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ABSTRACT

COLLECTIVE DATA FORECASTING IN DYNAMIC
TRANSPORT NETWORKS

Mehmet Güvercin

Ph.D. in Computer Engineering

Advisor: İbrahim Körpeoğlu

Co-Advisor: Buğra Gedik

September 2021

Forecasting is a crucial tool for intelligent transportation systems and passengers

of these systems and critical for transportation planning and management, as

the transportation variable (e.g. delay, traffic speed) are among major costs in

transportation. Each transportation variable may cause a further propagation

in dynamic transport network. Hence, the transportation variable pattern of a

node and the location of the node in the transport network can provide useful

information for other nodes. We address the problem of forecasting transportation

variable of a transport network node, utilizing the network information as well

as the transportation variable patterns of similar nodes in the network.

We propose ECFM, Exploratory Clustered Forecasting Modeling, on both

static and dynamic transportation network which makes use of graph based fea-

tures for time-series estimation. ECFM approach builds a representative time-

series for each group of nodes in the transport network and fits a common model

like Seasonal Autoregressive Integrated Moving Average (SARIMA), Long-Short

Term Memory (LSTM), Regression with Autoregressive Integrated Moving Av-

erage errors (REG-ARIMA), Regression with Long-Short Term Memory errors

(REG-LSTM) for each, using the network based features as regressors. The

models are then applied individually to each node data for predicting the node’s

transportation variable.

We perform a network based analysis of the transport network and identify

graph-based features and we represent nodes as vectors that are used for both

grouping nodes and as regressors in forecasting models. We evaluate proposed

ECFM, Exploratory Clustered Forecasting Modeling, on two datasets (flight de-

lay dataset, traffic speed dataset). The experiments show that ECFM provides

accurate forecasts of delays/traffics compared to individual forecasting models.

Centrality measure of nodes such as betweenness centrality score is found to be an

effective regressor in the clustered modeling. Clustered models built on dynamic
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networks performs better compared to static networks.

ECFM, Exploratory Clustered Forecasting Modeling, is an conceptual ap-

proach and it is domain independent. Our proposed approach tries to incorporate

information, related to estimated variable, exist in similar nodes of the network.

Thus, we can achieve to build robust estimation models on enriched data.

Keywords: Time Series Forecasting, Clustered Forecasting Models, Delay Esti-

mation, Traffic Forecasting, Network Clustering, Dynamic Transport Networks.



ÖZET

DİNAMİK ULAŞTIRMA AĞLARINDA KOLEKTİF
VERİ TAHMİNLEMESİ

Mehmet Güvercin

Bilgisayar Mühendisliği, Doktora

Tez Danışmanı: İbrahim Körpeoğlu

İkinci Tez Danışmanı: Buğra Gedik

Eylül 2021

Tahminleme işi akıllı ulaşım sistemleri ve bu sistemleri kullananan yolcular için

önemli olmakla birlikte ulaşımla ilgili yönetim ve planlamada kritik role sahip-

tir, gecikme süreleri ve trafik hızı gibi değişkenler ulaşımla ilgili başlıca maliyet-

leri oluşturmaktadırlar. Her bir ulaşım değişkeni dinamik ulaşım ağlarında

ilave yayılmalara sebep olmaktadır. Bunun sonucu olarak, ulaşım ağındaki bir

düğümün ulaşım değişkeni örüntüsü ve ağdaki yeri diğer düğümlere yararlı bil-

giler sağlayabilir. Biz bu çalışmada bir ulaşım ağındaki düğüme bağlı ulaşım

değişkeninin tahminlemesinde ağ bilgisinin ve ulaşım değişkeni ile ilgili benzer

düğümlerin davranışlarının ortaklaştırılması gerektiğini dikkate sunmaktayız.

Bu çalışmada statik ve dinamik ulaşım ağlarında zaman serisi tahminlemesinde

ağ tabanlı özellikleri kullanan Keşifçi Kümelemeli Tahminleme Modelini (KKTM)

önermekteyiz. Keşifçi Kümelemeli Tahminleme Modeli, ulaşım ağındaki her bir

grup düğüm için temsili bir zaman serisi oluşturur ve bu zaman serilerinin her

biri için ağ tabanlı özellikleri bağlayıcı değişken olarak kullarak mevsimler otore-

gresif hareketli ortalamalar (SARIMA), uzun kısa vadeli hafıza ağları (LSTM),

bağlayıcı değişkenli otoregresif hareketli ortalamalar (REG-ARIMA), bağlayıcı

değişkenli uzun kısa vadeli hafıza ağları (REG-LSTM) gibi ortak modeller inşa

eder. Bu ortak modeller daha sonra her bir düğümün verisine ayrı ayrı uyarla-

narak düğümün ulaşım değişkeninin tahminlemesi yapılır.

Bu tezde biz ulaşım ağındaki düğümleri gruplamak ve aynı zamanda tahmin-

leme modellerine bağlayıcı değişken olarak girdi oluşturmak için ağ tabanlı teorik

özellikleri ve düğüm vektörlerini çıkardık. Önerdiğimiz Keşifçi Kümelemeli Tah-

minleme Modelini (KKTM) iki ayrı veri seti (uçuş gecikmesi veri seti, trafik hızı

veri seti) üzerinde test ettik. Deney sonuçlarına bakıldığında uçuş gecikmesi ve

trafik hızı değişkenleri için önerilen keşifçi kümelemeli tahminleme modellerinin

bireysel tahminleme modellerine göre daha hatasız tahminlemeler ortaya koyduğu
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görülmektedir. Kümeleme modellerinde düğümlerin merkezi olma özelliğini

ölçen merkeziyet arasındalık skorunun etkili bir bağlayıcı değişken olduğu tespit

edilmiştir. Kümelemeli modellerin dinamik olarak oluşturulan ağlarda sitatik

ağlara göre daha başarılı olduğu görülmüştür.

Bu tezde önerilen Keşifçi Kümelemeli Tahminleme Modeli uygulama alanı

bağımsız kavramsal bir modeldir. Önerdiğimiz yöntem ağdaki benzer düğümlerde

var olan tahminleme değişkeniyle ilgilili bilgileri ortaklaştırmayı sağladığı için

zenginleştiriltimesi sağlanmış veri sayesinde daha güçlü tahminleme modelleri

oluşturmaktadır.

Anahtar sözcükler : Zaman Serisi Tahminleme, Kümelemeli Tahminleme Model-

leri, Gecikme Tahmini, Trafik Tahmini, Ağ Kümeleme, Dinamik Ulaşım Ağları.
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Chapter 1

Introduction

Easy access to the dynamic data or big data coming from current technologies

makes easier to work on transportation forecasting. Forecasting is a crucial tool

for intelligent transportation systems and critical for transportation planning and

management. Major factors of delays or traffics include technical problems of

vehicles, weather conditions, overuse of capacities, and delay/traffic propagation.

While these factors are traditionally well studied, patterns due to the structure

of networks have not been enough understood yet. In this thesis, we investigate

whether the position of a node in the transportation network and information

about similar nodes improve the estimation of delay or traffic patterns. We aim

to forecast delays/traffics by incorporating network information and similarity of

delay/traffics patterns of nodes into the estimation models. Accurate forecasting

of delays/traffics is essential both for optimization of management operations and

capacity planning.

The network of entities that are related to forecasting problem is first repre-

sented as a graph structure with each airport/loop as a node, and the number

of flights or distance between two entities as the weight of the edge between the

nodes. A set of graph-theoric features or vectorial graph features are extracted

for each node. In particular, we adapt the measures of hub score, betweenness

centrality, articulation point, in-degree, and weighted-in-degree and node2Vec [1]

1



into the context of these transportation networks.

We then use graph features and time-series patterns of delays/traffics to quan-

tify similarities between airports/loops, and cluster the airports based on these

similarities. We finally model each cluster of airports/loops with regression with

model with regressors (M-REG) using the extracted features as regressors. The

clusters are used to develop a joint model of airports/sensors for delay/traffic

estimation. The information aggregated in the clusters helps to remove noise

and handle outliers. We refer this approach as ECFM, Exploratory Clustered

Forecasting Modeling, which makes use of graph based features for time-series

estimation.

An extensive set of experiments is presented on millions of domestic flights

between 305 airports in the United States over seven years from http://

www.transtats.bts.gov/ for flight delay forecasting and on 2016 observations

(timesteps) of speed records over 207 sensor [2] for traffic forecasting. Developing

a joint model for a cluster of airports based on graph features and delay pat-

terns is shown to improve the estimation accuracy for individual airports. The

betweenness centrality, which quantifies how important a node is in the routes of

other node destination and arrival pairs, is found to be effective both for cluster-

ing the node and as a regressor in the M-REG model. Making networks dynamic

and building more specific networks affects performance of network based model

in positive way.

The presented network based analysis results can contribute to understanding

the airport/los networks and their effect on delays. In particular, the analysed

measures of network structure of airports and sensors can provide simple explana-

tions to better understand network based delay/traffic behaviors. The proposed

approach of using delay/traffic information of similar airports/sensors can help

transportation system operators perform more effective planning and budgeting.
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We summarize contributions of this thesis as follows.

• We define conceptually Exploratory Clustered Forecasting Modeling

(ECFM) in order to incorporate network information to the forecasting

models.

• We propose to use network based features as exploratory variables of esti-

mation models.

• We test also proposed model on cases that include dynamically changing

networks.

• The model we proposed can be used on all domains in which estimation

model needed to be built on sequences related to network nodes.

• We present results of experiments considering a benchmark. Results of

experiments illustrates that our methods perform better than baselines in

the literature.

3



1.1 Thesis Outline

The rest of the thesis is organized as follows. Related works in literature for

delay estimation, traffic forecasting, network analysis and time series modeling is

discussed in Chapter 2. Chapter 3 defines network incorporation and node cluster-

ing and Chapter 4 discusses individual estimation models on related time series.

Chapter 5 proposed exploratory clustered forecasting models and approaches in

comparison. Chapter 6 gives and discusses experimental results for approaches

in comparison. Finally, Chapter 7 concludes the thesis.

4



Chapter 2

Related Work

The proposed approach is related to the areas of flight delay estimation, traf-

fic forecasting, time series modeling, and network analysis. We summarize the

related work and how our method is placed in the literature for each these areas.

2.1 Flight Delay Estimation

Flight delay prediction has attracted significant attention both in practice and

research literature [3]. Carriers and customers get affected by excess travel times,

departure and arrival delays. Around 19% of the US domestic flights have a

delay more than 15 minutes [4]. The causes of flight delays are studied from the

perspectives of airlines and customers [5]. Airline hubbing and peaking airport

concentration due to over-scheduling flights, besides other logistic and economic

factors, are found to cause delays. Barnhart et al. study passenger delays as

a factor for flight delays and derive findings for its causes [6]. They analyze

flight cancellation and missed connections and develop a discrete choice model

to estimate historical passenger travels. A taxonomy of flight delay prediction

problems and a review of prediction approaches are presented in [3]. Carriers aim

to consider airport network effect while deciding to postpone or cancel flights,
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such as giving priority to flights that start or end in hub airports [7]. Our work

introduces a graph based approach to flight delay estimation by incorporating the

network features of the airports and analyzing them as groups in the network.

2.2 Traffic Speed Forecasting

Traffic speed forecasting is critical for planning and capacity management and

it is studied considerable in the literature. In order to improve traffic prediction

methods a wavelet transform and gated recurrent unit based technique is pro-

posed in [8]. A novel neural network-based traffic forecasting method is proposed

in [9] to capture spatial and temporal dependencies simultaneously. Authors gen-

erate the temporal graph convolutional network (T-GCN) model that combines

graph convolutional network (GCN) and the gated recurrent unit (GRU). By the

help of big data processing, work is done in order to select historical traffic data

and suitable time series forecasting methods that achieve more accurate predic-

tion [10]. Traffic prediction problem is challenging due to the complicated and

dynamic spatio-temporal dependencies between different regions in the road net-

work. Classical and deep learning based techniques are systematically classified

and summarized in [11]. Authors also collect publicly available datasets in liter-

ature. Deep learning architectures are applied to the road traffic forecasting in

[12] and these techniques perform better as demonstrated.

2.3 Time Series Modeling

The proposed method involves regression with ARIMA modeling and cluster-

ing. There is extensive work in these areas in the data mining and statistics

literature. ARIMA is widely used for many applications, such as forecasting the

electricity price [13], predicting the frequency and severity of accidents [14]. Sea-

sonal ARIMA models (SARIMA models) are also well established in the literature

6



[15]. Time series clustering can be applied either over raw data, or models or fea-

tures built over raw time series data [16]. Clustering is used to combine forecasts

of time-series data [17]. Forecasting on multiple time series is recently studied

via clustered models based on time series similarities, which helps to improve

the scalability of forecasting methods [18]. Another line of research is to design

Long short-term memory (LSTM) type recurrent neural networks [19] for a vari-

ety of machine learning problems on time-series data. Adapting these methods

for multiple (delay) time-series data considering an underlying (airport) network

structure is an interesting problem.

2.4 Network Analysis

Our work utilizes network analysis to better understand the transportation net-

works and forecasting flight delays and traffic speeds. We contribute to the lit-

erature by linking the graph features of the network nodes to their exhibited

delay or speed patterns. Network analysis has made a significant impact in Web

and social networks [20] [21] [22], starting from the early work by Freeman on

measuring the structural centrality [23]. White and Borgatti adapt the centrality

measures on undirected graphs to directed graphs [24]. Authoritative and hub

scores of node sources in a hyper-linked environment are extensively studied in

the literature [20, 25].

The network structure of airports has attracted some attention in air trans-

portation research [26]. Santos and Robin analyze the variables, including the

hub-airport variable, that explain the flight delays at the European airports [27].

Kim and Hansen introduce a non-parametric approach to estimate the effects of

demand changes and throughput changes on delay [28]. Delay propagation of

flights is modeled by considering both local congestion in individual airports and

propagation of these delays over connected airports [29]. This approach aims to

model the stochastic nature and time-varying behavior of airports. A network-

based model is introduced to simulate the effects of aircraft ground movements in

apron taxiways to gate assignment operations [30]. Airport network is also used

7



as an exploratory variable to obtain the global delay state of the entire system

[31].

The recent US Federal Aviation Administration (FAA) Strategic Plan dis-

cusses to increase the throughput capacity of airports and congested air corridors

[32]. Our approach can provide a network based insight to help prioritize certain

airports in terms of the planned capacity enhancements. It can complement some

of the tasks in FAA’s research plan via a better understanding of the air trans-

port networks. Among the functionalities of the Aviation Environmental Design

Tool (AEDT), released by the FAA Office of Environment and Energy (AEE),

are to model multiple airports in a single study, airplane taxi delay and sequence

modelling [33].
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Chapter 3

Network Incorporation and Node

Clustering

Our proposed ECFM, Exploratory Clustered Forecasting Modeling, is based on

incorporation of node features in estimation models. We need network incorpo-

ration for two cases while building forecasting models. In order to cluster nodes

to have common data for each cluster we need network based features of nodes.

Furthermore, in order to enrich estimation models with some network related

regressors we also need network based features of nodes.

3.1 Node Clustering

Our proposed methodology needs to have clustered nodes of network from which

we incorporate information to the forecasting models. We study four types of

node clustering approach in this thesis as graph-theoretic clustering, node2vec

clustering, graph partitioning, and time series clustering. We use airport network

as a network instance in order to anaylze clustering techniques.

9



3.1.1 Graph-Theoretic Clustering

The graph-based features that we explore are: hub score, betweenness centrality,

articulation point, in-degree and weighted in-degree. These features are fed to

a clustering algorithm to obtain the airport clusters. We build SARIMA and

REG-M (REG-ARIMA or REG-LSTM) models on a representative time-series for

each cluster. We use Graph Theoretic Clustered (GTC) as initial word to define

variants. We work graph-theoretic clustering on airport network and detailse are

as follows.

Flights between airports are represented by an airport interaction graph: Each

airport corresponds to a node and each flight between two airports corresponds

to an edge between the nodes. The edge weight is calculated using total number

of flights from the origin airport to the destination (i.e. 1/w, w: is the total

number of flights from the origin to destination) . The data sets are collected

from http://www.transtats.bts.gov/. We use this interaction network to analyze

the topological properties of the airports within the global airport network. We

visualize the airport network graph of with 305 nodes and 4622 edges using Cy-

toscape [34]. Every year has its own flight delays, so the airport network edges

have different network scores. While doing experiments, we used their own net-

work status for modeling. However, for the graph theoretical analysis later on we

presented the scores for only one of the years since aggregating them would not

be reasonable.

Delay vs. airport size and connectivity Figure 3.1 illustrates the top-30

airports which have the highest number of delays. The node sizes are shown

according to number of delays (e.g., ATL has the highest number of delays). It

is not surprising that the number of delays is correlated by the size of airport

and the connectivity level of the nodes, as illustrated in Figure 3.2 and Figure

3.3. Selected airports are ”ATL, ”MWH” which have the highest, and the lowest

number of delays in the US. Almost all of the airports are connected to ”ATL”

as a first neighbor, as depicted in Figure 3.2 in yellow and just one airport is

connected to ”MWH”, as depicted in Figure 3.3. We observe that the airports

10
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Figure 3.1: Top-30 airports of US aviation system considering number of delays
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that have a high flight density is prone to have flight delays.

Figure 3.2: Left side: ”ATL” first neighbors; right side: without ”ATL” first
neighbors

Graph-based features. The topological features include: the hub score of

the airport, the betwenness centrality of the airport, and articulation point(s) on

the graph. The node score features include in-degree and weighted in-degree of

the airports.

Hub Score is the left-singular vectors of the Singular Value Decomposition

(SVD) of the adjacency matrix A of a graph, which is used to represent the

relative importance of a node in a network [20]. An airport with a high hub score

is the origin of many flights to important and large-scale airports, and is naturally

12



Figure 3.3: Left side: ”MWH” first neighbors; right side: without ”MWH” first
neighbors

more important than the nodes with low hub score. Airports with similar hub

scores may be expected to show similar behavior in terms of their arrival delays.

Top 5 normalized hub scores can be seen in Table 3.1.

Betweenness centrality of node v in a directed graph G = (V,E) can be

represented as:

b(v) =
∑

s 6=v 6=t∈V

pst(v)

pst
(3.1)

where node s to node t represented as pst and the number of shortest paths that

pass through node v total number of shortest paths from represented as pst(v). In

13



Table 3.1: Top-5 airports in the context of node scores

Rank Airport Hub score Airport Between.

1 Hartsfield-Atlanta I. 1.00 Hartsfield-Atlanta I. 1.00
2 Chicago O’Hare I. 0.883 Dallas-Fort Worth I. 0.777
3 Dallas-Fort Worth I. 0.775 Chicago O’Hare I. 0.654
4 San Francisco I. 0.745 Salt Lake City I. 0.546
5 Denver I. 0.737 Detroit Metropolitan 0.539

Rank Airport In-degree Airport W. in-degree

1 Hartsfield-Atlanta I. 1.000 Hartsfield-Atlanta I. 1.000
2 Chicago O’Hare I. 0.924 Chicago O’Hare I. 0.755
3 Dallas-Fort Worth I. 0.886 Dallas-Fort Worth I. 0.645
4 Detroit Metropolitan 0.810 Denver I. 0.575
5 Denver I. 0.791 Los Angeles I. 0.481

order to apply idea of betweenness centrality to airport network context, we took

the edge values as 1/w where w is number flights between corresponded nodes.

Algorithm 1: Find-articulation-points

dfsnum(v)← −1, for all v
dfscounter ← 0 r ← |V |
for i← 1 to r do

v ← Vi

if dfsnum(v) 6= −1 then
DFS(v)

Betweenness centrality (BC) of an airport can quantify its use as a popular

transfer node between other airports in the network. An airport with high BC is

in the path of many arrival-destination pairs and may denote some relationship

for connecting flights. Being a central airport in the network naturally increases

the density of the flight traffic. Considering percentage of intersected nodes in

Figures 3.1 and 3.4 one can say that BC can serve as a potential indicator for

delay behavior.

Articulation point of a graph is a node whose removal causes other nodes to

be unreachable. Let G = (V,E) be a directed graph, articulation points of graph

G can be found by Algorithm 1 and Algorithm 2. dfsnum is a variable that keeps

the information whether node v discovered or not. Also dfscounter counts dfss

for a specific node. We have identified 19 articulation points in the US airport

data set that follows this definition.
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Figure 3.4: Top-20 airports with highest betweenness centrality scores

Articulation points of an airport network may be expected to have similarly

high traffic behavior, causing high number of flight delays. 12 of 19 articulation

points of the airport network are indeed among the top 19 airports ordered by

the number of delayed flights. The majority of articulation points have high flight

delays.

Algorithm 2: DFS(v)

dfsnum(v)← dfscounter
dfscounter ← dfscounter + 1
low(v)← dfsnum(v)
foreach edge (v, x) do

if dfsnum(x) == −1 then
DFS(x)
low(v)← min{low(x), low(v)}
if low(x) ≥ dfsnum(v) then

v is an art. point

else if x is not parent of v then
low(v)← min{low(v), dfsnum(x)}

The number of neighbor airports and the number of flights are naturally related

to the traffic and arrival delays. The number of airports that have flights to a

node is the in-degree of an airport node. The in-degree of node v in a directed
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Figure 3.5: Graph-based scores vs. number of delays

graph G = (V,E) can be calculated as:

id(v) = |{u : (u, v) ∈ E}| (3.2)

The weighted in-degree of node v, the number of incoming flights, in a directed

graph G = (V,E) is:

wid(v) =
∑

{u:(u,v)∈E}

wuv (3.3)

Table 3.1 lists the top 5 airports in terms of the presented scores. The top-30

highest delayed airports are illustrated in Figure 3.1. Figure 3.5 displays the

correlation between the graph-based scores and the number of delayed flights.

Red points in the figure represent outlier points in that score set and straight

lines are obtained through linear regression on scores except outlier points. Scores

presented in Table 3.1 and Figure 3.5 are normalized to the largest value.
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Figure 3.6: Zachary’s Karate Club network embedding. Adapted
from ”WWW-18 Tutorial Representation Learning on Networks”, by
J. Leskovec, 2018, SNAP, Retrieved from September 13, 2021 from
http://snap.stanford.edu/proj/embeddings-www/.

3.1.2 Node2Vec Clustering

Node2Vec is another method of transforming nodes into the feature vectors.

Node2Vec method tries to create embedding from nodes that makes model learn-

ing easier. Embedding is learnt as same way in [35] using skip-gram model.

We use these transformed vectors as instance features while clustering nodes.

Node2Vec embedding technique is developed by [1] This technique creates node

vectors by optimizing a neighborhood preserving objective and mainly tries to

optimize neighborhood preserving objective in order to output low dimensional

representations of nodes. As an example, Zachary’s Karate Club network’s vec-

tor representation is ilustrated in Figure 3.6. In this thesis, we use Node2Vec

Clustered (N2VC) as initial word to define variants.
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3.1.3 Graph Partitioning

Graph partitioning can also be used to group the airports [36]. A partition in

a network can be defined as a set of nodes with dense connections internally

and sparser connections to outside of the partition. We identify partitions of

airports and treat each group of airports as a hard partition. Several methods

have been developed especially in the social network literature for partitioning

and community detection, such as edge betweenness community [37], walk trap

community [38], spin glass community [39], leading eigenvector community [36]

fast greedy community [40]. Partitioning algorithms show similar performance

in our case so we select the walk trap community algorithm. We use Graph

Partitioned (GP) as initial word to define variants.

3.1.4 Time Series Clustering

Another approach we explore for clustering is to utilize signal information of

airports’ delay time series. We extract features using time series transformation

methods, namely Discrete Fourier Transform (DFT) [41] and Discrete Wavelet

Transform (DWT) [42]. We use Time Series Clustered (TSC) as initial word to

define variants.

3.2 Network Incorporation

Network incorporation to the forecasting models is one of the main part of our

proposed ECFM. Network incorporation basically means using information exists

in network structure while building estimation models. This come true when

network based node features are used as regressors inputs for the estimation

model.
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3.3 Dynamic Graphs

We firstly build proposed modeling approach on network that is created statically.

However, today’s big data world makes it possible and mandatory to think about

incorporating data coming from dynamic networks. In this study, we first create

networks using yearly information. Afterward we create monthly, weekly and

daily network in order to investigate effect of dynamism in the networks.
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Chapter 4

Estimation Models

In this work, we represent data as time series in order to build estimation models.

There several estimation models for time series in literature. We present models

that are used both individually and as a part of our proposed exploratory clustered

forecasting models.

4.1 Time-Series Representation of Data

Both arrival delays of an airport and traffic speeds of sensors can be represented as

a time series, a sequence of numerical points in successive order. We first decide

time points and then calculate value of each time point. Considering arrival

delays the value of each time point is the maximum (or median) arrival delay, in

minutes, of the incoming flights to the airport for the corresponding period. For

the purpose of experimentation, we produce the time series for one-year data of

length 2920 (8 points for each day) for 305 distinct airports. We do this for seven

years that are utilized in experimental section. We then estimate the delays of a

period of three-hours in a day. Considering traffic speeds the value of each time

point is the speed value measured at a specific sensor. Speed are recorded at

every 5 minutes. We produce the time series for one-month data of length of for
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Figure 4.1: Time sequence processing in recurrent neural network

207 distinct sensors. We do this for four months and we estimate the speeds of a

period o 5 minutes.

We presents example time series on airport delays. Figure 4.2 illustrates the

delay behavior of time series of the selected 8 big airports for a day. IATA codes

of airports are used instead of airports’ names in graphs (ATL, SFO, LAX, etc.)

Each delay point versus time in the graphs represents the maximum (median)

delay occurred in a period of three-hours of a day and delays are measured in

minutes. The figure shows the maximum and median based delay behaviors of

airports, and illustrates that there are airports with similar delay behaviors to

each other.

4.2 Individual Models

For the proposed approach we use five types of forecasting models: Multiple re-

gression models, Seasonal Autoregressive Integrated Moving Average (SARIMA)

family of models, Regression with ARIMA Errors (REG-ARIMA) models, Long-

Short Term Memory models and Regression with LSTM Errors (REG-LSTM)

models. We present definition of these models in following sections.
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4.2.1 Multiple Regression Model

Multiple regression model represents a dependent variable y by using k multiple

independent variables x1, x2, ..., xk as in the form of Equation 4.1. Building a

regression model is the problem of finding the model’s coefficient set b1, b2, ..., bk.

y = b0 + b1 ∗ x1 + b2 ∗ x2 + ... + bk ∗ xk (4.1)

4.2.2 SARIMA Modeling

SARIMA modeling represents a time point of a time series as the linear combi-

nation of its past time points. A SARIMA model SARIMA(p, d, q)(P,D,Q) is

represented by its autoregressive order p, differencing order d, moving average or-

der q, seasonal autoregressive order P , seasonal differencing order D and seasonal

differencing order Q. Building a SARIMA model on given data series aims to

determine the order of model and a vector of parameters. Further discussions on

SARIMA model operators, stationarity of time series, and how to estimate the

parameters of a SARIMA model can be found in [18].

4.2.3 REG-ARIMA Model

REG-ARIMA model is a combination of a regression and an Autoregressive In-

tegrated Moving Average (ARIMA) model. To build a REG-ARIMA model on

time series X, one builds a regression model on X where residual time-series N

of the regression model follows a SARIMA or an ARIMA model. The first part of

the REG-ARIMA model is formulated as in Equation 4.2 and N is the remaining

time series on which a SARIMA model will be built.

X = b0 + b1 ∗ x1 + b2 ∗ x2 + ... + bk ∗ xk + N (4.2)

22



4.2.4 LSTM Models for Forecasting

Long Short-Term Memory (LSTM) networks are used to predict sequence prob-

lems and they are a type of recurrent neural network (RNN). RNN is a recursive

neural network approach that can model dynamic performance of systems so it

can be used to model sequential data as in Figure 4.1 adapted from [43]. However,

long-range dependencies cannot be captured by RNN, RNNs are only capable of

process short-term sequential data. LSTM is a type of recurrent neural networks

and it can capture long-term information by using memory cell structure like a

conveyor belt. LSTM models applied on time sequences are presented in [43].

4.2.5 REG-LSTM for Forecasting

REG-LSTM is a combination of a regression and an Long-Short Term Memory

(LSTM) model. To build a REG-LSTM model on time series X, one builds

a regression model on X where residual time-series N of the regression model

follows a LSTM. The first part of the REG-LSTM model is formulated as in

Equation 4.3 and L is the remaining time series on which a LSTM model will be

built.

X = b0 + b1 ∗ x1 + b2 ∗ x2 + ... + bk ∗ xk + L (4.3)
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Figure 4.2: Example time series of maximum and median arrival delays for a day
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Chapter 5

Exploratory Clustered

Forecasting Models

Our approach, Exploratory Clustered Forecasting Modeling (ECFM), clusters

the airports/loops and builds a common REG-M (REG-ARIMA or REG-LSTM)

model for the aggregate time series of flight delays/traffic speeds for each cluster.

Figure 5.1 shows general the steps of ECFM. It first constructs the network,

consisting of airports/loops as the nodes and their relations as edges, and extracts

the node features for each node. ECFM then clusters the airports/loops (via k-

means, PAM) using the node features, node2vec features, and time series patterns

of nodes or it basically partition the graph in order to compose sets of nodes.

ECFM applies the clustered modeling using REG-M (or SARIMA) forecasting

model. A common regressors set is generated for each cluster. We use the each

graph-based feature as regressor in regression model or we use SVDs or PCAs

of node2vec features of nodes as regressors. While generating a common time

series of a cluster for each time point ti we find the maximum (median) time

series in that cluster and assign the value of time point ti of maximum (median)

time series to the time point ti of the common time series. To determine the

ith value of regressor r which is the corresponding regressor of feature f , we use

ith value of feature that belongs to selected maximum (median) time series. A
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Raw data

Generate interaction network Extract time series

Group nodes/time 
series 

Calculate network based 
regressors

Find representative time series of 
each group

Build REG-M model on common 
time series

Build individual models on time 
series

Figure 5.1: Flowchart of exploratory clustered forecasting modeling

REG-M model is developed based on the common time series and regressors set

for each cluster. For each cluster we have a common regression model and use this

model to find the residual time series, and we build a SARIMA/LSTM model for

each residual. To estimate the future values, we use the predicted values of the

common regression model and the predicted values of the specific residual time

series’ SARIMA/LSTM model. As a baseline, we also build a SARIMA/LSTM

model for each airport’s time series individually.

5.1 Data Scenarios

In this thesis, we propose ECFM as conceptually. We apply this modeling ap-

proach on two different datasets in transportation domain. It can be applied for

datasets of different domains in which we can incorporate network information

into the estimation model. We explain how we construct ECFM on flight delay

estimation and traffic speed estimation cases as follows.
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5.1.1 Flight Delay Case

To generate the arrival delay time series for each airport, we divide a day into

periods (i.e., eight three-hour periods for our experiments) and use the delayed

flights in a specific period to calculate the corresponding value. The time point

value of the (three-hour) period in the corresponding airport’s time series is the

maximum (or median) of delays. The signal features of airports’ time series are

also explored in clustering, besides the graph based features, node2vec features,

graph partitioning methods.

The arrival delay of a flight is the amount of time of being late to its destination.

A practical task is to build a model that can forecast whether and how much a

flight will be delayed. In this thesis, we propose a methodology to utilize the

airport network information in forecasting the flight delays. We illustrate our

approach using the flight information of 305 US airports for 7 years, collected

from Research and Innovative Technology Administration (RITA), absorbed into

OST-R. The data set includes the records of millions of commercial domestic

flights, each with a set of attributes, e.g., the year, month, day of month, flight

number, origin, destination, scheduled time, arrival delay.

The flight delay of an airport is represented by an aggregate time series of

all its flights’ delays. We develop models, based on regression with ARIMA

errors or regression with LSTM errors, that are built on groups of airport time

series, as opposed to modeling each airport individually. Our intuition is that

the underlying causes of delays can be similar for the airports that have similar

features or similar delay patterns. By clustering the delay time series, the model

of each airport that might suffer from sparseness or outliers can be enriched with

data of other airports. Hence, we use the airport interaction network and the

similarities of the airports’ delay patterns to cluster the airports and develop a

joint representative model for each group of airports.
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5.1.2 Traffic Speed Case

In order to generate ECFM on traffic forecasting space we have speeds that are

recorded every 5 minutes. We will have 288 observations for a single day. Time

series are generated monthly with the length of 8064 and data are collected for 4

months. The data is collected from 207 sensors, so we will have 207 nodes in the

graph. In order to create interaction network we use distances between sensors.

The traffic speed of a sensor is represented by a time series and we develop clus-

tered models, based on regression with ARIMA errors or regression with LSTM

errors, that are built on groups of sensor time series, as opposed to modeling

each airport individually. Our intuition is similar as in the case of flight delay

estimation that the underlying causes of traffics can be similar for the sensor

that have similar features or similar traffic patterns. By clustering the traffic

time series, the model of each sensor that might suffer from sparseness or outliers

can be enriched with data of other sensor. Hence, we use the sensor interaction

network and the similarities of the sensors’ traffic patterns to cluster the sensors

and develop a joint representative model for each group of sensors.

5.2 GTC: Graph-Theoretic Clustering

Considering clustering part of the ECFM we use graph-theoretic features of net-

work for GTC version. The graph-based features that we explore are: hub

score, betweenness centrality, articulation point, in-degree and weighted in-

degree. These features are fed to a clustering algorithm to obtain the node

clusters. Beside clustering we also use these graph-theoretic features as regres-

sors in order to build REG-M(REG-ARIMA or REG-LSTM) models. We re-

fer this approach as graph-theoretic clustered SARIMA modeling (GTC-SM),

graph-theoretic clustered REG-ARIMA modeling (GTC-RAM), graph-theoretic

clustered REG-LSTM modeling (GTC-RLSTMM) in our performance evaluation.
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Raw data

Generate interaction network Extract time series

Cluster nodes via graph-
theoretic features

Calculate network based 
regressors

Find representative time series of 
each group

Build SARIMA model on common 
time series

Build SARIMA/LSTM models on 
individual time series

Figure 5.2: Flowchart of proposed GTC-SM

5.2.1 GTC-SM: SARIMA Modeling

As illustrated in Figure 5.2 for GTC-SM we cluster nodes of network via graph-

theoretic features and we build SARIMA estimation model on aggregate time

series of each cluster, where individual SARIMA modeling and individual LSTM

modeling are regarded as baseline.

5.2.2 GTC-RAM: REG-ARIMA Modeling

Figure 5.3 visualize GTC-RAM for which we cluster nodes of network via graph-

theoretic features and we build REG-ARIMA estimation model on aggregate time

series of each cluster, where individual SARIMA modeling and individual LSTM

modeling are regarded as baseline.
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Cluster nodes via graph-
theoretic features

Calculate network based 
regressors

Find representative time series of 
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Build SARIMA/LSTM models on 
individual time series

Figure 5.3: Flowchart of proposed GTC-RAM

5.2.3 GTC-RLSTMM: REG-LSTM Modeling

As illustrated in Figure 5.4 for GTC-RLSTMM we cluster nodes of network via

graph-theoretic features and we build REG-LSTM estimation model on aggregate

time series of each cluster, where individual SARIMA modeling and individual

LSTM modeling are regarded as baseline.

5.3 GP: Graph Partitioning

Graph partitioning can also be used to group the nodes of network [36]. A parti-

tion in a network can be defined as a set of nodes with dense connections internally

and sparser connections to outside of the partition. We identify partitions of nodes

and treat each group of node as a hard partition. Several methods have been de-

veloped especially in the social network literature for partitioning and community

30



Raw data

Generate interaction network Extract time series

Cluster nodes via graph-
theoretic features

Calculate network based 
regressors

Find representative time series of 
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Build REG-LSTM model on common 
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individual time series

Figure 5.4: Flowchart of proposed GTC-RLSTMM

detection, such as edge betweenness community [37], walk trap community [38],

spin glass community [39], leading eigenvector community [36] fast greedy com-

munity [40]. Partitioning algorithms show similar performance in our case so we

select the walk trap community algorithm. We refer this approach as graph par-

titioned SARIMA modeling (GP-SM), graph partitioned REG-ARIMA modeling

(GP-RAM), and graph partitioned REG-LSTM modeling (GP-RLSTMM) in our

performance evaluation.

5.3.1 GP-SM: SARIMA Modeling

As illustrated in Figure 5.5 for GP-SM we obtain groups of nodes via partitioning

graph and we build SARIMA estimation model on aggregate time series of each

cluster, where individual SARIMA modeling and individual LSTM modeling are

regarded as baseline.
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Calculate network based 

regressors

Find representative time series of 
each group

Build SARIMA model on common 
time series

Build SARIMA/LSTM models on 
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Figure 5.5: Flowchart of proposed GP-SM

5.3.2 GP-RAM: REG-ARIMA Modeling

Figure 5.6 visualize GP-RAM for which we obtain groups of nodes by partitioning

graph and we build REG-ARIMA estimation model on aggregate time series of

each cluster, where individual SARIMA modeling and individual LSTM modeling

are regarded as baseline.

5.3.3 GP-RLSTMM: REG-LSTM Modeling

As illustrated in Figure 5.7 for GP-RLSTMM we obtain clusters of nodes by

partitioning graph and we build REG-LSTM estimation model on aggregate time

series of each cluster, where individual SARIMA modeling and individual LSTM

modeling are regarded as baseline.
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Figure 5.6: Flowchart of proposed GP-RAM
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Figure 5.7: Flowchart of proposed GP-RLSTMM
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5.4 TSC: Time Series Clustering

Another approach we explore for clustering is to utilize signal information of

nodes’ delay or traffic speed time series. We extract features using time series

transformation methods, namely Discrete Fourier Transform (DFT) [41] and Dis-

crete Wavelet Transform (DWT) [42]. We call these approaches time series clus-

tered SARIMA modeling (TSC-SM), time series clustered REG-ARIMA modeling

(TSC-RAM), and time series clustered REG-LSTM modeling (TSC-RLSTMM)

in our performance evaluation.

5.4.1 TSC-SM: SARIMA Modeling

As illustrated in Figure 5.8 for TSC-SM we cluster nodes of network by using

features extracted from DFT/DWT of time series. We build SARIMA estima-

tion model on aggregate time series of each cluster, where individual SARIMA

modeling and individual LSTM modeling are regarded as baseline.

5.4.2 TSC-RAM: REG-ARIMA Modeling

Figure 5.9 visualize TSC-RAM for which we obtain groups of nodes by cluster-

ing nodes features obtained from DFT/DWT of time series. We build REG-

ARIMA estimation model on aggregate time series of each cluster, where individ-

ual SARIMA modeling and individual LSTM modeling are regarded as baseline.

5.4.3 TSC-RLSTMM: REG-LSTM Modeling

As illustrated in Figure 5.10 for TSC-RLSTMM we obtain groups of nodes by

clustering nodes features obtained from DFT/DWT of time series we build REG-

LSTM estimation model on aggregate time series of each cluster, where individual
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Figure 5.8: Flowchart of proposed TSC-SM
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Figure 5.9: Flowchart of proposed TSC-RAM

35



Raw data

Generate interaction network Extract time series

Cluster nodes via 
DFT/DWT features

Calculate network based 
regressors

Find representative time series of 
each group

Build REG-LSTM model on common 
time series

Build SARIMA/LSTM models on 
individual time series

Figure 5.10: Flowchart of proposed TSC-RLSTMM

SARIMA modeling and individual LSTM modeling are regarded as baseline.

5.5 N2VC: Node2Vec Clustering

In this thesis, we process also graphs of airports or sensors by calculating scalable

features. For the N2VC version of ECFM we cluster nodes of network by using

feature vectors coming from node2vec calculation [1]. While determining regres-

sors for REG-ARIMA or REG-LSTM models we have two alternatives. For the

first alternative, we use again graph-theoretic features as regressors for regression

models built on aggregate time series of clusters created by using node2vec fea-

tures. In second alternative, regressors are selected from dimension node2vec clus-

tered SARIMA modeling (N2VC-SM), node2vec clustered REG-ARIMA model-

ing with graph theoretic regressors (N2VC-RAM-GTR), and node2vec clustered

REG-LSTM modeling with graph theoretic regressors (N2VC-RLSTMM-GTR),

node2vec clustered REG-ARIMA modeling with dimension reduction regressors

36



Raw data

Generate interaction network Extract time series

Cluster nodes based on 
node2vec vectors

Calculate network based 
regressors

Find representative time series of 
each group

Build SARIMA model on common 
time series

Build SARIMA/LSTM models on 
individual time series

Figure 5.11: Flowchart of proposed N2VC-SM

(N2VC-RAM-DRR), and node2vec clustered REG-LSTM modeling with dimen-

sion reduction regressors (N2VC-RLSTMM-DRR) in our performance evaluation.

5.5.1 N2VC-SM: SARIMA Modeling

As illustrated in Figure 5.11 for N2VC-SM we cluster nodes of network by using

vectors coming from node2vec [1] calculations. We build SARIMA estimation

model on aggregate time series of each cluster, where individual SARIMA mod-

eling and individual LSTM modeling are regarded as baseline.
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Figure 5.12: Flowchart of proposed N2VC-RAM-GTR

5.5.2 N2VC-RAM-GTR: REG-ARIMA Modeling with

Graph Theoretic Regressors

Figure 5.12 visualize N2VC-RAM-GTR for which we obtain groups of nodes

by clustering nodes’ vectors obtained from node2vec calculations of nodes. We

build REG-ARIMA estimation model, in which graph theoretic features used as

regressors, on aggregate time series of each cluster, where individual SARIMA

modeling and individual LSTM modeling are regarded as baseline.

5.5.3 N2VC-RLSTMM-GTR: REG-LSTM Modeling with

Graph Theoretic Regressors

As illustrated in Figure 5.13 for N2VC-RLSTMM-GTR we obtain groups of nodes

by clustering nodes’ vectors obtained from node2vec calculations of nodes and we

build REG-LSTM estimation model, in which graph theoretic features used as
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Figure 5.13: Flowchart of proposed N2VC-RLSTMM-GTR

regressors, on aggregate time series of each cluster, where individual SARIMA

modeling and individual LSTM modeling are regarded as baseline.

5.5.4 N2VC-RAM-DRR: REG-ARIMA Modeling with

Dimension Reduction Regressor

Figure 5.14 visualize N2VC-RAM-DRR for which we obtain groups of nodes by

clustering nodes’ vectors obtained from node2vec calculations of nodes. We build

REG-ARIMA estimation model, in which SVD or PCA form of node vectors used

as regressors, on aggregate time series of each cluster, where individual SARIMA

modeling and individual LSTM modeling are regarded as baseline.
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Figure 5.14: Flowchart of proposed N2VC-RAM-DRR

5.5.5 N2VC-RLSTMM-DRR: REG-LSTM Modeling with

Dimension Reduction Regressor

As illustrated in Figure 5.15 for N2VC-RLSTMM-DRR we obtain groups of nodes

by clustering nodes’ vectors obtained from node2vec calculations of nodes and we

build REG-LSTM estimation model, in which SVD or PCA form of node vectors

used as regressors, on aggregate time series of each cluster, where individual

SARIMA modeling and individual LSTM modeling are regarded as baseline.
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Figure 5.15: Flowchart of proposed N2VC-RLSTMM-DRR
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Chapter 6

Experimental Evaluation

We evaluated how the proposed exploratory clustered methodology change the

accuracy of forecasting the delays and traffics, compared to modeling each node’s

time series individually. We compare the different variants of incorporating the

clustered network information with the baseline of fitting an individual model for

each time series of transportation variable.

6.1 Datasets

We applied proposed idea on two different datasets. While comparing variants

proposed clustered forecasting modeling approach with individual baselines we

tried to estimate flight delay of airports of US and to estimate traffic speed of

sensors located at some point in Los Angeles.

6.1.1 Flight Delay Dataset

We used the data set provided by RITA (Research and Innovative Technology

Administration), absorbed into OST-R, that contains 7 years of flight records in
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the United States for the years 2006 to 2012. The data include attributes such

as origin, destination, arrival time, scheduled arrival time, etc. RITA coordinates

the U.S. Department of Transportation research programs.

We constructed the network of the 305 airports in the data set, and generated

the flight arrival delay time series of each airport. Note that the arrival delay

is defined as the difference between the scheduled arrival time and the actual

arrival time, both in local time. The forecasting methods are implemented to

predict the results for three-hour periods. A delay time-series of length 2920 for

each year is used for each airport. We took the first 2680 time points to build

the models and made the forecasts for the remaining 240 points. We present the

accuracy results for every week (4 weeks for 240 points) and compare the accuracy

performances using the measures of Mean Absolute Percentage Error (MAPE)

and Mean Absolute Error (MAE) in Equation 6.1, and Equation 6.2 respectively.

6.1.2 Los Angeles Traffic Speed Dataset

In this dataset, we have speeds that are recorded every 5 minutes. We will have

288 observations for a single day. Time series are generated monthly with the

length of 8064 and data are collected for 4 months. The data is collected from

207 sensors, so we will have 207 nodes in the graph. In order to create interaction

network we use distances between sensors. We took the first 6048 time points

to construct models and made the forecasts for the remaining 2016 points. We

present the accuracy results for every last week (1 week 2016 time points) of

month on average and compare the accuracy performances using the measures of

Mean Absolute Percentage Error (MAPE) and Mean Absolute Error (MAE) in

Equation 6.1, and Equation 6.2 respectively.

MAPE =
1

h

(
Σh

i=1|
xn+i − fi
xn+i

|
)

(6.1)

MAE =
1

h

(
Σh

i=1|xn+i − fi|
)

(6.2)
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where h is the forecasting period, xn+i is the i-th future time point, and fi is the

i-th forecast.

6.2 Validation of Approaches using RAM

Table 6.1 shows the correlation of the pairs of graph-based features. Hub score,

in-degree, and weighted-in-degree are highly correlated with each other, while

betweenness centrality and articulation have less correlation with them and with

each other.

Table 6.1: Correlation coefficients between features

HScore Betw. APoint InDegree WInDegree

HScore 1.000 0.695 0.618 0.953 0.969
Betw. 0.695 1.000 0.601 0.681 0.822
APoint 0.618 0.601 1.000 0.683 0.663

InDegree 0.953 0.681 0.683 1.000 0.948
WInDegree 0.969 0.822 0.663 0.948 1.000

Table 6.2 illustrates the model summaries for the case of the number of clusters

around 50. The summaries of the clusters whose regression models are based only

on the intercept, and the clusters with size of 1, are not presented in the table.

Model number defines 15 out of 50 models. The p-values for all the models are

found to be less than 0.05, i.e., all regression models are statistically significant.

6.3 The Number of Clusters

We use k-means [44] and Partitioning Around Medians (PAM) [45] in our experi-

ments. To determine the number of clusters, we utilize the within-cluster sum of

squares and silhouette width as quality measures for k-means and PAM, respec-

tively. The plots for the number of clusters vs. the cluster quality are presented

in Figure 6.1. We can see an elbow behavior on all plots which can be used in
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Table 6.2: Regression models’ summaries

Model P-value Adjusted R-squared.

1 2.20E-16 0.224
2 2.20E-16 0.250
3 2.20E-16 0.064
4 2.20E-16 0.107
5 2.20E-16 0.146
6 2.20E-16 0.150
7 2.20E-16 0.100
8 2.20E-16 0.300
9 2.20E-16 0.158
10 2.20E-16 0.224
11 4.43E-10 0.030
12 2.20E-16 0.081
13 0.014 0.004

determining the number of clusters. These represent the qualities of the graph-

theoretic clustering. The same procedure is applied for the time series clustering

in our experiments. We continue with k-means in experimental evaluation.

6.4 Approaches in Comparison

The baseline method, ISM (Individual SARIMA model) fits an individual model

to each time series of delays and traffic speeds. We refer to our methods that fol-

low different variants of graph-theoretic clustering, graph partitioning, clustering,

node2vec clustering and time series clustering within the proposed methodology

as in Table 6.3. We present performance of the variants as stated in Chapter 5.

6.4.1 GTC-SM Results

We compare GTC-SM with individual baseline SARIMA model Figure 6.2. We

cannot conclude that GTC-SM is certainly better than ISM.
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Figure 6.1: Cluster quality behavior changing according to number of clusters

6.4.2 GTC-RAM Results

Results for comparison of GTC-RAM with individual baseline SARIMA model

are depicted in Figure 6.3. There is respectable improvement when graph-

theoretical features are used for both clustering and as exploratory variables.

6.4.3 GTC-RLSTMM Results

We compare GTC-RLSTMM with individual baseline SARIMA model. Results

are showed in Figure 6.4. We can conlude that GTC-RLSTMM beats both base-

line individual model and its ARIMA competitor. Improvement made RLSTMM

is around 7 compared to ARIMA.
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Table 6.3: Approaches in comparison

Variant Abbreviation Full Name

1 GTC-SM Graph-Theoretic Clustered SARIMA Modeling
2 GTC-RAM Graph-Theoretic Clustered REG-ARIMA Modeling
3 GTC-RLSTMM Graph-Theoretic Clustered REG-LSTM Modeling
4 GP-SM Graph Partitionined SARIMA Modeling
5 GP-RAM Graph Partitionined REG-ARIMA Modeling
6 GP-RLSTMM Graph Partitionined REG-LSTM Modeling
7 TSC-SM-DFT Time Series Clustered SARIMA Modeling with Discrete Fourier Transform
8 TSC-RAM-DFT Time Series Clustered REG-ARIMA Modeling with Discrete Fourier Transform
9 TSC-RLSTMM-DFT Time Series Clustered REG-LSTM Modeling with Discrete Fourier Transform
10 TSC-SM-DWT Time Series Clustered SARIMA Modeling with Discrete Wavelet Transform
11 TSC-RAM-DWT Time Series Clustered REG-ARIMA Modeling with Discrete Wavelet Transform
12 TSC-RLSTMM-DWT Time Series Clustered REG-LSTM Modeling with Discrete Wavelet Transform
13 N2VC-SM Node2Vec Clustered SARIMA Modeling
14 N2VC-RAM-GTR Node2Vec Clustered REG-ARIMA Modeling with Graph Theoretic Regressors
15 N2VC-RLSTMM-GTR Node2Vec Clustered REG-LSTM Modeling with Graph Theoretic Regressors
16 N2VC-RAM-DRR Node2Vec Clustered REG-ARIMA Modeling with Dimension Reduction Regressor
17 N2VC-RLSTMM-DRR Node2Vec Clustered REG-LSTM Modeling with Dimension Reduction Regressor
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Figure 6.2: Comparison of GTC-SM with individual baseline model

6.4.4 GP-SM Results

We compare GP-SM with individual baseline SARIMA model Figure 6.5. We

cannot conclude that GP-SM has better performance than ISM.
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Figure 6.3: Comparison of GTC-RAM with individual baseline model

6.4.5 GP-RAM Results

Results of experiments done with GP-RAM are summarized in Figure 6.6. Al-

though GP-RAM is better than GP-SM, there is no certain insight that GP-RAM

beats ISM.

6.4.6 GP-RLSTMM Results

Comparison of GP-RLSTMM with ISM is illustrated in Figure 6.7. Effect of

LSTM makes improvement compared to the GP-RAM, it is still not possible to

say that GP-RLSTMM is reasonably better than ISM.
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Figure 6.4: Comparison of GTC-RLSTMM with individual baseline model

6.4.7 TSC-SM-DFT Results

We compare TSC-SM-DFT with individual baseline SARIMA model Figure 6.8.

We can say that performances of the TSC-SM-DFT and ISM are similar.

6.4.8 TSC-RAM-DFT Results

Figure 6.9 shows the results for comparison of TSC-RAM-DFT and individual

baseline SARIMA model. TSC-RAM-DFT is another variant of ECFM that

reasonably beats ISM.
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Figure 6.5: Comparison of GP-SM with individual baseline model

6.4.9 TSC-RLSTMM-DFT Results

Using LSTM instead of ARIMA in TSC variant of ECFM makes slightly im-

provement that is illustrated in Figure 6.10. Thus, we can conclude that TSC-

RLSTMM-DFT is better than ISM also.

6.4.10 TSC-SM-DWT Results

We compare TSC-SM-DWT with individual baseline SARIMA model Figure 6.8.

We can say that performances of the TSC-SM-DWT and ISM are similar.

6.4.11 TSC-RAM-DWT Results

Figure 6.12 shows the results for comparison of TSC-RAM-DWT and individual

baseline SARIMA model. TSC-RAM-DWT is another variant of ECFM that

reasonably beats ISM and it is slightly better than TSC-RAM-DFT.
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Figure 6.6: Comparison of GP-RAM with individual baseline model

6.4.12 TSC-RLSTMM-DWT Results

Using LSTM instead of ARIMA in variant of ECFM makes slightly improvement

that is illustrated in Figure 6.13 compared to TSC-RAM-DWT. Thus, we can

conclude that TSC-RLSTMM-DWT is better than ISM also.

6.4.13 N2VC-SM Results

We compare N2VC-SM with individual baseline SARIMA model Figure 6.14. We

obtain that N2VC-SM is certainly better than ISM.

6.4.14 N2VC-RAM-GTR Results

N2VC-RAM-GTR performs certainly better than individual baseline model ISM,

illustrated in Figure 6.15. We obtain form experimental results that it also has

improvement compared to variants such as GTC-RAM, TSC-RAM.
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Figure 6.7: Comparison of GP-RLSTMM with individual baseline model

6.4.15 N2VC-RLSTMM-GTR Results

N2VC-RLSTMM-GTR is the best variant of the ECFM according to experimental

results. Its performance compared to the ISM is showed in Figure 6.16.

6.4.16 N2VC-RAM-DRR Results

We compare N2VC-RAM-DRR with individual baseline SARIMA model Figure

6.17. We can conclude that N2VC-RAM-DRR is certainly better than ISM and

it is the among outstanding variants of ECFM.

6.4.17 N2VC-RLSTMM-DRR Results

N2VC-RLSTMM-DRR is the second variant of ECFM based on accuracy perfor-

mance. Its comparison with baseline individual SARIMA model is illustrated in

Figure 6.18.
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Figure 6.8: Comparison of TSC-SM-DFT with individual baseline model

6.5 Methodology Validation Summary on Flight

Delay Dataset

We compare the quality of forecasts of the proposed approaches with those of

the baseline ISM. We examine both the performance improvement via different

grouping methods (graph-theoretic clustering, graph partitioning, node2vec clus-

tering, time series clustering) and via different time series modeling approaches

(SARIMA modeling, REG-ARIMA modeling). We test the performance on max-

imum and median time series of seven different years’ data sets. Maximum time

series are composed of maximum delays of each 3-hour slots of days and median

time series are created by using median delay values of each 3-hour slots of days.

Individual modeling and prediction are done on local times, combining is done

according to UTC time. We note that the graph features are utilized both to

cluster airports and used as regression variables in REG-M.
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Figure 6.9: Comparison of TSC-RAM-DFT with individual baseline model

6.6 Forecasting Models using all Graph-theoretic

Features

Figure 6.19 and 6.20 show the MAPE results where all graph-theoretic features

are included in both grouping stage and REG-ARIMA. The yellow star-shaped

line represents the baseline ISM. More successful models compared to ISM exist

below this yellow star-shaped line.

Experimental results show that the proposed approaches have significant im-

provements compared to the baseline model ISM. In particular, GTC-RAM,

TSDFT-RAM and TSDWT-RAM result in outstanding improvements over ISM.

We can summarize improvements of the proposed approaches as follows.

On maximum time series: TSDWT-RAM shows an average of 55% im-

provement in terms of average MAPE of forecasts over the baseline. The im-

provements range from 43% to 62%, for the years of 2008 and 2011, respectively.

GTC-RAM shows from 5% to 41% improvements, for 2008 and 2010. On the

yearly average, GTC-RAM makes a 25% improvement. TSDFT-RAM provides

an average of 18% improvement over the baseline in terms of the forecast accuracy.
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Figure 6.10: Comparison of TSC-RLSTMM-DFT with individual baseline model

On median time series: TSDWT-RAM shows an average of 18% improve-

ment in terms of average MAPE of forecasts over the baseline. The improvements

range from 13% to 45%, for the years of 2007 and 2008, respectively. GTC-RAM

shows from 14% to 45% improvements, for 2008 and 2010. On the yearly average,

GTC-RAM makes a 27% improvement.

Clustering makes the forecasting models more robust to the outliers in the time

series. A further improvement is achieved by using a REG-ARIMA model where

the graph-based features are used as the regressor variables. For many airports,

ISM has a high MAPE that is significantly more than 1. The clustered model

reduces the MAPE to values significantly smaller than 1. We have also checked

the specific cases where the individual model performs better than the clustered

model for an airport. According to clustering, some of the big airports may

not belong to any cluster (e.g. ORD) or some small airports (e.g. VLD, CLT)

may belong to a cluster on which prediction model performs worse compared to

individual modeling. In all of these cases, the MAPE is significantly less than 1

for both types of models.
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Figure 6.11: Comparison of TSC-SM-DWT with individual baseline model

6.7 Identifying Important Features for Fore-

casting

We repeat the experiments using a subset of the features, as opposed to using

all. This helps us understand which features are the most important for accuracy

improvements. We find out that “betweenness centrality” gives the best accuracy

result among all cases on this setup. Note that betweenness centrality of a node

in the graph measures degree of being the center for shortest paths. A node with

higher betweenness centrality may correspond to a transfer center or a hub in the

airport network.

Results of the accuracy improvements when the feature subset containing only

“betweenness centrality” is used on maximum and median time series are pre-

sented in Figure 6.21 and 6.22. Accuracy improvements are illustrated in Figure

6.25 and summarized below.
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Figure 6.12: Comparison of TSC-RAM-DWT with individual baseline model

On maximum time series: On yearly average, GTC-RAM makes 45% im-

provement in terms of average MAPE of forecasts over the baseline. The im-

provements range from 26% to 63%, for the years of 2008 and 2009, respectively.

TSDFT-RAM shows from 13% to 51% improvements, for 2008 and 2010. On the

yearly average, TSDFT-RAM shows a 33% improvement. TSDWT-RAM pro-

vides same level accuracy when only betweenness centrality topological feature

is used compared to case where all topological features are used. MAPE of this

model ranges from 28% to 73%, and yearly average is 54%.

On median time series: On yearly average, GTC-RAM shows a 28% im-

provement in terms of average MAPE of forecasts over the baseline. The im-

provements range from 17% to 57%, for the years of 2008 and 2010, respectively.

TSDFT-RAM does not have improvement for years 2006 and 2007, so its yearly

average keeping out these years is 25%. Yearly average of TSDWT-RAM is also

25%.

We also evaluated the methods using MAE measure. We present MAE results

only for the three top performing methods using MAPE. Accuracy results of these
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Figure 6.13: Comparison of TSC-RLSTMM-DWT with individual baseline model

methods measured by MAE are shown in Figures 6.23 and Figure 6.24 for the

maximum and median time series respectively. The summary of improvements

are illustrated in Figure 6.25 The performance behavior of the methods is similar

with the evaluation by the MAPE.

Betweenness Centrality (BC) score of an airport is found to be a factor in

understanding the delays associated with the airport. The BC does not always

have a high correlation with the number of flights. The airports that are central in

the paths of potential travel itineraries are vulnerable to further delay. Similarly,

most of the articulation points of the airport network are found to be among the

highest delayed airports. BC and articulation have less correlation with other

measures such as the hub score, and with each other. Several airports have

highly similar graph based features in the airport network. For example, ATL

and ORD are consistently in the same clusters based on the graph centrality

measures. This may help to gather more information about their delay patterns

using additional data from each other.
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Figure 6.14: Comparison of N2VC-SM with individual baseline model
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Figure 6.15: Comparison of N2VC-RAM-GTR with individual baseline model
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Figure 6.16: Comparison of N2VC-RLSTMM-GTR with individual baseline
model
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Figure 6.17: Comparison of N2VC-RAM-DRR with individual baseline model
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Figure 6.18: Comparison of N2VC-RLSTMM-DRR with individual baseline
model
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Figure 6.19: Accuracy comparison of proposed approaches using all features for
maximum time series
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Figure 6.20: Accuracy comparison of proposed approaches using all features for
median time series
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Figure 6.21: Effect of using only betweenness centrality feature on accuracy for
maximum time series
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Figure 6.22: Effect of using only betweenness centrality feature on accuracy for
median time series
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Figure 6.23: Performance of methods for maximum time series measured by MAE
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Figure 6.24: Performance of methods for median time series measured by MAE
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Figure 6.25: Accuracy improvements using only betweenness
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Chapter 7

Conclusions

While transportation networks contain rich information, they have not been ex-

plored enough for some essential tasks in transportation, such as forecasting flight

delays and forecasting traffic speeds. In this thesis, we incorporated transport

information and utilized graph based scores, such as betweenness centrality (BC)

and articulation points in forecasting of arrival delays and traffic speeds. The

position of the nodes in the network and the nodes’ delay/traffic time-series sim-

ilarities are investigated as potential parameters to augment the models for fore-

casting.

We introduced the Exploratory Clustered Forecasting Modeling (ECFM) that

uses a REG-M model enhanced with the results of clustering. The ECFM ap-

proach includes grouping and modeling steps that make use of the transport

network. The network is used for both graph-based clustering of nodes and as

an exploratory variable for the prediction model. Our experiments show that

ECFM provides more accurate results than a baseline (e.g. SARIMA, LSTM)

model applied individually for each airport. BC score is found to be an effective

regressor in the clustered REG-M. When we compare ISM and ECFM with LSTM

(Long-Short Term Memory), which is usually considered as the state of the art

in forecasting, ECFM is found to be as good as LSTM, which are both more suc-

cessful than ISM. If LSTM models are used as part of ECFM (e.g. REG-LSTM),
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then this returns more successful results compared to the baseline models. This

observation suggests that using network structure in similar forecasting problems

is a promising direction to pursue.

To the best of our knowledge, this is among the first to utilize the transport

network for forecasting flight delays or traffic speeds. Our work may inspire

other types of analysis based on transportation networks. The trajectory of the

delays/traffics can be analyzed by differentiating the airports/sensors that cause

the delay/traffic propagation and those that are the victims of the propagation.

This line of work can help policy makers to analyze transportation networks and

improve traffic flow management.
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