiley and Sons, 2012 

In early steps of ER stress, Both IRE1 and PERK favour cell survival, but in prolonged ER stress, 

adaptive signaling of IRE1 attenuates whereas PERK begins to engage pro-apoptotic pathways. 
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1.3  The Interface Between ER Stress And Inflammation 

Recent studies have shown that the UPR may be linked to inflammatory signaling 

cascades and stress signaling pathways through multiple scenarios including activation 

of JNK and NF-қB pathways
28, 62

, the production of ROS and the generation of nitric 

oxide resulting in both ER stress and inflammation
27, 42

. These pathways also have a 

central role in obesity-induced inflammation and metabolic abnormalities, especially in 

abnormal insulin action
56

.  

 

IRE1 is required for the ER stress induced activation of JNK, which regulates many 

inflammatory genes
149

. Earlier studies showed that pro-inflammatory cytokines such as 

TNF-alpha, IL6 and MCP-1 are suppressed in the absence of JNK
 
in

 
cells and tissues, 

and that chronic JNK activation contributes to insulin resistance and type 2 diabetes
55, 

146 and 150
. 

 

Other mechanism that leads to inflammation involves NF-қB-IKK activation by both 

IRE1α, through the interaction of TRAF2 (TNF receptor-associated factor 2) and 

apoptosis signal-regulating kinase 1 (ASK1), which, in turn, causes the phosphorylation 

and activation of JNK. This active JNK phosphorylates and induces the activity of 

transcription factor activator protein 1 (AP-1), which leads to the expression of 

inflammatory genes. Additionally, AP-1 recruits IқB kinase (IKK) causing release of 

NFқB and so promotes NFқB mediated inflammation. Moreover, PERK via PERK 

eIF2α mediated translation suppression of IқB can directly stimulate NFқB (negatively 

regulating nuclear factor-қB) activation. This activation results in increase in the ratio of 

NFқB to IқB, thereby allowing the excess NFқB to enter the nucleus to trigger 
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expression of inflammatory cytokines
28, 62, and 138

. Furthermore, recent studies also link 

the ATF6-regulated branch of UPR to NF-қB-IKK signaling, suggesting specific 

inflammatory signals may be induced through all three branches of the UPR
166

. Some 

studies in cellular systems report that experimental induction of UPR via free 

cholesterol or high amounts of free fatty acids
68

 may cause increased expression of pro-

inflammatory molecules such as IL-8, IL-6, MCP-1 and TNFalpha
82

. 

  

Another mechanism that ER stress may be linked to inflammation involves the 

transcription factor cyclic-AMP-responsive-element-binding protein H (CREBH), 

which also resides on the ER membrane and stimulates the production of acute phase 

response genes in the liver such as C reactive protein (CRP) and serum amyloid P-

component (SAP)
 174

. CREBH and CHOP also may play an important role in the 

regulation of peptide hormone hepcidin, which may present a link between iron 

metabolism and inflammatory output via ER
152

. However, these interactions between 

ER stress and inflammation are not unidirectional, because recent studies in the brain 

provided proof that both ER stress and inflammation can activate each other, while 

inhibiting normal cellular metabolism
174

. In this particular study, activation of IKK-β 

led to ER stress and the activation of ER stress induced IKK-β. 

 

More recently it was discovered that double stranded RNA-dependent protein kinase 

(PKR), which is another eIF2α kinase that is homologous to PERK, plays a unique role 

in linking over-nutrition to ER stress and inflammation in metabolic diseases
104

. Here, 

PKR was activated by lipids and was shown to have a central role in the activation of 

JNK and inflammatory responses during obesity. Moreover, PKR directly blocked 

insulin action via phosphorylating insulin receptor substrate-1 (IRS1). It is speculated 
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that PKR could assemble a putative metabolically-activated inflammatory complex 

called metabolic inflammasome or “metaflammasome” that integrates insulin action, 

pathogen responses and nutrient sensing.  This scaffold may explain the functional 

overlap and between multiple signaling pathways, metabolic, stress and inflammatory, 

in modulating metabolism. Moreover, Baltzis et al. observed that PERK deficient 

mouse embryonic fibroblasts (MEF), which display much higher levels of vesicular 

stomatitis virus replication than that in the wild type MEFs, also exhibited partial PKR 

activation, suggesting a cross talk may occur between PKR and PERK
5
. 

 

The interactions between ER stress and inflammation also involves oxidative stress 

caused by a toxic accumulation of ROS in the cells
27

. This can be due to protein 

chaperones uplegulated by UPR involving in disulfide bond formation in ER.  Ero1p an 

essential for respiration and vegetative growth 2 (Erv2p), two enzymes responsible for 

disulfide bond formation, utilize oxidation/reduction reactions for reducing molecular 

oxygen. This reduced molecular oxygen also accumulates during increased improper 

protein folding in ER stress and is toxic to cells
49

. This increase in ROS levels due to 

UPR occurs through PERK mediated activation of antioxidant program with the help of 

transcriptional factor Nrf2 to neutralize the toxic effects of ROS. Hence, PERK to Nrf2 

signaling may be another potential link between inflammation and ER stress.  

 

Moreover, nitric oxide (NO) generation may be related to ER stress such that NO-

induced S-nitrosylation of PDI, which catalyzes the thiol-disulphide exchange by 

facilitating disulphide bond formation and rearrangement reactions, inhibits its 

enzymatic activity and leads to the accumulation of polyubiquitinated proteins and 

activation of the UPR
147

. ER stress also can induce iNOS via activation of pro-
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inflammatory responses through NKқβ activation
165

. However, the ER molecules that 

have direct effect on iNOS activation still remain unknown. 

 

 

Figure 1. 6 ER stress and Inflammation (reprinted with permission from Hotamisligil GS. (2008b) 

Endoplasmic Reticulum stress and inflammatory basis of metabolic disease. Cell 140, 900–917. © 

Elsevier, 2010. 

There are several potential pathways by which ER stress may be linked to inflammatory responses. 

Protein attenuation mediated by PERK activity can cause the release of NF-қB from its inhibitor IқB. 

This results in the transport of NF-қB to nucleus followed by changes in some genes involved in 

inflammatory pathways such as cytokines IL-1 and TNFalpha. Also, IRE1 recruits tumor necrosis factor 2 

(TRAF2) and this complex causes activation of IқB and JNK resulting in activation of some 

inflammatory genes in downstream. The eIF2α kinase protein kinase RNA (PKR), induced upon ER 

stress, can form the core of a putative metabolic inflammasome called metaflammasome and has a direct 

interaction with some inflammatory kinases such as JNK and IKK, insulin receptor signaling components 

such as IRS1 and the translational machinery via eIF2. 

 

The UPR may play a role in the dysfunction and death of macrophages under lipotoxic 

stress
95

. Also, it has been reported that lipid chaperones such as the adipocyte and 

macrophage fatty acid binding protein 2 (aP2) that can bind long chain fatty acids could 

be a link between toxic lipids and ER stress
32

. In the study by Erbay and colleagues, 

aP2
-/-

 macrophages were found to be resistant to ER stress induced by high amounts of 
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saturated fatty acids and the lipid-induced toxicity was mediated by the aP2 protein. 

Lipotoxicity of immune cells such as macrophages is one of the critical features of 

obesity and atherosclerosis suggesting that the action of the lipid chaperones in 

controlling lipid-induced ER stress could be therapeutically targeted to treat these 

diseases and their complications
32, 91

. To this date, the precise molecular links between 

ER stress and inflammation and how ER stress in immune cells alters the progress of 

chronic metabolic diseases is not fully understood (Figure 1.6). 

 

1.4 ER Stress And Inflammation In Cardiometabolic Syndrome                       

Myocardial infarction and stroke are two consequences of the atherosclerotic disease 

and the leading cause of mortality and morbidity worldwide. Even though there have 

been important advances to understanding the pathogenic mechanisms underlying these 

metabolic diseases, due to very limited preventive and therapeutic strategies they still 

account for one third of all deaths annually. The signaling pathways that lie at the 

interface of chronic inflammation and nutrient metabolism strongly influence these 

chronic diseases as well as obesity, insulin resistance and type 2 diabetes
59

. 

 

Atherogenesis is triggered with the subendothelial retention of apolipoprotein (apo) B-

containing lipoproteins in focal areas of the arterial subendothelium
162, 142

. A series of 

maladaptive inflammatory responses are triggered against oxidized or alternatively 

modified lipoproteins
162, 142, 89, 84 and 40

. Blood-borne monocytes are attracted to focal 

sites of activated endothelial cells (ECs) overlying areas of lipoprotein retention, 

followed by monocyte differentiation into macrophages. The recruited macrophages 

ingest these modified lipoproteins, convert to foam cells, and are of pro-inflammatory 

nature
89, 40, 41 and 84

. 
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In most lesions, the detrimental clinical results of atherosclerosis are prevented by 

several adaptive processes: The remodeling of the vessel wall maintains the patency of 

the arterial lumen. The phagocytic clearance (“efferocytosis”) of dead cells, mostly 

apoptotic macrophages, prevents plaque necrosis. The scar formation by collagen-

producing intimal smooth muscle cells (myofibroblasts) helps to defend against matrix 

protease–mediated erosion or rupture of the intima into the lumen. Despite all these 

measures, a minority of these lesions progress due to increased lesional macrophage 

apoptosis, defective efferocytosis, and death of collagen producing intimal smooth 

muscle cells. These plaques erode or rupture, leading to the exposure of the blood to 

coagulation and thrombotic factors released from the necrotic lesions and acute lumenal 

thrombosis 
7, 83,

 
143 and 154

. Studies conducted in animal models of atherosclerosis and, 

most importantly, through the analysis of human atherosclerotic lesions, support ER 

stress occurs in atherosclerotic plaques, particularly in the advanced stages of the 

disease leading to acute thrombosis
101

. ER stress occurs in lipid-laden macrophages at 

all stages of the disease
34, 101 and 175

. In Miyoishi and colleagues’ study human coronary 

artery lesions from autopsy samples and fresh human carotid endarterectomy specimens 

were examined in terms of lesion stage, UPR markers, and apoptosis, revealing a 

striking relationship among advanced lesion stage, CHOP expression, and lesional 

apoptosis
101

. 

 

The possible connection between endoplasmic reticulum stress and metabolic disorders 

such as obesity, diabetes and atherosclerosis may occur through several ways. First, 

there is a direct relation between lipid metabolism and ER stress, including the 

existence of lipogenic enzymes in ER domains. Furthermore, XBP1 plays a role in ER 

phosphatidylcholine synthesis and ER membrane expansion
139

. Multiple studies also 
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show that ER stress promotes lipogenesis and hepatic lipid accumulation, but how the 

individual UPR branches plays a role in this remains unclear
59

. Second, ER stress leads 

to abnormal insulin action and hyperglycemia by causing insulin resistance, stimulation 

of hepatic glucose production and suppression of glucose disposal. Studies show ER 

stress is a potential link between obesity, type 2 diabetes and atherosclerosis
121

. 

Moreover, ER stress may lead to the production of inflammatory mediators and reactive 

oxygen species, which are destructive for insulin action, lipid metabolism and glucose 

homeostasis
60

.  

 

It is known that primary macrophages play an important role in the progress of 

atherosclerosis
97

. Hence, the studies on the role of ER stress in macrophages may 

provide clues to ER stress contribution to atherosclerosis. ER stress can be induced by 

excess accumulation of free cholesterol, resulting with cell death in macrophages. The 

overload of fatty acid leads to their accumulation and stiffening of ER membranes, 

which are known to be poor in cholesterol content. Consequently, the stiffening of ER 

membranes activates the UPR and the PERK-mediated CHOP activation leads to 

apoptosis
34

.  

 

Recently, it has been reported that obesity and insulin resistance may stimulate ER 

stress in lesion macrophages due to elevations of saturated fatty acids (SFAs) 
32, 131

. 

SFAs cause the loss of fluidity of the ER membrane bilayer, which is a known inducer 

of the UPR. However, the exact mechanism of SFA-induced ER stress is not fully 

understood. Erbay and colleagues demonstrated that intracellular lipid chaperones (or 

macrophage/adipoctye fatty acid-binding protein-4, aP2) mediates SFA- induced ER 

stress and apoptosis in macrophages. In this study, ApoE
-/-

 ( apolipoprotein E) mouse 
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model fed by  Western diet, when genetically deficient for aP2 were found to be 

protected against lipid induced PERK activation, XBP-1 splicing and apoptosis in 

macrophage-rich regions of atherosclerotic lesions. These results implicated aP2 as a 

central mediator of lipotoxic ER stress in macrophages during atherogenesis. 

Furthermore, reduction of ER stress by chemical chaperons reduced atherosclerosis in 

mice
32

. Collectively; the described findings show the important contribution of lipid-

induced ER stress to atherosclerosis progression and offer new insights into metabolic 

disease pathogenesis. 

 

1.5 Restoring ER Stress 

Restoring ER function may become a promising future therapeutic strategy against 

metabolic diseases including insulin resistance, diabetes, fatty liver disease, obesity and 

atherosclerosis. For example, Qi et al. (2004) 
120

 and Vilatabo et al. (2005) 
153

 observed 

that 4-phenylbutyric acid (PBA), which is known as a chemical chaperon, has protective 

effects against cerebral ischemia and liver ischemia reperfusion injury by inhibiting ER-

stress- related apoptosis. Another reagent tauroursodeoxycholic acid (TUDCA), a 

hydrophilic endogenous bile acid, also prevented diet-induced ER stress and ER-stress 

associated apoptosis in human liver cells through unknown mechanisms
31

. Additional 

studies in obese and diabetic mouse models showed that the administration of TUDCA 

and PBA can reduce ER stress, normalize hyperglycemia, increase systemic insulin 

sensitivity, resolve the fatty liver disease and enhanced insulin action in liver, muscle 

and adipose tissues
110

. Furthermore, administration of PBA to Apolipoprotein E null 

(ApoE−/−) mice with atherosclerosis exhibit ER stress and UPR activation in the 

lesions
175 

resulted in a dose-dependent reduction ER stress in macrophages and 

atherosclerotic lesions
32

. In this study, the ER stress markers phosphorylated-eIF2α, 
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phosphorylated-PERK and ATF3 expression were significantly reduced in the 

atherosclerotic lesions of mice treated with PBA, suggesting restoring ER function with 

chemical chaperone and reducing  ER stress and death of macrophages in lesions can 

protect against the deleterious effects of toxic lipids and prevent atherosclerosis
32

. 

Additionally, it was also observed that gastric bypass induced weight loss results in the 

reduction of the ER stress markers, GRP78, sXBP1, phosphorylated-eIF2α and JNK-1 

in the liver samples of these patients
43

. These observations indicate reduction in nutrient 

intake and in adipose tissue size may reduce the ER stress levels in metabolically active 

tissues in humans. Furthermore, a study conducted by Diakogiannaki showed that the 

administration of a monounsaturated fatty acid palmitoleate for 18 hrs., reduced ER 

stress induced by both a saturated fatty acid palmitate and also tunicamycin (a chemical 

stressor of the ER by blocking N glycosylation) in β cells
29

. When the two species of 

fatty acid palmitate and palmitoleate were given in combination, the extent of cell 

damage was less than that when palmitate was applied alone. In fact, examination of 

multiple images showed that the overall ER membrane area was reduced in palmitate 

and palmitoleate administration compared with in only  palmitate administration; 

suggesting that mono unsaturated fatty acids entering membrane lipids is less 

destructive to membrane architecture than when saturated molecules exist
29

. 

 

The possibility of applying these chemical chaperones to restore ER function and reduce 

ER stress in human metabolic diseases still remains to be fully explored. However, new 

studies are appearing with promising results. For instance, a study conducted by Kars et 

al. in 2010 displays TUDCA-stimulated increase in the muscle and hepatic insulin 

sensitivity of obese and insulin resistant patients
71

. 
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1.6 Chemical Genetics And Its Applications  

Advances in high throughput chemistry and genetics have created a new field dubbed 

“chemical genetics”, which generates tools that can help elucidate and validate novel 

drug targets. This approach can also be successfully applied to deciphering signal 

transduction cascades, particularly, in discovering novel substrates of kinases
74

. 

 

The traditional genetics approach can examine the function of a single protein at the 

level of the organism, a major reason why knock out mice have become popular tools 

for target analyses. However, this approach has some disadvantages. For example, 

genetic approach knocks out a specific gene without discriminate against the other 

proteins that associated with the targeted protein or in other words, leading to the 

disassembly of associating proteins in a protein complex (for instance, the targeted gene 

may be an important scaffold in a complex) or abolish an enzymatic function of the 

targeted protein. This unwanted effect renders it difficult to determine the direct and 

indirect effects of the gene knock-out approach. Second, the genetic approach lacks 

temporal control over the targeted protein. While, inducible knock outs and RNA based 

approaches (such as antisense and RNAi) have been devised, these lead to a slow 

change in protein activity compared to quick signaling responses that normally take 

place in cells.  In addition, Causton et al. in 2001 showed that a temporal shift in yeast 

(from 25 
o
C and 37

o
C) leads to significant differences in genome expression

22
. This 

study indicates that conditional or inducible systems such as temperature sensitive 

alleles may cause secondary perturbations with unwanted side effects. Finally, some 

genes, which play significant roles in embryonic development result in lethal phenotype 

making these genetic models inapplicable, particularly valid for knockout mice
63

. 
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Because of these and other reasons, genetic approach can fall short in analyzing 

processes such as signal transduction. 

 

In addition to these, purely chemical approaches for studying protein function have their 

own shortcomings. Even though chemicals are useful tools for analyzing functions of a 

protein in a temporal manner, they can lack target specificity. Therefore, with this 

approach, determination of individual target’s direct actions and biological role can be 

difficult.  In addition, these “off targets” can be the major cause for toxicity. 

 

In summary, the genetics approach provides target specificity while chemistry allows 

for temporal control over the function of the targeted protein. The chemical genetics 

approach combines the specificity of genetics with pharmacologically relevance and 

control of small molecule chemistry
2
. Therefore, combining these two experimental 

approaches into one by means of chemical genetics offers great advantages in validating 

targets and in drug discovery in the post genomic area. 

 

Protein kinases represent approximately 2% of all human genes and play important 

roles in cellular process and consequently, in many diseases processes. Therefore, they 

offer a rich source of drug targets. The recent application of the chemical genetics 

approach to protein kinases involves the discovery of analog sensitive alleles (ASKAs) 

and corresponding small molecule analog compounds that can specifically modulate 

ASKA’s activity
13

. The main feature of this approach is the creation of unique structural 

distinction between the catalytic domains of one kinase. This distinction is achieved by 

making a mutation in ATP binding pocket of the kinase that enlarges it: All proteins 

contain bulky amino acid residues at conserved positions in ATP-binding pocket called 
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“gatekeeper residue”. When this gatekeeper residue is converted into small side-chain 

amino acids such as alanine or glycine, a gateway to the deep hydrophobic ‘specificity 

pocket” is created. This kind of a mutation in the gatekeeper residue is silent, in other 

words, almost never disrupts the kinase’s activity
163

, enzymatic activity
88

 and cellular 

function
11, 12, 21 and 159

. This gatekeeper mutation can be determined by simply comparing 

amino acid sequence alignments even if there’s no 3D structural knowledge about the 

kinase since the gatekeeper residue is highly conserved among all ATP binding pockets 

of kinases
12

.  

 

The ASKA technology can be applied to discover the unknown substrates of potentially 

interesting kinases. With the help of bulky ATP analogs that are uniquely accepted by 

the ASKA, direct substrates of mutated kinases can be labeled during in vivo or in vitro 

kinase assays and then coupled to mass spectrometry for identification of potential 

substrates. In this strategy, ASKA is incubated with the bulky ATP analogy, N6-

alkylated ATPγS and thiophosphorylates its substrates. Following, alkylation with 

PNBM (p-nitro benzyl mesylate) thiophosphate esters are formed on the modified 

substrates. These groups can be specifically recognized by a monoclonal antibody called 

anti-thiophoshate antibody and pulled down by immunoprecipitation method. After the 

separation of the phosphorylated substrates from the immunoprecipitates by one or two 

dimensional gel electrophoresis, each band can be excised and identified by mass 

spectrophotometry
74 

(Figure 1.7).  An example of a successful study using this approach 

identified 28 new substrates of the energy-sensing AMP-activated protein kinase 

(AMPK) discovered
6
. Moreover, Allen and colleagues showed that in cells isolated 

from a mouse that express endogenously levels of ASKA allele of the extracellular-

signal-related kinase (Erk2) identified several direct and previously unknown substrates 
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of Erk2
2
. Furthermore, Ultanir et al. in 2012 used this method and found 5 putative 

substrates of the nuclear Dbf2-related kinase (NDR1) that plays an important role in 

polarized growth and control of dentrite growth and morphology
148

.  

 

 

 

Figure 1. 7  Strategy for labeling individual kinase substrates and identification of direct substrates 

via ASKA approach.   ( reprinted with permission from Allen JJ., Li M., Brinkworth CS., Paulson 

JL., Wang D., Hübner A., Chou WH., Davis RJ., Burlingame AL., Messing RO, Katayama CD., 

Hedrick SM, Shokat K.M. (2007). A semisynthetic epitope for kinase substrates. Nat 

Methods.Jun;4(6):511-6.© Nature Publishing Group, 2007. 

In first step analog sensitive kinase uses N6-alkylated ATPγS (A*TPγS) to form thiophosphorylates on its 

substrates. Next, PNBM alkylates these substrates resulting in thiophosphate esters or thioesters that is 

recognized by a specific antibody, α-hapten-IgG and pulled down by immunoprecipitation technique. 

After these steps, the potential substrates from the immunoprecipitates can be analyzed by mass 

spectrophotometry. 

 

The ASKA strategy can be applied to in cells or in vivo mouse models for 

pharmacologically relevant target validation. In this strategy, wild type kinase is 

replaced by its ASKA counterpart with the help of gene targeting in embryonic stem 

cells. The resultant transgenic mice can be used either directly in various chemically 

induced disease models or by mating to suitable disease model strains. Potent, specific 

kinase inhibition can be achieved by the intraperitoneal injection of orthoganal inhibitor 

that inhibits only the ASKA and not the wild type kinases
74 

(Figure 1.8). In 2005, Chen 

http://www.ncbi.nlm.nih.gov/pubmed?term=Allen%20JJ%5BAuthor%5D&cauthor=true&cauthor_uid=17486086
http://www.ncbi.nlm.nih.gov/pubmed?term=Li%20M%5BAuthor%5D&cauthor=true&cauthor_uid=17486086
http://www.ncbi.nlm.nih.gov/pubmed?term=Brinkworth%20CS%5BAuthor%5D&cauthor=true&cauthor_uid=17486086
http://www.ncbi.nlm.nih.gov/pubmed?term=Paulson%20JL%5BAuthor%5D&cauthor=true&cauthor_uid=17486086
http://www.ncbi.nlm.nih.gov/pubmed?term=Paulson%20JL%5BAuthor%5D&cauthor=true&cauthor_uid=17486086
http://www.ncbi.nlm.nih.gov/pubmed?term=Wang%20D%5BAuthor%5D&cauthor=true&cauthor_uid=17486086
http://www.ncbi.nlm.nih.gov/pubmed?term=H%C3%BCbner%20A%5BAuthor%5D&cauthor=true&cauthor_uid=17486086
http://www.ncbi.nlm.nih.gov/pubmed?term=Chou%20WH%5BAuthor%5D&cauthor=true&cauthor_uid=17486086
http://www.ncbi.nlm.nih.gov/pubmed?term=Davis%20RJ%5BAuthor%5D&cauthor=true&cauthor_uid=17486086
http://www.ncbi.nlm.nih.gov/pubmed?term=Burlingame%20AL%5BAuthor%5D&cauthor=true&cauthor_uid=17486086
http://www.ncbi.nlm.nih.gov/pubmed?term=Messing%20RO%5BAuthor%5D&cauthor=true&cauthor_uid=17486086
http://www.ncbi.nlm.nih.gov/pubmed?term=Katayama%20CD%5BAuthor%5D&cauthor=true&cauthor_uid=17486086
http://www.ncbi.nlm.nih.gov/pubmed?term=Hedrick%20SM%5BAuthor%5D&cauthor=true&cauthor_uid=17486086
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and colleagues
23

 used this approach to study neurotrophin signaling, where they 

reported in vivo administration of an ATP analog inhibitor, 1NM-PP1, (by 

intraperiotenal injection or in the drinking water) only inhibited the ASKA allele of the 

kinase of interest, leading to the elimination of specific populations of neurons in the 

chemical-genetic mouse model but not in their wild type littermates. Wang et al. in 

2003
157

 also used this approach to control CaMKII-mediated synaptic plasticity in the 

forebrain during distinct stages of memory processes
157

. 

 

 

 

Figure 1. 8 ASKA mouse studies: target validation, therapeutic index and biomarkers (reprinted 

with permission from Kevan Shokat and Mark Velleca (2002). Novel chemical genetics approaches 

to the discovery of signal gtransduction inhibitors. Drug Discov Today.Aug 15; 7(16):872-9. © 

Elsevier, 2002. 

 

Analog sensitive kinase alleles (ASKA) mouse studies for drug screens, the discovery of biomarkers and 

new targets. Wild type kinase mouse strains can be changed by ASKA counterpart by use of transgenic 

approaches or gene targeting in embryonic stem cells. These mouse strains can be useful in direct use or 
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in the mate of disease model strains. The bulky ATP analog inhibitors specific to ASKA may be applied 

to mouse models by intra-peritoneal injection. 

 

The other applications of chemical-genetics include genomic profiling using 

microarrays to define the impact of this kind of highly specific drug-mediated kinase 

inhibition on gene expression. Importantly, two studies
12, 21

 demonstrated the blueprints 

of their targeted kinases differed significantly from those generated by knockdown or 

knockout technologies against the same kinase. For example, the study conducted by 

Carroll and colleagues showed that a novel role for Pho85 cyclin dependent kinase in a 

metabolic pathway, that could only be revealed by acute chemical inhibition of ASKA 

and has been missed in studies using the knock out approach against the same kinase
21

. 

 

A final application of chemical genetics involves the carrying out genomic profiling in 

high throughput and high content drug screens in preclinical in vivo models using the 

chemical-genetic inhibition as a reference to establish a therapeutic index and generate 

new biomarkers
74
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2.  OBJECTIVES AND RATIONALES 
 

Endoplasmic reticulum stress has been linked to inflammation through several ways. 

One of these links involves PERK-mediated translation attenuation that causes a 

reduction in IқB protein levels and the release of NF-қB, which can then translocate to 

nucleus and activate the transcription of inflammatory genes such as interleukin 1 (IL1) 

and tumor necrosis factor  alpha (TNF). Additionally, activated PERK can 

phosphorylate nuclear erythroid 2 p45-related factor 2 (Nrf2) followed by its release 

from the Nrf2/Keap1 complex and subsequent transportation into the nucleus
27

, where it 

regulates the expression of antioxidant response element-dependent genes encoding 

heme oxygenase-1 (HO-1), thioredoxin reductase 1 (TXNRD1) and the glutathione S-

transferases GSTP1, GSTM1, and GSTm2
27

. Furthermore, chronic ER stress can lead to 

oxidative stress due to increased ROS production from the ER.  The ER ROS 

production is the result of UPR-stimulated up regulation of protein chaperones 

mediating disulfide bond formation in the ER lumen, which is a process which involves 

the activities of Ero1p and Erv2p enzymes that use oxidation/reduction reactions, with 

molecular oxygen as the final electron recipient
27

. ROS accumulation can result in 

inflammation through engaging kinases such as JNK and NFқB and some proteins such 

as COX2, an important mediator of inflammation and iNOS activity
67

. Hence, ROS 

produced from the ER can be another link between chronic ER stress and inflammation.  

 

The IRE-1 branch also connects ER stress with inflammation.  The activation of IRE1 

causes the recruitment of tumor necrosis factor-a (TNF-a)-receptor-associated factor 2 

(TRAF2) and the activating IқB/ NF-қB (IKK) complex
62

 or JNK, leading to the 
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activation of NF- қB or activating transcription factor 1 (AP1) pro-inflammatory 

transcriptional targets such as TNFalpha, interleukin 6 and  INOS,  in the nucleus
149

. 

 

Elevated lipids in obesity or dyslipidemia such as saturated and oxidized lipids are 

known to cause ER stress and inflammation
37

. For example, saturated fatty acids such as 

palmitate and stearate induce ER stress in various cell types such as liver, 3T3-L1 

fibroblasts, preadipocytes, pancreatic Beta cells and macrophages
4, 46 and 158

. However, 

it’s not clear which branch of UPR and to what extent mediates the lipid-induced 

inflammation since all three arms of the UPR are activated by metabolic stress during 

obesity.  

 

In this thesis study, I developed an experimental approach, which can address the direct 

impact of one specific arm of the UPR, initiated by PERK, on inflammation during lipid 

stress. I used specific siRNA-based silencing of PERK activity to study the loss of 

function for PERK during lipid-induced inflammation. In addition, I developed a 

molecular tools based on chemical genetics that can be used to identify the full spectrum 

of PERK’s substrates. In the chemical genetics approach, the interested kinase can be 

mutated as an ATP analog sensitive kinase allele, whose kinase activity can be inhibited 

by cell permeable bulky ATP analogs. When coupled to proteomics, the ATP-analog 

sensitized mutant of PERK can be valuable tool for future studies intending to identify 

the full spectrum of PERK’s substrates.  In this thesis study, I used the siRNA based 

silencing of PERK activity for initial characterization of PERK’s role on lipid induced 

inflammation in macrophages.  
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Finally, I analyzed the impact of ER stress reduction on lipid-induced inflammation by 

simultaneously treating macrophages with palmitoleate, known to block lipid-induced 

ER stress. Taken together, the findings presented in this thesis demonstrates the direct 

role of PERK in lipid induced ER stress and inflammation, an important  pathogenic 

mechanisms underlying metabolic diseases including insulin resistance, fatty liver 

diseases, diabetes, atherosclerosis and obesity. Furthermore, the outcome of my studies 

suggests reduction of lipid induced inflammation by palmitoleate may explain its 

protective effects in metabolic diseases.  
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3. MATERIALS AND METHODS 
 

3.1  MATERIALS 

3.1.1 General Laboratory Reagents 

The reagents utilized during this research were purchased from major companies such 

as Sigma-Aldrich (St Louis, MO, USA), AppliChem (Darmstadt, Germany) and Merck 

(NJ, USA). DMSO was purchased from AppliChem (Darmstadt, Germany). Ethanol, 

Methanol, Isopropanol was from Sigma-Aldrich (St.Louis, MO). Plasmid mini- and 

midi-prep kits for plasmid extraction were bought from Qiagen (Hilden, Germany), 

Promega (Wisconsin, USA) and Invitrogen (CA, USA). Gel DNA Recovery kit used in 

DNA purification was from Zymo Research Corporation (CA, USA). PCR Purification 

kit was bought from MO-BIO Company (CarlsbadCA, USA) Agarose was purchased 

from PRONA (The European Economic Community). Yeast extract, tryptone, NaCl , 

Bacto Peptone and agar were purchased from CONDA (Madrid, Spain), Sigma 

ALDRICH (St. Louis,MO,USA) ,BD (MD,USA); respectively. ECL Plus western blot 

detection kit was from Amersham Pharmacia Biotech Company (Amersham, UK). 

Bradford Reagent was bought from Sigma-ALDRICH (St.Lous, MO, USA). Poly-

ethylamine was from PolySciences (Warrington, PA, USA). High Grade pure water and 

Phospho Saline Buffer (PBS) were purchased from HyClone (Rockford, USA) 

 

3.1.2 Tissue Culture Materials And Reagents 

All plastic materials utilized in cell culture such as petri dishes, plates, flask were 

purchased from Greiner Bio One (Monroe, NC, USA). Serological Pipettes were from 

Sarstedt Inc. (Newton, NC, USA). Dulbecco’s modified Eagle’s Medium was purchased 
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from Thermo Scientific HyClone (Rockford, USA) and Lonza (Basel, Switzerland). 

NEON Transfection System was bought from Invitrogen (Carlsbad, CA, USA). Other 

reagents such as Trypsin-EDTA, Fetal Bovine Serum and L-Glutamine were bought 

from HyClone (Rockford, USA) and GIBCO (Invitrogen, Carlsbad, CA, USA), 

respectively. 

 

3.1.3  Bacterial Strains 

Escherichia coli E.coli DH5α strain was used. 

 

3.1.4 Enzymes 

EcoR1 and Xho1 purchased from New England BioLabs (Ipswich, MA, UK) were used 

in restriction digestion during this research. T4 Ligase for ligation is bought from 

Fermentas Molecular Biology Tools (Thermo Scientific, Rockford, USA). The enzyme 

“Phusion Hot Start II High Fidelity DNA polymerase used in site-directed mutagenesis 

PCR and Phire Hot Start used in other PCR types such and conventional PCR, colony 

PCR were bought from FINNZYMES (Thermo Scientific, Vantaa, Finland). 

 

3.1.5 Nucleic acids 

DNA molecular weight markers were bought from Fermentas (Thermo Scientific, 

Rockford, USA). The plasmids used during this research such as pcDNA5F-FLAG 

(Invitrogen) and pBABE-Puro were kindly provided by Batu ERMAN (Sabanci 

University, Turkey). 
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3.1.6 Oligonucleotides 

Primer Sequence Tm 

mPERK M888A 

Fwd 

5'GTATCTGTACATTCAGGCGCAGCTGTGCAGGAA

GG 3' 

63
o
C 

mPERK M888A 

Rev 

5'CCTTCCTGCACAGCTGCGCCTGAATGTACAGATA

C 3' 

63°C 

mPERK M888G  

Fwd 

5'GTATCTGTACATTCAGGGGCAGCTGTGCAGGAA

GG 3' 

63°C 

mPERK M888G 

Rev 

5'CCTTCCTGCACAGCTGCCCCTGAATGTACAGATA

C 3' 

63°C 

mPERK Seq-1 Fwd  TCGGAGACAGTGTTTGGCTTAG NA 

mPERK Seq-2  Rev CGTCCATCTAAAGTGCTGATGATTAC NA 

mPERK Seq-3 Fwd   CCTCTTCCAGTGGGACCG NA 

mPERK Seq-4 Fwd GGGAGTACCAGTTTTGTACTCC NA 

mPERK Seq-5 Fwd CGCAGATCACAGTCAGGTTC NA 

mPERK Seq-6 Fwd CCACCAGAGAAGTGGCAAG NA 

mPERK Seq-7 Fwd CACTCCTTTGAACTTTGTCC NA 

mPERK Seq-8 Fwd CATCTTCCTGCAGATCGCAG NA 

mPERK Seq-9 Fwd GATGGTTCAAGACATGCTCTCTC NA 

 

Table 3. 1 The list of used primer; sequences and melting temperatures (Tm) 
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The name of siRNA Company Name Catalog number 

Mm_Eif2ak3_1 FlexiTube siRNA 

(NM_010121, XM_988416) 

Qiagen SI00991319 

Mm_Eif2ak3_3 FlexiTube siRNA 

(NM_010121, XM_988416) 

Qiagen SI00991333 

Mm_Eif2ak3_5 FlexiTube siRNA 

(NM_010121, XM_988416) 

Qiagen SI02689981 

Mm_Eif2ak3_6 FlexiTube siRNA 

(NM_010121, XM_988416) 

Qiagen SI02736615 

 

Table 3. 2 The list of siRNAs used: company and catalog information 

 

 

3.1.7 Electrophoresis, photography and spectrophotometry 

In gel electrophoresis, Agarose Basica Lee was bought from PRONA. The apparatus 

and power supply PS300-B for electrophoresis was purchased from Hoefer, Inc. 

(Holliston, MA). The concentration of nucleic acids determined by NanoDrop from 

Thermo Scientific (Wilmington, USA).Protein concentration with Bradford Reagent, 

which is purchased from Sigma(Taufkirchen, Germany), were measured by using 

spectrophotometer Beckman Du640 (Beckman Instruments Inc., Ca, USA). 

 

3.1.8 Electroporation 

Electroporation apparatus, Transfection Systems Pipette Station & Pipette and 

Transfection System 10 ul and 100 ul Kit were bought from NEON Transfection 

System of Invitrogen (Carlsbad, CA, USA). 
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3.1.9 Antibodies 

The antibodies used in this study and their catalog numbers, working dilutions and 

conditions are listed in the table 3.3. 

Antibody Company and 

catalog number 

Working 

Dilution 

Incubation time 

p-PERK (Thr 980) 

(16F8) Rabbit mAB 

Cell Signaling,3179 1:500 Over-night at 4
o
C , followed by 

1 hour exposure at room 

temperature 

c-myc (9E10) Santa Cruz,sc-40 1:1000 1 hour at room temperature 

Β Tubulin (H-235) Santa Cruz,sc-9104 1:1000 1 hour at room temperature 

B actin Santa Cruz 1:1000 1 hour at room temperature 

Goat Anti-mouse 

IgG-HRP 

Santa Cruz,sc2005 1:5000 1 hour at room temperature 

Goat Anti-rabbit  

IgG-HRP 

Santa Cruz,sc2004 1:5000 1 hour at room temperature 

p-IRE Epitomics,3881-1 1:1000 1 hour at room temperature 

Total-IRE Cell signaling, 3294 1:1000 Overnight at 4
o
 C 

SAPK/JNK Cell signaling, 9252 1:300 2 hours at room temperature 

SAPK/JNK 

phospho-p54 

phosphor-p46 

Cell signaling, 9255 1:200 2 hours at room temperature 

  

 Table 3. 3 A list of antibodies used; catalog numbers, working dilutions and  

 incubation times. 
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3.2 SOLUTIONS AND MEDIA 

 

3.2.1 General Solutions 

 

 

 

 

 

 

 

 

 

3.2.2 Bacteria Solutions: 

 

 

 

 

 

 

 

 

 

 

50X Tris-Acetate-EDTA (TAE)   

 

 

  

Ethidium Bromide  

 

242 gr Tris-Trizma Base, 37.2 gr EDTA 

(Tritiplex 3) and 57.1 ml Glacial Acetic 

Acid is dissolved in 1 liter ddH2O and 

autoclaved. 

1X is used as a working solution in 

ddH2O from 10 mg/ml stock solution. 

3 uL for 50 ml % 1 Agarose gel is used. 

 

Luria_bertani Medium (LB Medium) 

 

 

 

 

Amphicilin (1000X)   

 

 

 

Glycerol Stock Solution 

10 g NaCl, 10 g Bacto-Tryptone, 5  gr 

Bacto-yeast exract are dissolved in 1 

liter ddH2O and then autoclaved. 20 

g/L Bacto-agar is used for agar plates. 

 

100 mg/ml stock solution in ddH2O 

(1000X) 

Working solution was 100 ug/ml (1X) 

 

Final concentration was %25 in LB 
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3.2.3 Tissue Culture Solutions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DMEM/RPMI media 

 

 

 

1X Phosphate Buffered Saline (PBS) 

 

 

 

Thapsigargin 

 

 

 

NaPP1 

 

 

                            

 Complete medium contains %10 fetal 

bovine serum, %1 L-glutamine, 

stored at 4
o
 C. 

 

This was bought from Invitrogen 

Gibco. 

 

 

300 µM of Tg was prepared as a stock 

solution in DMSO. 

Working solution is 300 nM. 

 

40 µM of NaPP1 were dissolved in 

DMSO as a stock solution. 

Working solution is 20 µM. 
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Palmitic acid (palmitate) 

 

 

 

 

 

 

 

 

 

 

 

 

Palmitoleic acid (palmitolate) 

 

 

 

 

 

 

Phospho Lysis Buffer 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

500 mM of palmitate were dissolved 

in high pure absolute EtOH.Working 

solution is 500 µM dissolved in 

filtered complete media containing % 

5 fatty acid free BSA. It is incubated 

and vortexed until completely 

dissolving. 

  

500 mM of palmitolate were 

dissolved in high pure absolute 

EtOH.Working solution is 500 µM 

dissolved in filtered complete media 

containing % 5 fatty acid free BSA. 

 

 

50 mM HPES pH:7.9, 100 mM NaCl, 

4mM Na Pyruvate,10 mM EDTA,10 

mM NaF, % 1 Triton , 2 mM NA 

Vanadate , 1mM PMSF , 1X 

phosphatase inhibitor cocktail 3 ( 

Sigma, P0044) and 1 X ( 10 µM / ml) 

protease inhibitor cocktail. 

 

 



 

 

- 42 - 

 

3.2.4 Competent Cell Solutions 

CaCL2 sln: 

Solutions: 

PIPEs (Mw= 307.37 g/mol)                  pH: 6.4          0.1 M    stored at room temperature 

CaCl2 (Mw= 147.g/ mol)                                 2 M    stored at room temperature 

Glycerol                                                                     % 87    stored at room temperature 

The preparation of Mixture for 500 ml from stock solutions:  

Stock solutions                                           Final concentration:                                                                                    

 2 M Cacl2                                                 60 mM 

0.1 M PIPEs                                              10 mM 

 % 87 Glycerol                                           %15       

ddH2O                                                        up to final volume 

**Autoclave or filter the solution before use and store at 4 degrees. 
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3.2.5 Sodium Deodecyl Sulphate (SDS)-Polyacrylamide Gel Electrophoresis 

(PAGE) And Immunoblotting Solution 

 

In this study, Mini PROTEAN Tetra Cell western blotting system (Bio Rad, CA, and 

USA) was used for the westernblot experiments. The gels used were prepared as % 10 

resolving gels and % 5 stacking gels. 

 

% 10 Resolving Gel                             %30 Acyrlamide mix, 1.5 mM Tris HCl (pH: 8.8)  

                                                        %10 SDS and amonium persulfate, %0.08  

                                                         TEMED with suitable volume of ddH2O 

                                                        to complete desired volume. 

 

% 5 Stacking Gel                                 %30 Acyrlamide mix, 1.5 mM Tris HCl (pH: 6.8)  

                                                        %10 SDS and ammonium persulfate, %0.1 

                                                         TEMED with suitable volume of ddH2O to  

                                                        complete total desired volume. 

 

5 X Running Buffer                             124 mM Tris Base, 960 mM Glycine, 17.4 mM                                     

                                                          SDS were dissolved in ddH2O as a stock   

                                                          solution. 

                                                          Working solution is 1 X. 

 

5 X Transfer Buffer                               64.4 mM Glycine, 80 mM Trisma Base and 2.14 

                                                           mM SDS was dissolved in ddH2O. 

                                                            Working solution is 1X while working.                                                              
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10 X Tris Buffered Saline                       100 mM Trisma Base, 1.5 M NaCl in ddH2O 

 (TBS)                                                      and is adjusted to pH: 8 with 1 N HCl. 

 

1 X TBS-Tween 20                                  0.2 % Tween in 1 X TBS 

 

Blocking Solution                                     % 5 (w/ v) BSA (Bovine Serum Albumin)  

                                                                   was dissolved in % 0.2 TBS-Tween 20. 
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3.3 METHODS 

 

3.3.1 The use of Software Programs 

3.3.1.1 Pymol 

The hypothetical 3D model of PERK was created using SwissModel Tools program and 

then aligned with the other kinases ATP binding pockets (whose crystal structures were 

solved previously) in a complex with ATP or 1NM-PP1 using PyMOL15 according to 

manufacturer’s recommendations (PyMOL, http://pymol.org/educational/). 

The proteins used for comparison was GCN2 (ID number: 1YZ5; Padyane et al., 2005; 

http://www.pdb.org/pdb/explore/explore.do?structureId=1ZY5) and TgCDPKI (ID 

number:3I7B, Kayode et al.,2010; 

http://www.pdb.org/pdb/explore/explore.do?structureId=3I7B ) 

 

3.3.1.2 BioLign 

The sequence information for PERK in the AB1 format or a DNA sequence 

chromatogram from the sequencing machine was visualized in BioLign 4.0.6 Tool 

according to the manufacturer’s recommendations (http://en.bio-

soft.net/dna/BioLign.html ). 

 

3.3.1.3 ClustalW2 

Homosapiens PERK sequence (NM_004836.5, December 2010) and mus musculus 

PERK sequence (NM_010121.2, December,2010) was aligned with other kinases with 

known crystal structures for their ATP binding domains using the ClustalW2 program 

as per se the manufacturer’s recommendations ( Clustal W2, EMBL-EBI; 

http://pymol.org/educational/
http://www.pdb.org/pdb/explore/explore.do?structureId=1ZY5
http://www.pdb.org/pdb/explore/explore.do?structureId=3I7B
http://en.bio-soft.net/dna/BioLign.html
http://en.bio-soft.net/dna/BioLign.html
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 http://www.ebi.ac.uk/Tools/msa/clustalw2/ ). 

 

3.3.2 Molecular Cloning Methods 

3.3.2.1 Chemical Competent Cell Preparation 

 

For the preparation of competent cells, firstly, a BIOLABS NeB-5-alpha High 

efficiency competent E.coli cell was inoculated into 50 ml Luria-Bertani media (LB 

media) without any antibiotics for 12 hours. Then, 200 µl of this culture was diluted into 

100 ml LB. After one hour, the optical density (OD) of culture was checked using a 

spectrometer until it reached 0.345 OD, demonstrating a logarithmic growth in culture. 

The culture was divided into 2x50 ml falcon tubes on ice and incubated for 10 minutes. 

After centrifugation at 1600g (4
o
C) for 20 minutes, the bacterial pellet was resuspended 

in 10 ml of ice cold CaCl2 solution. This suspension was centrifuged in 1100 g (4
o
C) for 

10 minutes before resuspending in 10 ml of ice-cold CACl2 solution again. Then, it was 

incubated on ice for another 30 minutes, followed by centrifugation at 1100g (4
o
C) for 

10 minutes. The obtained pellet was dissolved in 2 ml of ice cold CaCl2 solution and 

dispensed into pre-chilled sterilized eppendorf tubes on ice (50µl/tubes).  These aliquots 

were frozen immediately in liquid nitrogen and stored away in -80
o
C freezer. The 

competency of the cells was tested each time by transforming a previously confirmed 

plasmid. 

 

 

 

 

http://www.ebi.ac.uk/Tools/msa/clustalw2/
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3.3.2.2 Transformation 

First, 50 µl competent cells were thawed on ice and 2 µl (≤100 pg) of plasmid of 

interest was added and gently tapped couple times. Then, this was incubated on ice for 

30 minutes, followed by heat shock at 42
o
C for 45 seconds. After this, it was incubated 

on ice for another 10 minutes until it was diluted into 200 µl of room temperature LB. 

Following this, the transformation mix was incubated in a shaker at 37
o
C for 60 minutes 

at 250 rpm. Meanwhile, the agar plates were put on the 37
o
C incubator for warming up.  

One hour later, the transformation mixture was seeded on two agar plates at 150 µl and 

50 µl volumes. These were incubated at 37
o
C incubator for 16 to 18 hours until single 

colonies were apparent. These colonies were selected for further growth in larger 

cultures of LB.  

 

3.3.2.3 Glycerol Stock Preparation 

A single colony from plate was picked with a sterile tip and cultured in ~ 5 ml LB with 

the selectable antibiotics in 50 ml falcon tubes (without exceeding %10 of total volume 

for proper airing) for 14 to 15 hours at 37
o
C and 225 rpm.  Next day, 500 µl of the 

culture was inoculated into 500 ml of sterile %50 glycerol solution (at the final ratio of 

1:4, Glycerol to LB culture). Finally, the glycerol stocks were frozen and stored at         

-80
o
C . 

 

3.3.2.4 Restriction Enzyme Digestion 

The plasmid exposed to any kind of experiments methods such as ligation, mutation is 

digested by corresponding suitable enzyme to confirm to be accuracy of that our 

interested gene was still inside the interested vector. In this case, our interested gene, 
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PERK was between EcoR1 and Xho1 restriction site. Approximately, 1000ng of PERK 

plasmid was digested with EcoR1 and Xho1 restriction enzyme with the corresponding 

amount of manufacturer’s recommendation and then waited for 4 hrs. After that, the 

samples were run on the variable agarose gel concentration depending on the purpose of 

the experiment. If it was only for confirmation, % 1 basica agarose gel was used due to 

our insert and backbone size; 3577 bp and 5400 bp or 5169 bp respectively. However, if 

it was needed for further process like gel DNA extraction, % 0.5 reducta agarose gel 

was used to make extraction more purified. 

 

3.3.2.5 Agarose Gel Electrophoresis 

DNA samples and PCR products were detected on agarose gel using Hoefer SUB10 

Mini Plus submarine electrophoresis system (Holliston, MA, USA) with the help of 

Hoefer PS300B 300 Volt Power Supply. Gels dissolved and run in 1X TAE buffer were 

in different agarose concentrations between %0.5-%1 depending on the size of the DNA 

fragment and the aim of experiment .For DNA gel recovery; DNA products were run on 

% 0.5 or 0.8 agarose gels. % 1 agarose gels were used in the detection of DNA 

fragments for molecular cloning. During the preparation of the gel, corresponding 

amount of agarose was dissolved in 1X TAE buffer and boiled in microwave for couple 

minutes. After that, the solution put under the hood to cool it down for a while and EtBr 

was added on with the final concentration of 30 ug/ml before pouring the gel. DNA 

samples were mixed with 10X bromophenol blue loading dyes before loading into gel. 

Agarose gels were run at room temperature under around 100-80V voltage for 40 min or 

60 min., respectively. Fermentas #SM0241 Gene ruler 100 bp or #SM0311 Gene Ruler 

1 kb ladders used as reference point on the gels when the gels were visualized under UV 

Light. 
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3.3.2.6 Site Directed Mutagenesis 

This method was used in the creation defined mutagen site in DNA molecule described 

before by PyMOL: M888A and M888G mPERK.Firstly, the completely complementary 

primer pairs were designed by using http://bioinformatics.org/primerx working very 

well for single amino acid changes. The desired mutation site in mPERK was put in the 

middle. The parameters of designed primer pairs condition was like below:     

 

PERK Mouse: 

Mutagen Site Sequence of Primer Tm % GC  Length 

M888A F 5'GTATCTGTACATTCAGGCGCAGCT

GTGCAGGAAGG 3' 

 

 

63 

 

 

54.29 

 

 

35 
R 5'CCTTCCTGCACAGCTGCGCCTGAA

TGTACAGATAC 3' 

M888G F 5'GTATCTGTACATTCAGGGGCAGCT

GTGCAGGAAGG3' 

 

 

73 

 

 

54.29 

 

 

35 R 5'CCTTCCTGCACAGCTGCCCCTGAA

TGTACAGATAC 3' 

    Table 3. 3 A list of primers used for site-directed mutagenesis  

 

Site Directed mutagenesis reactions were prepared in 50 µl total volume containing 50 

ng DNA. The final volume of primers were 0.4 uM. It was optional was % 3 of DMSO 

was added into each samples. Phusion Hot Start II, high fidelity DNA polymerase with 

http://bioinformatics.org/primerx
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proofreading activity (Finnzymes, Finland) was used as reaction enzymes. Reactions 

started with initial denaturation step at 98
0
C for 5 minutes. Then, 25 cycles of 

amplification reaction was performed at 98
0
C 35 seconds, at 63

0
C 30 seconds, at 72

0
C 5 

min (~30 s/kb).After that, ~5 µl of the reaction was run on the gel to see band 

corresponding to the expected product. After seeing of the band, the rest of reactions 

was proceed to next step. 

 

3.3.2.7 Dpn1 Digestion 

As soon as the confirmation of succession in Site directed mutagenesis, 1 µl of Dpn1 

(20 U/ µl) bought from NEB (Ipswich, MA) was added into 50 µl of reaction to get rid 

of the template DNA since it cut methylated DNA. Then it was incubated at 37
o
C for 

overnight and the reaction was inactivated at 80
o
C for 20 minutes. After that, 2 µl of the 

sample was transformed into competent cells. 

 

3.3.2.8 Gel DNA Extraction 

Zymoclean Gel DNA recovery kit was used for pure DNA purification from agarose 

gel. 50 µl of sample loaded into %0.5 agarose gels and run at 100 volts for 40 minutes. 

Then, it was cut under UV light and then followed by manufacturer’s recommendations. 

In the end; DNA was dissolved at 10 µl of DNA/RNAase free ddH2O. 

 

3.3.2.9 Ligation 

The plasmids were ligated to the insert (DNA) at 1:7 ratios with the help of T4 ligase 

enzyme (Fermentas). The amount of buffer and enzyme were determined depending on 

manufacturer’s recommendations. 
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3.3.2.10 Colony PCR 

Single colonies swiped with the tip of pipets from the plates were placed in PCR tubes. 

.A PCR mixture was prepared including 1 µl  of the 5X Phire enzyme buffer, 0.2 µl  

forward and reverse primers, 0.3 µl  DMSO, 0.8 µl  MgCl2, 0.2 µl  dNTP, 0.2 µl  Phire 

Hot Start Enzyme (Finnzymes)  in ddH2O (total reaction volume was 10 µl ). The PCR 

program used was the same as the molecular cloning PCR since the same primers and 

enzyme were used here as well.   

 

3.3.2.11 Mini Prep 

Invitrogen PureLink Quick Plasmid Miniprep Kit (Carlsbad, CA, USA) and Promega 

Pure Yield Miniprep System (Fitchburg, Wisconsin, USA) protocols were used 

according to the manufacturer’s recommendations. At the end, the obtained DNA 

samples were dissolved in 50 µl DNA/RNAase free sterilized water and measured with 

spectroscopy. 

 

3.3.2.12 Midi Prep 

For midiprep cultures, the initial culture was prepared in 1mL of LB and grown for a 

few hours at 37 
o
C and 225 rpm. This initial culture was transferred into 100 ml LB for 

overnight incubation (the amount of LB was not exceeding %10 of total volume of 

flask). The QIAGEN Plasmid Midiprep Kit (Hilden, Germany) or Invitrogen (Carlsbad, 

CA, USA) protocols were followed according to the manufacturer’s recommendations. 

At the end of the protocol the DNA samples were dissolved in 200 µl DNA/RNAase 

free sterilized water. 
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3.3.3 Tissue Culture Methods 

3.3.3.1 Cell Lines And Growth Conditions Of Cells 

The cell lines used in this research were grown in either RPMI or DMEM. 293HEK,    

PERK
-/-

. Mouse fibroblast was cultured in DMEM. RAW 264.7 (mouse murine 

macrophage cell lines) were grown in RPMI. DMEM and RPMI mediums for cell 

culture were complete medium including % 10 fetal bovine serums, %1 L-Glutamine. 

All cells were placed in incubators at 37
o 
C with % 5 CO2 concentrations in air. All cells 

in incubators were regularly checked and changed into a new dishes or plates before 

they reached to high confluency. 

 

3.3.3.2 Passage Of The Cell Lines 

After the medium was sucked out with the help of vacuum, trypsin-EDTA was added 

into plate or dishes with the variable concentrations. The concentration was determined 

depending on the surface area of the dish or plate but not exceeding % 10 of total 

volume. Trypsinized cells were kept in the incubators for few minutes. After that, 

detached cells were collected in complete medium in 15 ml or 50 ml falcon tubes with 

serological pipettes. Cells were pipetted up and down. With the determined dilution of 

collected cells were re-seeded on plates or dishes. 

 

The passage of macrophages was different from other types of cell lines. Instead of 

trypsinization, they were scraped by a scrapper and then collected with a complete 

medium in the 15 or 50 ml falcon tubes. Then, they were distributed by pipetting up and 

down. They were reseeded into plates. 
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All mediums used in cell passage were pre-warmed by incubating in the water bath at 

37
o
C prior to usage. 

 

3.3.3.3 Thawing The Cells 

Stock cell lines in cryovial tubes were transferred from -80
o
C freezer or liquid nitrogen 

tank to ice immediately. The vials were incubated in the water bath at 37
o
C for a couple 

minutes until completely thawed. 1 ml of pre-heated complete medium was mixed into 

the vial by pipetting up and down for few times. Meanwhile, 6 ml of pre-heated 

complete medium was added into t25 flasks. The mixture in the vial was collected by 

serological pipettes and placed inside the flask. Cells were distributed in the flask by 

moving the flask back and forth or right and left (but never swirling). After growing for 

a day, the cells were refreshed with a new medium. The 80% confluent plates were split 

again. 

 

3.3.3.4 Freezing Of The Cells 

Cell stocks were prepared from cells that have reached %70 to 80 confluency in growth 

plates. First, the medium was sucked out and washed with PBS for 2 twice. The cells 

were collected after detachment with trypsin-EDTA treatment for 5 minutes a room 

temperature. For macrophages, detachment was possible through scraping. The 

collected cells were next centrifuged for 5 minutes at 1000 rpm. In the meantime, the 

freezing medium was prepared containing % 10 DMSO, % 40 FBS and % 50 medium 

(DMEM or RPMI, depending on the cell type). The pellet was then resuspended with 

this freezing medium. For each cell type, 1 ml of the freezing medium was transferred 

into a single cyrotubes and frozen at -80
o
C freezer covered by tissue paper in foam 

boxes. One day later, they were transferred into liquid nitrogen tanks. 
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3.3.3.5 Transient Transfection Of Cells 

The type of transient transfection method was determined depending on the types of cell 

lines. 

The Type of Cell Lines Method used 

HEK293 PEI (Polyethylenimine) 

PERK
-/-

 MEFs NEON Electroporation System  

http://www.invitrogen.com/site/us/en/home/Products-and-

Services/Applications/Cell-Culture/Transfection/Transfection___Selection-

Misc/Neon-Transfection-System.html?CID=fl-neon 

RAW 264.7 NEON Electroporation System  

http://www.invitrogen.com/site/us/en/home/Products-and-

Services/Applications/Cell-Culture/Transfection/Transfection___Selection-

Misc/Neon-Transfection-System.html?CID=fl-neon 

 

Table 3. 4  The various transfection methods used for different cell lines 

 

3.3.3.5.1  Transfection By Using Polyethylenimine 

Transfection of plasmids into HEK cell lines was performed by using Polyethylenimine 

(Cat #23966) from Polysciences. PEI (1ug/µl) was dissolved in %100 absolute EtOH to 

make a stock solution. In this method, firstly, cells were seeded in 6-well or 12-well 

plates one day before the transfection at 40% confluency. The next day plates at ~%80-

90 confluency were used for transfection. For 12-well 125 µl or for 6 well 250 µl of 

PEI/DNA mixtures were prepared at 2:1 ratio (w/w), respectively, and mixed gently by 

tapping.  During the incubation of this mix at room temperature for 15 min, a mixture of 

medium with 375 µl or 750 µl, 2% fetal bovine serum (FBS) in DMEM medium was 

prepared, respectively. The DNA: PEI mixture was mixed with this serum containing 

medium to reach the final volume of 500 µl or 750 µl of transfection medium, 
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respectively. The old medium on cells was replaced with the freshly prepared 

transfection mixture. Next day the transfection mixture was washed away completely. 

 

3.3.3.5.2 Transfection By The Electroporation Method 

Transfection of plasmid DNA into mouse embryonic and macrophage cell lines was 

performed by using NEON Electroporation System from Invitrogen. Firstly, the suitable 

voltage, pulse width and number for each used cell lines were determined by using 24 

well optimization protocols from NEON system itself which includes varying voltage, 

pulse width and number. The manufacturer’s recommendation was also used to get an 

idea about cell lines’ requirements. The condition was like table below: 

Table 3. 5 The electroporation conditions optimized for different cell types. 

 

Firstly, cells were seeded in 96 mm plate one day before transfection so that the 

confluency was ~%70-80 on transfection day. Next day cells were collected into a tube 

and washed with PBS at 500 rpm for 4 minutes. After that, The cell pellet was dissolved 

in R buffer so that the volume was 10 µl  R buffer for each well for 10 µl  tip and 100 µl  

The cell 

type 

Pulse 

Voltage 

 (V) 

Pulse 

width      

(ms) 

Pulse 

Number 

Cell 

Density 

(cells/ml) 

The amount  

of DNA 

Tip 

Type 

The 

amount 

 of DNA 

Tip 

Type 

 

MEFs 

 

1050 20 2 4.5x10
5 

2 µg 10 µl 4 µg 100 µl  DMEM 

RAW 

264.7 

1680 20 1 3.5x10
6 

2 µg 

(siRNA: 

 100 nmol) 

10 µl  4 µg 100 µl RPMI 
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R buffer for each well for 100 µl  tip then followed by the manufacturer’s 

recommendations. The added volume of DNA into R buffer for each well was not 

exceeding %10 percent of total volume R buffer for each well. 

  

3.3.3.6 Treatment of Cells 

Cells were firstly plated to corresponding plates according to the experiment type. One 

day after seeding, the mediums were removed and the treatments were done in complete 

mediums. Treatment medium including chemicals such as thapsigargin, palmitate, 

palmitoleic acids, LPS, ATP analogs etc. were prepared freshly from stocks aliquot 

before. Complete mediums containing same amount of solvent were prepared as an 

control samples such as water, EtOH or DMSO. The parameters for chemicals were 

listed on table next page:  
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The name of 

chemicals 

The amount of 

chemicals 

(Molarity) 

The solvent used for 

treatments 

The used 

solvent for 

dissolving 

Incubation 

time 

The used 

chemicals for 

control samples 

Thapsigargin 

(Tg) 

300 uM Complete medium DMSO 4 hours DMSO 

Palmitate 1000 uM Only medium 

containing % 5 fatty 

acid free BSA and 

heating to 55-60
o
C 

for 15 minutes 

EtOH 9 hours EtOH and only 

medium 

containing % 3 

fatty acid free 

BSA 

Palmitoleic acid 1000 uM Only medium 

containing % 5 fatty 

acid free BSA 

In liquid 

form 

9 hours only medium 

containing % 3 

fatty acid free 

BSA 

NaPP1 10 uM DMSO DMSO 6 hrs. 

 

2 hrs. before 

Tg 

Treatment 

and also 4 

hrs. during 

Tg treatment 

DMSO 

LPS 40 ng/ml DNA/RNAase free 

water 

Complete  

media 

2 hrs. before 

PAL or PAO 

treatment 

ddH2O 

   Table 3. 6 The different treatment conditions in cell 
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3.3.3.7 PERK siRNA Treatment  In Macrophages 

Transient transfection by electroporation was performed with 100 nmol of siRNA like 

explained in section 3.3.3.5.2 under the conditions in Table 3.4. After transfection, the 

cells were incubated for 24 hours without change of complete media and then proceed 

to further step. 

 

3.3.4 Total Protein Extraction From Cultured Cells 

Cells in wells or dishes were put on ice  for 5 minutes with the addition of 

corresponding and sufficient amount of lysis buffer ( RIPA or Phospho-Lysis Buffer) on 

the cells and then scraped with the tip of 1000 ml pipette tip by collecting in eppendorf 

tubes that are kept on ice. Thereafter, lyzed cells were centrifuged at 14.000 g for 10 

minutes at +
 
4

o
C  and supernatants are collected that are kept on ice. After that, 5X SDS 

added to samples by making 1X SDS concentration in total volume. After the vortex of 

mixture, the samples were boiled at 90
o
 C for 5 minutes, vortex and loaded on to SDS-

page protein gels. 

 

3.3.5 Western Blot 

In first step, concentrations of proteins were calculated by using Bradford Assay. All    

samples were measured at 595 nm wavelength in spectrophotometer. Meanwhile, the 

standard curve were calculated with varying concentrations of already known protein 

concentration of    bovine serum albumin (BSA) and used as a reference for calculation 

of proteins with unknown concentrations. The calculation was done by putting the 

absorbance values in equation. 
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After quantification of protein concentrations of samples, all samples were prepared for 

loading into gel by addition of 5X SDS Loading Dye so that the loading buffer would 

be 1X of total volume of samples.80 to 100 µg of proteins were loaded into gel relied on 

the type of experiments. Afterward, the combination of sample and loading buffer were 

heated at 90
o
C for 15 minutes before loading into gel. 

 

In this case, BIO RAD Mini Tans Blot protein electrophoresis system was used for 

running the sample on gels with the help of the method called Tris-glycine SDS-

Polyacrylamide Gel Electrophoresis and transferring the protein samples onto 

membrane. Gel concentrations for Tris-glycine SDS-Polyacrylamide Gel were chosen 

depending on the size of the interested protein but generally %10 for running gel and 

%5 for resolving gel were used. The samples were run on gel at 80V voltage for ~30 

minutes (until they enter into running gel) and then at 120 V for ~90 minutes until the 

color of loading dye disappear. After running, proteins were transferred onto Thermo 

Scientific PVDF Transfer membranes with wet transfer protocol but before that, PVDF 

membrane was activated inside methanol for 15 seconds. Transfer Buffer was prepared 

1X from 5X stocks with %20 methanol in ddH2O. After all materials were soaked into 

transfer buffer, wet transfer sandwich were prepared including 1 sponge,1 whatman 

filter  paper, gel, membrane,1 whatman filter paper and 1 sponge ,respectively. Transfer 

was done for 120 minutes at 95 V voltages. During transfer, western blot tank was 

either kept in cold room and also the ice pocket supplied with system was put inside 

tank. 

 

After transfer was end, membranes were neutralized in TBS-T for 5 minutes and then 

immersed into blocking solution with % 3 milk powder or % 5 BSA in 1X TBS-Tween 
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for 1 hrs. at RT or o/night at +4
0
C on a shaker .After that, primary antibodies were 

prepared in same blocking solution used previous step while membranes were washed 

in TBT-T and then incubated for 1 hrs. at RT or o/night at +4
0
C with corresponding 

dilutions on a shaker. Thereby, membranes were washed in 1X TBS-T four times for 5, 

15, 5, 5 minutes at RT on a shaker. Afterward, horseradish peroxidase (HRP) 

conjugated antibodies; anti mouse or anti rabbit were used as secondary antibodies 

depending on used primary antibodies. After incubation for 1 hrs, at RT, they were 

washed in TBS-T four times for 5, 15, 5, 5 minutes on a shaker; again. Detection were 

performed using chemiluminescent detection kits such as ECL + and ECL Prime + 

(Amersham, UK) according to manufacturer’s recommendations and the intensity of 

expected signal on membrane. In the end, X-ray films were exposed to the emitted 

chemiluminescent light from the reaction of HRP and developed in X-ray developer. 

Exposure time was determined relied on the detection reagent, the specific antibody 

used against the protein of interest and also the expected signal intensity of interested 

protein. 

 

3.3.6 Total RNA Extraction From Cultured Cells 

RNA from cell lines were extracted by using Ambion Trizol Reagent (Cat#15596, 

Invitrogen, Grand Island, NY, USA) according to manufacturer’s protocol. In the end, 

RNA was dissolved in 50 µl DNA/RNAase free water per 1 ml of Trizol reagent.  

 

3.3.7 First Strand c-DNA Synthesis 

First strand cDNAs were synthesized by using Fermentas RevertAid cDNA synthesis 

Kit (GMBH Fermentas, Germany). The manufacturer’s instructions were followed. 0.5 
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ug RNA was used for cDNA synthesis. The oligo (dT)18 primer was added into RNA 

since it primed cDNA synthesis from mRNA with poly (A) tails. Then, DNA/RNAase 

free water was added up to 6 µl. After that, the sample was mixed gently, centrifuged 

and incubated at 65
o
C for 5 minutes. Thereafter, it was chilled on ice and spinned down 

( optional step on manufacturer’s instructions if The RNA template is GC rich or 

contain secondary structures).Subsequent to addition of 2 µl  reaction buffer,  1 µl  

dNTP mix,0.5 µl  RNAase inhibitor,0.5 µl  Revert aid M-Mul V Reverse Transcriptase 

(200u/µl ) and DNA/RNAase free water up to 10 µl , samples were mixed gently and 

centrifuged. Afterwards, they were incubated 60 min at 42
o
C followed by heat 

activation at 70
o
C for 5 minutes. 

 

3.3.8 Expression Analysis Of A Gene By Quantative RT-PCR 

 

3.3.8.1 Determination Of Primer Efficiency For Q-PCR Primers 

The primers used in q-PCR were taken from published articles or the groups who had 

already have annealing temperature and cycle optimizations for primers. That’s why the 

optimization protocol for cycles and melting temperature were not performed but 

efficiencies for the primers were calculated before the actual expression analysis by 

making serial dilution of cDNA pool forming by mixing all samples. The primer 

sequences and some parameters were shown on the table on next page: 
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The name of 

Primer (For 

mouse) 

 

Forward 

 

Reverse 

 

Tm 

 

The size 

of 

Product 

(bp) 

The Reference Article 

and Groups 

 

The primer 

efficiencies 

TNFalpha 

CATCTTCTCAAA

ATTCGAGTGACA

A 

TGGGAGTAGA

CAAGGTACAA

CCC 58-60 175 

Stig S. Jakobsen, A. Larsen2, 

M. Stoltenberg, J.M. Bruun3, 
K. Soballe (2007). Effects of 

As-Cast and Wrought 

Cobalt-Chrome-

Molybdenum and Titanium- 

Aluminium-Vanadium 

Alloys on Cytokine Gene 
Expression And Proteın 

Secretion In J774a.1 

Macrophages. European 
Cells and Materials Vol. 

14.pages 45-55. 

 

2,06 

 

B actin 

TTCGTTGCCGGTC

CACACCC 

GCTTTGCACAT

GCCGGAGCC 59 90 

Primer blast 

http://www.ncbi.nlm.nih.gov/

tools/primerblast/primertool.

cgi?ctg_time=1344076728&j

ob_key=JSID_01_156810_1

30.14.18.128_9002 

 

2,1 

 

IL6 

GAGGATACCAC

TCCCAACAGACC 

AAGTGCATCA

TCGTTGTTCAT

ACA 58–60 141 

Bing Sun, Nan Qi, Tao 

Shang, Hui Wu, Tingting 
Deng, and Daishu Han 

(2010). Sertoli Cell-Initiated 
Testicular Innate Immune 

Response through Toll-Like 

Receptor-3 Activation Is 
Negatively Regulated by 

Tyro3, Axl, and Mer 

Receptors. Endocrinology, 
June 2010, 151(6):2886–

2897. 

 

2,10 

 

iNOS 

CAGCTGGGCTGT

ACAAACCTT 

CATTGGAAGT

GAAGCGTTTC

G 58–60 95 

Eun-Mi Park, MD, PhD; 

Sunghee Cho, PhD; Kelly 
Frys, BS; Gianfranco 

Racchumi, BS; 

Ping Zhou, PhD; Josef 

Anrather, DVM; Costantino 

Iadecola, MD (2004). 

Interaction Between 
Inducible Nitric Oxide 

Synthase and Poly(ADP-

ribose) Polymerase in Focal 
Ischemic Brain Injury. 

Stroke.;35:2896-2901 

 

1,95 

Table 3. 7 A list of q-PCR primers used: q-PCR conditions and primer efficiencies. 
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3.3.8.2 Expression analysis of genes by quantative RT-PCR (q-PCR) 

Quantitative PCR analysis was performed by using Inceptra Cycler 9660. DyNAmo HS 

Syber Green q-PCR kit from Finnzymes was used for q-PCR experiments followed by 

manufacturer’s protocol. The amount of 2x DyNAmo master mix was changed into 7 ul 

instead of 10 ul. The reactions were prepared in 20 ul total volume containing 1 ul 

cDNA sample. The reactions started with initial denaturation step at 95
o
C for10 

minutes. Then, 40 cycles of amplification reaction was done at 95
o
 30 seconds, at 60

o
C 

30 seconds, at 72
o
C 30 seconds with final extension at 72

o
C 5 minutes. After that, 

melting temperature step was followed at 95
o
C 20 seconds ended with one more step for 

annealing and extension time to make sure all samples were double stranded in case 

they were run on agarose gel for further steps. Expression levels of the genes were 

calculated depending on the Ct value of the amplification of the interested gene and 

reference gene (β actin or 18S) and efficiencies of primer used. Relative quantification 

was statistically performed with the help of formula (Primer efficiency)
-ΔΔCt

 where 

ΔΔCt means ΔCt (sample)- ΔCt ( calibrator) and  was the Ct of the target gene 

subtracted from the CT of the housekeeping gene and Ct (threshold cycle) was the 

intersection between an amplification curve and a threshold line. All experiments were 

performed in duplicates of each sample. 
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4. RESULTS 

 

4.1 Generation of the Gatekeeper Mutations of PERK 

PERK is also known as the eukaryotic translation initiation factor 2 alpha kinase 3 

(Eif2ak3), PEK, PKR-like endoplasmic reticulum kinase; pancreatic eIF2-alpha kinase. 

It is one of the four mammalian serine-threonine kinases that phosphorylate eIF2. 

PERK’s main function is to regulate translation initiation. There are no other known 

isoforms of PERK and it is conserved between species such as human, chimpanzee, 

dog, cow, rat, chicken, zebra fish, fruit fly, and C.elegans.   

 

PERK’s NCBI gene ID number is 13666. PERK is located on chromosome 6, 

NC_000072.6 and mapped to the region of 6 C1; 6 with the neighboring 

Immunoglobulin kappa constant (Igkc) gene at upstream and forkhead box I3 (Foxi3) at 

downstream. 

 

Figure 4. 1  Genomic context of PERK gene in mus musculus 

PERK gene is sequestered between Immunoglobulin kappa constant (Igkc) gene and forkhead box I3 

(Foxi3) on chromosome 6. 
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Figure 4. 2  Genomic region and transcripts of PERK  

The genomic region containing the PERK transcript  

 

 

 

Figure 4. 3 Domain structure of PERK 

PERK has two distinct domains: the ER luminal domain in the N’ terminal, carrying a signal peptide 

sensitive to molecular chaperones, and the kinase domain near its C’ terminal, residing in the cytoplasmic 

side of the ER membrane.  

 

There is no identified crystal structure for PERK. However, the crystal structure of the 

homologous eIF2 protein kinase, GCN2, was resolved by Padyana et al. in 2005. This 

structure was used for guidance in identification of the correct gatekeeping amino acid 

in the PERK ATP binding pocket. Furthermore, since the ATP binding pockets of 

kinases are highly conserved and there are crystal structures and gatekeeper residues 

identified for some of them, these were also aligned against PERK’s ATP binding 

pocket. These alignments were made with the help of clustalW2 and PyMol software 

and the results can are shown below. 
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Figure 4. 4   Multiple sequence alignments of several kinases whose ATP binding pocket and the 

gatekeeper residue in these pockets have been identified (human PAK-1, yeast Cla4p, human 

JNK2, human CDK2) with yeast and human Ire1 and mouse and human PERK by using Clustal 

W2. 

PERK sequence was aligned with other kinases using Clustal W2. Red vertical rectangle depicted by a 

thick black arrow represents the potential gatekeeper residues in all of the aligned kinases that can 

potentially interact with ATP. In PERK, two potential sites were identified: Methionine at 888
th

 amino 

acid site and glutamine at 889
th

 amino acid site. 

 
 

After this alignment, two potential gatekeeper residues were identified for mutagenesis: 

Methionine (M) at 888th amino acids or Glutamine (Q) at 889th amino acids. Then, 3D 

predicted structure of the kinase domain of PERK was created by Swiss Model program 

to visualize these potential gatekeeper residues. The results are shown below: 
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Figure 4. 5  Predicted 3D structure of a PERK fragment from 586 to 1077 by Swiss Model.  

Methionine (M) at 888th amino acid site is blue and Glutamic Acid (Q) at 889th amino acid site is 

orange.   

                 

Based on our modeling the methionine and glutamic acid, exposed to surface, seemed 

like good candidates with which ATP could interact in the ATP binding cavity. For 

further confirmation , PERK was aligned with the other kinases such as GCN2 or  

TgCDPK1 whose crystal structures  were  resolved in complex  with ATP or 1NM-PP1 

(ATP analog) (at 2.00 Å resolution  (PDBID:1ZY5); Padyaneet.al., 2005; and 

http://www.rcsb.org/pdb/explore/explore.do?structureId=1ZY5 )  in complex  with ATP 

or 1NM-PP1 (ATP analog). 

 

Zoom in M&Q 
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Figure 4. 6    The hypothetical 3D model of PERK aligned in PyMoL15 with GCN2 (in 2.00 Å 

resolution (PDBI ID: 1ZY5) and Padyana et al., 2005 and 

http://www.rcsb.org/pdb/explore/explore.do?structureId=1ZY5). 

Light pink represent GCN2 and red represents PERK. DARK blue shows methionine site that 

hypothetically interacts with ATP (shown in light blue). 

http://www.rcsb.org/pdb/explore/explore.do?structureId=1ZY5
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Figure 4. 7    The hypothetical 3D model of PERK in PyMol 15 with TgCDPK1 in a complex with 

1NM-PP1 complex (in 2.04 Å resolution (PDB ID: 3I79) and Kayode et al., 2010 and 

http://www.rcsb.org/pdb/explore/explore.do?structureId=3I79). 

Grey represents TgCDPKI and light blue represents PERK. Yellow and Green show methionine and 

glutamine site, respectively, which can potentially interact with 1NM-PP1 shown red.       

http://www.rcsb.org/pdb/explore/explore.do?structureId=3I79
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According to these results, the potential gatekeeper sites to mutate appeared to be the 

methionine or glutamine in 888
th

 and 889
th

 amino acids, respectively. The PERK 

fragments from the wild type and PERK mutants (M888A, M888G, Q888A and Q889G 

were visualized with 1NM-PP1 complex in order to observe the interaction points 

between them. The results are shown below: 

 

 

Figure 4. 8  PERK WT in complex with 1NM-PP1  

Blue is representative of potential interaction site with 1NM-PP1 shown in red. 
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Figure 4. 9 PERK M888G in complex with 1NM-PP1  

 In first graph, blue represent 1NM-PP1 and green depicts the alanine site mutated from methionine at the 

888
th

 amino acid in PERK.  In the second graph, yellow represents 1NM-PP1 and blue shows the glycine 

site mutated from methionine at 889
th

 amino acid site in PERK. 
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Figure 4. 10 PERK Q889A in complex with 1NM-PP1  

Blue represents 1NM-PP1 and purple shows the alanine site mutated from glutamine at the 889
th

 amino 

acid in PERK.           

 

Figure 4. 11     PERK Q889G in complex with 1NM-PP1  

Blue represents 1NM-PP1 and purple depicts the glycine site mutated from glutamine at 889th amino acid 

site in PERK. 
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 Figure 4.8 – 11 show the alignment of the hypothetical 3D structures of   PERK WT, 

M888A and M889G in a complex with 1NM-PP1.  The ATP analog 1NM-PP1 does not 

fit the WT ATP binding cavity. The best fit occurs between the gatekeeper mutation site 

at the methionine in 888
th

 amino acid and not glutamine in the 889
th

 amino acid site. 

Therefore, methionine 888 site was converted into two different small amino acids, 

alanine and glycine, to create the enlarged ATP pocket for PERK.  

 

4.2 Molecular Cloning and Site Directed Mutagenesis For mPERK 

Plasmid 21814: PERK 1: PERK.WT.9E10.pCDNA, deposited by David Ron, was 

obtained from Add Gene. The PERK cDNA were inserted between the EcoR1 (on 

5’site) and Xho1 (on 3’ site) and tagged with C-terminal myc (9E10) epitope tag. The 

PERK cDNA also included a small part of its own 5’UTR, but not the 3’UTR. The open 

reading frame (ORF) of PERK started approximately 200 base pairs (bp) after EcoR1 

restriction site. The insert size was 3577bp (including the 5’ UTR region) while the 

vector backbone was 4756 bp. The map of plasmid can be seen below: 
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Figure 4. 12 The map of PERK plasmid bought from Add Gene.  

The PERK cDNA was inserted between the EcoRI and Xho1 sites and was epitope tagged with c-myc at 

the c terminal. The plasmid number 21814 was purchased from Add Gene. 

 

 

After restriction digest and gel confirmation of the size of the insert and the plasmid, 

site directed mutagenesis PCR was performed using the PERK cDNA as the template. 

Following the mutagenesis protocol, the mutations were confirmed via sequencing. The 

sequencing results also confirmed that there were no additional mutations that could 

alter the protein’s function (figure 4.13, 4.14).  
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Figure 4. 13 The sequencing results for mPERK M888G mutation. 

According to sequencing results, Methionine at 888th amino acid site representing ATG was successfully 

converted into glycine representing GGG without any unexpected mutations at any site. 

 

 

Figure 4. 14 The sequencing results for mPERK M888A mutation. 

According to sequencing results, Methionine at 888
th

 amino acid site representing ATG was successfully 

converted into alanine representing GCG without additional mutations at any site. 

 

Because the vector backbone did not contain a gene encoding a selection marker (drug 

resistance) the PERK mutants were next sub cloned into appropriate mammalian 

expression vectors with a puromycin resistance gene. Two cloning primers were 

designed, one of each ending with am EcoR1 and Xho1 restriction enzymes. The 

cloning strategy at first excluded the 5’ UTR region of PERK. The insert was cloned 

into FLAG-epitope and neomycin-resistance gene containing pcDNA5F plasmids 

(derived from Invitrogen pcDNA 3.1). The insert was also cloned into pBABEPuro 

(Addgene, Plasmid # 1764) using restriction digest and ligation strategy. The puromycin 

Met 

Ala 

Met 

Gly 
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resistant PERK plasmids were used to create stable cell lines from the PERK
-/-

 mouse 

fibroblast since this cell lines is already resistant to neomycin. 

 

4.3  Expression of Wild Type and Analog Sensitive Kinase Allele 

Mutant (ASKA) of PERK in Mammalian Cells 

 

There are only a few known substrates of the UPR kinases other than themselves. In 

addition to auto phosphorylation, PERK phosphorylates the “eukaryotic initiation factor 

2 alpha” (eiF2a) and Nrf2 (Harding et al., 1999; Shiet al., 1998). A major goal in this 

study was to create the ASKA PERK mutant that could later be used to identify novel 

PERK substrates. Therefore, after cloning and successful mutagenesis of the PERK 

gatekeeper residues in the ATP binding cavity, the cellular expression of these new 

constructs was investigated. First, the expression was observed in transiently transfected 

HEK293A cells, since this cell lines could be easily transfected with Polyethylanimine. 

The c-myc tagged PERK wild type (WT) and the PERK mutants PERK-M888A and -

M888G protein expression levels were evaluated in Western blots. Importantly, the 

PERK WT and mutants in c-myc containing original vectors also included part of 

PERK’s UTR.  
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Figure 4. 15  PERK expression in HEK293 cells. 

Western Blot lysates from HEK cell lines transfected with 2 µg of mutant and wild type of mPERK 

plasmid DNA are detected by c-myc antibody.  

   

As seen in figure 4.12, mouse PERK (mPERK) is expressed at significantly higher 

levels.  As a result mPERK was used in subsequent cell culture experiments.  

  

Next, I determined whether the PERK gatekeeper mutants could be inhibited with 

NaPP1 and is suitable for downstream chemical-genetic applications. The PERK
-/- 

mouse embryonic fibroblast cells (MEFs, a generous gift of Prof. Dr. Gokhan 

Hotamisligil (Harvard University), were transfected with the plasmids containing 

mPERK-WT, PERK-M888A and PERK-M888G. 4 hours post-electroporation the cells 

were treated with NaPP1 for an additional 20 hours. After a total of 24 hours post-

electroporation, the cells were treated with 300 nM thapsigargin, an inhibitor of SERCA 

pumps and an ER stress inducer, for 4 more hours. The cells were flash frozen in liquid 

nitrogen or directly lyzed in phospholysis buffer for analysis of PERK 

autophosphorylation by Western Blot. The results are shown in figures 4.16-17. 
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Figure 4. 16  NaPP1 inhibits ASKA mutant (M888A) mPERK but not wild type mPERK expressed 

in PERK
-/- 

MEFs.    

Western Blot analysis of cell lysates from  PERK 
-/- 

MEFs that were transfected with 4µg of mutant or 

wild type of mPERK plasmid DNA. Then, the cells were treated with NaPP1, an ATP analog inhibitor 4 

hours after transfection and incubated overnight. Afterwards, cells were treated with 300nM thapsigargin 

(Tg) for 4 hours.  PERK phosphorylation, c-myc and b-actin expression were detected by Western blots 

using specific antibodies against these proteins. c-myc expression represents the expression level for 

recombinant PERK proteins and β actin was used as a loading control. 
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Figure 4. 17  NaPP1 inhibits ASKA mutant (M888G) of mPERK but not wild type mPERK 

expressed in PERK
-/-

MEFs.  

Western Blot analysis of cell lysates from  PERK 
-/- 

MEFs that were transfected with 4µg of mutant or 

wild type of mPERK plasmid DNA. Then, the cells were treated with NaPP1, an ATP analog inhibitor 4 

hours after transfection and incubated overnight. Afterwards, cells were treated with 300nM thapsigargin 

(Tg) for 4 hours.  PERK phosphorylation, c-myc and b-actin expression were detected by Western blots 

using specific antibodies against these proteins. c-,myc expression represents the expression level for 

recombinant PERK proteins and β actin was used as a loading control.  

 

According to the western blot results, the overexpression of PERK-WT or the mutants 

in the PERK
-/-

 MEF cell lines lead to their auto-phosphorylation, but the kinase activity 

was less in mPERK_M888G when compared to mPERK_M888A. In mutant PERK 

(M888G and M888A) expressing MEFs, PERK phosphorylation was almost completely 

abolished upon NaPP1 treatment at the baseline and also during thapsigargin treatment 

in cells. On the other hand, there was no reduction in the phosphor transfer activity of 

the wild type mPERK with NaPP1 treatment (Figure 4.16, 4.17). 
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4.4  The Knock down of PERK Expression in Macrophages By 

siRNA 

 In order to observe the direct contribution of PERK to lipotoxic ER stress-associated 

inflammation, the siRNA-mediated silencing of PERK expression was attempting 

testing various different siRNAs specifically designed against mPERK sequence in 

stressed macrophages. Only one of the tested mPERK siRNAs could effectively reduce 

PERK phosphorylation in stressed macrophages.  

 

 

Figure 4. 18 siRNA mediated silencing of mPERK in macrophages.  

The Raw 264.7 cell lines transfected with siRNA and thapsigargin is administrated 4 hours later. Western 

blot protein lysates were detected with p-PERK antibody and β tubulin as an equal control.  

 

As seen figure 4.18, treatment with a specific siRNA for PERK (EIF2AK3_1 from 

Qiagen) leads to significant reduction in the phosphorylated PERK levels induced by 

thapsigargin.  
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4.5  The Loss of Function of PERK Activity during Lipid Induced 

ER Stress and Inflammation in Macrophages 

After confirming the successful reduction in the expression levels of PERK protein with 

specific siRNA (EIF2AK3_1 from Qiagen), I examined its impact on palmitate alone 

and palmitate induced ER stress and inflammation in macrophages, in previously 

described experimental conditions
18, 32, 158

. In addition to stimulating ER stress with 

palmitate, I also used palmitate together with lipopolysaccharide (LPS) as a prerequisite 

to the activation of the inflammasome and an inducer of pro-inflammatory response
14

. 

 

 

 

Figure 4. 19 siRNA mediated silencing of mPERK expression under lipotoxic ER stress conditions 

Raw 264.7 cell lines transfected with 100 nM of siRNA were treated with only PAL or LPS combined 

PAL after overnight incubation. Western blot protein lysates were detected with p-PERK antibody and β 

tubulin as an equal control. 

 

In these experiments, I observed phosphorylation of PERK is increased by palmitate 

treatment further when the cells are pre-stimulated with lipopolysaccharide (LPS). 
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Earlier studies showed that the phosphorylation of IRE1 and its downstream target JNK 

are not affected in PERK knockout adipocytes (Jiao P. et al., 2011). Here, I also 

examined IRE1 expression and phosphorylation in my experimental conditions with 

transient silencing of PERK using specific siRNA. As seen in Figure 4.20, the 

suppression of PERK levels in macrophages did not alter JNK phosphorylation but may 

have had an effect on IRE1, though in the protein levels in the last two lanes may have 

been less in this specific experiment. Hence, I also examined IRE-1 induced XBP1 

splicing under the same experimental conditions by semi-quantative PCR was 

investigated and saw no reduction induced by PERK siRNA treatment (Figure 4.21). 

 

 

Figure 4. 20 Phosphorylation of IRE1 and JNK in macrophages treated with PERK siRNA. 

100 nM of PERK siRNA and scrambled siRNA was electroporated into macrophages.  24 hours later, the 

cells were pre-stimulated with 40 ng/ml of lipopolysaccharide (LPS) for 2 hours. After this, the cells were 

incubated 1000 µM palmitate (PA)  dissolved in % 5 fatty acid free bovine serum albumin (BSA) in 

complete RPMI media for an additional 9 hours.  Phosphorylated forms and total JNK and IRE1 were 

detected using specific antibodies against these proteins in western blots. 
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Figure 4. 21 The changes in spliced and unspliced XBP-1 by semi quantative PCR in the absence of 

PERK 

The semi quantative PCR products done with use of XBP1 primers were loaded into % 3 agarose gel and 

run for 1 hour. Higher band represents unspliced XBP-1 and lower band represents spliced XBP1 (lacking 

26 bp). 

 

As seen in figure 4.21, there is no reduction in spliced XBP-1 levels induced by 

palmitate or palmitate and LPS in macrophages treated with PERK siRNA compared to 

scrambled RNA treated or untreated macrophages.  

 

Experimental induction of UPR via free cholesterol or high amounts of free fatty acids 

has been shown to increase the expression of pro-inflammatory molecules such as Il-8, 

Il-6, MCP-1 and TNFalpha and iNOS
82, 149

. In 2011, Jiao and colleagues also showed 

that TNFalpha expression is increased, but not IL6, in the PERK knock out 

adipocytes
66

. To gain insight into the role of PERK in lipid induced inflammation in 

macrophages, PERK expression was silenced by PERK-specific siRNA treatment in 

macrophages, the cells were stimulated with palmitate or palmitate and LPS, and the 

mRNA levels of TNFalpha and iNOS were detected with q-PCR. 
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Figure 4. 22 The changes in lipid-induced cytokine expression in the absence of PERK  

Reduction of PERK levels was achieved by transfection of PERK-specific siRNA to macrophages. The 

cells were treated with only LPS or LPS combined PAL TNFalpha and iNOS expression was determined 

by qPCR. The values depicted in the graphs represent the mean of three experiments and the standard 

deviations (SD) were shown on the bars. Student T-test was performed to determine significance (* P 

<0.05). 

 

 

These results imply that suppression of PERK activity leads to further induction of 

iNOS and TNFalpha upon stressing macrophages with palmitate and LPS pre-

stimulation. 

  

4.6 Palmitate-LPS Induced Inflammation and Its Reduction with 

Palmitoleic Acid  

Saturated fatty acid (such as palmitate) or cholesterol administration to cells is known to 

lead to ER stress and cytotoxicity
18, 32, 158

. On the other hand, unsaturated fatty acids 

particularly palmitoleate, can significantly alleviate ER stress under palmitate or 

cholesterol induced ER stress
176, 177 and 178

. Additionally, lipopolysaccharide stimulates 

the pro-inflammatory responses in macrophages
14

. When used together, LPS and PA, 

induce marked ER stress and inflammation in macrophages. In this part of my thesis 

studies, I attempted to reduce lipid-induced ER stress and associated inflammation by 

treating macrophages with palmitoleate. 
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Figure 4. 23 Reduction of lipotoxic ER stress-associated inflammation in macrophages by 

palmitoleic acid treatment  

Macrophages were treated with 1000 µM of palmitate and 40 ng/ml of LPS (pre-stimulation) and the 

expression of TNFalpha and IL6 were determined by q-PCR. The values represent means valued from 

three different experiments.  Standard deviations (SD) is shown and student T-test was performed for 

significance (* P <0.05). 

 

As seen in figure 4.23, LPS or LPS with palmitate stimulated inflammation, which was 

blocked by palmitoleate treatment. Unexpectedly, an unsaturated fatty acid, palmitoleate 

significantly masked the effect of LPS on inflammation; it’s mechanism worthy of 

further investigation. 
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6. DISCUSSION AND CONCLUSION 
 

The main focus of my thesis study was the characterization of PERK in the context of 

lipid induced inflammation in macrophages.  For this purpose, two experimental tools, a 

specific siRNA against PERK and an ATP analog sensitized mutant of PERK were 

created to block PERK’s activity without affecting the two other UPR pathways.  

 

6.1 Creating An ATP Analog Sensitive Mutant Of PERK For Chemical 

Genetic Approaches 

Chemical genetics approach can be coupled to the discovery of novel kinase targets that 

could be developed into future therapeutics. The chemical-genetic strategy can also be 

used to modulate the activities protein kinases during signal transduction events
13

. This 

strategy, a semisynthetic reaction scheme, requires the use of labeled or detectable 

bulky ATP analogs for thio-phosphorylation, followed by alkylation of this bond, which 

generates a semisynthetic epitope on the modified substrates that can be recognized by a 

monoclonal, anti-thiophosphate specific antibody
2
. In this thesis, I adopted this 

chemical-genetic approach to create a PERK mutant that could be modulated by bulky 

ATP analogs and inhibitors.  

 

PERK
136

 is an important kinase that phosphorylates eukaryotic initiation factor 2 alpha 

leading to global translation arrest during unresolved ER stress
51, 52

. ER stress can be the 

result of many signals such as glucose deprivation, aberrant calcium regulation, viral 

infection and hypoxia
70, 128

. In addition to autophosphorylating itself, PERK has two 

other known substrates, Nrf2
27 

and eIF2α
52

. In this thesis, I attempted to generate PERK 
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mutant that can be monospecifically activated or inhibited via bulky ATP analogs.  This 

mutant can also be coupled to identify the full range of PERK substrates during lipid-

induced stress.  

 

In the beginning of my thesis, I identified the potential mutagenic sites for the 

gatekeeper residue of PERK (M888A and M88G) that would allow the fitting of a bulky 

ATP analog into the ATP binding cavity of PERK (Figure 4.4-4.11). A significant 

observation during this study was that these mutations conserved the kinase activity of 

PERK (Figure 4.16 and 4.17). Furthermore, I observed the mutant PERK’s activity, but 

not wild type PERK activity, could be controlled by a cell permeable bulky ATP analog 

such as NaPP1
2 

(Figure 4-15-17). This result demonstrated the specificity of the created 

mutation for accepting the bulky ATP inhibitor. In future studies, PERK kinase assay 

using the bulky ATP analog (N6benzylATPgammaS) can be coupled to proteomics for 

the identification of novel PERK substrates during lipotoxic stress. 

 

6.2  Characterization Of PERK’s Role In Lipid-Induced Inflammation  

Previous studies showed that ER stress may be linked to inflammation through various 

mechanisms including activation of JNK by IRE-1, NF-қB through PERK and IRE1
28, 

62
, the production of ROS, the generation of nitric oxide that activates Nrf2/Keap 

complex and phosphorylation of Nrf2 by PERK
27, 42

. ER stress through these and other 

mechanisms can lead to induction of pro-inflammatory genes such as TNF alpha, IL6, 

IL1-B and IL18. The excess of lipids or their metabolites impact both the metabolic and 

immune functions through mechanisms not clearly understood
81, 175

. In recent studies, 

saturated fatty acids such as palmitate, but not unsaturated ones, were shown to induce 

ER stress and inflammatory response in human islets
179

, β cells
4
, mouse 3T3-L1 cells 
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and rat primary pre-adipocytes
46

 and liver cells
158

. Since metabolic stress generated by 

lipids can cause the activation of all three arms of UPR, the individual contribution of 

the PERK arm to inflammation is not clear. To evaluate the specific contribution of 

PERK to lipid-induced inflammation I identified specific siRNA sequences that can 

block PERK’s activity upon transfection into macrophages. Using this tool, the 

expression of PERK was silenced in macrophages during lipid induced ER stress and 

the changes in the expression of some cytokines’ levels, including TNF alpha and 

iNOS, were analyzed (Figure 4.22). The outcomes of these studies showed that the 

expression of PERK has a direct effect on expression of proinflammatory cytokines 

such as TNF alpha and iNOS induced by saturated fatty acids in macrophages. In 2011, 

Jiao and et al. had unexpectedly observed an increase of TNF alpha levels and the 

phosphorylation of JNK in PERK-deficient adipocytes
66

. However, PERK-deficient 

adipocytes exhibited a converse reduction in IL6 production in the same conditions. The 

increase in cytokines may be due to an induction in IKKβ, since Jiao et al. also observed 

the increased phosphorylation of IKKβ with FFAs in the same cells.  Based on these 

results, PERK dampens IKKβ activity which is associated with TNFalpha increase. It 

appears that the absence of PERK worsens inflammation but the changes in other pro-

inflammatory cytokines need to be examined for a generalized view. In this thesis study, 

I showed that PERK can directly suppress inflammation, particularly iNOS levels.  

 

Furthermore, I examined whether the absence of PERK activates the other arms of 

UPR, in particularly IRE1 that has been shown to be involved in inflammation
57, 58

. A 

published work showed that IRE1’s phosphorylation is not increased by the absence of 

PERK, at least in adipocytes
66

. There was no further increase in either the 

phosphorylation of IRE-1 and JNK or the splicing of XBP-1 upon silencing of PERK 
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with siRNA, demonstrating the induction of cytokine production and iNOS levels are 

independent of counter-up regulation of the IRE-1 arm (Figure 4.20 and 4.21).  

 

6.3 Reduction of  lipid induced ER-stress and inflammation by palmitoleate 

 

Previous studies showed that saturated free fatty acids can induce lipoapoptosis via ER 

stress
158

. Moreover, it has been showed that mutated conductance regulator Cl-channel 

(CFTR) resulting in cystic fibrosis induced ER stress and inflammation but this also was 

increased by chronic bacterial infection
180

. Several agonists of Toll-like receptor (TLR) 

2,4 and 5 might stimulate XBP-1 splicing demonstrating that activation of TLR by 

pathogens might have an synergistic interaction with ER stress followed by enhancing 

the secretion of pro inflammatory cytokines
94, 180

. The outcome of my thesis studies 

support this notion, since I observed there was significant increase in the pro-

inflammatory output in combined LPS and palmitate treatment when compared to LPS 

or palmitate alone (Figure 4-23). Meanwhile unsaturated fatty acids such as palmitoleate 

can significantly reduce acute ER stress stimulated by the excess of saturated fatty acids 

or cholesterol
32, 176, 177 and 178

. One possibility for this protection may be due to 

monounsaturated fatty acids ability to promote adaptive mechanisms such as storing the 

excess fatty acids as triglyceride
81, 176

.  In fact, it has been observed that ER stress is 

stimulated in cells and mice through the genetic inhibition of conversion of saturated 

acids to monounsaturated acids
181, 182

. Studies recently demonstrated that palmitoleate is 

able to reduce the potential destructive effects of saturated fatty acids, such as insulin 

resistance, in vivo
183, 184

.  In this thesis study, I observed that palmitoleate can 

completely block lipid-induced ER stress and inflammation in macrophages. 

Unexpectedly, I also observed that palmitoleate can prevent LPS-induced and combined 
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LPS and lipid induced inflammation. These results show that the protective mechanisms 

of this promising, palmitoleate involve prevention of lipid induced inflammation. 

Palmitoleate may become a potent anti-inflammatory and metabolic enhancing 

therapeutic targeting obesity and related disorders such as insulin resistance, diabetes 

and atherosclerosis. 

 

Lipid induced macrophage inflammation plays an important role in the pathogenesis of 

metabolic diseases. Previous studies conducted in obese mouse models detected the 

cross-talk between adipocytes and macrophages in adipose tissues  leads to local and 

systemic insulin resistance through the activation of Jun N-terminal kinase (JNK), 

inhibitor of κB kinase (IKKβ) via secretion of free fatty acids and pro-inflammatory 

cytokines such as TNFalpa, IL6 and IL1β 
144, 185

. Furthermore, other studies showed that 

Kupffer cells, a major bone-derived macrophage cell type in liver induce insulin 

resistance in the neighboring hepatocytes through the secretion of inflammatory 

cytokines
5, 130

. Also, in atherosclerosis, macrophages recruited to the lesions play a 

central role in the maladaptive and non-resolving inflammatory response leading to 

plaque progression and rupture
97

. Taken together, lipid induced macrophage 

inflammation is very important in the regulation of metabolism, so the studies about the 

elucidation of molecular mechanism of  this type of inflammation offer promise for the 

discovery of new therapeutics against metabolic and inflammatory diseases. 

 

In conclusion, the experimental tools created in this thesis study lead to important 

observations that deepens our understanding of PERK’s role in inflammatory and 

metabolic diseases. The results of my thesis study demonstrate for the first time a direct 

role of PERK in lipid-induced inflammation in macrophages. Furthermore, the 
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chemical-genetic mutant of PERK that was created in this study can become a useful 

tool to identify the full spectrum of PERK substrates in lipid-induced stress in future 

studies and guide the development of novel and specific new therapeutics against 

metabolic and inflammatory diseases 
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7. FUTURE PERSPECTIVES 
 

First, this thesis study identified two mutants of PERK suitable for the chemical-

genetics approach, which allows the temporal and specific control of the mutant of 

PERK activity when combined with permeable bulky ATP analogs or inhibitors. The 

expression of this mutant of PERK in macrophages leads to its spontaneous activation 

and a gain of function for PERK, which can be inhibited by NaPP1 addition to cells.  

Second, I identified specific siRNA species that can reduce PERK expression in 

macrophages. Using these siRNAs, I studied the loss of function for PERK in lipid 

induced inflammation. These complementary experimental strategies can be used to 

understand the direct role of PERK in lipid induced inflammation. The outcome of my 

studies showed that PERK has a direct role in pro-inflammatory response. These studies 

should be supported by experiments for additional pro- inflammatory cytokines such as 

MCP1, anti-inflammatory cytokines such as IL10 and also inflammasome related 

cytokines such as IL18 and IL1β. Additionally, I only used the mouse macrophage cell 

line RAW 264.7 in this study. Similar experiments should be carried out in mouse 

primary bone-marrow derived macrophages and human macrophages. 

 

Unexpectedly and interestingly, I also observed that palmitoleate can mitigate LPS 

alone-induced or combined LPS and lipid treatment-induced inflammation. All together, 

the data presented in this thesis study supports the direct role of PERK and the 

promising effects of palmitoleic acid on inflammation, further studies are needed to 

understand their precise molecular mechanisms of action. In the future, ATP-analog 

sensitized mutant of PERK, in a kinase reaction with a different ATP analog N6-

ATPgammaS to thiophosphorylate its substrates, should be coupled with proteomics to 
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identify full spectrum of PERK’s substrates. In this study, we optimized the usage of 

bulky ATP analog inhibitor NaPP1 by the ASKA mutant of PERK, but PERK kinase 

assay optimization using the N6-ATPgammaS need to be carried out. After 

identification of potential substrates of PERK, they need to be validated in further 

kinase assay and biological experiments. Moreover, transgenic expression of this 

mutant of PERK in mice and chemical ablation by NaPP1 can become a useful tool in 

studying the direct contribution of PERK to metabolic disease pathogenesis.  
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