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ABSTRACT

DISTANCE CONSTRAINTS ON CYCLIC NETWORKS: A
NEW POLYNOMIALLY SOLVABLE CLASS

Hilya Emir
M.S. in Industrial Engineering
Supervisor: Assoc. Prof. Barbaros Tansel
July, 1997

Distance Constraints Problem is to locate new facilities on a network so that
the distances between new and existing facilities as well as between pairs of
new lacilities do not exceed given upper bounds. The problem is N P-Complete
on cyclic networks. The only known polynomially solvable class of distance
constraints on cyclic networks is the case when the linkage network, which is
an auxiliary graph induced by the distance bounds between new facility pairs,
is a tree. In this thesis, we identify a new polynomially solvable class where
each new facility is restricted to an a priori specified feasible region which is
confined to a single edge and where the linkage network is cyclic with the
restriction that there exists a node whose deletion breaks all cycles. We then
extend the above class to a more general class where the linkage network has

a cul vertex whose blocks fulfill the above assumptions.

Key words: Distance constraints, network location.
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OZET

GENEL SERIMLERDE UZAKLIK KISITLARI PROBLEMI:
POLINOM ZAMANDA COZULEBILIR YENI BIR SINIF

Hilya Einir
Endustri Mithendisligi Boltimu Yiksek Lisans
Tez Yoneticisi: Dog. Dr. Barbaros Tansel
Temmuz, 1997

Uzakhk Kisitlarr Problemi, bir serim dzerinde yeni tesisleri, yeni tesisler
ve varolan tesisler arasindaki ve yeni tesis ¢iftleri arasimndaki uzakliklar belli
st degerleri gegmeyecek bigimde yerlestirme problemidir. Problem g¢evrimsel
serimlerde NP — zordur. Gevrimsel serimlerde polinom zamanda ¢ézinirlagi
bilinen durum link seriminin, yeni tests ¢iltleri arasindaki uzaklik simirlarinmn
belirledigi yardimer gizgenin , bir agag oldugu zamandir. Bu tez ¢aligmasinda,
polinom zamanda ¢ozilebilir yeni bir simf tamumliyoruz. Bu smuf her yeni
tesisin 6nceden belirlenmig olurlu bolgesinin tek bir ayritta bulundugu ve
cevrimsel link seriminin, iptal edildiginde bitin ¢evrimlerin kirilacag bir
diigime sahip oldugu varsayimyla smrlanchgl durumlardir.  Daha sonra
yukaridaki sinifi daha genig bir sinif olan 6bekleri yukaridaki varsayuni saglayan

cklem diigiuni olan link serimlerine genigletiyoruz.

Anahtar sézcikler Uzakhk Isitlar, Serim Yerlegimi.
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Chapter 1

INTRODUCTION

We consider the problem of locating m new facilities on a transport network
so as to satisly upper bounds on distances between specified pairs of new and
existing facilities and specified pairs of new facilities. Ior convenience we refer
to the problem as Distance Constraints Problem (DC). The existing facilities
are at nodes of the network. New facilities can be placed anywhere on the
network including nodes and interiors of edges. If a distance bound is imposed
on a pair of [acilities, those facilitics are said to interact. Not all facility pairs
need to interact but those that do must be placed so as not to violate the

imposed upper bounds.

Kolen [7] proved that the problem (DC) is NP-Complete in the strong
sense. One polynomial time solvable class in the literature is the special case
where the transport network is a tree. Irancis, Lowe and Ratlifl [9] solved
this special case in O(m(m + n)) where m and n are the number of new
and existing facilities, respectively. Tansel and Yesilkokcen [12] made the first
direct attack on the general network version of the problem. They took Lhe
transport network to be arbitrary and gave a strongly polynomial algorithim
under the assumption that the pairs of new facilities that interact induce an
acyclic graph ( called LN in the sequel). The time bound of the algorithm
is O(|E|mn(m + logn)) where |I] is the number of edges of the transport

network. This work provided new theory for general networks at the expense

1



CHAPTER 1. INTRODUCTION 2

of an assumption on new facility interactions. The tree network theory does

not make any assumptions on this part of the data.

In this thesis, we identily a new class ol problem instances for cyclic
transport networks. [Ior these problem instances, we develop a polynomial

time algorithun which constructs a feasible solution to the distance constraints,

if there is any.

There appears to be a number of reasons for considering distance
constraints. I[ the new facilities are service [acililics of some sort, such as
fire stations, then we may wish to require that the fire stations be within a
specified driving time (distance) of any point in the region it serves, and then
attempt to minimize some objective function. Alternatively, we can envision
military scenarios where a number of units cannot be too far from their supply
bases and also should not be far from one another, in order that one unit
may reinforce another if necessary. With the latter scenario, if a meaningful
single objective function is difficult or impossible to obtain, we may possibly be
satisfied with one or more [easible solutions from which to make a choice. Also
since distance constraints is the recognition form of the minimax multifacility

location problem with mutual communication, it deserves the attention given.

Major studies that are most related with our work can be summarized in
the following table. Because of its impact on the solvability of the problem,
let us deline LN and n; here. Linkage Network, LN is an auxiliary graph that
captures the relations between new [acilities. The node set of LN is the new
facilities set and there is an arc between new [acility ¢ and j if there is an upper

bound on the distance between them.

There are two kinds of constraints for distance constraint problem, between
new and existing facilities and between new [acilities. For the former one it is
possible to restrict the set ol points at which each new facility can be located.
The subset of G in which &; can be located in order to satisfy the [irst constraint
set is called S;. \S; may consists ol many disjoint subedges and n; is the number

of disjoint segments of .5;.
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Assumptions
Authors Year | Trans. Net. | LN | n; Explanations
Irancis, 1978 TREE - - Gave an algorithm
Rathiff & Lowe with O(m(n 4 m))
Kolen 1986 - - - Proved that the
problem is N PP-Complete
Tansel& 1993 - TRISL - Gave an algorithm
Yesilkokcen with O(| E|mn(m + (m + logn))
Tansel& 1997 - anode + | 1 Gave an algorithm
Emir subtrees with O(n3)

Table 1.1: The studies on DC problem

Alter providing the aléorithm that provides a solution for this restricted
problem where each S; is a convex set restricted to an edge of G and LN
is cyclic with the restriction that there exists a node whose deletion breaks
all cycles, we will provide some extensions. We will deal with LNs that has
a cut vertex whose blocks fulfill the above assumptions. We then relax the
assumplion on n; and extend the polynomial time solvability to the case where

S; may consists disjoint scgments whose union is restricted on edge of G' again.
Now we take a look at the related literature in more detail.

Since we work in a continuous space where new facilities can be located at
node or interior points of some edges, we need to work with an embedding of a
transportation graph. The [ollowing derivation is taken [rom Dearing, Francis

and Lowe [3].
EEmbedding of G = (V,€) is derived as [ollows:

For each arc (vi,v;) € & we assume there exists a one-to-one mapping
T; from the unit interval [0,1] into S with T3;(0) = vi, T3;(1) = vj, and we
define the embedding of (v;,v;), denoted by [v;,v;], as T3;([0,1]). We assume
any two embedded arcs intersect at most one common point, a vertex. We

define G by G = U{[v,v;] : (vi,v;) € £} and reler to G as the embedding of G
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Denote by w;; the inverse function of 13;(A), so that w;j is a one-to-one mapping
from [v;,v;] onto [0,1]. For = € [vi,v;] we define [v;, 2] = T;;([0,w;;(2)]) and
[«,v;] = Tij([wij(2), 1]) and define the lengths of {v;, v;] and [z, v;] to be wi;(x)e;;
and [l — wjj]ei; respectively where e;; is the length of edge (vi,v;) which is

assumed to be positive.

In the network location literature, the most common assumption is that
the network of interest is a tree. Dearing, Francis, and Lowe [3] specily some
reasons that make tree network location problems tractable. They suggest
that the reason has to do with convexity or lack of it. In that study, it is
proven that the distance function (the shortest path length) is a convex function
for all data choices if and only if the transport network is a tree. Then the
multifacility minimax problem with mutual communication (MMMC) whose
recognition form is the distance constraints, the subject of this thesis, has
a convex objective function as well as a convex constraint set. The lack of
convexity is one source of dilliculty for cyclic networks. However, problems
such as the p-center or p-median are not convex but they are polynomial time
solvable when the network is a tree and N P-Complete when the network is
cyclic. Hence, convexity provides a partial explanation for hardness of cyclic

networks.
For Tree Network

Francis, Lowe, and Rathill [9](FLR [rom now on) oblain necessary and
suflicient conditions termed separation conditions, for the distance constraints
to be consistent. They represent distance constraints by using an auxiliary
network, Network BC whose node set consists of existing [acilities EF}, i =
1,2..n and new facilities, NI}, 7 = 1,2..m and whose arc set consists of arcs
(EF;, NIT) if an upper bound is imposed on the distance between existing
facility ¢ and new [acility j, and arcs (N Fj, NFy) il an upper bound is imposed

on the distance between new facilities 7 and k.

It is proven that if the length of the shortest path between EF; and ET;
on Nelwork BC, L(LF;, EI), is greater than or equal to d(v;,v;), the distance

between the locations of existing facilities 7 and j on the transport network
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for every pair of existing facilities then the distance constraints are consistent.
That is;

DC is consistent ilf d(vi,v;) < L(LF, EF) for 1 <i<j3<n

Morcover,in thal study an algorithm is proposed which constructs a feasible
solution to the distance constraints il one exists. Theu, they used the separation

conditions to solve the MMMC problem.

Separation conditions, SC, are necessary and sullicient conditions for tree
network but they are only necessary conditions for cyclic networks. Consider
the [ollowing case. Even though SC are satisfied there exists no feasible location

for x that satisfies the DC.

dxv gl v gLE[E =2

2

2 dxv)gl A v <LELE =2

) d(x,vy<1 d(vov9<L(E 2Ep=2
G (LN) (b0) SO

Figure 1.1: Failure of Sufliciency of SC on Cyclic Networks

Many papers [ollowed the study of FRL (1978). These papers mainly
use separation conditions and consider binding inequalities and multiobjective

multifacility minimax location problems.

One of these works is Tansel, I'rancis, and Lowe {10]. In that study, tight
paths on Network BC are defined as follows: Path P(LF,, I17) is a tight path
if L(EF,, EF,) = d(vy,v,). It is proven that new facility & is uniquely located
il and only if NI lies on at least one tight path P(LL,, EF,) and moreover, if
P(EF,,EF,) is a tight path, then the nodes representing facilities in the path
occur in the same order and spacing in the path as do the locations representing
the facilities in L(v,, vy), the unique path between v, and v, in the transport

network.

In that paper, multiobjective optimization problems are also considered.
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A test is given which identifies whether a location vector is eflicient or not (a
vector is eflicient if a decrease in one component causes an increase in some
other component.) If each NI lies in at least one tight path on Network BC
whose arc lengths are given by the corresponding entries of the location vector,

then that location vector is ellicient.

In another study, Tansel, I'rancis, and Lowe [11] concentrated on biobjective
multifacility minimax location problem on tree networks. A problem is defined
which minimizes the vector whose first entry is the maximum of the distances
between specified pairs of new and existing facilities and second entry is the
maximum ol the distances between specilied pairs of new facilitics. A necessary
and suflicient condition for efliciency is provided. It is as [ollows: Vector Y is
eflicient if and only if at least one arc between new facilities is contained in a
tight path of GBC, where 2= f(Y') and f is the function to be mininized and
GBC, is the graph corresponding to distance constraint problem whose right
hand side is a function of z. An eflicient frontier of the biobjective multifacility

minimax problem on a tree network is formed.

Irkut, Francis, and Tamir [6] consider MMMC on tree networks in the
presence of distance constraints. Their analysis relies on the results obtained
in [9] for the distance constraints. The authors propose two algorithms to
solve the constrained MMMC. The first one is a polynomial algorithm which
performs a binary search over the objective value and requires the data to
be rational numbers. It uses separation conditions to test [easibility at each
step. The second algorithm is strongly polynomial and employs the general

parametric approach suggested by Megiddo [8].

The first solution method is a composite algorithm with two main stages.
In the first stage an interval of prespecified length that contains the objective
function value is found. The second stage calculates the exact optimal value of
objective [unction in that interval. The technique used in hoth stages is binary
search over the objective function value. Sequential Location Procedure, the
algorithm proposed by LR, is used for checking the feasibility of DC at each

iteration of the search. Stage two is concluded with one application of a shortest
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path algorithm to find the exact value of the optimal objective function.

The second algorithm focused on [F'(z), the minimum slack of Network BC
of the problem as a function of the objective function value z. It is proven in
that study that the real line can be decomposed into a finite sct of intervals on
which all [(z) is linear in each interval. The algorithm finds critical values of
z by comparing two linear functions and the sign of I'(z) is calculated for that
point, SLP is used to check that, and the initial interval is reduced until I(z)
is linear in the remaining interval. Then the optimal objective function value

is easily found.

Erkut, Francis, Lowe, and Tamir [5] consider the multifacility location
problem on tree networks subject to distance constraints. All constraints
and the onjective functions are arbitrary nondecreasing [unctions of any
finite collection of tree distances between pairs of new and existing facilities
and between distinct pairs of new [acilities. It is shown in [5] that such
problems which, when each [unction is expressed using only maximization
and summation operations on nonnegatively weighted arguements, are
linear programming problems of polynomial dimensions. This result may
constitute another partial explanation to the question why tree networks
are more tractable than cyclic network problems, since they have equivelent
mathematical programming formulations while cyclic network versions of the

same problems do not.
For Cyclic Networks

Dearing, Francis, and Lowe [3] observed that DC is not convex when
the network is cyclic. Kolen [7] proved that DC is NP-Complete for cyclic
netowrks. Erkut, ,Francis, Lowe and Tamir [5] stated that the problem posed
on a spanning tree is a restriction of the problem on G so that it can be used

as an approximation.

Node restricted version ol MMMP is solved in polynomial time for the
special case when LN is series-parallel or a k-tree by Chhajed and Lowe [2, 1].

The restriction of new facility locations to a finite set permits enumeration
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and the additional assumption on LN allows to carry oul the enumeration
efficiently. This work is not related with ours, since we work with a continuous
space formulation (new facilities can also be located at the interior points of

the edges) so we need to [ollow a nonenumerative way.

The only work related to our study is by Tansel and Yesilkokcen [12, 13].
In these studies, G is taken to be an arbitrary network and a new polynomially
solvable class is identified by assuming an acyclic structure lor the constraints

between new [acilities.

First type of distance constraints for new facility j is handled by intersecting
the neighbourhoods of existing facilities that j interacts with by the upper
bound imposed on the distance between them. The resulting set of points for

new facility j is called .5;.

They first define N(S,7), expand of a nonempty set S by r units, where r

is a positive constant. Then
N(S,r) = UyeS N(y,r)

Given a pair (5,k) € I i[ S; is expanded by bj; and this expansion is
intersected with Sk, then every location @y in this intersection allows the
choice of some z; in S;. This operation, Si « Si NV N(S;,b51) , is called
EXPAND/INTERSECT Operation from S; inlo Sy.

They give an indexing convention for LN, which is assumed to be a tree.
They root the tree at a new [acility and relabel it as m and relabel the nodes

so that the children of 7 has a smaller indices than j.

SEIP consists of two phases. In the first phase, nodes are processed
beginning with leaves of LN and moving toward the root. A given node in
any iteration is eligible for processing only if all children of that node are
already processed. In processing an eligible node & in some iteartion, the aim
is to find the intersection of Sy with expansion of all of its children. Then the

new set is denoted by F.
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If all I} are nonempty, the second phase is initiated. In the second phase,
actual locations of new facilities are found in post order, moving [rom the root,
the last processed node in the first phase, to the childless nodes. A node is
eligible for processing in some iteration of the second phase only if its unique
parent is already processed. Actually the Expand/Intersect procedure is used
in the reverse order and the sets that are obtained at the end of second phase
are composite regions for new facilities. That is, il one point is chosen [or some
7, &; € F}, then it is possible to construct a feasible location vector whose jth

component is Z;.

The findings of Tansel and Yesilkokcen do not seem to be extendible in any

obvious way to cyclic LN.

They first suggest replacing each arc in LN by two arcs with reverse
directions, and each iteration starting from a node all the directed arcs are
passed (an expand/intersect operation is applied) by a complete tour. The

process is repeated until no set is changed [rom one iteration to other.

But they add that the difficulty with cyclic LN, even if the [inal sets have
been computed somehow, their being nonempty does not imply consistency of

DC. Here is an example that they provide to show the failure of cyclic LN.

Assume [7, Iy, I3 have been constructed somehow and Fy = {xy,z4} ,
Fy = {a3,z5} and I3 = {a3,26}. Since the example is a small one, one
can casily observe by trial and error that no matter how and in which order
expand/intersect operations are applied, Iy, Fy, Iy sets cannot be decreased

further. However, DC is inconsistent.

The relation between our study and Tansel and Yesilkokcen [12, 13] will
become clear in Section 2.2. Brielly, because of the additional restriction we
put on the problem we can analyze the problem parametrically since we can

apply expand/intersect operation in a very special way.

Consequently, our study is a relaxation of Tansel and Yesilkokcen in some

respect ( LN can be a node 4 subtrees which is more general than an acyclic
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X
I 1
X6 X2 Fi=1{xp x4}
Fp={x 3 x5}
i I
F3={x3.x ¢}
X X3
57 |
X4
G) (LN)

IMigure 1.2: Example of Mailure for Cyclic LN

structure) but restriction to that study in some other respect ( number of
disjoint segments of S; is restricted with 1 in our algorithm while there is no

restriction on this part of data in that study).

One superiority of this.study over Tansel and Yesilkokcen is the following
observation. That study cannot suggest a solution for cyclic LN case ( not

even an exponential way) but ours is extendible to this general case.
Here we will provide an overview of the rest of the thesis:

In Chapter 2, we will provide an algorithm to DC with three restrictions;
in Section 2.2 we will describe our approach and introduce our tools that will
be used, in Section 2.3, we will give the algorithim |, discuss ils complexity and
provide an example of its application, in Scction 2.4, we will give some methods

that will improve the average performance.

In Chapter 3,we will relax the restrictions we put in Chapler 2 to some

extent while remaining polynomial.

In Chapter 4, we will sumimarize our findings and give some [uture research

directions as well.



Chapter 2

ALGORITHM

2.1 PROBLEM DEFINITION

We suppose a connected, undirected cyclic network G = (V, €) is given with V
denoting the finite set of nodes and & denoting the edge set of G.Let G = (V, E)
be an embedding of G = (V,€) as delined in Dearing, I'rancis and Lowe [3].
Fach edge e € I has a positive length. We take G' to be the union of all
embedded edges. A point @ in G is either a node or an interior point ol some
edge. Tor any two points x,y in G, let d(x,y) be the shortest path distance

between x and y.

Existing facilities are at node locations vy, vy, ...v, in G and m new facilities
will be located at points 4,2, ...¢, € G. Let I¢, Ip be given sets of pairs for
which distance bounds are of interest. Note that I C {(7,7): 1 <j<m,1 <
it <n}and Ig C {(j,k) : 1 <j <k <m}. Given finite positive constants c;;

for (4,7) € Ic and by for (4, k) € Ip, the problem of interest is to find locations

Ty, ..y € G, if they exist, such that
d(zj,v;) < ¢ji for (4,7) € I (DC.1)
d(.’L‘j,IL‘k) < bjk for (],A) € lp (DC.Q)

We reler to the collection of constraints (DC.1) and (DC.2) as (DC). We

11
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say (DC) is consistent if there is at least one location vector (xy,....x,) € G™

that satisfies (DC.1) and (DC.2). Here G™ is the m-lold Cartesian product of
G with itself.

An alternative formulation [or DC is as [ollows. I[ we deline N(q¢,r) =
{x € G:d(z,a) < r} to be the neighborhood around a center « with radius
r, then we have an equivalent formulation of distance constraints in terms of

neighborhoods.

Let
Sj = Nier; N(viy ;i) where I; = {i: (5,4) € Ic}

Then DC can be rewritten as:

d(zj,xr) < bjx lor (5,k) € Ip
xj€SjlorjeJ={1,2.m}

In the case of a tree network, each 5; is a subtree due to the convexity
of neighborhoods (FLR [9]). When G is cyclic, each Sj, in general, is a
disconnected set consisting of up to n-+1 segments on a given edge and O(| E|n)
disjoint parts on the entire network (Tansel & Yesilkokcen [12]). It is stated in
Tansel and Yesilkokcen [12], if n; is the number of disjoint segments of S; and
5% is the Ath disjoint subsct in S, finding a feasible solution to DC calls for

two decisions:
(1) decide which S each a; will be in among n; possible choices.
(2) decide the actual locations of x;’s in their selected sets to satisfy (DC.2)

The resolution of the first decision alone is a major computational challenge.
Any enumeration based scheme would have to select $%’s among [T}, n;
possible choices. In the worst case, the total number of selections is O((| E|n)™)

which is computationally prohibitive for large m.

Suppose now the first decision is (somchow) made so that each z; is
. < kj o . .- .
restricted to a selected S; = 557 for the jih new facility. We have the restricted

problem
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(l(.’l:j,:ltk) < I)]‘k for (],]») € Ip (DC2)
x; €8 lorjeJ (DC.1)

which is called DC .This restricted version of the problem is more closely
related to the tree network problem, since each S; is now a connected set. It is
emphasized by Tansel and Yesilkokcen [12] that despite this resemblance, the
restricted problem on G is nontrivial while the problem on a tree is efliciently
solvable. There is no method from the existing literature that attempts to

solve DC' on general networks.

In this thesis, the algorithm we propose solves DC' [or some special Ig in
polynomial time. If an eflicient method is also found for the first decision then

this strongly N P-Complete problem can be solved efliciently.

As it was defined in the introduction, Linkage Network, LN is an auxiliary
network whose vertex set is the set of new facilities , M = {1,2,..m}, and

whose undirected edge set is Ig ( I in the sequel).

Let us define the term ’broken wheel’ BW,, = (M, E,,). This is a special
type of linkage network where the edge set I, consists of undirecled edges
(1,027 €7 = {1, 2.mP\{1} and (7, + 1), € J\{m).

DC can be written as [ollows:

d(wj, @) < bjx for (5,k) € 1

z; €5 foryeJ

where
IC{(k):1<j<k<m}
S;CGforjed

We provide an algorithm at the end of this chapter that solves this problem

with the [ollowing restrictions.

o Dach S; is a subedge[a;, b;] of some edge [v,,,v,,] and d(aj, ;) = length

of subedge(a;, b;].
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e S;NS,=01Tlor(j,k)el

o [ is chosen so that LN is isomorphic to a subgraph of BW,,

2.2 GENERAL IDEA

Our starting point is the work of Tansel and Yesilkokcen (1993). [rom this
study we know that DC' is polynomially solvable when LN is a tree. We tried
to modify the algorithmn so that it solves DC when LN is a simple cycle. To
do that, we fixed the location of ;. When we fix @, facility 1 becomes an
existing facility and LN becomes a tree which is solvable. IEven though it is
easy to solve DC when the location of z; is fixed, there are some dilliculties
in using this algorithm as a subroutine in the solution of DC when LN is a

simple cycle.

First of all, there is no finite dominating set of points at which x; can be
located within its feasible region. So, we may need to repeat this subrouline
infinitely many times. This arises [rom the unpredictable structure ol the
[casible regions of the other facilitics as @, moves in a segment of Sy from one
extreme point to the other. Let the solution set be the set of points in \S; such
that if z; is located at such a point, then it is possible to find locations for
the other [acilities that satisfy the constraints. As it will become clearer later,
the solution set may consist of disjoint subsets of S;. That is, the fact that u;
and uy are in the solution set does not guarantee that any point in between is
in the solution set. Also, there is no obvious way to characterize the common

properties of the points in the solution set.

Therefore, even if it is easy to find solutions to DC if LN is a simple cycle,
given that x; is located at a fixed point, it is not easy to use this information
in the parametric study of x1. But our algorithm still has a close relation
with Tansel and Yesilkokcen‘s algorithm. We also use the expand and intersect
operations of that algorithm but the restrictions we put on the problem allows

us to use them in a very special way.
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The following lemma will be frequently referred to in the following sections:

Lemma 1 Let ¢ € [u,v] € IY and y € G bul y & [u,v]. Then
d(z,y) = Min{(d(w,2) + d(w,y)), (d(v,2) + d(o,1)))

2.2.1 Reduction of Feasible Regions

Let S) be the subedge [¢1,b;] and 5, be the subedge [aq, b2] whose lengths are
Iy and [z, respectively. Suppose (1,2) € [ and z; is localed al z, a point which

is in S, and whose distance to ay is A (0 £ A <[;). Define
S3(A) = {y € Sz : d(z,y) < by}

That is, S1(\) is the set of points of S which satisfics d(xy, z2) < by, given

that x 1s located at x.

To calculate S3(A) we need the following definitions.

dap.by)

d(y, ) d(b),by)

Figure 2.1: Calculation of Li(A) and Ri(X)

Let
L%(/\) = Ali?l{(blz — (l((l), (tg)), lz}
_R%()\) = A{[Z"ll{(()lz - d(.’l,', ()2)), 12}
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These definitions can be better visualized by means of a string model.
Suppose we fasten a string of length by, at point @ and pull it tight towards a,
along the shortest path between @ and ap. If it does not reach, negative of the
additional amount that is needed is Li()); if it reaches we attach the string at
ay. Ly(A) is the minimum of the length of the loose end of the string at @, and

ly. RY(N) is similar except that the string is now pulled tight from @ to b,.

By using Lemma 1 we can say that if z; is located at « € S| and there
exists y € S that satislies d(x, ) < b2 then either ag or b, or both salisfics the
same constraint min{d(z, az),d(z,02)} < d(z,y) < by2 (Since Sz C [ug,vy] € E
and SN .52 = 0).

Observation 1

(a) Assume LY(X) > 0 and let Ly(X) be the unique point in Sy which is Ly())

unils away from ay. Thal is,

Li(})) € 83 and d(L3(X), az) = La(X).

Then any point y € [aqg, Li(A)] satisfies d(x,y) < b2

(b) Assume R3(N) > 0 and let Ry()) be the unique poinl in Sy which is RY())

unils away from by. That is,

RY(A) € Sy and d(R5(X),02) = Ry(N).

Then any point y € [IR5(N), ba] salisfies d(x,y) < by,

Observation 2

) iof Ly(A) < 0, R3(A) <0

10 = [a2, Ly(V)) if L)) 2 0,RL(A) < 0
’ [R5(N), bs] if Li(A) <0, RY(A) > 0
a2, ZEON) U [RE, ba] i LY(A) 2 0, BY() 2 0

We will use S3(}) for S;3(A) from now on. For a fixed A, S3(A) consists of

at most two pieces. But as A changes in [0,/;] these pieces may get smaller,
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then disappear, then appear again and get larger. Consider the case in Figure
2.2. Given Sy = [ay, b;) and Sy = [as, by) with by = 10, we construct Sz()) for

various A’s.

4
ay b]
9
9
8
11
212 b2
5
Figure 2.2: Data [or example
50 |
b2
S0 e :
a3 b2
SH(1.5) | ,
a) by
52 O
32 b2
$,3)
SHp(4)

212 b2

Figure 2.3: S2(A) values for various A

This unstructured behavior of S3(A) somewhat complicates the analysis.
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2.2.2 Feasible Region Determination Graph

In the remainder of the thesis, we use A to mean the point on [ai,6i] wliose
distance from ai is A units, where 0 < A < /i. Even though points on tlie
embedded network are not numbers, the one-to-one correspondence between
the points in [ai, 6i] and their distances from ai ensures that Acan be assigned

both meanings with an cibuse of notation.

Now we will present a graph in Figure 2.4 which is quite insightful. In this
graph A changes in [0, li] (corresponding to point ai and bi in .FA respectively)

and y changes in [0,/2] (corresponding to points (12 and 62 respectively).

If point (A, 7) is in the shaded region, this means that d{X,y) < 612 ( or
equivalently y G s&(A)). In order to partition (A,j/) points into feasible and

infeasible regions, we will draw ¢ 2(™) 72—

The feasible region is the union of the region between L\{X) and x axis
where LI{X) > 0 and the region between y = I2 line and /2 - R"NX) where

R”™X) > 0. This gives the correct construction of the feasible region as a result

of Observation 2.

Figure 2.4: Feasible region determination graph

For each fixed A € [ai, #], if we draw a vertical line through A, the portion(s)
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of this line captured by the shaded region defines the set of all points y in [as, 0]

for which d(A,y) < bys.

It is clear from the figure that for 1 < A < 2 we cannot find y € 5; that
satisfies d(a,y) < biz. So we do not need to consider A € (1,2) for the [easible
region determination of the other facilities since there is no pair (@, ;) that

satisfies d(xy,z;) < byg.

In order to convey the ideas of the algorithm, we chose a small example on

which we illustrate some of the tools and explain the process of the algorithm.

Figure 2.5: Linkage Network of the Example

The aim is to find a location vector X = (&1, x2,x3) which satislies
d(zy,22) < by,
d(zy,23) < bya,
d(2z,23) < bys
and xz; € S; for y =1,2,3

Given that 2 is located at A we determine the set of points ay, x5 that
satisly the constraints conditional on the fixed location of ;. We then analyze

the consequences parametrically as A varies in Sj.

FFirst determine
Sa(A) = {y € S2: d(Ny) < bia}
and then

S3(A) = {z € S3:d(X, z) < bz and d(y, z) < by for some y € Sa(A)}

If S3(X) # 0 [or some A then Jocate a3 at some poinl in S3(}). Since

(
x5 € S3(N), d(z,a3) < bia from the definition of S3(A). Again since x3 € S3(})
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there exists a y € 52(5\) such that d(y,z3) < bss. Locale z2 at one such y.
Since x5 € S3(X), d(z,3) < big. So, after the construction of Sz(A) and Ss(X),
it is possible to find a location vector that satisfies the constraints. I either of
these sets is null, then there is no [easible solution Lo the constraints when z,

is fixed at A.
Let

S30) = €8s d(,2) <big)
S3(\) = {z€83:d(y,z) < by forsome y € S3(N)}

Then,

EXOREOLE

We know how to determine S3(A) (same as the determination of S1(})).
The following observation provides a method to determine S3(\). Now, for
a fixed A, instead of a unique point, we have a set of points at which y can
be located. Let the extreme points of Sy(A) be the end points of the minimal

subedge that covers Sp(A) (Note that S3(A) may consists of disjoint scgments).

Observation 3 Lel yi(A) and yo(X) be the extreme points of Sy(A). Then
S3(A) = [N(y1(A), b2z) U N(y2(A), b23)} N S5

Let X and Y be points or set of points and r be a positive number. N(X,r)NY
is called the expand of X by r and intersection with Y. This operation is called

Expand/Intersect operation.

Observation 3 is true since there is no vertex in the interior of S; and the
intersection of S, and S3 is empty. Therelore, all the paths from S3()) need to
use one of the extreme point of S3(A) and consequently, the expansion ol the

set Sy(A) by by is achieved by expanding only at the extreme points.

The important conclusion of this observation is that the information of the

extreme points of S;() is sullicient to determine S'J‘(/\)
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Let y1(A) be a point in S2(A) which is farthest away from a; and y,()) be

the point in S32(A) which is farthest away from b,. Let

Ly(A) = d(y1(A), a2)
Ba(A) = d(y2(}), b2)

It is direct to conclude that Ly(.) (122(.) ) is the upper (lower) envelope
of the shaded region of [easible region determination graph of S3()) (refer to
Figure 2.4 ). For values of A where S3(A) = 0, Ly()) and Ry()) values will be

negative. We will provide a method for calculating those values.
Given y, () and y2(X) calculation of S%(X) is as follows:

L3(A) = Min{(bas — Min{d(yi(\), a3), d(y2(}), a3)}), ls}
RI(N) = Min{(bss — Min{d(yi()), bs), d(y2(N), bs)}), I3}

We compute these values by using the Ly()) and R,(A) functions in the

following way:

Ly(A) = Min{(bys — Min{ Min{Ly(}\) + d(az, as),la — Ly()\) + d(bq, a3)},
A’[ZR{Rz(/\) + d(()z, CL;}), lz - Rz()\) + d(az, (lg)}}, 13}

Rg(/\) = A([i??;{(bz;; - ]\([?,71{ 1‘417L{L2(/\) 4 d((tg, bg), 12 - Lz(A) + (l([)z, b3)},
Adl?l{Rz(/\) + d(bg, bg), 12 - Rz()\) + d(az, I)g)}}, 13}

Then from Observation 3,

0 it L2()) <0,R2(\) <0

5201) = [ag, LZ(N)] il L3(X) > 0, R2(\) < 0
> [122(N), bs) il L3()) < 0,R2(\) >0
[ag, LE(A)] U [B3(A), bs] il L3(A) 2> 0, B5(A) 2 0

where
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LUX) e S, ™nd d{as,LI{\)) = LUX)
Ip) G63and cl{b3,MW) = RIi™)-

As can be seen, regardless of whether Si{X) is a singleton (as in the case
of 5i(A)) or a set of points (consisting of a number of pieces) <S)A shows the

same kind of structure.
For a specific A 5% (A) has at most two pieces, [a-, A-(A)] and [1?--(A),s1]

When we intersect 53(A) and 53(A) we get the feasible region determination
graph in Figure 2 .6.

(X
IVR (¥

------- *

——1V R? (¥

Figure 2.6: 53(A)

If 2 G53(A), then at least one of the following is true.

2€ [XB ¢e(A] and z G [03,53(A)]
2 Gi3LNA)j] and z G [5A),63]
n A€ [63 LN A)j

z G [3(")>M ~E [P

It is possible to find answers to many questions by considering this graph.
For example when we fix A the (A 2) pairs that appear in the shaded region

indicate that, there exists a feasible solution when .rx is located at A and x"is
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located at z. When we fix z, we determine the set of A values at which we can
locate ;. When we project the shaded region onto the 2 axis, we delermine
the set of values of A, which permits a feasible solution. And lastly, when we
project the shaded region onto the y axis, we determine the sel of = values for

which there is a feasible solution.

Suppose LN coutains also node 4 and edge (3,4) and we want to determine
the extreme points of S3(A) in order to use them in the determination of S3()).
Observe again that Lz(A) (123(A) ) i1s the upper (lower) envelope of the shaded

region in I'igure 2.6.
There are four candidates for L3(})

ls il RA()\) >0 and RE()) > 0

—1 otherwise

Ko(A) = {

K0 = LY i LY(N) > by — R3(N)
{4/ = -1 olherwise

LA(A) if L2(A) > Iy — RA(N)
Kg(\)=1{ " X 3
@ (Y) { -1 otherwise

K2y (A) = Min{L3(A), L3(A)}
La(d) = Maz{EKp, Ky(\), Kzy(N), K1 y(A)}

Similarly there are four candidates for F25()),
Mg()) = Min{RY(\), RE())}

B L) 2 b — B

-1 otherwise

My(A) = {

RY(A) i L2 > by — RY(A)

-1 otherwise

M)(A) = {

Iz i LYA) >0and L)) >0

—1]  otherwise

M1,2)(A) = {
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R3(A) = Maa{My, M{y(X), Mizy(X), M{y,23(M)}

Then in order to reduce Sy to S4(A) we need to calculate the left and right

pieces that S3(A) forms on Sy by using Lz(A) and I23(A).

We say facility j is an in-neighbor of £ if (7, ) € I and S; is reduced before S;.
Then as the number of in-neighbors of 7 increases, the number of comparisons
needed to be made increases. A point z € S;(A) is either in the left piece or
right piece of S¥()) where 5 € I'"1(i) and ['"!(7) is the set of in-neighbors of
¢. Since there are two possibilities for each in-neighbor, 2% comparisons need
to be performed in order to determine each of L;(A) and R;(A) where k is the

in-degree of S;.
We can [ormalize it [or the general case as [ollows:

Let P = I'"!(¢) be the in-neighbors of 7 then

Ky(A) =

il MinjepRI(A) >0
—1 otherwise
Tor Q C P and Q # 0

MinjeqLI(N) il MinjeqLi(N) > i — Minjep_qIti())

Kalt) = { -1 otherwise
Li(A) = Mazo{Ko(\)}

Similarly,

My(\) = Minjep{RI(})}

For @ C Pand @ # 0

Minjep_olRI()) il MinjeqLI(X) > i = Minjep_qRI())

—1 otherwise

Mg(}) = {
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i if MinjepLi()\) >0

—1 otherwise

.

Ri(\) = Mazg{Mg(X)}

2.2.3 Out-neighbors of i

IFacility j is called an out-neighbor of facility ¢ if (¢,7) € I and j will be

processed alter z. Let

Si(A) = {ai : d(wy,25) < bij for some x; € S5(A) and j € P~1(7)}

The choice of the exact location of x; does not depend on #’s relation with
its in-neighbors. As long as z; € Si(A) we can find z; € S;(A\)forj € ['"1(7)

that satisfies d(x;, x;) < bij. Let I'(¢) be the set of out-neighbors of i.

I[|I'(2)] = 1, then our selection will be one of the extreme points of S;(X)
since any other choice of ; can be replaced by one of the extreme points of S;
with a larger Si(A).

UT@E)| > 1 (say [I'(z)] = 2,T(¢) = {p,q}) there are some easy cases that

can be handled as well as some hard cases. Let y;(A) and y2()) be the extreme
points of Si(A). y1(A) reaches 5, means that N(y,(A),b;,) NS, # @

Easy Cases
1. If y;(X) and y2(X) do not reach S, (or ;) then the problem is infeasible
for that A since no other x; € Si(}) can provide nonempty 53 (A) (Si(A)).

2. Iy (A) (y2(X) ) reaches both S, and S, and y,(A) (y1(A)) reaches neither
Sp nor Sy, then we can locate x; at y(A) ( y2(A) ) since no other choice

will provide a larger S;(X) or Si(A).

Before listing other easy cases, let us consider the following situation. ya(A)

reaches S, but does not reach 5y and y;1(X) reaches S, but does not reach S5,.
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In the following example, for a fixed A, ,5','(5\) consists of three pieces.

Figure 2.7: Data for the example

The distances on the dashed lines indicate the shortest path distances.

Let by = by =9 y2(A) = @; and y,(A) = b;

y1(A) does not reach .S, but y,(A) reaches S,

Lquivalently,

d(yi(A), ap) > by and d(y1(A), b,) > by
and A,(A) = Maz{bi, — d(y2(N), @), bip — d(y2(X), b,)} > 0

Observation 4 Supposc d(y,(A), a,) > bip and d(yy(X),b,) > by, and A() =

Maz{by, — d(y2(X), ap), bip — d(y2(N),a,)} >0

Then, point z()) is well defined and only poinls in [y2(A), 22(N)] provides

nonempty Si(A) where

z2(A) € Si and d(y2(X), 22(V)) = A,(N)

We know that A,(A) < d(y1(A),y2(A)). Since otherwise y;(A) can also reach |
S

S,. So, z3()) is well defined. The claim is 2 € [y()), z2(})] provides nonempty

Si(A). When we consider the string model, the length of loose end of string

thal is attached to either a, or b, is A,()) and if we have started [rom a point
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in [y2(A), z2(A)] by using y2(A), it would reach S,. Moreover, this set is the

only set of points that provide nonempty 5,’,(/—\)

Similarly, only points in [z;(}),y(})] provides nonempty q;(j\) where
z1(A) € S; and d(y((A), 21(X)) = A,(X)

Then, for
we can find z; such that
d(xi,25) < bij where j € I'(1) UT™1(¢) and x; € S;(N).

Going back to our example

LiF(X) = —1 and REX)=-1 4, = /\/[aa:{L;',R(/_\),R;',”(;\)} =52>0
LX) = =1 and RIY(X) = —1 A, = Maa{Li* A), RiF (M)} =5 >0,

21(A) = (V) =¢
Mi(X) = Si(A) N [y(A), 0 e, y2(N)] = {c)
Ouly z; = ¢ € 8;()) gives nonempty .5']’;(5\) and 5;(/_\)
The other easy cases are as [ollows:

3. When M;()) = 0, there is no leasible solution to the problem.

4. When M;()) is a singleton, that point is the unique point which may be
feasible for z; (we cannot decide on the infeasibility by only considering
a part of the data. So the problem may or may not be infeasible but the

exact location of 2; is not problematic).
Hard Cases

1. When both y1(A) and yy()) reaches both Sy and 9,

2. When M;(}) is not a singleton.
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In both of the cases, there is no finite dominating sct in which @; should
be located on.Then while determining the order of reduction we allow unique
out-neighbor for facility 7 except for the root facility, the [acility whose location
within its [casible region is parameterized for the analysis ( facility | in the
previous exatple). We allow multi out-neighbor for root facility since for any

A, Sroot(A) = A, therelore it is a singleton.

2.3 ALGORITHM

Now we are ready to present the algorithm that gives a feasible location vector

(@1, @2, ...%n), 1f i exists, to the constraints

d(xj)mk) < bjk for (]a l“) €l
z; € S;lorz=1,2.m
where
Si = [ai, bi] C [ui,vi] € L and d(a;, b;) = length of [a;, b
LN is isomorphic to a subgraph of BW,,.

S;NSe=0"for (jk) el

2.3.1 Main Steps of the Algorithm

1. ORIENTATION
Input: LN
Qutput: Directed LN (DLN), Array A
In this step, we assign directions to the edges of LN to determine the
order of reduction process. We keep this order information in array A.
2. DISTANCE CALCULATION

Input: Transport Network G = (I, V)
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Output: d(a;,ar),d(aj,bi), d(bj, ax),d(b;,b) for (5, k) € I
In this step, we calculate distances between extreme points of \S; and Sy

where (5,k) € I
REDUCTION
Input : DLN,A, d(aj, ar), d(a;j, br), d(bj, ar), d(bj, b) for (j,k) € I
Qutput: I, S;(A) for j € J
In this step, we reduce S;’s to Sj(A) where

Si(A) = {z; € 5; 1 d(i, ;) < bij for some ; € 5;(A) and 7 € [1(5)}
Equivalently,

83(A) = Nier-1(jy N (5:(A), bij)
‘T'his step recursively determines the set of points of S; that satisly
d(z;, xj) < b lor facilities j that are processed before ¢ and (z,7) € 1. It
uses the order specified in the ORIENTATION step and according to this
orientation it starts with the root node,r, (the one with zero in-degree in
DLN) with S.()) = & with d(z,a,) = A, I' at step k keeps the set of A
values for which there is a solution to the partial problem & ( the sct of
constraiuts including only x; where j = Aft] ¢ < k. At any stage, il F

becomes empty the algorithm terminates infeasible.

. CONSTRUCTION

Input: nonempty [,
Output: (zy,22,...Tm)

In this step, with a nonemply [, we construct a location vector
(@1, 22,...%m) that salisfies the distance constraints by moving in the
reverse direction that is specified in the ORIENTATION phase.
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2.3.2 Explanations of the Steps

1. ORIENTATION PHASE

In this step, we assign directions to the edges ol LN to determine the order
of reduction. Because ol the difliculties that are listed belore, we require every

node other than the root, to have at most onc out-neighbor.

The nodes and their orders are kept in array A. Il node j is processed ith

then j = A7)

The aim is to assign order(z) to node 7 such that

1. order(i) € J

2. order(i) # order(j) il 1 # j

3. When we assign directions to the edges of LN = (M, ) and obtain
DLN = (M, I') in the following way
(¢,7) € I' il order(z) < order(y)

el = {

(j,2) € I' otherwise

then [T'(2)| < 1 lori e J = {j: order(y) =1}

Il for some i € J — {j : order(j) = 1}, I'™'(2) = 0 then we can add (j,1) to
DLN with a large b;;

We call LN ’leasible’ if there is at least one order which satisfies the
constraints. If the removal of one node from an LN leaves a collection of
subtrees then that LN is feasible. Ieasible and infeasible graph examples are

given in Figure 2.8 and igure 2.9 respectively.

While stating the problem we said that LN that I imposes should be
isomorphic to a subgraph of BW,,. Each subgraph of BW,, is feasible but as
you can casily observe from the figures, not every feasible graph is isomorphic

to a subgraph of BW,,. Hence, the proposed method handles a more general
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class that also includes BW,,’s. Further extensions will be given in Chapter 3.

I°(6)=7

Figure 2.8: Examples of feasible graph

@ >

Figure 2.9: Inleasible Graphs
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2.DISTANCE CALCULATION PHASE

S = laj, 0] € [Up,,vq,] el
Sk = ek, 0] C [vp,,v,,]) € F

In order to calculate d(aj, ar), d(aj, k), d(bj, ar), d(b;, bi) for (5, k) € I , we
first find the shortest path lengths between the nodes of the edges in which
these subedges lic and then we calculate the distances of interest by making

four comparisons [or each distance.

We can use either loyd’s Algorithm O(n®) or apply Dijkstra’s Algorithm
O(n?) for n times in order to determine the shortest path lengths hetween
the vertices of G ( note that edge lengths are all nonnegative). But Floyd’s
Algorithm may produce some redundant information. Consider the following

case:

Let V = UL, {vy;,vq,}, V € Vand let [V| = k << n then applying Dijkstra
for each of v; € V to find d(vj,v;) where v; € V requires O(kn?) operations
whercas applying Floyd’s algorithm costs O(n®) which is not economical il k

is much more smaller than n.

1055, 5k C [vp,v,] with p < ¢ then the shortest path between the extreme

points is the difference between their wy,(..) values.

I[ we rename the extreme points so that the one that is closer to the vertex

with smaller index is ¢, we reduce the number of possible cases a lot.

Figure 2.10: Possible orders of aj, a, bj, by on edge [vy, v,]
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Let
a = Max{wy(a;),wp(ar))}
b= Min{wy,(b;),wps (i)}

I« > bthen S;N S =10

d(u, v) = Jwye(u) — wpe(v)] where v € {a;,b;} and u € {ay, by}
Ifa <bthen S;N S, #0

We assumed that S;N.S, = 0 at this moment. So whenever such a situation

occurs, this algorithm gives a message that S; NS, # @ for (7, k) € 1.
3.REDUCTION PHASE

Given DLN and the distances between the extreme points of S; and Sy for
(j, k) € I we will narrow S to S;(A), the set of points x; in 5; such that there
exists a ; € S;(\) with d(zj,2;) < bij Vi € I''(5). To do that we calculate left
and right pieces that each in-neighbor of ¢ forms in S;. These are calculated

by expanding the extreme points of the in-neighbors and intersecting with .5;.

Then we determine the extreme points of S;(A) in order to use in the
determination of Si where {k} = I'(¢). While processing any i, the algorithm
removes A‘s from any further consideration il it causes some infeasibility up to
that point. Whenever there is no A left the algorithin states that the problem

is inleasible.
4. CONSTRUCTION PHASE

Il the reduction phase ends with nonempty I, this phase constructs a
feasible solution for any A € I7. It first chooses a A € I, and locates &, = a
where ¢ € S, and d(2,q,) = A. It locates that z; which has no out-neighbor
at one of the extreme points of S;(X), even if all points work, we choose the
extreme points to provide easiness in the proof. Then trace back the in-
neighbors of j, say ¢, to find out from which extreme point of S;y(}) z; is
reachable. From the reduction phase it is guaranteed that there exists at least

one extreme point of S;(A) that can reach the extreme point of 5;(A) at which
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a; is located, then locate x; at that extreme point. Since cach x; has at most
one out-neighbor, there cannot be any conflict since the information source is

unique.

We can partition the node set of DLN into sets so that cach set includes
one node A with out-degree 0 and all other nodes are on exactly one path from
7 to k. The structure of DLN guarantees that no one node appear more than
one set (Since each node’s out-degree is at most one). Then for each set we
will start with £ and move backward to r, locate the in-ncighbors of & first and
then in-neighbors of the ones that are located until all nodes in that set are

located.

Let us define the [ollowing sets. They will be used in the construction

phase:
S = Set of nodes of DLN whose out-degrees are zero
Located = Set of nodes that are located
P = Subsel of located whose in-neighbors are not located
W; = Unlocated in-neighbors of ¢, where : € P

For ¢ € P W; = I'"(¢) — Located
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2.3.3 Algorithm

1. ORIENTATION PHASE

Step 0 k=2 A =0,0....0/{ an arvay with size m}, R =0 DLN = (M, I")
Root = {i € M : d(s) = Maz;es{d(j)}}, D = {i € M : d(i) = 1}
Choose i € Root, R <= RU {i}, A[l] « 1
if [z,5] € I then (z,5) € I’

Step 1 Q = (M - R)NI(R)

Step 2 Choose a node 7 € 9

Step 8 Check N;={j e M- R:[1,j] € [}

(a) [ |N;| > 1 then @ < Q — {i} Goto 4
(b) If |V;] €1 then Go to 5

Step 4 (a) If @ = 0 then
If D — R =0 STOP LN is not feasible.
Else Choose j € D — R
Add (A[1],7) to I' with bayy; = BIG
i < j Go to 5.
(b) If @ # 0 then Go to 2
Step 5 It < RU {i}
I [Ni| = 1 and j = N; then add (3, 5) to "
Alk) &=

Step 6 (a) I[ k =m STOP. LN is [easible.
(b) Itk <mthen k < k+1 Co to 1.
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2. DISTANCE CALCULATION PHASE

STEP 1
Sj = [(Lj,()]'] - ['U,,J,'qu] el fOl’j eJ

Let V = UL, {vp;,vq,)
Apply Dijkstra for every v € V to determine d(v,,v,) for every v,,v, € V
STEP 2

I'or every (j,k) € I
Si = [az,b;] C ['Upj»vq,'] €L
Sk = [ar, b} C [vp,,vy,]) € £

Let length of [v),;,v,,] and [vp,,v,,] be L; and Ly respectively.

1. 1[ I{vpj’vq;} N {vpmvflk}' S 1

d(u,v) = Min{ wp,q,(u).Lj + d(pj, pr) + Wi (v). Li,
Wp,0; (W) Lj + d(pj, gk) + (L = Wy, (v). L,
(1 = wp,q;(u)-Lj + (g5, pr) + wppgi(v). L,
(1 = wp,q,(w))-Lj + d(gis gx) + (1 = wpy,, (v))- L}

where u € {aj,b;} and v € {ay, by}

2. 1 [{vp;,v9;} N {0y, 00, =2
Let {vp,,vg;} N {v,,,v4,} = {vy,v,} and Length of [v,,v,] = L
a = Maz{wyy(a;),wy(ar)}
b= Min{w,,(b;),wpe(bk)}
(a) I a>bthen S;N Sy =0 and
d(u,v) = |wpe(u) — wpy(v)|.L
where u € {a;,b;} and u € {a, b}
(b) If a < b then §; NSk # BSTOP.
Give a message that 5; NS, # 0 for (j,k) € [



CHAPTER 2. ALGORITHM’

3.REDUCTION PHASE

Step 0 » = A[l], k=2, I'=1{0,1,]

Step 1 ¢ < A[k]
For j € '"!(3) and j # r

LIE () = Min{(bij — d(L;(V), @), i)
L) = Min{(b; = d(R; (), @), i}

RIFO) = Min{(bi; — d(L;(0), b)), i}
RI®(\) = Min{(bi; — d(I;(N), b)), i}

Determine Vj € I'"!(7)

" Maz{L*(V), LI ()} i #
M {(b;y — d(z,0:)),l} ify=r
Maz{R*(\), RI®"(\)}  ifj#r

Lj(A)z{ Min{(bi — d(z,a)),li} ifj=r

Ri(3)

Step 2 P =T"1(z)

i if MinjepRi(N) >0

—1 otherwise

Kg(A) = {
For Q CPand Q #§

MinjeqLi()) if MinjeqLi(X) > I — Minjep_qRI())

-1 otherwise

Ko(}) = {

Li(A) = Ko,n(A) = Maz{Kq(})}

Similarly,

37
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My()) = Min;ep {RI(A)}

For @ C Pand Q # 0

Mo()) = Minjep_qRI(\)  if MinjeqLi()) > li — Minjep_qRI())
: - -1 otherwise
—1 otherwise

Ri() = Mouy(N) = Maz{Mo(V))
Step 3 Determine A = {A: L;(}) < 0 and R;()\) < 0}
Step 4 I'<=F—A

Step 5 (a) If F'=0 STOP INFEASIBLE
(b) Llse if £ =m STOP FEASIBLE. Go to CONSTRUCTION step
(c) Else k < k+1 Go to 1.
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4.CONSTRUCTION PHASE

Step 0 Located =P =

Choose a A € I’ | locate z, = @ where z € 5, and d(z,a,) = A

Located <= Located U {r}

Step 1 If 5 # 0, Choose k € S, P = {k}
Locate zx = Li()) or Ri()) arbitrarily

Step 1.1 If P # ) Choose 1 € P
W; = I'"1(i) — Located
If 2; = L; ()\) Determine &g, (3)(A) that determines L;(})
If @; = I%;(}) Determine Mg, pary)(A) that determines L;(A)
Step 1.1.1 If W; # 0 Choose j € W;

Step 1.1.1.1 If j € Qi(}) and L{(A) = (

or j € Qi(}) and RI(X) = RI*

Locate a; at L'(/\)

Step 1.1.1.2 If j € Qi(}) and L{(}) = LJ"(

)
or 7 & Qi(X) and RI(X) = RI®(})
Locate z; at Rj(/\)

)
RI" (V)

Located < Localed U {7}
P < PuU{j}
W; <= W; — {5} Go back to Step 1.1.1
Step 1.1.2 If W; =0
P < P — {i} Go back to Step 1.1
Step 1.2 If P =1
S < § — {k} Go back to Step 1

Step 2 I[ S =0 STOP . All facilities are located.
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Theorem 1 Let (&, %s,....8,n) be the localion veclor which is construcled by
the algorithm. Then (2, &,,....&,) is a feasible veclor Lo problem PI. Thal is,

d(Z, &) < bjr Jor (j, k) € 1
;€8 fori=1,2,.m

Proof If X is constructed by the algorithm then reduction phase ends with

nonempty £ and X is constructed for some A € I

Suppose X is constructed for A &, = & where @ € 5, and d(&,,a,) = ).

Other facilities are located at either L;(A) or I;(}) for j € J — {r}.

S; and d(aj, Lj(})) = L;j(\) and R;()) € S; and

By definition,
Lj(j\) S lj and R](j\) S lj

Therefore, L;(A) and R;(}) are well defined points in S;. So z; € S; for
J € J and (DC.1) constraints are satisfied.

For (DC'.2) constraints: Consider any facility j (j # r)

From the orientation phase we know that each node except r , has at most

one out-neighbor. Let us call out-neighbor of j , facility 7, if it exists.

Irom the construction phase we know that #; is located to L;(A) or R;(})
(i) arbitrarily (il j has no out-neighbor )
(ii) depending on the location of &;

For (i), feasibility of &; depends only its in-neighbors. Since for those in-
neighbors , except r, 7 is the unique out-neighbor. Therefore, feasibility of the
distance constraint between j and its in-neighbors will be investigated when

we consider these in-neighbors and their unique out-neighbor.
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\/\ .
T

For (i) &; is already located to L;(A) or I;()\) without considering the

relationship between ¢ and j.
Suppose & = Li(A) ( where Li(X) = Kq,3)(A) )

There are four cases:

1. j € Qi(N)

(a) LI(A) = Li"(}) and &; is located to L;
(b) LIV = LX) and &; is located to R,

A)
A)

2. 7 € Qi)

(a) B(A) = RI"
(b) RI(X) = RI"

(X) and &; is located to L;(})
(A

) and &; is located to f2;(A

Let us investigate each of the cases:
CASE 1-A & = L;(}) and & = L;(X), j € Q:(}) and Li(}) = LI¥(X)
Since A € I = Li(A) 2 0 = Li(X) = Mingcq,5)LE(N)

Since j € Qi(A) =

Li(X) < LiN) = L) (1)
LERY = b —d(L;(X), a:) (2)
Li(x) = d(Li(}),a:) (3)

From (1); (2) and (3)
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d(Li(X), L;i(X)) < d(Li(X), a0) + d(L;(A), a:) < b

Therefore
(l(;ffi,:f:j) S bij

CASE 1-B i; = Li(}) and &; = R;(}), j € Q:(}) and LI(}) = LI"(X)
The reasoning is the same with CASE 1-A. But equations (1) and (2)
should be changed with (4) and (5) respectively.
Li(A)
L) = by = d(I(4), @) (5)

From (3),(4) and (5)

Therelore,

CASE 2-A &; = L;i(\) and &; = L;(}), j € Q:(}) and RI(}) = RI*())
i

Then

(),’j - CI(LJ(/—\), b,) > 0= d(LJ(;\), bz) < bij (7)

Therefore

d(#;,%;) = d(L;(A), b) < by (8)
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2 If Qi(}) # 0 then

Since A€ = L;(\) > 0=

Li(A) = Mingeo,yLE(Y) 2 L= Mingep_o,5)RE(N)

f‘linkep_Qi(:\)sz(/‘\) Z li — L,(/_\)
l; — Li:(A) = d(L;(A), b;) and since j € P — Q

RI(Y) 2 d(Li(}),b)

RI(QA) = RIE(X) = by —d(L;(0),0) > d(L:(X), )  (9)

b > d(L;(0), 0:) + (L), b)) > d(d, &) (10)

CASE 2-B & = L;()\) and &; = R;j(A), j € Qi(}) and RI(}) = RIF(})
The reasoning is the same with CASE 2-A. But equations (6), (7), (8),
(9) and (10) should he changed with (11), (12), (13), (14) and (15)

respectively.
RiA) = R®) > 0 (11)
bij — d(R;(A),b:) > 0= d(R;()),b:) < by (12)
d(#:, &) = d(;(}), ;) < by; (13)

RIQN) = RI®A) = by — d(R;(N),b) > d(Li(X), b;) (14)

I),'J' > d(RJ(/—\) I))-I- (](Ri(;\),bi) Z (l(.’i’,',.‘i‘j) (15)
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Consider now j =7, & =& where (z € S, : d(z,a,) = A)

For any 7 such that (r,7) € I & is located at either Li(A) or R;()). Without
loss of generality, suppose #; = L;(A) (i) r € Q:(X) or (ii) r € Q:()).

(i) Since A € I L;(A) > 0 = Li(A) = ]\/I'in,keQ',(;\)Lf(/\—)
Since r € Qi(A)

Li(A) < Li(X) = by — d(2, @) (16)
L,(/—\) = d(Li(/—\),(I,i) (17)

I'rom (16) and (17)
d(z,,%;) < d(L,‘(j\),ai) + d(x,a;) < by,

The other case is similar to this. ]

Corollary 1 If Pl has no feasible solulion, then lhe Algorithm terminales

infeasible.

Proof The proof is by contradiction. Let us assume that PPl has no feasible
but the algorithm terminates feasible, that is with a nonempty . Then from
theorem 1, we can construct a feasible solution which contradicts with the [act

that P1 is infeasible. |

Theorem 2 If Pl has a feasible solution , then the Algorithn terminales

Jeasible.

Proof Let X = (Z1,T2,...Tm) be a feasible solution to P1, that is,
(l(fj,.f)k) < bj,k for (], /») el
gjeSjforj=12..m

We need to prove that there exists a A such that 0 <X <[ and L;(A) >0
and R;(A\) > 0 for j € J — {r}. Then such a A is in I, therefore F' 3
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The proof is by induction on the order of process. But for the sake of
simplicity, we rename the nodes according to the order of process, that is il

i = A[j] then i < J
k=1,
From [easibility of X, we have #; € S; Let A = d(%;,a;) = 0 <A <[

2. k=2
I'=1(2) = {1}( from the orientation phase )

L iERYA) >0

—1 otherwise

Ko(X) = {

Kiy(A) = Ly(%)
Ly(X) = Max{Kp(X), K 13(3))

From the fcasibility of X we know that d(T2,&) < by then from Lemma |

either az or by is included in the shortest path between &, and ;.

If @, is in the shortest path then,
d(%q, 7)) = d(ZTa, a2) 4 d(ag, T1) < b2

0 S Cl(.’fg,(tz) S l)r) — d((l,g,.’l-,'l) = Ls()\)

If by is in the shortest path then,
d(Z3,%1) = d(ZT2, b2) + d(b2,71) < by
0 S (l(.’i’g,bg) S ()12 - d(bz,i’l) = R%(;\)

So cither LX) > 0 or () >0
Without loss of generality, let L1(X) > 6 then Ly(X) > K3(A) = Ly(A) > 0

Assume we have proved that L;(/_\) >0 for i < k—1. Now, given L;(}) > 0
for i < k-1, we will prove that Lk(/_\) >0

L4 (k) € U 3)

(This is by construction. All in-neighbors of k are processed before k)



CHAPTLR 2. ALGORITHM 46

From feasibility of X we can write
d(Z;,) < by for j € I7H(k)

I'rom Lemma 1, the shortest path between &; and & includes either aj or
br. Then
d(Z;, %) = d(&;, ar) + d(ak, Tx) < bji or
d(z;, &) = d(&;,0x) + d(by, k) < bjy for j € TL(k)

then for j € I‘;l(k)

0< d(ak,.i'k) < bjk ~ d(:i'j,ak) < Ll(/—\) or
0 < d(br, ) < bjx —d(Z;,0) < RIA)

( [a;, L;j(N)] includes z; but the extreme point might give a shorter distance,

we used inequality instead of equality in the second place for both of the lines.)

Then for every in-neighbor j of & L,{(;\) > 0or R‘,’;(/—\) > 0 or both. Moreover

they are large enough to cover point &x. That is for j € I'"(k)

L

RI(NY > d(by, k)

Let us define a subset of @ of I'"!(k) as follows
Q={jelY(k): LL(}) > d(ar, %)} then

- Min;egLi(X)  if MinegLi(A) > I — Minsep_g RL(V)
Kg(A) =

-1 otherwise
Let us check whether M'injeqL{.(/\) >l — Minjep_g RL(}) or not.
Min,eg Li(A) + Minsep_gRU(X) > d(dk, %) + d(be, @) = Ik
Since the condition holds Kg(}) = MinjeqLi(}) > 0
Since Li(A) = Mazgcp{Kg(A)} = Le(N) = Kg(X) 2 0

Therefore X € F # 0. O
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Corollary 2 If Algorithm terminales infeasible, Pl has no feasible solution.

Proof The proof is by contradiction. Suppose the algorithm terminates
infeasible and there exists a location vector which is feasible to Pl.Irom
Theorem 2, we know that if there exists a [casible solution to 1, the algorithim

terminates feasible, which is a coutradiction. o

2.3.4 Shapes of L{()\) and R!()\) Graphs

In this section, we will investigate the shapes of L()\) and Ri()). They are
important because we will use the information about their linearity in the

complexity discussion.

LJ()\) _ A4i7'l{(bir - (l(:l,',ai))’ ll} l[] -
I M (100,10t

For j = r, from Lemma 1;
Li(A) = Min{(bi, — Min{X + d(ar,a;),l; = X+ d(by,a:)}), l;}

All numbers other than A can be calculated a priori, so they can be

considered as constants.

7 A

(a) ) (c) )

Figure 2.11: Possible Shapes of LI())

The first part is the maximum of two functions that are linear in A. So

it is a piecewise linear convex function with at most two pieces, then L(})
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is minimum of two convex functions, therefore it can be convex, concave or

neither convex nor concave. These possibilities are shown in Figure 2.11.

Other observation on Li()) concerns its slope. The slope is either +1, -1

or 0.

Counsider the second facility in the order 1 <= A[2]. Its unique in-neighbor

is 7. So L;(}A) is determined as follows:

L ifRI(A) >0

—1 otherwise

Ky(A) = {

Ky(A) = LE(V)
L,(/\) = ]\/[(L.’l:{[(@(/\), ]\'{,}(/\)}

I(p(A) is a discontinuous function with at most two jump points. So L;(\)

is a discontinuous function with slopes +1,-1 and 0.
For j # r
L% = Min{(bi; — Min{L;(\) + d(as, a;),l; — Lj(A) + d(bj, a:)}), i} and
LR = Min{(bij — Min{R;()\) + d(ai, b;), ; — R;(A) + d(a;,a)}), i}

So LIE(N) (LX) is the minimum of Cy — L;(A) and Cy+ L;(A)(C1— R;(A)
and Cy + R;()\)) where Cy and Cj are constants. So Li¥(A) (LI*())) is linear,
discontinuous function with slopes +1,-1 or 0 and so is R;(A). It can be shown
by induction that each L;(A) and R;()) is linear, discontinuous functions with

slopes +1,-1 and 0.

2.3.5 Complexity
Let us investigate the complexity of each phase of the algorithm.

1 Orientation Phase In this phase we just calculate the degrees of the

nodes in LN and make comparisons. The order of this step is O(m).
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2 Distance Calculation Phase

1 We used Dijkstra for at most n times. Therelore, complexity of this
step is O(n®).

2 For each distance of interest we compare 4 [unctions. Then 16
comparisons in total are made for pair (3,&) € [. We know that
comparison of two linear [unction takes constant time, Dyer [4].
Because of our Broken Wheel asswmption, there can be at most

2m — 3 pairs. Therefore, the order of this step is O(m).

3 Reduction Phase

IFor each new [acility

1 In-degree of any node in DLN is restricted to 2, due to Broken
Wheel assumption. For each in-neighbor, 3 comparisons are made
for each of Li¥(X), LI*()), RI*()) and RIF(X) summing up to 12
comparisons. These functions ave linear discontinuous functions but
number of jumps are restricted with a fixed number. So comparing
these functions still takes constant time. Then one comparison of
two functions is made to determine each of LI(}), RI()).

2 Li(\) and () is calculated by comparing 2% Kqg()) or Mg())
values. These values can be calculated in constant time, since
each is calculated via comparing two linear functions. & with our
assumption can be at most 2. And choosing the maximum ol 4

linear functions is also performed in constant time.
Therefore, the order of the reduction phase is O(m).

4 Construction Phase

In this step, for each new facility, we find the extreme point of S;(A)
that reaches located z; where ¢ is the unique out-neighbor of j. This
is done by comparing two numbers (L?¥(}) and LI®(})). The numbers

were calculated in previous step. So the order of this phase is O(m).
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2.3.6 Example

Here we will give a small example on which we show the application of the

algorithm.

Data for the Example

Figure 2.13: b;), information
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1. ORIENTATION

A=[1,2,3,4,5]

Figure 2.14: DLN

2. DISTANCE CALCULATION

(4, by az by a3 by ay by as bs |
ap | 0 4 11 14 14 18 13 13 12 13
b 0 8 11 17 15 12 10 8 10
ay 0 3 1511 8 6 12 7
by 0 12 8 11 9 11 10
D= a; 0 4 7 9 11 16
b3 0 11 13 13 13
ay 0 2 10 10
by 0 12 8
as 0 5

bs | 0 j

3 REDUCTION

0. F=1[0,4k=2
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1. i« A[2) =2
r=1(2) = {1}

LY(A) = Min{12 — Min{\ + 11,12 — A}, 3)
RY(A) = Min{12 — Min{) + 14,14 — A}, 3}

Iligure 2.15: S3(A)

2.
_ A
L2()
eeee R (M
P 2
2 1
-

Figure 2.16: Ly(A) and [Z5(A)
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3.A=1

-

F=1[0,4]

o

(VF#0,k#£#5k<k+1=3

l. i< A[3) =
r=1(3) = {1,2}

LZE(N) = Min{12 — Min{15 + Ly()), 15 — Ly(N)},4}
L2R(A) = Min{12 — Min{12 + Ry()), 18 — Ry(N)},4}
REE(N) = Min{12 — Min{ll + La(N), 11 — La(\)},4}
RIR(N\) = Min{12 — Min{8 + Ra(N), 14 — I2z(N)}, 4}

L3(A) = Maz{L2E(A), LZR(A)}
R2(N) = Max{R2E(\), RFY())}

Figure 2.17: L3(X) and R3()) determination
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¢1(A) = iVIM{17 - Min{\ + 1421 - A},3}
M) = Mm{12 - Mm{\ + 18,19 - A},3)

L™

35509

- 1j-R L«

Lju)

1 R"a)

Figure 2.19; ¢ 3(A) and liaiA)
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3. A=
4. F =10,4]
5. () F#£0 k#5k<k+1=4

Lie Al =4
Ioi() = {1,3)

L3E(A) = Min{10 — Min{7 + Ls(}), 15 — Ls(\)},2}

L3R()\) = Min{10 — Min{11 + Ry(\), 11 — R3(\)},2}
R3E(X) = Min{10 — Min{9 + Ly()), 17 — Ls(M)},2}
REP() = Min{10 — Min {13 4+ R3()), 13 — Ra())},2}

LI(A) = Maz{L3"(A), Li"(M)}
R3(X) = Max{R3E()), BT (A\)}

RS L4 (A)
3L
_____ R4 (A)
3R
— L4 (A
- RiR (M)
2 .
(I .
-
-~
.
1. 1 < /
1 /'I' | T
o ad
< e
\\/;’/ ,/’
-~
-

Figure 2.20: L3()\) and R3(A) determination

w34
[
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LI{X) = Min{12 - Min{X + 13,16 - A}, 2}
R\{X) = Min{12 —iVIin{X + 13,14 —A), 2}

LA(X)

R4(X)

Figure 2.22: i/4(A) and ILi{X)
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©

t_ﬁ.

<

A

A =[0,2) U (3,3.5)
" =1[2,3] U[3.5,4)
() F#0, k#5k<k+1=5

.t <= A5 =

I=4(5) = {1,4}

LIF(X) = Min{11 — Min{10 + Ly4()), 14 — Ly(X

LIF(A) = Min{11 — Min{12 + Rq()), 12 — Ry(
RIE(N) = Min{11 — Min{10 + Ls()), 10 — Ly()\)},
RER(N) = Min{1l — Min{8 + I4(}), 12 — R4(N)}, 5}

Ly(A) = Maz{LiF(N), LI ()}
RE(A) = Max{RIE(N), BRIV}

Figure 2.23: Li(A) and R3()) determination
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LY(A) = Min{9 — Min{\ + 12,12 = A}, 5)

RYA) = Min{9 — Min{\ + 13,14 — X}, 5}

1 R |
1 - —Ly )
i
_____ RS )
4
Ly
4
. - R
Figure 2.24: S5(X)
_L5 (r)
i . - . R, (A)
. : >

Figure 2.25: Ls(A) and I25(A)
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4. F = {3} U[3.5,4]

5. (c) F # 0, k=5STOP FEASIBLE.

4.CONSTRUCTION

0 Located =P =0,5 = {5}
Choose 3 € F
Locate z, =z, © € Sy and d(2,a,) =3
Located = {1}

1 Choose 5 from S, P = {5}

Locate x5 = Ls(3), x5 € S5 and d(ws,as) = Ls(3) =0
Located = {1,5}

1.1 P # 0 Choose 5 € P
Ws = I'"1(5) — Located
Ws = {4}
Determine Kg,(3)(3) that determine Ls(3)
Kqy(3)(3) = Min{Ls(3), L3(3)}
@s(3) = {1,4} then 4 € @5(3)
1.1.1 Choose 4 € Wj
1.1.1.1 4 € @5(3) and Li(3) = Li*(3) then
Locate @4 = I4(3) ,z4 € S1 and d(z4,b4) = R4(3) =1
Located = {1,4,5}
Ws <0
P < {4}
1.1 P # @ Choose 4 € P
Wy =TI'"1(4) — Located
Wy = {3}
Determine Mg, (3)(3) that determine [24(3)
Q4(3) = {3}

99
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1.1.1 Choose 3 € W,
L1.1.1 3 € Qu(3) and L3(3) = L3*(3) then
Locate a3 = R3(3) , 3 € 53 and d(wx3,03) = H3(3) =4
Located = {1,3,4,5}
Wy«
P < {3}
" 1.1 P #0 Choose 3 € P
W3 =T17Y(3) — Located
Ws = {2)
Determine Mg, (3)(3) that determine IZ3(3)
Qs(3) = {2}
1.1.1 Choose 2 € W,
1.1.1.1 2 € @4(3) and L3(3) = L25(3) then
Locate z2 = Ly(3) , @2 € S2 and d(wx2,a2) = Ly(3) = 3
Located = {1,2,3,4,5}
Wi <0
P < {2}
1.1 P # @ Choose 2 € P
W, = I'"1(2) — Localed
Wy=10
P
12 P=1
S S5-{5}=10

2. S =0 STOP. All facilities are located.
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Figure 2.26; Solution

d{xuX2) = 12 < 12
a{xi,x-") = 17 < 17
d{xuX4) = 12 < 12

rs)=9<9
d{x2,X3) = 12 < 12
d{x3,X4) = 8 < 10
da4, . Tg=1< 1

The solution found is feasible.

61



CHAPTER 2. ALGORITHM 62

2.4 IMPROVING EFFICIENCY

2.4.1 Economy in Distance Calculation Phase

Distance Calculation Phase is the phase that determines the complexity of the
whole algorithm. So we are interested in any suggestion that will reduce the
order ‘of that step.

Si = [aj, b;] € [vy,,vy,] € I

and

V= ;'n=1. {"’l),)vq,}

In the first step of the Distance Calculation Phase, we apply Dijkstra for
every v € V. In the worst case, |V| = n and we need to apply Dijkstra for n

{imes.

Suppose after applying Dijkstra for vy, we obtain the following shortest

path tree rooted al v.

V3 OVvs

Figure 2.27: Shortest path tree rooted at vy

[ V] Uy Uz Uy Vs Vg U7 ]
vy |0 2 5 6 11 12 9
V2 0 3 4 9 7 10
U3 0
V4 0 5 6 3
Us 0
Vg 0
vr | 0 |
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The first row of the matrix is what we expect to gain from applying
Dijkstra’s Algorithm for vy, but if the shortest path from v, to v; includes
v; then the shortest path between v; and v; is also determined. See the matrix
above. The underlined entries are the by product of first application of Dijkstra.

So we may not need to repeat Dijkstra [or £ times.

Applying Dijkstra for v € V and keeping only shortest path distances
between v and v; € V does not use all the information that is produced.
That’s why some of the distances need to be calculated more than once. Of
course, keeping the nodes that appear in the shortest paths does not improve
the worst case performance (in the worst case the graph is a complete graph
and satisfies triangular inequality, then no shortest path include a node other

than the ends), but it improves the average perlormance.

2.4.2 Preprocessing for bjs

After Distance Calculation Phase, we can identily some of the inleasibility of
the problem or redundancy of some of the constraints before going any further

by using calculated distances between extreme points of S; and Sy, and bjy.

1. If bjr, = 0 then

(a) I .S; NSk = 0 then the problem is infeasible.

(b) If.S; NSy # @ then the size of the problem can be reduced by one.
Let S, = S; N Sk and by = Min{b;;, b} ( when (¢,5) ¢ I then
bijoo) and I, = {1 : b, < o0}.

We can delete nodes j and k and all the edges attached to these
nodes. Add node p instead and add edges {[¢,p] : ¢ € [,} with
lengths b;,. The problem dala can be preprocessed in this way to
eliminate all b;i’s that are zero. The preprocessing either concludes
the problem is infeasible or reduces the data to positive bounds

between new facilities.
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2. If by, > maadj; where mawxd;; is defined as [ollows:

a) I 55,8, Cluy,v,] € L, 5,n5 # 0 and length of [v,,v,] = L
j » Vg J g P Vg
mazdjy = [Max{wp,(b;),wpe(br)}—Min{w,,(a;),wpe(ar)}]. L

(b) ILS; Sy # 0
mazdy = +le+Min{d(a;, ar), d(aj, be), d(bj, ax), d(b;, bi)}

Then we can delete edge [j, k] from LN. Since for any choice of @; and
T

d(zj,xp) < maxdje < bjy,
Because this constraint is redundant, x; € 5; and x; € Sy lorces
d(zj,xr) < bjx to be satisfied automatically.

3. Tor (7, k) pairs, such that S; NSy # 0, If

bjr < Men{d(aj,ar),d(a;j,by),d(b;,ar), d(bj, b))}
then the problem is infeasible. Since, there does not exist a pair, 2; and

Tk, that satisfies d(aj, 1) < bji.

2.4.3 Efficiency in Calculation of L;(\) and R;()\)

In order to calculate L;(A) and R;(A) we need Lo compare 28 Ko (A) and Mg())
values. There might be some economy when these comparisons arc performed

in a special order.

Observation 5 When Kg(A) > 0(= (Lu(A) = ;) ) then we do nol need lo

calculate other Kqg(A) values, since

Li(A) = Ko(})

Proof Ko(\) < LI()) for some j € P. By definition Li()\) < ; ¥j € P.

Therefore



CHAPTER 2. ALGORITHM 65

Kp(\) = 1; > L)) = Ko(X
Q

So Li(A) = Ko()) 0

Observation 6 Suppose for a specific A, say A, L¥(A) < 0 for some k € P
Then
Ko(X) <0 for any Q such that k € Q

Proof
MinjeoLi(X) il MinjeqLi(X) > i — Minjep_qRI(X)

—1 otherwise

Ko(¥) = {

If Kg(A) = —1 we are done. il Kg()) = MinjeqL!(}) then since k € Q
MinjeqLi(A) < LF(\) <0 So Kg(X) <0 O

Observation 7 Suppose for a specific A, say A R¥(X) < 0 for some k € P
Then

Ko()) <0 for any Q such that k € P —Q

{ MinjeoLi(N) il MinjeqLi(X) > i — Minjep_qRi(X)

-1 otherwise

KoA) = MinjeqLi(N) if MinjeqLi(X) > I; = Minjep_q RI(N)

ke P—Qand RF(X) < 0 then
Minjep_gRI(N) < RE(X) < 0

Therefore, MinjeqLi(\) > i — Minjep_qRI(X) > I; which is impossible. So
Ko(A) = -1 o

These observations can be used systematically to decrease the number of
comparisons for some interval of A. Because of the symmetry these kinds of

reductions are also applicable to the calculation of 12}()) Here is an example:
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Let us define

I, ={\: Lf’(/\) <0} and Ip, = {): R¥(A) < 0}

It is obvious that if A € I, N Ip, then the problem is not feasible [or this

value of A

Cousider the [ollowing determination of L;(A) and I2;()) where I'"}(7) =
{k1, k2, k3} with I, and I, information.
’[Lkl = [0,4] U [5, 6] ]Lk2 = [0,2]U [4,5.5] IL;,-:, =0
Inkl = [0, 1] '[sz = []., 3] U [5, 6] f]zks (4, 6]

Delete [0,1] ( Since L¥()\) < 0 and R*(A) < 0) and delete [1,2] U [5,5.5] (
Since L ()) < 0 and R2()) < 0)

FFor X € [2,3]

L¥()\) < 0 and R () < 0. Then k; must appear in  whereas k; must be
in P — Q. Then possible @’s are @; = {1,3} and Q2 = {1}

For A € [5.5, 6]

L2()) <0 and RF()) < 0 and Rf*(X). Then k; and ks must appear in Q)
whereas k, must be in P — @). Then possible @ is: @, = {1,3}
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EXTENSIONS

It is possible to modify the algorithm presented in Chapter 2 to solve a larger

set of problem instances. The algorithm finds a [easible solution to P1,

(P1) d(xj,or) < bji for (5,k) € 1
x; € S;lorgjed

where

R.1 5;NSy=0for (j,k) eI
R.2 [ is chosen so that LN is isomorphic to a subgraph of BW,,.

R.3 Each S; is a subedge [a;,0;] in edge [v,;,v, ]

In this chapter, we manage to relax the first restriclion totally while
remaining polynomial and provide some extensions to the other relaxations
again without increasing the complexity too much. We will first explain the
difficulties that result from the relaxations then present our suggestion for
modification of the algorithm and give the complexity of the work that should

be done additionally.

67
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3.1 RELAXATION OF R1

3.1.1 Difficulties

First of all, let us mention the diflicultics that arises from the relaxation of this
restriction. In the algorithm, we [requently reler to Lemma 1, which states
that given S;N Sy =0, x; € S; and xy € Sy, any shortest path between z; and
2y, includes cither @y or by, Using this lemma, we can state that, regardless of
the number of pieces Sj(A) has, if we have an expression lor the extreme points
of S;()), we can form Si()). Moreover, 57()\) has at most two pieces (cach of

the piece should contain either ay or by).

But when 5; NS # 0, shortest path between x; and ax that does not need

to include ay, or bg. For example;

Let z; € [ak, b;] then for any xy € Sk there might be a shortest path between

a; and xx does not include ay, or 0.

For x; € [a;, ax] the previous ideas are still valid. So special treatment for

the points in the intersection is necessary.

3.1.2 Suggested Extension

Suppose S; NSk # 0 and (5, k) is an arc in DLN. Irom the reduction phase we
know that it is possible to construct S;(A) without interference of its relation

with Si. Considering the [ollowing case will provide an insight.
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Suppose (?, k) GDLN, SIHSK”™ 0and 6Xx= 1

Figure 3.1: Feasible region cleterniination graph of Sk

The shaded region identifies the pairs {x,Xk) tluit satisfy cl{x,Xk) < 1. As
can easilj™® be seen, it is not possible to express the feasible region by means
of the region between a unique linear function and the axis or y = Ik line
since a point is reachable from Sj does not guarantee that either aj or bj is
also reachable. We need two linear functions to express the boundaries of the

feasible region.

At any A Sj{X) ma,y consist of many pieces ( if in-degree of j is K then, at
any A, there can be at most K + 1 pieces. ) One differentiation about these
pieces is that their Q sets are different. That is, the subset of in-neighbors of
j, that cover points in that piece via its left pieces is common to all points in

a piece.
HW

jRyr)
LW

Figure 3.2: Pieces and Q‘s for ¢'3(A)
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Let us denote each piece of S; by Pg(A). Then for a specific A, consider a

Po()) and call its extreme points y,(A) and yz(A).
Let us defline
S$I%(N) ={z € S :d(x,y) < bk for some y € Py(M)}

Then $i%(X), the feasible region that this picce forms in S, is determined

as [ollows:

[ Il Pa(A) NSk =@ then
STV = N(y:(2), bje) U N(y2(R), by
2. Il Pp(A) N Sy 5 B then

SI%(0) = N(y1(X), bje) U N(ya(N), bje) U Po(X) N Sk

So a special treatment is required for the pieces that appear in the
intersection. Previously we did not keep Kg(A) and Mg(A) il they do not
determine L;(A) and R;(A). But for the pairs that S; N .Sk # §, which can be

detected at the distance calculation step we should keep all Kg(A) and Mg(A).
Let us define
LLiQ(A) = A'f(lﬂiwesio(;\)(l(:v, bi)

UL () = Maz,egpo0sydle, ar)

In the rest of this section, we will first explain the situation for a fixed A, give
the definitions and then give a parametric approach. We need to investigale

all possible ordering of a;, ax, b;, by. For details refer to Figure 2.10.

Suppose for A € I7, S;(X) consists of three pieces. Pg,(}), Po,(}) and
Po,(A)
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Pa (X)

1 1 LiFL

=
=~
o

M (X
~

Figure 3.3: Sj{X)

Kg{X) is the maximum distance from U to a point in Pq, if it is positive
and if it is negative then this indicates that for that value of A there is no piece
in Sj that is formed by the intersection of the left pieces of Q's and the right
pieces of P\Q's on Sj. Mq{\) is calculated similarly with respect to bj.

Casel Q € Q™(A) and Kqg{X) < d{aj,af;)
ULf(X) = MiniKgCX) + bit - d{ai, at), k]
It it ULi“ (\) >0

—1 otherwise

In our example

Pa (X)

WK e LL-"A(A)'

Figure 3.4: ULFAX) ™Y LLFA{X)
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Case2 Q € Q*(X) and Ko(X) > d(aj, ax)
UL®(A) = Min{Ko(}) + byt — d(a;,ar), k)

LLI?(A) = Min{Mg(}) + bjx — d(b;, bi), i}

P A

X ' Qz( ) i i
U lk v J k
KQ(M bjk_"

2 Q. |

e d(a,a) : ! 2 : ;
ik UL, Ty ———

-

P b, :

e jk == <_.MQ \) d(bj ,bk) ~

2

iQ
2
).
LL,

Figure 3.5: ULI9?(X) and LLI%* ()

We can summarize our findings for all possible realizations of aj, ak, b;, be

as [ollows:

1L S}, 5k C [vp,v,) € E, (4, k) is an arc in DLN, S; N S # 0, then Si(X) is

found as follows

Determine S;(A) and all Mg(A) and Kg(A)’s.

L If wpg(ay) < wpg(ax) and wyq(b;) < wpq(bi)

For all Q € P

(a) AQ(,\) d(a,,ak)
= Min{Kq()) + bjx — d(aj, ax), i)
LI { UL >0

otherwise
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(b) Ko()) > d(a;,a)
ULI2()) = Min{Kq(X) + by — d(aj, ar), Ik}
LLiQ()\) = ]\/[in{IWQ(j\) + bjk - d(l)j, l)k), lk}

2. I wyy(a;) € wpg(ar) and wye(bj) > wye(br)

Forall Q € P

(a) If Ko(X) < d(aj,ar)
ULP () = Min{Kgo(\) + bjx — d(aj, ar), i)
: CATULRO) 2
LLLQ(A)Z{ L, fULI®(A) >0

~1 otherwise

(b) Id(aj,ar) < Kq(A) < d(aj, bi)
ULI?(A) = Min{Kq(X) + bjx — d(aj, a), i)
LL%(\) = Min{Mg(}) + bjx — d(bj, be), i}

(c) If Ko(X) > d(aj,by)
LR (N = Min{Mg(X) + bjr — d(b;, bi), i)
e ifLLP(N) >0

—1 otherwise

ULRO) = {

3. If wyg(a;) > wpg(ar) and wyy(0;) < wpy(bk)
Ior all @ € P
ULI®(A) = Min{Kgo(X) + bj. — d(a;, ar), Ik}
LLI?(N) = Min{Mg(X) + bjx + d(bj, be), Ik}

4. T wpy(a;) > wpe(ar) and wyg(b;) > wye(br)
For all @ € P

(a) [X’Q(/_\) < cl(aj,l)k)
ULI®(\) = Min{Kq(X) + bj, — d(aj, ar), i}
LLI%(\) = Min{Mg(X) + bjt — d(bj, bi), .}

73
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(b) K a{X) > d{aj.bk)
LLF{\) = Min{MQ{X) - bj, - c/(6, 6,), k}
kK ifbLf(A)>()

—1 otherwise

ULf(A)

After calculating all UL\MX) and LiJiP{X), we intersect them with 5,(A)

where Vs cire other in-neighbors of k

Consider the following feasible region detennination graph of Sj{X) and use
of it in the calculcition of S'I{X). In Figure 3.6, we expand Sj by bjk and then
in Figure 3.7, we intersect what we found with Sk-

Id s
D NCS,§9-g)

Figure 3.6: Expansion of .5j(A) by bk

Figure 3.7: Intersection of N{Sj,bjk) with Sk
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3.2 RELAXATION OF R2

Restriction 2 guarantees that afler the orientalion step the nodes of DLN
(except ) has at most one out-neighbor. In Chapter 2, we mentioned the
difficulties related with the nodes whose out-degrees are more than one. Briefly,
in those cases, there is no finite dominating set ol points at which the facility

can be located.

One immediate reaction to such a restriction is to decompose the constraint
set into subsets so that each subsel salislies restriction 2, flind all feasible
solutions to each subset and then find the intersection of these feasible solution
sets. Obviously, if the algorithm terminates infeasible for any of subsets, then

the whole problem is infeasible.

Our algorithm does not find all feasible solutions but finds @ feasible
solution, if there is any. Here we will add a phase to the algorithm so that at
the end we obtain the composite region of each facility. We will give definition
of composite region later. The definition is taken from Tansel and Yesilkokcen

[13].

3.2.1 Second Reduction

Suppose that the facilities are renamed according to the order specilied in the
orientation phase. Now let us apply the reduction phase of the algorithm to this
DLN. As is clear from the definition of S;(A), for any z; € S;(A) we can find
points x; € S; for j < 7 that satisfy the relevant distance constraints,i.e. the
constraints that include z;, where £ < 3. That is why S;()A) is a composite region
for @; for the partial problem which consists of d(;,xt) < b for 1 < j < k<i
and z; € S; for j < 4. But for the same z;, we cannot guarantee that there
exists x; where j > ¢ that satisly whole constraint set. Then S;(A)s , except

¢ = m, are not composite regions for the whole problem.

Now we will add a second reduction phase which moves in the reverse
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3.2 RELAXATION OF R2

Restriction 2 guarantees that alfter the orientation step the nodes of DLN
(except ) has at most one out-neighbor. In Chapter 2, we mentioned the
difficulties related with the nodes whose out-degrees are more than one. Brielfly,
in those cases, there is no finite dominating set of poiuts at which the facility

can be located.

One immediate reaction to such a restriction is to decompose the constraint
set into subsets so that each subset salisfies restriction 2, find «ll [easible
solutions to each subset and then [ind the intersection of these feasible solution
sets. Obviously, if the algorithm terminates infeasible for any of subsets, then

the whole problem is infeasible.

Our algorithm does not find all feasible solutions but finds a [easible
solution, i there is any. Here we will add a phase to the algorithm so that at
the end we obtain the composite region of each (acility. We will give definition
of composite region later. The definition is taken [rom Tansel and Yesilkokcen

[13].

3.2.1 Second Reduction

Suppose that the facilities are renamed according to the order specified in the
orientation phase. Now let us apply the reduction phase of the algorithm to this
DLN. As is clear from the definition of S;(}A), for any x; € S;(A) we can find
points x; € S; for j < ¢ that satisly the relevant distance constraints,i.e. the
constraints that include @) where k < 7. That is why S;()) is a composite region
for @; for the partial problem which consists of d(w;,xr) < bjx for 1 < j <k <
and x; € 5 for j < 4. But for the same z;, we cannot guarantee that there
exists ¢; where j > 7 that satisly whole constraint set. Then S;(A)s , except

i = m, are not composite regions for the whole problem.

Now we will add a second reduction phase which moves in the reverse
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direction of the first reduction, from m to 1, and recursively reduces S;(X) to

£73(A).
0 =1 and I'(y) = {k};
F;(A) = {z; € S;(A) : d(zj,@x) < bje for some zy, € Fi(A)}

I I'(G)| = 0

Second Reduction

Step 0. Initializalion
Ior node 1
A ifAer
# otherwise
For node k € S
I(X) = S5k(X)
Step 1. Recursive Slep

For node ¢ whose out-neighbor j is reduced;

alculate Li* ) RO RE Rk or A € I'.
Calculate LIY(N), IOV RIF OV RIF(A) Tor A e T

Then
Li(A) = Maz {LI*(N) LI (M)
RI(A) = Maz {RI“(OV) R (V)
Let
[, LI(M)] it LI()) > 0,RI(N) <0
T/ (A) = [RI(N), b] if ZI(A) < 0,Ri(}) >0
[a;, LI U [RI(N), b]  if LA(A) 2 0, 1)) >0

Fi()) = Si(A) NTi(N)
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As you might have noticed, for A € F, LI(A) > 0 or RI(A) > 0. That is if
A € I then all Fj(X) # 0. This follows from the [ollowing observation. Fj(})
includes at least the point that will be found in construction step if we choose
A = )X € F. Consequently, no one A is eliminated in this step, but we reduce

Si(A) to a subset of it , I(A) for A € I,

Then for any A € F7,

(A Fo(V), Fo(N), o Fon( V)

is a vector ol set of points such that if we choose a point &; in Fj(A) then we
can construct a [easible location vector X = (ay, @y, ...x,,) where ¢; = &;. Lor
i < 7, a;s are localed according to the application of Construction Step for the
functions in the First Reduction and for 7 > j, a;s are located according to the

application of the Construction Step to the Second Reduction.
In fact, the composite region vector which is independent of A is:
(F,User F2(A), Urer F3(A), - Uner Fn(R))
I5; is the projection of I;(A) onto the y axis.

The complexity of this step is the same with the complexity of the First
Reduction. Because the calculation of each of LIF(A), LI()), RI*()) and
.RfR(/\) takes constant time (comparison of three linear functions for each)
and then intersecting T7(\) with S;()\) can be done in constant time. Since we
need to compare Li(A) s with Kg(A)s ( number of Kq()) [unction is limited

by 4 by the assumption that LN is isomorphic to BW,,).

Then, since the operations for a [acility takes constant time, the time bound
b )

of second reduction is also O(m).
Ilere is the application of the Second Reduction to the example that was

given in Chapter 2.

Step 0. F1(A) = A for A € {3} U[3.5,4]
S = {5} I5(X) = Ss(A) for A € {3} U[3.5,4]
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Step 1. Determination of Tii(A)

A) = Min{ll - Mm{10 + L5(A),15 - L5(A)},2}
A = Mm((ll - Mm(10 + R,{X), 15- yfr,(A)),2]
(A) = Min{U - Min{\.2 + Ls{\), 13- {5(A)},2}
R f{\) = Aiiu{n - Mi.n{8 + 74(A), 17- /4(A)},2)
@]
O -RANA)

- <0 LAN(:H)

Figure 3.8: Fi“A) and 2®&A) determination

@)
3 35 4
Figure 3.9: FAA)
L
0 4('09
2
0 ——®
1.- DD
0
3 35 14

Figure 3.10: 4,i(A) and 74(A)
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Step 1. Determination of PVX)

Lf{X) = ivV/zn{10 - Min{l + L,,(A), 11 - Li{X)},A}
14«(A) = MIin{lO - Min{9 -h/?4(A),9 - /i;4(A)},4}

(A) = ATI7i{10 - M72i{ll + L4(A), 15- ;4(A)), 4}
7i;M(A) = Min{10 - Min{13 + 7%(A), 13- 4(A)},4)
0 — 150
<0 O ... 03
T ifa)
-1
2 Ol
-3
Figure 3.11: cleterminatioii
4
3..
2 .
1
0 0

Figure 3.12: F3{X)

0— "8W
O_ARH

3 35 4

Figure 3.13: ¢ 3(A) and i?3(A)
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1. DelLenninaliou of /'2(A)

L f(A) = Min{I2 - Min{I5 X\ 15 - L3(A)), 3}
LA\AX) = Min{12 - Min{ll + /23(A), 19 - 7U3(A)},3}
(A) = Min{12 - Min{12 + ¢ 3(A), 12 - L3(A)},3]

RAMX) = Mm{12 - Mm{8 + 11,{X), 16 - 773(A)},3}

3 0o — 29
2 O --- —~R2™(X)
I - —
" ™
-2 .
3.
Figure 3.14: A-Iclenniiiatioii

Figure 3.15: F2W

111 the following page, we give Sj{X) and Fj{X) sets together.

80
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5
4 |
. 1 S M)
2 1
1L

: f . l\'

I 2 3 4

Figure 3.16: After First Reduction

5 I e o1
4 4 B
3 _ 4 ® 3L
2 2 i 2]
1 1 ° 1l

H------ h : : t 4 | f .

12 3 4 1 2 3 4 | 2 3
3
2 _
1

H 3-F

2 3

Figure 3.17: After Second Reduction
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For A=3.5
6
5 1
: o
5 4 5 6
05 1.5
4 4.5 1
5 )2 —eo—t+—2 (4 : - 3
2 0.5
0.5
4 9
2.5
2.5 - 3 -
1.5 5

IMigure 3.18: Composite Regions for A = 3.5

As it can be seen for any &; chosen in the shaded region of \S;, we can find
other x;s that satisfy all the constraints.

3.2.2 Decomposition

Suppose we have the following Linkage Network, LN = (M, I)

It can be seen from the figure that there is no node whose removal leaves a
collection of subtrees (that is no node is common to all cycles). The question

is, can we find a solution to that problem by using the algorithm we have?

Suppose we partition the arc set into two subsets :

Arey = {(1,2),(L,3),(1,4),(1,5),(2,3),(3,4), (4,5)}
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Arcy = {(6,5),(6,7),(6,8),(6,9),(6,10),(7,8),(8,9),(9, 10),(10,5)}

Then the problem:
(P1) dzj,ar) <bip  for (,k)eland 1 <j<k <5
r;€5; for1<j7<5
(P2) dxj,ar) <bjp for (j,k)eTand 5<5 <k <10
x;€S5; for5<y <10

can be solved via the algorithm that was introduced in Chaptler 2. Moreover,

we can find the composite regions of the facilities with respect to P1 and P2.

If there were no common node thien the Cartesian product of the composite

region vectors will be our solution. But now we have a common node ,5.

We can assign directions to LN; and LN, ( linkage networks of the
respective problems) such that 5 is the last element of the order arrays Ay,

As.

Let Ay € [0,0;] and Ay € [0, 6]

We can determine independently S5(Ay) and S5(Az). These arc composite
regions of Sy for the problems Pl and P2. Let us denote I of problem Pl and

P2 as Iy and I, respectively. Then,

If (U, em Ss(A)]NIUn,er, S5(X2)] is nonempty, then we can construct a
feasible solution to the original problem. Since
lf T E [U/\IGFJ 55(/\1)] n[U/\zep2 55()\2)], then

Z € Uy,er S5(A1) and
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% € S5(Ay) for some A; € I,

Then we can locate w4,%3,2; by using the construction phase ol the
algorithm and given a5 is located at & (location of w; is already decided by

the choice of X;.

Similarly,
S (U/\zer 55()\2)) and

T € 5'5(5\2)) for some \y € Iy

Then we can locate @49, w9, xg, 27 by using the construction phase ol the
algorithm and given x5 is located al @ (location of wg is alrcady decided by the

choice of Az).
Then we obtain a feasible location vector X = (x4, 23, ...Z, @6, ...T10).
Findings in this part can be generalized as follows:

Suppose for cut vertex y € M, the blocks can be characterized as subgraphs
of LN such that there exists a node whose deletion breaks all cycles. Suppose
(Vi, ;) for ¢ = 1,2, ..k are blocks of j, and they are isomorphic to a subgraph

of BWjy

Apply the algorithm for each (V;, L;) independent of the other subsets.
Then .l."'j = Uy,er I75(Xi) is the composite region for facility j with respect to
the constraint set that are specified by the arcs in block 7. I j is the root of

block 7 then F]‘ = I
If ﬂf.": | Fj = () then there is no feasible solution to the whole problem.

If 2 € N5, then locate j at @ and find \; for which & € I(\;) for i = 1,2..k.
Then find the exact locations of the other facilities by applying construction

phase to cach subsetl independently with @ and A; information.

Here is the test that we will apply in order to decide whether the problem

can be solvable via the algorithm we proposed or not:
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Iror each node 7 of LN:

Remove node i from LN and obtain & many components ( where 1 < k <
m—1). Then for each component 7, add node 7 and arcs between ¢ and nodes of
component j and apply the orientation phase of the algorithin to the resulting
graph. If all components are feasible then we can solve that problem by our

algorithm.

Now, let us consider the complexity of solving a problem via decomposition.
Since distance calculation phase will be applied only once, the order of the
algorithm is maximum of n and the size of the largest component which is

surely less than m. Therclore, the order of the algorithm is O(n3).

3.3 RELAXATION OF R3

First of all, let us mention the difliculties that resull [rom relaxation of this

restriction.

In the algorithm at any iteration of reduction phase, we first reduce S; to

Si(A) according to the distance constraints between j and its in-neighbors.

The reduction is based on intersection of left and right pieces that the in-
neighbors form on \Sj. Then we determine the extreme points of S;(A) in order
to use them in determination of Sk(A), where k is the unique out-neighbor of

J

We proved in observation 3 that the expansion of the extreme points of

S:()X) is the same as the expansion ol the whole 5;()). This observation can
j j

be stated only if S; is restricted to an edge and 5; N .Sy = @. Since if one of
the interior point of S} is a node then it is possible that this node reaches to
S while a; and b; cannot.

Moreover, our observation ¢ $%(A) has at most two pieces, [aj, Li(A)] and

J

[125(X), b;] 7 is valid only if Sj is restricted to an edge, S; NSk = @ and S is a
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convex subedge ( that is, for ciny Xy 6 .S,,, the shortest patli between x and y

is included in Sj.)

Since most of the ideas are based on restricting Sj to an edge, it does not

seem easy to relax this assumption.
But we can relax restriction 3 in the following way:

Suppose the transport network satisfies the triangular inequality con-
straints. That is, length of each edge is equal to the shortest path distance

between its ends. Then we can replace R3 with:

e Each Sj is restricted to an edge of the transport network
Now, we allow Sj to have disjoint segments but all of them should be on the
same edge.

Let us demonstrate our suggestion on an example:

| | |
AD— ET3— EH)——1
| |

p 3

Let us take Sj as the minimal subedge that contains Sj and assign the end

of that minimal subedge as aj and bj.

Determine Sj{X) as before. Suppose 1 and 2 are iii-neighbors of j and the

feasible region determination graph is as follows:
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Figure 3.19: -Sj(A) before considera.tion of feasibility

Now we will remove the points that does not appear in real Sj. That is, we

will erase the shaded regions where y E (1,2) U (3,4) .

. Figure 3.20: Sj{X) cifter consideration of feasibility

If erasing causes Sj{X) = o for some A then we will remove that A from
F. We need to determine Lj{X) and Rj{X) by considering the graph in Figure
3.20.

Pictorially, all we need to do is to find the upper and lower envelope of the

shaded region in Figure 3.20. Here is the modification that we propose for the

algorithm.

We can express Sj in terms of intervals:
i, = (0,Iu(2.3]U[4,5]

Then (1,2) and (3,4) intervals do not belong to Sj
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i i RY(A) >0 and R¥(A) >0

—1 otherwise

if LY(X) > l; — R}(X) and L}(X) € S;
if LY(A) 2 4 = RE(X) and Lj(X) € (1,2)
if L}(A) 2 ; — 3(A) and Li(X) € (3,4)

otherwise

if L3(A) > I — 1(X) and LA(X) € S;
if L¥(A) 2 §; = Rj(A) and Li()) € (1,2)
il L3(A) 2 4 = 13(A) and LHA) € (3,4)

otherwise

AN = 7712'71{1}}()\),])]2-(/\)} if A(X) € 5

Ky(2) = {
Li(»)
Kg(\) =1{
{1} - 3
{ -1
L)
) 1
I\{'z}(/\)——" 5
_1
1
K,2)(A) = 5
—1
L(A) =

For R;(A),

AN = min{R}(A), R2(N)} il A(\) € S;

1
Mg()) =
o(A) ;
—1
R} (M)
My()) = !
w) =3,

if A(\) € (1,2)
if A(A) € (3,4)

otherwise

M’aw{f(@, 1\’{1}(/\), [X’{g}(/\), 1&’{1,2}(/\)}

iL AN € (1,2)
if A(\) € (3,4)

otherwise

HLY(A) 2 [R2()) and RE(X) € S;
iLY(A) > LR3(D) and RE()N) € (1,2)
LI 2 LRA(A) and T3(A) € (3,4)

otherwise

88
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Ri(A) MLYA) 2 RY(A) and Ri(A) € S;

M () = 1 LA(A) > LX) and RY(A) € (1,2)
= 3 iL2(\) > LRY(A) and RY() € (3,4)
~1 otherwise

I il Li(A) >0 and L¥(X) >0

—1 otherwise

RJ’(/\) = ]\/ICL(L‘{]V]@, f\{[{l}(A), ./\/f{z}(/\), ]\{[{1,2}(/\)}

The number of comparisons increase by the number of disjoint segments of
S;. Tansel and Yesilkokcen [13] proved that there can be at most n+ 1 disjoint

scgments of 5. Therefore, we remain polynomial.

sSuppose now the LN is decomposable,i.e, has a cut vertex whose blocks are
characterized by *There exists a node whose deletion breaks all cycles’, and G

satisfies triangular inequalities. Under these circumstances, let us solve DC.

It was shown how to handle DC} constraints and obtain S; which may
cousists of up to [E](n + 1) disjoint segments. Now solving DC' calls for two

decision:
1. Decide on the edge that S; is on for j = 1,2..m

2. Choose the exact location z; given that each .S; is restricted on the edge
J j

specified in the first decision step.

Decision 2 is exactly the algorithm we proposed with its all possible
extensions. Decision 1 requires an enumerative based algorithm. Let E; be
the set of edges, ¢ such that 5§ = e S; # 0. Then choosing S} € I; requires
O(|E|™) eflort in the worst case. But the techniques that we described in
Section 2.5 can be used to improve the average efficiency. For example suppose
we have three new facilities and each S; appears on three edges. Let us denote
the possible edges choices for j = 1,2,3 by S, S? and S?. Then our search

tree will be



CHAPTER 3. EXTENSIONS 90

1

Sl /O S3

2

2 o S3

3

S3

2 1
SZ/O S3

1 /O O 82
S 3
3

3 3

S/o S

e - 3

2

- 3

3

Figure 3.21: Search Tree rooted at S| belore preprocessing

But if the minimum distance between S} and 53 is larger than by, and if S}
and 53 are apart from each other more than ;3 then we can reduce the search

tree as follows:

W) =

W WWNW =W W

Figure 3.22: Search Tree rooted at S} alter preprocessing
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CONCLUSION

In this thesis we studied Distance Constraints. The problem is N P-Complete
for cyclic networks and polynomially solvable for tree networks. The only
known polynomially solvable case for cyclic networks is the case when the
linkage network is a tree. So up to now, there does not exist any polynomially

solvable case which has no tree assumption on any part of the data.

We do not require a tree structure either for the transport network or the
linkage network, but we make assumptions on some other parts of the data.
We assume that each new facility is restricted to an a priori specified feasible
region which is confined to an edge. Then, with this assumption we can solve
DC where the linkage network has a cut vertex whose blocks are characterized
by a cyclic structure with the restriction that there exists a node whose deletion

breaks all cycles.
In Chapter 2 we provide an algorithm for
(P1) d(wj,:vk) < by, for (], k)el.

g, €5 forjed

where
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R.1 S;NSk=01or (j,k) el
R.2 I is chosen so that LV is isomorphic to a subgraph of BW,,.

R.3 Each S; is a subedge [«;, b;] in edge [v,,,v,,]

With these restrictions, our method is to reduce the feasible region for
facility 7, whicl is initially S; to a subset of it which is conditional to the point
that the facilily chosen as a root is located at, such that every point in the
reduced feasible region of new facility satisfies the partial distance constraints

containing only the processed ones.

In Chapter 3, we provide some extensions to the class that can be solved

via the algorithm proposed.

First, we relax S; Sk = 0 for (j,k) € I assumption. In the original case,
we only expand only the end points of the subedge that covers S;(A) but now
we need to expand the extreme point of all pieces that Si(A) has. We need
to expand the linear expressions that are candidates [or extreme points of the
pieces, Kg(A) and Mg(A) functions. Due to our Broken wheel assumption, it
is possible to assign directions so that each node has at most two in-neighbors

and therelore there are four Kqg(A) and Mg(A) functions.

Secondly, we modified the algorithm so that it gives the composite regions
of fcasibility for new [acilities. T'he method is to apply the reduction rules in
the reverse order. Then we relax restriction 122 and if there is a cut vertex in
the linkage network whose blocks [ulfill the Broken Wheel assumption then we
provide a test to identifly such cases together with a method to solve such cases

which uses the algorithin in Chapter 2 as a subroutine.

Lastly, we relax the assumption that S is a convex set restricted on an
edge of transport network assumption. We still require each .S; to be restricted

on an edge but now we allow .5; to have disjoint segments.

Polynomially solvable cases that we have identified ate these cases, but we

can propose a solution to the case where the only restriction is the linkage
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network is decomposable. This solution is not polynomial but the average

performance can be improved by some other preprocessing techniques.
IP'uture Research Directions:

The first decision should be made more elliciently. I an enwmeralion bhased
y

scheme will be used then more preprocessing techniques should be found.

Decomposition idea can be enlarged. We have tried the case where the
deletion of an edge leaves a feasible linkage network, but some self-relerenciug
probleins occur. This case should be investigated more deeply and the reasons

ol difliculty can be analyzed.
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Appendix A

PROOFS

Observation 1

Assume Ly(X) > 0 and let Li(X) be the unique point in Sy which is Ly(\) units

away from ay. That is,

Li(X) € Sy and d(L3(N),ay) = Ly()N).

Then any poinl y € [ag, L3(N)] satisfies d(z,y) < by,

Assume R(X) > 0 and let RY(N) be the unique point in Sy which is RY(N) units

away from by. That is,

R (X) € Sy and d(1t5(N), b,) = I2,()).

Then any point y € [RY(X), by] salisfies d(x,y) < byz

Proof (a) By extending the idea in Lemma 1,

d(z,y) = Min{(d(z,a2)+ d(y,az), (d(x,bs) + d(y, b2)}
d(z,y) < d(z,az)+ d(az,y)

Since

Li(X) = Min{ (b2 — d(az, 2)), {5}
94
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Ly(A) < bya — d(ay, z)

d(az,2) < bia — Ly(N)

Since y € [ag, LI(N)] = d(y,az) < L3(A)

Therefore,

d(e,9) < dly,a2) + dw ) < bia — LY) + L)
And d(z,y) < bya.

(b) can be proven similarly.
Remark 1 If Li(A) = I, then RY(A) >0

Proof Li(A) = Min{(byz — d(az,2)), Ly}

If L()) = [, then

b12 - (l(az, (L) Z 12
biz 2 d(ag,z)+ 1,
bio 2 d(asz,by) + d(ag,x) > d(bg, )
b12 - d(bg, 'L) 2 0
Since RL(A) = min{(byz — d(by, 2)), 1}

RY()) is minimum of two nonnegative numbers. Thercfore, R} (A) > 0

Consequences of Remark :

LiN =l = Ry(\)>0
RB(A) <0 = Ly(A) = bz — d(ag,2) < I
BN =hL = L()20
Li(A) <0 = Ry(A) =bia —d(bs,x) < s

We will use these results in the proof of the following observation.
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ODbservation 2

0 LY <0, RN <0

SY) = [a2aW/\)] i Ly(X) 2 0,185()) <0
: [B5(N), 0] if LY(V) <0, Ry(A) >0
[, LSOO U (TR0, ba) f L(A) 2 0,12()) 2 0

Proof T}/(X) C S}(A) from Observation 1 (a) and (b). Let us now prove that
S3(A) € T (N).

‘The prool is by contradiction.We need to investigate all cases.

Let y € S3(A) bul y € T (N)

L.

)

Li(A) < 0,RX) <0 then T}(A) = 0.
Let y € S3(N)
d(z,y) = Min{d(y, «z) + d(az, v), d(y, b2) + d(bs, 2}
Without loss of generality, suppose
do,y) = dig, )+ d(as,)
Since Ly(A) < 0, Ly(A) = by — d(ag, x)
dayy) = dlyya)+ b — L)
Since d(y,az) > 0 and L3y(A) < 0

d(z,y) > biz. It is a contradiction y € S3(X).

Li(A) 2 0, R3(X) < 0 then T} (A) = [ag, Li(N)]
Let y € S3(A) but y & T)(A) then d(y, az) > Li(A)
Since I2}(A) < 0, LY(A) = iz — d(ay, )
d(z,y) = Min{d(y, az) -+ d(az,2), d(y, bg) + d(bz, )}
e I[d(z,y) = d(y, az) + d(az, )
d(z,y) = d(y, a2) + bz — Li(N)

Since d(y,az) > Li(})
d(z,y) > by It is a contradiction y & S;(A)
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o Il d(x,y) = d(y, b2) -+ d(b2, @)
(l((l,','l ) = (l(y, ()2) + blg h ]{)(/\)

Since d(y,by) 2 0 and Ry()) <0
d(z,y) > biz 1t is a contradiction y & Sy())

3. Li(A) < 0, R}()) > 0 Symmetric to Case 2.

4. LX) = 0, RY(A) = 0 then, T (A) = [az, L3N] U[RL(N), by
Let y € S3(A) but y & T3(N)
d(z,y) = Min{d(y, az) + d(az, x),d(y, b2) + d(by, )}
o If L3(A) = Iy or Ry(A) = Iy then T3 (X) = 53 So, y € S}(A) C S, =
T} (A) and y & T} () is a contradiction.
o Il Ly(A) <l and RY(N) < Iy then
Since y & T}(X)
d(y,az) > Ly(A) and d(y,by) > Ri(N)

d(z,y) = M {d(y,a2) + d(az, 2),d(y, bs) + d(bs, 2)}
Without loss of generality

d($77 ) = d(ya ("2) + d(a% :U)
d(z,y) = dy,as) + bz ~ L))

Since d(y,az) > Ly(A) = d(z,y) > by

So, S3(A) D T} (A) and S3(N) C Ty (N).

Therefore, S5 (A) = T4()) o

Observation 4 Given d(y;(A),q,) > by and d(yi(A),b,) > by and A, =

ap)
Maz{b;, — cl(yg(/_\), ap), bip — cl(yg(/_\), ay)} 20

Then, point z5(\) is well defined and only points in [yz()), 22())] provides
nonemply SH(A) where

2(A) € S; and d(y2(}), (1)) = 4,
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Proof First let us prove that point 23()) is well defined.

z2(A) € S; and d(y2(X), z2(A)) = A,
So if A, is guaranteed to be less than ; z,(}) is well defined.

Suppose A, > {; then
Maz{bi, — d(y2(A), @p), bip — d(y2(A), ¢p)} = I

Without loss of generality

bip — d(y2(A),ap) 2 I
I)ip Z li + (l(]/z(/_\), (I'P)

Since d(y;(A), y2(})) < I; for any A
bip 2 d(y1(A), 32(A)) + d(¥2(A), a5) 2 d(y1(}), ap)

Then b, — d(yl(;\),a,,) > 0 which is a contradiction. So we have proved that

22(X) is a well defined point.
Now let us prove that only [y2()), z2(})] provides nonempty S;;(j\)

Let & € [ya(V), (V)
Ay = Maz (b, — d(y2(R), @,), bip — d(y2(1), )}

Without loss of generality suppose

Ay = by — d(3 (), ) (1)

Since z € [y2(A), 22(N)]
d(z,y2(X) < 4, 2)
d(e,a,) < d(,32(3) + d(12(A), 0,)) (3)

From (1),(2) and (3)
d(z,ay) < by

So a, € N(z,b;,) NS, # 0 =
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Observations About Algorithm

Orientation Phase

Observation 8 [f R#£ V', Q # §.

Proof This statement appear in step 1, so 2 # §. The proof is by

contradiction:
Suppose @ = () for some 2 then
A= R and B=V'\R then

We asume that LN is connected (if it were not, we can decomipose the problem

into parts and solve each one indpendent of the others)

Then for any ¢« € A and j € B there should he a path connecting them. Let

this path ny,n4,..n, where p <m —1 and n; = ¢ and n, = j.

n; € A and nip; € B is true at least for one ¢. Then ['(n;) 2 niyr. So,
I'(A) 2 niy1 and nyy € T(A) N B. therefore, nipy € (V\R) NI(R). O

2. Construction Phase

Observation 9 The node set in DLN can be partition inlo subsels such thal
each subsel includes only one node with zero oul-degree, say node k and all

nodes thatappear exaclly one palh from root to k.

Proof Let p appears in both of two subset that are determined with the
procedure explained in the observation. Irom r to p there might be different
paths but from p there is only one place to go I'(p) , if it exist s, which is
unique and from there, there is one place to go I'(I'(p)) until we reach one of
the node with zeroout-degree. So, there cannot be a node that appears in two

subsets. a
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