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ABSTRACT

ROBUSTLY AND STRONGLY STABILIZING LOW
ORDER CONTROLLER DESIGN FOR INFINITE

DIMENSIONAL SYSTEMS

Veysel Yücesoy

Ph.D. in Electrical Electronics Engineering

Advisor: Hitay Özbay

July 2018

This thesis deals with the robust stabilization of infinite dimensional systems by

stable and low order controllers. The close relation between the Nevanlinna-Pick

interpolation problem and the robust stabilization is well known in the literature.

In order to utilize this relation, we propose a new optimal solution strategy for

the Nevanlinna-Pick interpolation problem. Differently from the known subopti-

mal solutions, our method includes no mappings or transformations, it directly

solves the problem in the right half plane. We additionally propose a method via

suboptimal solutions of an associated Nevanlinna-Pick interpolation problem to

robustly and strongly stabilize a set of plants which include the linearized mod-

els of two well known under actuated robots around their upright equilibrium

points. In the literature, it is shown that the robust stabilization of an infinite

dimensional system by stable controllers can be reduced to a bounded unit in-

terpolation problem. In order to use this approach to design a finite dimensional

controller, we propose a predetermined structure for the solution of the bounded

unit interpolation problem. Aforementioned structure reduces the problem to a

classical Nevanlinna-Pick interpolation problem which can be solved by the opti-

mal solution strategy of this thesis. Finally, by combining the finite dimensional

solutions of the bounded unit interpolation problem with the finite dimensional

approximation techniques, we propose a method to design finite dimensional and

stable controllers to robustly stabilize a given plant. Since time delay systems are

one of the best examples of infinite dimensional systems, we provide numerical

examples of various time delay systems for each proposed method.

Keywords: Robust stabilization, Strong stabilization, Stable controller, Fi-

nite dimensional controller, Infinite dimensional systems, Analytic interpolation,

Nevanlinna-Pick interpolation, Modified Nevanlinna-Pick interpolation, Bounded

unit interpolation.
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ÖZET

SONSUZ BOYUTLU SİSTEMLER İÇİN DÜŞÜK
DERECELİ GÜRBÜZ VE GÜÇLÜ DENETLEYİCİ

TASARIMI

Veysel Yücesoy

Elektrik Elektronik Mühendisliği, Doktora

Tez Danışmanı: Hitay Özbay

Temmuz 2018

Bu tez, sonsuz boyutlu sistemlerin düşük dereceli ve kararlı denetleyiciler ile

gürbüz bir şekilde kararlılığının sağlanmasını konu almaktadır. Nevanlinna-Pick

aradeğerlemesi ile gürbüz kontrol arasndaki yakın ilişki önceki çalışmalardan bilin-

mektedir. Bu ilişkiyi kullanmak için biz Nevanlinna-Pick aradeğerlemesi için yeni

bir ideal çözüm stratejisi öneriyoruz. Bilinen diğer idealin altındaki çözümlerden

farklı olarak bizim yöntemimiz hiçbir dönüşüm içermemektedir, problemi

doğrudan sağ yarım düzlemde çözmektedir. Buna ek olarak, literatürde bilinen iki

tip eksik tahrikli robotun dik denge noktaları etrafındaki doğrusallaştırılmış mod-

elini de kapsayan bir sistem kümesinin ilgili Nevanlinna-Pick aradeğerleme prob-

leminin idealin altındaki çözümleri ile gürbüz ve güçlü kararlılığının sağlanması

için bir yöntem öneriyoruz. Kararlı denetleyiciler ile sonsuz boyutlu bir sistemin

gürbüz kararlılığının sağlanmasının sınırlı birim aradeğerleme problemine dar-

altılabileceği literatürde gösterilmiştir. Bu yaklaşımı kullanarak sonlu boyutlu

denetleyiciler tasarlamak adına sınırlı birim aradeğerleme problemi için önceden

belirlenmiş bir yapı öneriyoruz. Bahsedilen önceden belirlenen yapı, problemi

bu tezde anlatılan ideal çözüm stratejisi ile çözülebilecek bir Nevanlinna-Pick

aradeğerleme problemine çevirmektedir. Son olarak, sınırlı birim aradeğerleme

probleminin sonlu boyutlu çözümleri ile yaklaım teknikleri birleştirilerek verilen

bir sistemin sonlu boyutlu ve kararlı denetleyiciler ile gürbüz bir şekilde kararlı

hale getirilmesi için bir yöntem öneriyoruz. Zaman gecikmeli sistemler, sonsuz

boyutlu sistemlerin en iyi örneklerinden olduğu için zaman gecikmeli sistemler

içeren sayısal örnekler sağlıyoruz.

Anahtar sözcükler : Gürbüz kararlılık, Güçlü kararlılık, Kararlı denetleyici, Sonlu

boyutlu denetleyici, Sonsuz boyutlu sistem, Analitik aradeğerleme, Nevanlinna-

Pick aradeğerlemesi, Değiştirilmiş Nevanlinna-Pick aradeğerlemesi, Sınırlı birim

aradeğerlemesi.
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Chapter 1

Introduction

Robust control theory is a branch of classical control theory which deals with the

stabilization of uncertain plants and their closed loop performances [16]. There

are no exact mathematical models to describe any physical system, each model

comes with its own approximations and errors. Basically, it is possible to analyse

such uncertainties in two groups [16]; structured and unstructured uncertain-

ties. Unstructured uncertainties include additive and multiplicative uncertain-

ties, whereas structured ones are generally in the form of parameter uncertainty.

Robust stabilization aims to stabilize a feedback loop for a set of plants which

can be grouped around a nominal plant with additional structured or unstruc-

tured uncertainties. Robust performance, on the other hand, aims to satisfy a

predetermined performance level in addition to robust stability. Since all prac-

tical systems can be modelled up to a certain precision, robust stabilization and

performance optimization is crucial in all real world applications.

Internal stabilization of a plant by a stable controller is called the strong stabi-

lization. A stable controller brings a different kind of robustness to the feedback

loop: robustness to sensor and closed loop failures. Since the controller is bounded

input bounded output stable in strong stabilization operation, unbounded con-

trol responses are automatically avoided provided that the controller input is
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bounded, see [54] and [72] for details. Another basic advantage of a stable con-

troller arises when the plant is unstable (e.g., aerospace applications) or it is

expensive/dangerous to test a fresh controller directly on the plant [41]. For

such cases, it is possible to test (or verify) the design of a controller in the open

loop by frequency domain techniques since it is a stable transfer function, see[27],

[43], [29] and [25] for further details on strong stability. A well known necessary

condition under which it is possible to design a stable controller stabilizing the

feedback loop is that the plant must satisfy the parity interlacing property. This

property will be explained and analysed in the next section.

Finite dimensionality of the controller is vital in practical applications because

it is difficult or impossible to realize an infinite dimensional controller. There

are some approximation techniques to implement such functions, however, sta-

bility bounds might degrade due to finite dimensional approximations. Because

of this fact, finite dimensional and proper controllers are desired for real world

applications.

Robust stabilization of finite dimensional systems has been studied for a long

time. It has been shown that the well known Nevanlinna-Pick interpolation prob-

lem is closely related to robust stabilization problem. All the internal stabilization

conditions are equivalent to interpolation conditions on the complementary sensi-

tivity function and robust stabilization can be reduced to an infinity norm bound

on the same function. Although the Nevanlinna-Pick approach is just a suffi-

cient condition for the robust stabilization, (i.e. a broader definition exists via

Nyquist stability arguments) it has proven useful in the literature due to its ease

of interpretation. We refer to [16] for details about robust stabilization.

Sensitivity shaping for both finite and infinite dimensional systems have been

attractive and studied for over some decades. This problem has also been analysed

together with strong stabilization condition. To the best of our knowledge, robust

stabilization of infinite dimensional systems, with optimal sensitivity bounds,

by stable controllers is still an open research problem. A recent contribution,

[59], introduced a good insight to this topic. It has been shown that the robust

stabilization of infinite dimensional systems by stable controllers can be reduced

2



to a bounded unit interpolation problem. A brief summary of the contribution

and the relevant mathematical preliminary will be given in the following section.

The main objective of this thesis is to design finite dimensional, proper and

stable controllers to robustly stabilize infinite dimensional systems. In order to

achieve this, analytic interpolation techniques together with finite dimensional

approximation methods are utilized and sufficient conditions and performance

bounds are derived for different types of systems. We propose a simple novel

method for the computation of the optimal solution of the Nevanlinna-Pick in-

terpolation problem [66], [68], which has a close relationship with the robust

control problems. We also propose a sufficient condition under which it is possi-

ble to solve the modified Nevanlinna-Pick interpolation problem (in other words

the bounded unit interpolation problem in H∞) by a finite dimensional function,

[70]. In addition to this sufficient condition, we also propose an algorithm to find

the finite dimensional interpolating function when the problem is feasible. The

rest of the thesis is organized as follows:

Mathematical basics about robust stabilization and stable controllers are given

in Chapter 2 with relevant literature survey. Definitions of Nevanlinna-Pick

interpolation problem, unit interpolation problem and modified version of the

Nevanlinna-Pick interpolation problem are also defined in Chapter 2 together

with the known solution methods of each problem from the literature.

In Chapter 3, we show that the central controller, which is designed via the

parameterization of all suboptimal solutions of the associated Nevanlinna-Pick

interpolation problem given in [8], is stable for a class of plants, [67]. This class

of plants includes the linearized models of some underactuated robots which are

widely used in the literature, i.e. Acrobot and Pendubot. With the proposed

approach, we design stable and low-order controllers for these robots around

their upright equilibrium point and compare the frequency response of the overall

feedback loop with the ones from literature.

The new optimal solution strategy for the Nevanlinna-Pick interpolation prob-

lem in the open right half plane is described in detail in Chapter 4. There are

3



some methods which solve the problem sub-optimally and to the best of our

knowledge, previous optimal solutions for the right half plane interpolation data

required a conformal map, and hence an introduction of an extra parameter. For

this reason our direct solution is much simpler.

In Chapter 5, an iterative algorithm [65] is proposed to solve bounded unit

interpolation problem inH∞ which is based on the constructive method described

in [16]. The main disadvantage of this algorithm is that, it is only applicable

to real interpolation data. In addition to this, its computational complexity

increases rapidly as the number of interpolation points increase. To overcome

all these disadvantages, an algorithm which is based on the optimal solution

of the Nevanlinna-Pick interpolation problem is proposed to solve real, rational

and bounded unit interpolation problem with finite dimensional interpolants.

Since this problem is shown to be equivalent to robust stabilization of infinite

dimensional systems by stable controllers, our contribution is vital to design such

controllers with finite dimensionality.

In Chapter 6, we propose a method to design proper, finite dimensional and

stable controllers to robustly stabilize infinite dimensional systems. The proposed

method uses finite dimensional approximation of some parts of the plant and de-

fines a bounded unit interpolation problem including the approximation errors

to design the desired controller. This chapter uses the finite dimensional solu-

tion algorithm of Chapter 5 to solve the associated bounded unit interpolation

problem.

Chapter 7 concludes the study with a brief summary and some discussions

on the proposed methods. Possible future extensions are also outlined in this

chapter.
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Chapter 2

Basic Concepts

2.1 Norms for Signals

We consider continuous functions which are defined from [0,∞) to R and assume

that u and v are such functions. An operation which satisfies the following four

properties on functions u and v and a real scaler a is called a norm, [16]:

• ‖u‖ ≥ 0

• ‖u‖ = 0 ⇐⇒ u(t) = 0,∀t

• ‖au‖ = |a|‖u‖,∀a ∈ R

• ‖u+ v‖ ≤ ‖u‖+ ‖v‖.

The 2-norm of a signal u(t) in continuous time domain is defined as

‖u‖2 =

(∫ ∞
0

u(t)2dt

)1/2

. (2.1)

In addition to this, we denote the Laplace transform of u(t) by U(s), and define

the 2-norm of the Laplace transformed signal U(s) as

‖U‖2 =

(
1

2π

∫ ∞
−∞
|U(jω)|2dω

)1/2

. (2.2)

5



The infinity norm (i.e. ∞−norm) of a signal in continuous time domain is

defined as

‖u‖∞ := sup
t
|u(t)|. (2.3)

2.2 Norms for Systems

In this thesis, we consider causal, linear, time-invariant systems which have the

following convolution type input-output relation between its input r(t) and output

y(t)

y(t) = g(t) ∗ r(t) (2.4)

which is

y(t) =

∫ ∞
−∞

g(t− τ)r(τ)dτ. (2.5)

The function g(t) is the impulse response of the system and we denote its

Laplace transform by G(s). Causality means that g(t) = 0 for t < 0. G(s) is

proper if |G(jω)| is bounded, strictly proper if G(j∞) = 0 and bi-proper if both

G and G−1 are proper. G is stable if it is bounded and analytic in the closed

right half plane C+ i.e. Re{s} ≥ 0 and the stability of G is denoted by G ∈ H∞.

For transfer functions in the form G = Gn/Gd where Gn and Gd are poly-

nomials or quasi-polynomials, stability is equivalent to having all roots of the

denominator Gd in C−. In particular, when Gn and Gd are polynomials, G is

proper means deg(Gn) ≤ deg(Gd), strictly proper means deg(Gn) < deg(Gd) and

bi-proper means deg(Gn) = deg(Gd), where deg(.) denotes the degree of a poly-

nomial. Degree of a polynomial is defined to be the degree of the highest order

unknown within the polynomial. The ∞−norm of a system is defined as

‖G‖∞ := sup
ω∈R
|G(jω)|. (2.6)
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Note that there exist an additional definition for the ∞-norm of a system as

‖G‖∞ = sup
r 6=0

‖y‖2

‖r‖2

(2.7)

since it is induced by the 2-norm of the input-output signals.

2.3 Stability of a Feedback Loop

Throughout this thesis, we consider the basic unity feedback loop shown in Figure

2.1, unless stated otherwise.

C+ P

-1

r(t) y(t)

Figure 2.1: Basic unity feedback loop

We say that the controller C internally stabilizes the plant P if and only if

the following conditions are satisfied:

S ∈ H∞
PS ∈ H∞ (2.8)

CS ∈ H∞

where S = (1+PC)−1 is the sensitivity function of the closed loop system. In the

special case where P has finitely many distinct poles and zeros in the extended

right half plane, C+e = C+ ∪+∞ these conditions are equivalent to having

T ∈ H∞
T (zi) = 0,∀i (2.9)

T (pj) = 1, ∀j

where zi and pj denote the zeros and poles of the plant P in C+e, respectively and

T = 1− S is the complementary sensitivity function of the closed loop system.
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2.4 Uncertainty and Robust Stability

Typically, it is not possible to fully characterize a physical system by a precise

mathematical model. Because of this, in all practical applications we have to

handle the uncertainties in order not to lose the stability of the feedback loop. It

is convenient to model the uncertain plant as a set of plants around a nominal

plant for unstructured uncertainties. For the scope of this thesis, we briefly go

over the multiplicative uncertainty model and robust stabilization of such plant

sets.

Consider a known nominal plant P and perturbed model P̃ = (1 + ∆W )P .

This model constitutes a set of plants such that

P(P ) = {P̃ = (1 + ∆W )P : ∆ ∈ H∞, ‖∆‖∞ < 1} (2.10)

where W ∈ H∞ is a fixed known transfer function, namely the uncertainty weight.

This kind of uncertainty is called the multiplicative uncertainty, see [16] for details

and other types of uncertainties.

It is well known in the literature that a controller C robustly stabilizes the

set of uncertain plants P(P ) if it can internally stabilize P (i.e. satisfies (2.9))

and satisfies the following norm condition

‖WT‖∞ ≤ 1. (2.11)

2.5 Strong Stability

Strong stability requires a stable controller to be designed. A stable controller

has two main advantages: it is robust to sensor failures as described by [16],

[54] and it is testable stand-alone as mentioned by [41]. It is possible to test

a stable controller by its input-output relationship practically by applying some

test signals as an open-loop configuration before using it with the original plant

to prevent catastrophic events that may occur due to controller implementation

errors.
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A controller C strongly stabilizes a given plant P if it can internally stabilize

the plant P (i.e. satisfies (2.9)) in addition to being stable itself (i.e. C ∈ H∞). A

well known sufficient condition for the existence of strongly stabilizing controllers

is the parity interlacing property (PIP) of the plant. The PIP is the property

of having even number of poles between each pair of its zeros on the extended

right half side of real line, see [16] for details. It is also notable that simultaneous

stabilization of two plants is equivalent to strong stabilization of an auxiliary

plant which is derived from the aforementioned plants of interest.

There is extensive literature on strong stabilization of finite dimensional plants,

see e.g. [11], [13], [27], [43], [29] and also see [25] for sensitivity shaping of infinite

dimensional systems by fixed order stable controllers.

2.6 Robust and Strong Stability

Let us assume that an uncertain plant set as in (2.10) is given. Assume that the

set of controllers which stabilizes the given nominal plant P (i.e. which satisfies

the conditions in (2.9)) is denoted by C(P ).

Problem 1. Find a controller C ∈ C(P ) ∩H∞ satisfying (2.11).

Problem 1 is called robust and strong stabilization problem. This problem

has its roots in [30] and has been studied for different families of plants since then.

Problem 1 for infinite dimensional plant families has gained attraction by a re-

cent contribution from [59]. In this study, it was shown that the robust and strong

stabilization of a set of uncertain infinite dimensional plants having finitely many

simple right half plane zeros is equivalent to bounded unit interpolation problem

in H∞. Prior to this study, equivalence of robust stabilization and Nevanlinna-

Pick interpolation problem and equivalence of strong stabilization and unit inter-

polation in H∞ was known. The importance of [59] is to combine aforementioned

interpolation problems to propose a sufficient condition for Problem 1 when the

nominal plant of interest is an infinite dimensional one. The disadvantage of the
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proposed method of [59] is that it proposes an infinite dimensional controller for

an infinite dimensional plant.

2.7 Analytic Interpolation

Analytic interpolation refers to finding a transfer function in Laplace domain,

which exactly satisfies a number of interpolation conditions in complex domain

together with some higher level requirements such as being stable, being norm

bounded, being minimum phase, etc. In general, stability of the interpolating

function and interpolation points satisfy the internal stability of the closed loop

whereas the other requirements stand for some further design requirements like

the robustness of the feedback loop or the stability of the controller. There

are a number of predefined analytic interpolation problems and we deal with

Nevanlinna-Pick interpolation problem, unit interpolation problem and modified

Nevanlinna-Pick (bounded unit) interpolation problem for the scope of this thesis.

2.7.1 Nevanlinna-Pick Interpolation Problem

The Nevanlinna-Pick interpolation problem is defined as follows:

Problem 2. Given αi ∈ C+ and βi ∈ C for i ∈ {1, . . . , n} find F ∈ H∞ such

that F (αi) = βi for all i and ‖F‖∞ ≤ γ, for the smallest possible γ > 0.

The smallest achievable norm is denoted by γopt. Generically, there is an admis-

sible interpolant having ‖F‖∞ = γopt, which is an inner function of degree n− 1,

see e.g. [34] and [72]. Earlier studies as in [22], tried to solve Nevanlinna-Pick

interpolation problem with a degree constraint where degree of the interpolant F

satisfies deg(F ) < n. Other studies, like [19] and [33], considered some variations

of the Nevanlinna-Pick problem with a degree constraint.

Model matching problem as described in [16], is a good example of Nevanlinna-

Pick interpolation problem in control theory. Let W and M be stable and proper
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transfer functions, i.e. W, M ∈ H∞. The model matching problem is to find a

stable function Q such that ‖W −MQ‖∞ is minimized, where typically M is an

inner function of the form

M(s) =
n∏
i=1

zi − s

z̄i + s

with <(zi) > 0, ∀i. For the sake of simplicity, we assume that the set Z =

{z1, . . . , zn} consists of distinct elements. This way, higher order interpolation

conditions do not appear in the problem. Moreover, to obtain solutions with real

coefficients it is assumed that if zi ∈ Z then z̄i ∈ Z.

In this context ‖W −MQ‖∞ = γ is the model matching error. When n = 1,

the optimal solution is Q(s) = (W (s) −W (z1))/M(s), with γopt = |W (z1)|. In

the case where M has multiple zeros in C+, it is not trivial to find the optimal

Q ∈ H∞ and γopt.

Let us define F = (W −MQ). The model matching problem has a solution

with ‖W −MQ‖∞ ≤ γ if there exists F such that

F ∈ H∞, ‖F‖∞ ≤ γ, and

F (zi) = W (zi) for all i ∈ {1, . . . , n} .

Under these conditions, Q = (W − F )M−1 ∈ H∞ is the solution of the model

matching problem. This is a Nevanlinna-Pick problem with interpolation data

αi = zi, βi = W (zi) for all i ∈ {1, . . . , n}. This problem is solvable for some γ

if and only if the associated Pick matrix

Pγ = A− γ−2B

is positive semi-definite where

[A]ij =
1

αi + ᾱj
, [B]ij =

βi β̄j
αi + ᾱj

(2.12)

for all i, j ∈ {1, . . . , n} and γopt =
√
λmax, where λmax is the largest eigenvalue

of the matrix A−1B, see [16]. The next step is to calculate the corresponding

Fopt ∈ H∞.
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Model matching problem appears in H∞ control as well as in identification

problems for which we refer the readers to [15], [14], [23], [39], [45], [64]. In

particular it arises in H∞ control after the parametrization of all stabilizing con-

trollers, [3], [18], [24].

The original Nevanlinna-Pick formulation (interpolation on the unit disc) is di-

rectly applicable to discrete time systems. However, for continuous time systems,

a mapping between the unit disc and right half plane is needed. There are three

well known solutions to the Nevanlinna-Pick interpolation problem in the litera-

ture. The solution outlined in Section 2.7.1.1 is the original method dealing with

interpolation on unit disc. The solution method given in Section 2.7.1.2 deals

with continuous time system formulations (right half plane interpolation data)

and parameterizes all suboptimal solutions to the problem. The method summa-

rized in Section 2.7.1.3 uses a conformal map and solves the problem over the unit

disc. This method also includes an inverse conformal mapping for the interpolant

to be converted to the right half plane (continuous time). These mappings can

be costly (in terms of computation time) and numerically problematic (precision

of the interpolation). To overcome these problems, the conformal mapping must

be chosen wisely.

2.7.1.1 Nevanlinna’s Algorithm

In [16] a suboptimal solution is described through a series of Möbius transforms.

The core idea of the method is to transform the interpolation problem of n data

points to a problem involving n − 1 data points through a Möbius transform

which is derived from the nth interpolation pair. Applying this idea iteratively

results in an interpolation problem of a single data point and it is easily solved

as mentioned above. Then, this solution is back transformed through n inverse

Möbius transforms in order to find the original interpolating function. If it can be

identified by Pick matrix that the original problem with n data is solvable then

this method gives the solution after n forward plus n inverse Möbius transforms.

More explanation and some informative examples can be found in [16] and [36].
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2.7.1.2 Parametrization of All Suboptimal Solutions

In [8] all suboptimal solutions are characterized as follows. For a given γ > γopt,

define Dα(s) as the diagonal matrix whose non-zero entries are

[Dα(s)]ii = (s− αi)−1,

and compute transfer functions Θij(s) from[
Θ11(s) Θ12(s)

Θ21(s) Θ22(s)

]
=

[
1 0

0 1

]
+ Q1Dα(s) P−1

γ Q2 (2.13)

where Q1 =

[
β1/γ · · · βn/γ

1 · · · 1

]
and Q2 =


−β1/γ 1

...
...

−βn/γ 1

 . Then, all feasible

solutions are in the form

F (s) = γ
Θ11(s) G(s) + Θ12(s)

Θ21(s) G(s) + Θ22(s)
(2.14)

where G ∈ H∞ is a free parameter with ‖G‖∞ ≤ 1, see [8] for details.

Note that as γ decreases to γopt the matrix Pγ becomes singular, and hence

the right hand side of (2.13) becomes ill-conditioned in the (near)-optimal case.

This ill-conditioning problem is analyzed in [38] where some suggestions are given

to fix this problem. Moreover, in the parameterization (2.14), which G(s) gives

the optimal solution Fopt(s) is not apparent. However, there exist some study on

this issue in the literature. Particularly, [5] uses a state space approach to get

formulas for solution of the minimal possible norm.

2.7.1.3 Solution Through Conformal Map

For the case where the interpolation data is defined on the unit disc, D, and one

tries to find an analytic function on the unit disc, with |F (z)| ≤ γ for all z ∈ D,

the optimal and suboptimal solutions are given and discussed in detail in [21],

see also [72]. However, for an interpolation problem defined on C+ this method
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requires a conformal map between C+ and D. The numerical properties of this

approach for the given case depend heavily on the choice of the conformal map.

The simplest possible conformal map is ϕ(α) = α − r
α + r

: C+ → D, where r > 0

is a free parameter to be chosen. It is important to choose r judiciously to avoid

numerical problems. In practice, r should not lie within a small neighborhood of

any αi. For small scale problems, i.e. 2 < n < 10, it may be relatively easy to

find a “good” value for r; but as the dimensionality of the problem increases, it

becomes harder to find such an r. Due to this difficulty, the problem becomes

prone to numerical errors as the dimensionality increases. To our knowledge, there

does not exist an automated method to choose r for a given set of (α1, . . . , αn).

2.7.2 Unit Interpolation Problem

The unit interpolation problem is defined as follows:

Problem 3. Given αi ∈ C+ and βi ∈ C for i ∈ {1, . . . , n} find U,U−1 ∈ H∞
such that U(αi) = βi for all i.

In [16], it is shown through parameterization of all stabilizing controllers that

the strong stabilization of a given plant is equivalent to unit interpolation problem

and a constructive method is outlined to generate a unit interpolating function,

under some constraints related to parity interlacing property.

In order to briefly summarize the method in [16], assume that for some 1 <

k < n we have Uk such that

Uk(αi) = βi (2.15)

for all i = 1, ..., k and Uk, U
−1
k ∈ H∞.

Then it is possible to write Uk+1 as

Uk+1 = (1 + ck+1Hk+1)lk+1Uk (2.16)
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where Hk+1(αi) = 0 for i = 1, ..., k. This choice of Hk+1 makes Uk+1(αi) = Uk(αi)

for i = 1, ..., k independent of ck+1 and lk+1. As a result, Uk+1 is guaranteed to

satisfy the interpolation data Uk+1(αi) = βi for i ∈ {1, . . . , k}. If it is possible

to choose ck+1 and lk+1 such that Uk+1(αk+1) = βk+1 and |ck+1| < 1/‖Hk+1‖∞
then Uk+1 satisfies the interpolation data Uk+1(αi) = βi for i ∈ {1, . . . , k+ 1} and

it is outer. At the end of the algorithm, U = Un satisfies all the interpolation

data and is outer if at each stage the condition |ci| < 1/‖Hi‖∞ was satisfied for

i = 1, ..., n.

A Simple Example

Let us assume that the interpolation data is given as (αi, βi) = {(1, 4), (0.5, 3)}.
Find U(s) which satisfies the given interpolation data and which is outer.

Solution:

• Let U1(s) = 4. It naturally satisfies the first interpolation condition;

U1(1) = 4.

• Take H2(s) = (s− 1)/(s+ 1) which satisfies H2(1) = 0.

• Write U = U2 = (1 + c2H2)l2U1 with the given H2 and l2 = 1.

• Need to satisfy the second interpolation condition as U2(0.5) = (1+c2(0.5−
1)/(0.5 + 1))4 = 3.

• This yields (1 − (1/3)c2) = 3/4 and finally c2 = 0.75 < 1/‖H2‖∞ where

‖H2‖∞ = 1.

• As a result, U(s) = (7s + 1)/(s + 1) satisfies the interpolation data as

U(1) = 4 and U(0.5) = 3, in addition to this we have both U,U−1 ∈ H∞.

As the example illustrates, by this method, it is possible to generate outer

interpolating functions. It is also possible to tune the degree of the function by

changing the value of the parameter l when c does not satisfy the norm condition.

One additional important point is the choice of Hi functions. Due to the imposed
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requirements, zero locations of the function are fixed (i.e. zeros of Hk have to

be at αi for i = 1, ..., k − 1), however, pole locations are not constrained by the

requirements. This means, it might also be a parameter to shape the frequency

response of resulting interpolation function.

In the literature, there exist a relaxed version of unit interpolation problem,

namely, positive real interpolation. In [8], the parameterization of all solutions to

the positive real interpolation problem is defined in terms of 4 transfer functions

which are defined by the interpolation data. Note that, any positive real rational

function F is also a unit in H∞ (i.e. F, F−1 ∈ H∞). In addition to this, [7]

and [22] formulated the problem of positive real interpolation as a maximization

problem with a generalized entropy criterion. The dual of this problem is a convex

optimization problem in a finite dimensional space.

2.7.3 Modified Nevanlinna-Pick Interpolation Problem

Problem 4. Consider Problem 2 with the following additional constraint

F−1 ∈ H∞

and determine whether such F exists.

Problem 4 is called the modified Nevanlinna-Pick interpolation problem (mN-

PIP) and is shown to be solvable for γ = 1 if and only if the associated Pick

matrix

[PM([l1, . . . , ln])]ij =
− ln βi − ln β̄j + j2π(lj − li)

1− αiᾱj
is positive semi-definite for some integer set [l1, . . . , ln] and for all i, j ∈ {1, . . . , n},
see [9] and [52] for details.

This problem is also called as the bounded unit interpolation problem in H∞
because it is also possible to define this problem as follows:

Problem 5. Consider Problem 3 with the following additional constraint

‖U‖∞ < ρ (2.17)
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for the smallest possible ρ and determine whether such U exists.

The necessary and sufficient conditions for an infinite dimensional bounded

unit interpolating function is given in [9], [52] through a modified Pick matrix.

In [27], [40], a solution method for the infinite dimensional case is discussed.

In [1], sufficient conditions to find a solution for Problem 5 are derived. The

conservatism of these conditions are represented by a two point interpolation

problem in [1] and by a three point interpolation problem in [4].

There have been some efforts in the literature which try to solve the bounded

unit interpolation problem through positive real functions: [7] and [22] formu-

lated the problem of positive real interpolation as a maximization problem with

a generalized entropy criterion. The dual of this problem is a convex optimization

problem in a finite dimensional space. Bound on the infinity norm of the inter-

polating function is modelled as a constraint to the minimization problem; [19]

utilizes these ideas to find a passive finite dimensional approximate for originally

passive systems by analytic interpolation. The method of [19] produces positive

real interpolating functions with finite dimension which closely approximates the

frequency response of the original system. Furthermore, [33] also uses the same

approach about analytic interpolation and solves the finite dimensional bounded

interpolation problem with a possibly non-minimum phase but stable interpolat-

ing function. Although all of these studies are related to analytic interpolation

problem, none of them directly addresses Problem 5.
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Chapter 3

Central Nevanlinna-Pick Solution

Approach for a Class of Plants

Publication Notice: The materials of this section are at least partially covered in the publication

[67] which was published by the author and his advisor during the study time of this thesis

dissertation.

Underactuated robotics, inspired by the fast and unconscious movements of

human body, studies the possibilities of doing things more efficiently than it may

be done under full control. It aims to control a mechanism having more degrees

of freedom (i.e. joints) than the number of actuators (i.e. motors). There are

two famous examples of underactuated robots in the literature. First of these

examples is the Acrobot [47]. The Acrobot is a basic and simple model of a

human body on a high bar [62]. The underactuated joint is a model of the hand

on the bar. The second example is the Pendubot [50], in which the second joint

is an unactuated pendulum.

Swinging up the robots to the upright equilibrium point have been studied in

the literature and there are many results both for Acrobot [47, 61] and Pendubot

[20]. Another important aim is to design a stabilizing controller to balance the

robot at the equilibrium point. In the literature, nonlinear control theory is
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generally utilized to achieve upright control [61] and the linearized model of the

robots around their equilibrium point is used to design a stabilizing controller for

the equilibrium point.

The papers by Xin et.al. [62] and [60] are the first effort in the literature to

design a low order and stable controllers for Acrobot and Pendubot’s upright

equilibrium point. By making use of the linearized models of both robots, they

first proved that the linearized model is stabilizable by a stable controller and

then proposed a method to design such controllers.

In this chapter, inspired by the studies of [62], the problem of robust stabiliza-

tion of finite dimensional SISO plants by a stable controller is revisited. A method

to design reduced order controllers is proposed via the well known NPIP and the

proposed method is tested on the examples of Acrobot and Pendubot. Third or-

der stable controllers are designed for both examples. The stability range of the

parameter uncertainty is compared for both examples and it is shown that the

proposed method outperforms the prior robustness performance of the controllers

found in [62] with an order increase of one without violating strong stability. In

addition to these, fourth order stable controllers are designed for both robots to

track step-like inputs by simply shifting the interpolation problem to conform the

conditions of the proposed solution.

The chapter is organized as follows: Section 3.1 represents two famous exam-

ples of underactuated robots, namely Acrobot and Pendubot. Section 3.2 defines

the problem of robust stabilization of SISO plants via NPIP. Section 3.3 discusses

the stability criteria of the controller which is defined in Section 3.2. Section 3.4

is about the order of the proposed controller and discusses the constraints which

yield to a low order controller. Section 3.5 is about integral action of the con-

troller and a method to design a fourth order controller with integrator action is

proposed. Section 3.6 concludes the chapter with some discussion.
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3.1 Motivating Examples

Two examples of underactuated robots, Acrobot and Pendubot, will be revisited

in this chapter. As explained in the introduction, the stabilization of these robots

on their upright equilibrium points is generally studied over the linearized model

of the robots at the point of interest. To the best of our knowledge, for the first

time in the literature Xin et.al. have proposed a second order stable controller

design for Acrobot and Pendubot in [62]. The generic plant structure of the

linearized models can be expressed as

P (s) =
ρ(s+ z1)(s− z1)

(s+ p1)(s+ p2)(s− p1)(s− p2)
(3.1)

and the numerical values of the parameters are calculated by the physical prop-

erties of the robots.

3.1.1 Acrobot

With the parameters of the Acrobot in [47] and linearized model in [62],

Pa(s) =
−1.3545(s− 1.281)(s+ 1.281)

(s− 6.101)(s− 2.24)(s+ 6.101)(s+ 2.24)
(3.2)

Since there are two poles on the positive real line, (p1 = 2.24, p2 = 6.101) between

positive zeros (z1 = 1.281, ∞), the plant satisfies the PIP hence it is strongly

stabilizable.

The second order controller designed in [62] is

Ca2(s) =
−131.4411(s+ 2.24)(s+ 6.101)

(s+ 1.281)(s+ 19.01)
(3.3)

and for the resulting complementary sensitivity

Ta2 = Ca2Pa/(1 + Ca2Pa), we have ‖Ta2‖∞ = 7.5468. Note that poles of Ca2 are

in open left half plane, hence it is a strongly stabilizing controller of order two.
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3.1.2 Pendubot

With the parameters of Pendubot in [74, 44] and linearized model in [62], plant

for the given robot becomes

Pp(s) =
245.9467(s− 3.261)(s+ 3.261)

(s− 11.48)(s− 6.374)(s+ 11.48)(s+ 6.374)
(3.4)

Again we have two real poles (p1 = 6.374, p2 = 11.48) between two consecutive

positive zeros (z1 = 3.261, ∞); hence, the plant satisfies the PIP.

The second order controller designed for (3.4) in [62] is

Cp2(s) =
3.257(s+ 6.374)(s+ 11.48)

(s+ 40.29)(s+ 3.261)
(3.5)

and the resulting complementary sensitivity

Tp2 = Cp2Pp/(1 + Cp2Pp), leads to ‖Tp2‖∞ = 7.8685. Note that poles of Cp2 are

in open left half plane, hence it is a strongly stabilizing controller of order two.

These examples will be revisited at the end of each section.

3.2 Problem Definition

Internal stability of a feedback system can be achieved by a controller

C(s) =
1

P (s)

(
T (s)

1− T (s)

)
provided that we find a transfer function T = PC/(1+PC) such that the following

conditions hold for all right half plane zeros zi and poles pj of P (s)

T ∈ H∞ (3.6)

T (zi) = 0 (3.7)

T (pj) = 1 (3.8)

It is well known in the literature that the robust stabilization of a class of plants

as described in (2.10) can be achieved if ‖WT‖∞ ≤ 1. In this chapter, we
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assume W (s) = K where K is a constant and robust stabilization condition is

‖T‖∞ ≤ 1/K. The technique proposed here applies to more general weight W (s)

by proper change of interpolation conditions. In order to optimize the robustness

level we try to find such T for the largest possible K > 0.

The robust stabilization problem can be reformulated as a NPIP. Assuming

γ > γopt and γopt = 1/Kmax, all T satisfying (3.6), (3.7), (3.8) and ‖T‖∞ ≤ γ for

zi, pj <∞ can be parameterized as follows:

T (s) = γ
Θ11(s) G(s) + Θ12(s)

Θ21(s) G(s) + Θ22(s)
(3.9)

where G ∈ H∞ is a free parameter with ‖G‖∞ ≤ 1, see [8] for details.

In general, for the plant (3.1) we have

Θ11(s) =
(s− n1)(s− n2)(s− z1)

(s+ z1)(s+ p1)(s+ p2)
,

Θ12(s) =
−σ(s− n3)(s− z1)

(s+ z1)(s+ p1)(s+ p2)
,

Θ21(s) =
σ(s+ n3)

(s+ p1)(s+ p2)
,

Θ22(s) =
(s+ n1)(s+ n2)

(s+ p1)(s+ p2)
. (3.10)

Note that n1, n2, n3, σ are some real positive numbers and z1 is the only finite

zero of the plant in right half plane and p1, p2 are the poles of the plant in the

right half plane.

It is important to note that the interpolation conditions should also include

the zeros at infinity to obtain a proper controller. However, including these

zeros at infinity leads to a boundary interpolation problem and should be tackled

differently. For the purposes of this chapter, this relative degree problem will be

solved by adjusting the free parameter G, as discussed in the following sections.

Parametrization of each example is presented in the following subsections:
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3.2.1 Acrobot

Using the parametrization of all solutions to NPIP in [8], with the interpolation

data {z1, p1, p2} = {1.281, 6.101, 2.24} the following transfer functions can be

computed for γ = 1.01γopt where γopt = 5.6231 (this is the optimal performance

level over all stabilizing controllers; once the stability and order of the controller

are taken into account there is naturally a performance degradation from this

optimal level),

Θ11(s) =
(s− 86.69)(s− 11.1)(s− 1.281)

(s+ 1.281)(s+ 2.24)(s+ 6.101)
,

Θ12(s) =
−87.156(s− 11.04)(s− 1.281)

(s+ 1.281)(s+ 2.24)(s+ 6.101)
,

Θ21(s) =
87.156(s+ 11.04)

(s+ 2.24)(s+ 6.101)
,

Θ22(s) =
(s+ 86.69)(s+ 11.1)

(s+ 2.24)(s+ 6.101)
. (3.11)

3.2.2 Pendubot

Similarly, for the Pendubot, using the parametrization of all solutions to NPIP in

[8], with the interpolation data {z1, p1, p2} = {3.261, 6.374, 11.48} the following

transfer functions can be computed for γ = 1.01γopt where γopt = 5.5511,

Θ11(s) =
(s− 221.1)(s− 23.19)(s− 3.261)

(s+ 11.48)(s+ 6.374)(s+ 3.261)
,

Θ12(s) =
−221.93(s− 23.1)(s− 3.261)

(s+ 11.48)(s+ 6.374)(s+ 3.261)
,

Θ21(s) =
221.93(s+ 23.1)

(s+ 11.48)(s+ 6.374)
,

Θ22(s) =
(s+ 221.1)(s+ 23.19)

(s+ 11.48)(s+ 6.374)
. (3.12)
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3.3 Stability of the Controller

Recall that it is also possible to write the parametrization of all controllers sat-

isfying robust stability of the feedback system via ‖T‖∞ ≤ 1/K = γ as

C =
T

PS
, where S = 1− T. (3.13)

Note that by using (3.9) we obtain

S = 1− T =
G(Θ21 − γΘ11) + (Θ22 − γΘ12)

GΘ21 + Θ22

. (3.14)

Hence, if

R =
Θ21 − γΘ11

Θ22 − γΘ12

∈ H∞ (3.15)

and G ∈ H∞, with ‖GR‖∞ ≤ 1 then the controller is stable. Recall that the

conditions G ∈ H∞ and ‖G‖∞ < 1 imply stability of the feedback system.

For the plants in the form (3.1) the controllers obtained from the parametriza-

tion (3.9) with the choice of G = 0 are stable, but they are improper. One way to

handle this problem is to multiply the resulting controller by a term 1/(1 + εs)`

for small enough ε > 0 and sufficiently large integer `, see [62]. In this chapter,

we use the free parameter G in the form

G =
g1

g2s+ g3

(3.16)

and adjust g1, g2, g3 to obtain a stable and proper controller.

3.4 Low Order and Proper Controller Design

In order to have a proper and low order controller, extra conditions are required

on T for especially strictly proper plants. Irrespective of the relative degree of

the plant, Θ12 and Θ21 are strictly proper and have relative degree one, moreover

Θ11 and Θ22 are bi-proper.

From (3.13), if plant is proper with relative degree two and T is proper with

relative degree n, then C has a relative degree of n − 2. Note that if n < 2,
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the controller is improper. As in [62], the aim of this chapter is to find a proper

controller, hence we need to satisfy n = 2.

We know that Θ12 has a relative degree one, and Θ11 is bi-proper. By a choice

of G of the form (3.16), Θ11G is of relative degree one. It is easy to see that the

condition g1 = σg2 ensures that the relative degree of Θ11G + Θ12 is two. This

and the fact that Θ22 is bi-proper lead to a T whose relative degree is n = 2.

In addition to the condition g1 = σg2, G has to satisfy G ∈ H∞ and ‖G‖∞ ≤ 1.

That leads to the constraints −g3/g2 < 0 and σg2/g3 < 1. The designs for each

plant will be done by taking these constraints into consideration.

3.4.1 Acrobot

For the design of G = g1/(g2s + g3), we know that g1 = σg2 is required for

properness of the controller. Let us take g2, g3 > 0 to ensure −g2/g3 < 0. And

finally take g3 = σg2+d where d is some positive constant (d = 1 for this chapter).

For g2 = 1, G = 87.16/(s+ 88.16) and the corresponding controller is

Ca3(s) =
63917(s− 11.07)(s+ 6.101)(s+ 2.24)

(s+ 1.281)(s2 + 195.6s+ 1.056× 105)
(3.17)

and Ta3 = Ca3Pa/(1 + Ca3Pa) yields ‖Ta3‖∞ = 5.6793. It is important to note

that the newly proposed controller is stable, proper and third order. Compared

to the controller obtained in [62], (3.3), for which we had ‖Ta2‖∞ = 7.5468, we

now have about 25% improvement in the robust stability level. Figure 3.1 shows

the magnitude Bode plots of the transfer functions Ta2 and Ta3.

Both Ca2 and Ca3 stabilize the plant Pa for nominal values of z1 = 1.281,

p1 = 6.101 and p2 = 2.24. The values of the parameters for which the systems

with Ca2 and Ca3 remain stable are given in Table 3.1. Note that Ca3 also provides

extra robustness to parameter variations, i.e. the allowable range of z1 (when p1

and p2 are at their nominal values) is larger for Ca3, (0 , 1.3894), compared to that

of C2a, which is (0.6735 , 1.3672). Similar conclusions are deduced for variations
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in p1 and p2. In order to calculate these intervals, we fix all the parameters apart

from the tested one and by turn increase and decrease the tested parameter to

find upper and lower bounds beyond which the stability is lost.

Table 3.1: Robustness margins for the parameters of Acrobot.

Min z1 Max z1 Min p1 Max p1 Min p2 Max p2

Ca2 0.6735 1.3672 5.7163 6.7055 2.0988 2.6492

Ca3 0 1.3894 5.6258 6.9286 2.0655 2.9864
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Figure 3.1: Bode magnitude plot of Ta2 and Ta3

3.4.2 Pendubot

For the design of G = g1/(g2s + g3), we know from Section 3.4 that g1 = σg2 is

required for properness of the controller. Using same arguments as Acrobot and

g2 = 1 we have G = 221.9/(s + 222.9). Note that G ∈ H∞, ‖G‖∞ = 0.9955 < 1
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and ‖GR‖∞ = 0.9956 < 1. With this choice of G the corresponding controller is

Cp3(s) =
−2246.8(s− 23.14)(s+ 11.48)(s+ 6.374)

(s+ 3.261)(s2 + 488.3s+ 6.716× 105)
(3.18)

and Tp3 = Cp3Pp/(1 + Cp3Pp) gives ‖Tp3‖∞ = 5.6066. It is important that the

same level of improvement has been obtained as in Acrobot, compared to the

controller proposed in [62] i.e. (3.5). Figure 3.2 shows the Bode magnitude plots

of the transfer functions T for the controllers (3.5) and (3.18).

Both Cp2 and Cp3 stabilize the plant Pp for nominal values of z1 = 3.261,

p1 = 11.48 and p2 = 6.374. The values of the parameters for which the systems

with Cp2 and Cp3 remain stable (while all other parameters are kept unchanged)

are given in Table 3.2. Note that Cp3 provides extra robustness.
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Figure 3.2: Bode magnitude plot of Tp2 and Tp3

3.5 Including Integral Action in the Controllers

Tracking of step-like reference signals is a desired property of feedback loops.

In order to track the step-like inputs, T (0) = 1 must also be satisfied. This
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Table 3.2: Robustness margins for the parameters of Pendubot

Min z1 Max z1 Min p1 Max p1 Min p2 Max p2

Cp2 2.0054 3.4644 10.8062 12.7041 5.999 7.3367

Cp3 0 3.5399 10.5755 13.2613 5.8718 8.0567

interpolation condition is a boundary condition in Nevanlinna-Pick type setting.

There are several ways to incorporate boundary interpolation conditions into this

extension of the NPIP, see [21]. A simple approach is to shift all interpolation

conditions. Let us consider this situation directly over examples and design low

order, proper and stable (except for the pole at s = 0) controllers for Acrobot

and Pendubot.

3.5.1 Acrobot

We use the parametrization of all suboptimal solutions of the NPIP from [8]. In

order to define the problem we choose a sufficiently small positive number ε (e.g.

ε = 10−3) and consider the interpolation data as

{z1 + ε, p1 + ε, p2 + ε, ε} −→ {0, 1, 1, 1}.

Then, as in (3.9)–(3.10), parametric solutions can be computed and shifted by −ε
to get the transfer functions, Θ11,Θ12,Θ21,Θ22 with the suboptimal level chosen

as γ = 1.01γopt, where γopt = 5.6930. Recall that in the absence of the additional

interpolation condition T (ε) = 1 we had γopt = 5.6231 as the smallest achievable

‖T‖∞ among all stabilizing controllers.

For G = 87.31/(s+ 88.31) the controller Ca4 is given as

Ca4(s) =
64300 (s− 11.05)(s+ 6.101)(s+ 2.24)(s− 0.0005)

s (s+ 1.281) (s2 + 200s+ 1.06× 105)
.

This controller contains an integral action and stabilizes the feedback system.

Other than the integrator the controller does not contain any unstable modes. It
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leads to a complementary sensitivity function whose H∞ norm is 5.7056, which is

within 1% of the smallest achievable norm 5.6930 as expected. The step response

of the associated system is shown in Figure 3.3.
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Figure 3.3: Step response plot of Ta4 = Ca4Pa/(1 + Ca4Pa)

3.5.2 Pendubot

For the Pendubot, using similar arguments we obtain an integral action controller,

Cp4, with the design parameters γopt = 5.6120, G = 222.1/(s+ 223.1)

Cp4(s) =
2250 (23.13− s)(s+ 11.48)(s+ 6.374)(s− 0.0005)

s (s+ 3.261) (s2 + 500s+ 6.73× 105)
.

This leads to a stable feedback system whose complementary sensitivity function

H∞ norm is 5.6264, which is within 0.26% of the smallest achievable norm 5.6120.

The step response of the associated system is shown in Figure 3.4.

3.6 Discussions

For the well known underactuated robots Acrobot and Pendubot; third order, sta-

ble and proper controllers are designed to minimize the H∞ norm of the comple-

mentary sensitivity function to maximize multiplicative uncertainty in the plant

models. The results are compared with the stable controllers designed using other
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Figure 3.4: Step response plot of Tp4 = Cp4Pp/(1 + Cp4Pp)

techniques, from the literature, using other design objectives. It is shown that

for both systems approximately 25% improvements are obtained in terms of the

closed loop system H∞ norms. Moreover, the controllers designed here provide

larger stability robustness to individual parameter perturbations in the pole and

zero locations.
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Chapter 4

Optimal Solution of

Nevanlinna-Pick Interpolation

Publication Notice: The materials of this section are at least partially covered in the publications

[66] and [68] which was published by the author and his advisor during the study time of this

thesis dissertation.

This chapter deals with the optimal NPIP, which appears in robust control.

Early papers [35], [52] and [71] defined various robust stabilization problems as an

analytic interpolation problem where interpolation constraints ensure the internal

stability of the nominal feedback system and a norm bound handles the robustness

of the feedback loop.

The proposed method of this chapter solves the optimal NPIP, as it is given

in Problem 2, directly with the right half plane interpolation data and obtains

Fopt ∈ H∞ with no approximations nor intermediate transformations. Let us

recall Problem 2:

Problem 2:

Given αi ∈ C+ and βi ∈ C for i ∈ {1, . . . , n} find F ∈ H∞ such that F (αi) = βi

for all i and ‖F‖∞ ≤ γ, for the smallest possible γ > 0.
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Some robust control examples are solved using the proposed method in the

following subsections.

4.1 The Optimal Nevanlinna-Pick Interpolant

It is well known that for a NPIP involving n interpolation conditions, the optimal

interpolant is a rational inner function of order n− 1, see e.g. [21], [34], [72] and

their references. Therefore, we must have

Fopt(s) = g
[sn−1 . . . s 1] J Φ

[sn−1 . . . s 1] Φ
(4.1)

where

g = ±γopt, (4.2)

Φ = [φn−1 . . . φ0]T ∈ Rn and (4.3)

J =


(−1)0 0

. . .

0 (−1)n−1

 . (4.4)

Moreover, all roots of the polynomial

DF (s) := [sn−1 . . . s 1] Φ (4.5)

have to be in C−. Thus, to compute Fopt, we must compute Φ and determine the

sign of g. This is done by constructing an eigenvalue-eigenvector problem using

the interpolation conditions, as follows.

The pairs (αi, βi) satisfy the interpolation conditions

g [αn−1
i . . . αi 1] J Φ = βi [αn−1

i . . . αi 1] Φ

for i ∈ {1, . . . , n}. These equations can be written in a compact form as

(gVαJ− DβVα) Φ = 0 (4.6)
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where

Vα :=


αn−1

1 . . . α1 1
... · · · ...

...

αn−1
n . . . αn 1

 , Dβ :=


β1 0

. . .

0 βn

 .
Since αi’s are distinct, the Vandermonde matrix Vα is invertible. So, the set of

equations (4.6) can be re-written as

(gI− J V−1
α DβVα) Φ = 0. (4.7)

Let us define

L := J V−1
α DβVα . (4.8)

Thus, in order to have a nontrivial solution (i.e. Φ 6= 0) for (4.7), the constant g

must be an eigenvalue of L and Φ should be the corresponding eigenvector. The

above discussion can be summarized with the following.

Proposition 1. The optimal interpolant Fopt(s) is given by (4.1) where g =

±γopt, with γopt being the square root of the largest eigenvalue of the matrix

A−1B, where A and B are defined in (2.12); the sign of g and Φ are determined

as the feasible eigenvalue and eigenvector pair of the matrix L, (4.8), such that

DF (s) defined by (4.5) is a Hurwitz polynomial.

4.1.1 Connections with Sarason’s and Nehari’s theorems

According to Sarason’s theorem, γopt = ‖W (T)‖ and

Fopt =
W (T)Go

Go

where Go is the singular vector corresponding to the largest singular value of

W (T), where T denotes the compressed shift operator defined on the subspace

H(M) := H2 	MH2. If M is finite dimensional then so is T, and a basis for

H(M) can be determined from functions (s + ᾱi)
−1. Moreover, in this case Go,

as well as W (T)Go, can be expressed in terms of the basis functions. These

computations are rather complicated and they do not illustrate the resulting Fopt
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in the compact form of Proposition 1. On the other hand, the power of Sarason’s

approach becomes clear when one deals with an infinite dimensional M and a

finite dimensional W . See e.g. [21] and its references.

Nehari’s theorem computes γopt as the norm of the Hankel operator whose

symbol is M(−s)W (s). It also gives the resulting Fopt as follows (this material

is taken from [16], the reader is referred to the relevant references in there). Let

M(−s)W (s) =: Ru(s) +Rs(s) be a decomposition, such that Ru is unstable, and

Rs is stable. Consider a minimal realization Ru(s) = C(sI − A)−1B, and let

Wc and Wo be the associated controllability and observability grammians, i.e.

solutions of

AWc + WcA
∗ = BB∗, A∗Wo + WoA = C∗C.

Then, γ2
opt is the largest eigenvalue of WcWo. Let xmax be the corresponding

eigenvector. It gives

Fopt(s) = γoptM(s)
C(sI − A)−1xmax

B∗(sI + A∗)−1γ−1
optWoxmax

. (4.9)

Assuming that all the αi’s are distinct, we can choose a particular realization

Ru(s) =
n∑
i=1

ri
(s− αi)

= C(sI − Λ)−1B

Λ = diag{α1, · · · , αn}, C = [1 · · · 1] and B = [r̄1 · · · r̄n]∗. Then, computation

of ri’s yield

[Wo]i,j =
1

ᾱi + αj

[Wc]i,j =
βiβ̄j

αi + ᾱj

∏n
k=1(αi + ᾱk)∏
k 6=i(αk − αi)

∏n
k=1(ᾱj + αk)∏
k 6=j(ᾱk − ᾱj)

The resulting Fopt can thus be determined from (4.9) using the appropriate eigen-

vector of WcWo. The computation of L in (4.11) is simpler than this product.

Also, the fact that eigenvector Φ of L directly determines Fopt via (4.1) makes the

new formula obtained in this chapter more attractive than the above mentioned

alternatives from the literature.
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4.1.2 Remarks on numerical issues

As seen from (4.7), computation of the matrix L requires inversion of a Vander-

monde matrix Vα. But such matrices are known to be ill-conditioned, when n is

large, or two data points αi and αj are close to each other. As the number of

interpolation data points increase, it is well known that the Vandermonde ma-

trix becomes more and more ill-conditioned, i.e. hard to invert precisely. We

know that the condition number of a matrix is a good indication of the accuracy

of the results from matrix inversion. A condition number near 1 indicates that

the associated matrix is numerically suitable to be inverted. As the condition

number increases the matrix becomes ill-conditioned. For the efficiency of the

calculations, we use the built-in MATLAB function rcond which stands for the

reciprocal condition number, i.e. the matrix is more ill-conditioned as the recip-

rocal condition number decreases. This MATLAB function returns an estimate of

the reciprocal condition number rc which is the reciprocal of the 1-norm condition

number c. Reciprocal condition number of a matrix Vα is defined as

rc =
1

c
=

1

‖Vα‖1‖V−1α ‖1

. (4.10)

Reciprocal condition numbers of the Vandermonde matrices are shown in the

Figure 4.1. As it is seen in the figure, as the number of data points increases

reciprocal condition number of the Vandermonde matrix decreases dramatically.

In Figure 4.1, data points are generated uniformly and randomly in the region

[0,1] with a multiplier R given in the legend. For each iteration 500 different data

point sets are generated and the average reciprocal condition number is plotted.

If a matrix is well conditioned then the reciprocal condition number associated

to that matrix is near 1, it gets smaller and smaller as the matrix becomes ill-

conditioned.

Due to this conditioning property of Vandermonde matrices, in the literature,

there has been significant effort to find analytical, or numerically reliable methods

to compute inverses of Vandermonde matrices using their special structures.

In the scope of this thesis, we are going to compare three different methods to
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Figure 4.1: Reciprocal condition number of the Vandermonde matrix generated
by different number of data points.

invert a Vandermonde matrix:

• Classical MATLAB inverse

• Special inverse from [32]

• Scaled inverse

Besides these inversion methods, another point which can be exploited is the

observation that in many control problems βi is defined from a given function

W (s) as W (αi) =: βi. When this is the case, it is possible to avoid inversion

of the Vandermonde matrix. This approach is explained as a fourth method to

obtain optimal interpolant and its accuracy will be compared with other inversion

methods.

Classical Matrix Inverse

This inversion method is a built-in function of MATLAB and is used as a bench-

mark inversion method for the purpose of this thesis.
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Special and Accurate Vandermonde Matrix Inverse

This inversion method is a special method which is designed to form the inverse

of a Vandermonde matrix directly from its entries. Details of the method is

explained in [32] and example MATLAB implementations can be downloaded 1.

Classical Weighted Matrix Inverse

Weighting a matrix prior to inversion may lead to a less ill-conditioned situ-

ation in some cases. This strategy was proposed to generate Vx from Vα with

αgm = (
∏n

i=1 αi)
1/n

and

Vx = VαD
−1
s

where Ds = diag({α0
gm, α

1
gm, . . . α

n−1
gm }).

Using Vx instead of Vα in (4.8) and pre-multiplying eigenvectors of L in (4.8)

by D−1
s gives the resulting inversion method.

Avoiding Inverse of Vandermonde Matrix

If βi is defined from a given function W (s) as βi = W (αi) for all i then in order

to avoid inversion of Vα define the coefficients a1, . . . , an ∈ R from the polynomial

n∏
i=1

(s− αi) =: sn + a1s
n−1 + · · ·+ an .

Let Ik denote the identity matrix of dimension k and define

Ad :=


−a1

... In−1

−an 0 · · · 0

 .

Then, it is a simple exercise to verify that

Ad = V−1
α Dα Vα

1https://people.sc.fsu.edu/~jburkardt/m_src/vandermonde/vandermonde.html
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and since βi = W (αi) we have that

V−1
α Dβ Vα = W (Ad) and L = J W (Ad). (4.11)

In many cases it is easier to evaluate W (Ad) than trying to find the right hand

side of (4.8) using the inverse of Vα.

4.1.3 Comparison of the Numerical Methods

In order to be able to compare the performance of the four numerical methods

described above, Algorithm 1 is used (see below).

Algorithm 1 Numerical Performance Comparison Method

Wset = {W1, . . . ,WK}
for k ∈ {1, . . . , K} do {select interpolation data generator function}
W = Wk

for t ∈ tRange do {select region of the random generator}
for n ∈ {2, . . . , N} do {number of interpolation points}

for m ∈ {1, . . . ,M} do {number of simulation repetitions}
α = tR(n)
β = W (α)
for l ∈ {1, 2, 3, 4} do {repeat for all numerical methods}

Find solution Fl(s) to the problem with proposed method
Record the maximum error el(m) = max

i
(|Fl(αi)− βi|)

end for
end for
Find average maximum error for each solver as Al = (1/M)

∑
el

Plot (N,Al) on the corresponding subplot
end for
Put the title of the sub-plot

end for
Save and close figure

end for

In this algorithm, R(n) is a randomly generated real vector of size n which

is uniformly distributed between (0, 1). For the rest of the simulations, t value,

which is used to determine the random number generating interval, is printed

in titles of relevant sub-plots. Also the interpolation data generating functions,

38



Table 4.1: Figure legend and subsection correspondence

Legend Name Marker
Classical ×
Special ◦

Weighted ♦
Avoidance �

W (s), are printed in the captions of the sub-plots. Additionally, a legend is pro-

vided for all figures to point the marker-solver relations. Corresponding sections

to each marker is given in Table 4.1.

Interpolation data generating functions W (s) are selected as the benchmark

transfer functions which are frequently encountered in control theory problems:

• W (s) = s+1
s+r

for r > 1 is a transfer function with high pass characteristic

which is typically a bounding function in robust stability problems

• W (s) = s+r
s+1

for r > 1 is a transfer function with low pass characteristic

which is typically a bounding function in sensitivity minimization problems

• W (s) = 1
1−q(s) exp−hs for h > 0 and q(s) is low pass with q(0) = 1 − ε

for sufficiently small ε, is a transfer function which is typically a bounding

function in repetitive control problems

Figures 4.2, 4.3, 4.4, 4.5, 4.6, and 4.7 present the numerical performances of

the aforementioned techniques when they are used to solve the NPIP via the

proposed optimal solution method. In each figure, error is the total interpolation

error, i.e.

e =
n∑
i=1

|βi − F (αi)|

where F is the solution of the interpolation problem. As it is clear in all figures,

performance of classical and weighted inverse are equivalent to each other, special

inverse is better than both of them and in many cases avoiding the inversion is

the top performer among all when total interpolation error is considered. There
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Figure 4.2: Interpolation data generator function W (s) = 1
1− s+1−ε

10s+1
exp−s

are some cases (i.e. Figure 4.4 and 4.5 when t = {20, 50}) where special inverse

performs better than the avoidance method. Apart from these cases, we can

conclude that it is good to avoid the inversion of Vα and use L = JW (Ad) when

it is possible.

4.2 Examples

4.2.1 Robust Repetitive Control Problem

Repetitive control problem deals with the tracking of periodic signals (or the

rejection of periodic disturbances). In this section, a periodic reference tracking

problem with the block diagram depicted in Figure 4.8 will be discussed.

The repetitive control problem is to find a controller C = CoCu such that the

feedback system (C,P ) is stable (i.e. S = (1 + PC)−1, PS, CS are in H∞) and

the system can track periodic reference input r(t) with a determined period of L,

i.e. the steady state error e(t) = r(t)−y(t) should be as small as possible (ideally
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Figure 4.3: Interpolation data generator function W (s) = 1
1− s+1−ε

10s+1
exp−2s

Figure 4.4: Interpolation data generator function W (s) = s+4
s+1
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Figure 4.5: Interpolation data generator function W (s) = s+20
s+1

Figure 4.6: Interpolation data generator function W (s) = s+1
s+4
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Figure 4.7: Interpolation data generator function W (s) = s+1
s+20

Figure 4.8: Block diagram for the repetitive control problem

zero). It is well known, [31] and [48], that an ideal choice for Cu in repetitive

control problem is

Cu(s) =
1

1− e−Ls
.

Note that Cu has infinitely many poles that are located at

dk = ±jk2π/L, k = 0, 1, . . . .

In this configuration Co should be a stabilizing controller for the auxiliary plant

CuP . Such systems do not admit a stabilizing Co if P is strictly proper, see e.g.

[28] and [63].

Following the ideas of [16], it is possible to convert repetitive control problem

to an analytic interpolation problem by making some approximations as follows:
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• Internal Stability: Assume that the plant P has simple poles in C+, pi,

i ∈ {1, 2, . . . , n}, and simple zeros in C+, zj, j ∈ {1, 2, . . . ,m}. Then, the

feedback system is internally stable if and only if T (pi) = 1 and T (zj) = 0

for all i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . ,m} and T ∈ H∞.

• Repetitive Performance: The feedback system tracks periodic reference

input r(t) of period L if T (dk) = 1 for all k ∈ {0, 1, 2, . . . } where each dk is

a pole of Cu in C+.

Note that this is an infinite dimensional interpolation problem. Any subset

of dk for k ∈ {0, 1, 2, . . . , nf} reduces the problem to a finite dimensional in-

terpolation problem which approximates the theoretical repetitive performance.

Approximate performance of the controller to periodic references for different

values of nf will be discussed and simulation results will be illustrated.

Optimal Robust Repetitive Control Problem

(ORRCP): Let P = Po ∆m where Po is the nominal plant model and ∆m is

the multiplicative uncertainty on the nominal plant. Assume that there exist Wm

such that |Wm(jω)| > |∆m(jω)| for all ω and Wm has no poles or zeros in the right

half plane; if Po is strictly proper, Wm has to be improper with a relative degree

opposite of that of Po, so that the resulting controller is proper. The task is to

find a controller C = CoCu such that (C,Po) solves the repetitive control problem

and ‖To Wm‖∞ ≤ 1/K for K > 0 where To = 1 − So and So = (1 + PoC)−1.

The largest K achieving this inequality is the largest achievable uncertainty level,

while satisfying closed loop stability and repetitive control tracking objectives.

Solution of the (ORRCP): Let nf ∈ N be fixed such that

2π

L
nf < WBW <

2π

L
(nf + 1)

where WBW is the bandwidth of the function W−1
m (jω). The robust repetitive

control problem has a solution if there exists a transfer function F such that the

conditions

(1) F is real, rational, stable
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(2) F (pi) = Wm(pi) for all i

(3) F (zj) = 0 for all j

(4) F (dk) = Wm(dk) for all k ∈ {0, 1, . . . , nf}

(5) ‖F‖∞ ≤ 1/K

are satisfied for the largest possible K, (we call this value of K maximal allowable

uncertainty). Once such F is constructed, then To = F/Wm. Solution of the

robust repetitive control problem is very similar to NPIP with the interpolation

data α = {pi, zj, dk}, β = {Wm(pi), 0, Wm(dk)} and γ = 1/K. However, this

data violates the assumption of Nevanlinna-Pick formulation by dk /∈ C+ (i.e we

would like to avoid boundary interpolation conditions). To overcome this, a slight

variation is considered: choose a small number ε > 0 and modify the problem as

(1’) Fs is real, rational, stable

(2’) Fs(ε+ pi) = Wm(pi) for all i

(3’) Fs(ε+ zj) = 0 for all j

(4’) Fs(ε+ dk) = Wm(dk) for all k ∈ {0, 1, . . . , nf}

(5’) ‖Fs‖∞ ≤ 1/K

and redefine F (s) = Fs(s+ ε). If Fs is a solution of the modified problem then F

is the solution of the original robust repetitive control problem. The boundary

condition avoidance method was also used in [49]. For other boundary condition

tackling strategies readers are directed to [21].

We now consider two numerical examples and solve them with the optimal

solution strategy proposed in this chapter. Let the nominal plant be

Po =
e−hs

s2 − bs+ c
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where h > 0, b > 0, c > 0. Note that nominal plant has no finite zeros, and

has two poles (i.e. p1, p2) in C+. We will handle the effect of time delay sep-

arately without imposing interpolation conditions (see below). Throughout the

simulations, we are going to use two different nominal plants, one (PRo) having

two distinct real poles (with b = 10, c = 24 =⇒ p1 = 4, p2 = 6) and the other

(PIo) having complex conjugate poles (with b = 10, c = 50 =⇒ p1,2 = 5 ± 5j).

Let us further assume that the closed loop system is required to track L peri-

odic references with L = 1 sec and hence Cu = 1/(1 − e−s), and dk = ±j2πk,

k = 0, 1, 2, · · · .

Let the multiplicative uncertainty be defined as

Wm(s) =
s+ δ

s+ 1
(s2 + bs+ c)

where δ = 0.1 for all computations.

Since the plant has the form Po = e−hsP̄o then for the closed loop system

to be causal we must have To(s) = e−hsT̄o for some T̄o ∈ H∞. It follows that

‖ToWm‖∞ = ‖e−hsT̄oWm‖∞ = ‖T̄oWm‖∞. Hence, it is possible to write the

solution procedure for the optimal robust repetitive control problem for time

delay systems as follows. Find Fsd satisfying

(1”) Fsd is real, rational, stable

(2”) Fsd(ε+ pi) = ehpiWm(pi) for all i

(3”) Fsd(ε+ zj) = 0 for all j

(4”) Fsd(ε+ dk) = ehdkWm(dk) for all k ∈ {0, 1, . . . , nf}

(5”) ‖Fsd‖∞ ≤ 1/K

Once such Fsd is constructed then Fd(s) = Fsd(s + ε) and T̄o = Fd/Wm and

finally To(s) = e−hsT̄o(s). The above selection of Wm leads to a To which is

strictly proper with relative degree 2, that leads to a proper controller.
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Note that for the given Wm, maximum allowable uncertainty K can be com-

puted as a function of the time delay h for each of the plants defined above.

Figure 4.9 shows this relation for PRo and PIo.
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(b) PIo

Figure 4.9: Maximum allowable uncertainty, K, versus time delay, h; (a) for PRo
and (b) for PIo. Each calculation is conducted with nf = 10.

For time domain response simulations of both plants (PRo and PIo), related

NPIP are solved by the method proposed in this chapter. Input signal is fixed

throughout all simulations and one period of this input signal is shown in Figure

4.10.
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Figure 4.10: One period of input signal for simulations

Figures 4.11 and 4.12 show that the time domain responses of nominal feedback

systems for both plants converge to the periodic input signal shown in Figure 4.10.

In these simulations the parameters are chosen as h = 0.1, ε = 0.5 and nf = 5.

It is clear from Figures 4.11 and 4.12 that closed loop systems track L-periodic
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Figure 4.11: Time domain responses of nominal plant PRo

reference input with a small steady state error. This error is due to finite number

(nf ) of modes taken in the interpolation. As we shall see below, the steady state

error decreases with increasing nf .

Next step is to check the robustness of the solution for both cases. In order to

test robustness, let us introduce 6 different plants as

• PR1 = PRo + ∆1 where ∆1 = K s+0.1
2(s+1)

• PR2 = PRo∆2 where ∆2 = 144.5s2+2988s+743.8
s2+373s+580800

• PR3 = e−h1s

s2−b1s+c1 where h1 = 1.02h, b1 = 1.03b, c1 = 1.001c, h = 0.1, b = 10

and c = 24

• PI1 = PIo + ∆1

• PI2 = PIo∆2
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Figure 4.12: Time domain responses of nominal plant PIo.

• PI3 = e−h1s

s2−b1s+c1 where h1 = 1.02h, b1 = 1.03b, c1 = 1.001c, h = 0.1, b = 10

and c = 50

Figures 4.13 and 4.14 show time domain responses of the closed loop systems

with those 6 perturbed plants. It is clear from the figures that the designed

system is robust to uncertainty in the plant and achieves tracking of periodic

reference with a small steady state error.

There are three basic parameters in the solution of robust repetitive control

problem that directly influence the analytic interpolation formulation. These

parameters are time delay of the nominal plant, h, amount of shift ε, applied to

poles of Cu in order to comply to the assumptions of NPIP, and the number of

modes of Cu included in the interpolation, nf . In the next subsections, the effect

of each parameter to the overall performance will be discussed. For the following

simulations, PIo is used as the nominal plant and h = 0.1, ε = 0.5 and nf = 5
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Figure 4.13: Time domain response of PR1, PR2, PR3

unless mentioned otherwise.

4.2.1.1 Effect of h

Time delay of the nominal plant (h) effects the interpolation conditions because

it appears as an exponential multiplier in β. As seen in the Figures 4.15 and

4.16, peak amplitude of the time domain response and the settling time increase

as h increases. In addition to this, it is notable that as h increases, steady state

tracking performance of the closed loop system becomes poorer. Also recall from

Figure 4.9 that as h increases maximum allowable uncertainty level K decreases.
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Figure 4.14: Time domain response of PI1, PI2, PI3

4.2.1.2 Effect of ε

Amount of the shift in the interpolation data (ε) effects the interpolation condi-

tions (i.e. α) because it directly shifts the points to C+. As seen in the Figures

4.17 and 4.18, peak amplitude of the time domain response and the settling time

increase as ε decreases. This is a natural consequence because the design method-

ology places the closed loop poles to the left of ε in the real axis. As ε increases,

dominant poles of the closed loop system move away from imaginary axis.

4.2.1.3 Effect of nf

Number of modes included in the interpolation problem (nf ) determines the num-

ber of interpolation points, which is n+m+ (1 + 2nf ), where n (respectively m)

is the number of poles (respectively zeros) of the nominal plant in C+. Table 4.2
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Figure 4.16: Effect of time delay of the nominal plant h on the time domain
response of the overall system - Steady state view

shows that as nf increases the steady state tracking performance of the closed

loop system improves as expected: here e99−100 denotes the 2-norm of e(t) over

one period between time instants 99 sec and 100 sec, scaled by the 2-norm of r(t)

over one period. On the other hand, the maximum allowable uncertainty level,

K, decreases as the number of interpolation data points increases, as quantified in

Table 4.2. This is expected because as nf increases, we require more bandwidth

from the controller, yet the uncertainty becomes significant in high frequencies.

Hence, we can quantify the well-known trade-off between the performance (steady

state tracking error) and robustness (maximum allowable uncertainty level) in this

example.
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4.2.2 Delay Margin Optimization

One of the most interesting problems in robust control is the delay margin op-

timization, [12]. The goal is to find an optimal controller Co for a given finite

dimensional plant Po, such that the feedback system (Co, P ) is stable for all

P (s) = Po(s)e
−τs where τ is uncertain in [0 , h), with the maximal delay h > 0.

The objective of the delay margin optimization is to design Co solving this prob-

lem for the maximal allowable h. When Po has low number of poles and zeros

in C+ an analytical expression can be found for an upper bound on the maximal

allowable h, see [37]. A solution of this problem for a general Po can be found as
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Table 4.2: Steady state error and maximum allowable uncertainty as nf increases.

nf 3 5 8 10

e99−100 1.40×10−2 0.50×10−2 0.24×10−2 0.19×10−2

K 1.14×10−3 0.93×10−3 0.38×10−3 0.24×10−3

follows:

(C,P ) is stable if

• (C,Po) is stable

• ‖WhTo‖∞ ≤ 1

where Wh(s) is an upper bound on the plant uncertainty∣∣∣∣ P (jω)

Po(jω)
− 1

∣∣∣∣ = |e−jωτ − 1| ≤ Wh(jω)

The parametrization of all stabilizing controllers for a given nominal plan Po

is well known in the literature and given as

C =
X +DpQ

Y −NpQ

where Q ∈ H∞ is a free parameter and Po = Np/Dp can be written where both

Np, Dp ∈ H∞ and mutually coprime. X ∈ H∞ and Y ∈ H∞ are calculated from

Bézout identity (i.e. XNp + Y Dp = 1).

If the stabilizing controller model is plugged in second item of the robust

control problem, the following result can be obtained

‖WhTo‖∞ = ‖WhNpX +WhNpDpQ‖∞ ≤ 1

where To = PoCSo and So = (1 + PoC)−1. This is identical to model match-

ing problem which was explained in Section 2.7.1 with the matching data

T1 = WhNpoX and T2 = WhNpoDp where Np = NpiNpo is an inner-outer fac-

torization of the transfer function Np. Once an interpolating transfer function
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F = WhNpoX + WhNpoDpQ is calculated by solving the NPIP, it is an easy

exercise to calculate Co.

Let pi be the poles of Po in C+, i.e. unstable zeros of T2. Then, for a given

h, a feasible Co can be found if one can find a transfer function F ∈ H∞, such

that ‖F‖∞ < 1 and F (pi) = Wh(pi)/Npi(pi) for all C+ poles Po, where Wh(s) is

an outer function such that [12]

|Wh(jω)| =

{
2 sin(ωh/2) ω ∈ [0, π/h)

2 ω ≥ π/h .

Clearly, the above problem can be solved using the optimal NPIP. The difficulty

in this formulation is the construction of Wh(s) which corresponds to the tight

bound given above. For this reason, approximations are used: W̃h(s), such that

|W̃h(jω)| ≥ |Wh(jω)|, for all ω, [12]. More precisely, if Fopt(s) is the optimal

interpolant, then the optimal controller is

Copt(s) =
Fopt(s)Npi(s)

Po(s) ( W̃h(s)− Fopt(s)Npi(s) )
.

Here we use Matlab’s built-in outer function construction tool to derive a

bounding weight for h = 1:

W̃h(s) =
(2 + δ)(s+ ε)(s+ 2.5)

s2 + (2 +
√

3)s+ 5 + 2δ
. (4.12)

with δ = 0.028 and ε = 2×10−6. This gives a maximum error bound of 4%, more

precisely,

|Wh(jω)| ≤ |W̃h(jω)| ≤ 1.04 |Wh(jω)| ω ≥ 10−5,

|Wh(jω)| ≤ |W̃h(jω)| ≤ 1.04× 10−5 ω < 10−5.

So, the conservatism introduced by this second order approximate bound is rela-

tively low. Next, we illustrate this point with a numerical example. Let us now

consider the following family of plants, with poles in C+ as follows:

PN(s) = Go(s)
N∏
i=1

s+ pi
s− pi

with N = 3, 5, 7, and Go(s) is an arbitrary outer function with no poles or zeros

on the Im-axis, and

p1 = 0.3 κ,
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p2,3 = (0.15± j 0.15) κ,

p4,5 = (0.25± j 0.35) κ,

p6,7 = (0.05± j 0.01) κ,

where κ > 0 is a scaling factor on the magnitude of the unstable poles.

We investigate the largest allowable κ > 0 such that the delay margin is greater

or equal to h = 1. From the NPIP, it is computed that the largest allowable κ

which makes γopt < 1 is equal to 1.7725, 0.9176, and 0.8473 for P3, P5 and P7,

respectively. The corresponding controllers lead to

‖WhTN‖∞ ≤ γopt/1.04 =: γ̃,

where TN = PNCopt(1 + PNCopt)
−1. Since γopt ↗ 1 we have that γ̃ = 0.96

which means that there is still some room to increase κ, until the condition

‖WhTN‖∞ < 1 is violated.

In this problem, κ can be seen as a frequency scaling factor: in other words,

for an arbitrary h > 0 and h 6= 1, we may define ŝ = hs, i.e. s = ŝ/h, then PN

has poles in the ŝ-plane at pih. So, with κ = h we can solve the original delay

margin optimization problem. Thus, the weight (4.12) can be used universally

for any delay value h, by scaling the poles. In particular, when Po contains only

one pole in C+, a lower bound for the largest allowable (ph) can be calculated

using the coefficients of W̃h as the largest (ph) which satisfies

(2 + δ)((ph) + ε)((ph) + 2.5)

(ph)2 + (2 +
√

3)(ph) + 5 + 2δ
< 1

where δ = 0.028 and ε = 2 × 10−6. The above inequality is satisfied for all

ph ∈ [0 , 1.66), i.e. a lower bound of the maximum allowable (ph) is found to

be 1.66. This result is consistent with [37], where the achievable delay margin

is found as (ph) = 2. With a higher order W̃h, it is possible to obtain (tighter)

lower bounds closer to 2.0, [46].
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4.2.3 Robust Stabilization of Time Delay Systems

Let us now consider a retarded time delay system

P (s) =
1

s+ 1 + 4e−hos
ho = 2.7 sec.

This plant has four poles in C+ denoted as p1 = p̄2, p3 = p̄4, where

p1 ≈ 0.3327 + j0.9367 p3 ≈ 0.0801 + j3.0355 .

The locations of these poles are computed using QPmR.m (alternatively, one may

compute these using YALTA or DDE-BIFTOOL), see [2, 17, 56]. We consider un-

certainty in the delay by replacing ho with h ∈ [2.7 2.74], and let P∆(s) denote

the uncertain transfer function obtained by taking any value of h in the given

interval. It can be verified, again using the above mentioned software tools, that

P∆(s) has four poles in C+. The locations of the dominant poles for h = 2.7 and

h = 2.74 are shown in Figure 4.19.

Figure 4.19: Location of the poles of P for different values of delay h = {2.7, 2.74}
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An upper bound for |P (jω)− P∆(jω)| can be computed as |Wa(jω)| where

Wa(s) =
2.0152 (s+ 2007)(s+ 5.162)(s+ 2.646)(s+ 0.009832)

104 (s2 + 0.3569s+ 7.29)(s2 + 0.3391s+ 28.16)
.

Now define a co-prime factorization P (s) = N(s)/D(s) where

D(s) =
4∏

k=1

s− pk
s+ pk

and N(s) = P (s)D(s) .

A robustly stabilizing controller can be found for this system if a function F ∈ H∞
can be found such that ‖F‖∞ < 1 and F (pi) = Wa(pi)/N(pi), see [16]. Applying

the optimal interpolation method given above the following transfer function is

obtained as the optimal solution:

Fopt(s) = 0.98528
(s− 1.072)(s2 − 0.4351s+ 0.9697)

(s+ 1.072)(s2 + 0.4351s+ 0.9697)
.

Since ‖Fopt‖∞ = 0.98528 < 1, it can be deduced that a robustly stabilizing

controller can be found.

The resulting optimal controller can be written as

Copt =
R

1− PR
where R =

DFopt
W

.

The closed loop transfer functions are

S = (1 + PCo)
−1 = (1−NFopt/W ) CS = DFopt/W

PS = N
1−NFopt/W

D
T = 1− S = NFopt/W .

Note that PS ∈ H∞ due to the interpolation conditions Fopt(pi) = Wa(pi)/N(pi).

In the above approach, when the maximal delay increases to 2.75 sec, with a

similar 4th order weight we find γopt > 1, hence, a robustly stabilizing controller

cannot be computed. On the other hand, with an infinite dimensional weight it

may be possible to get γopt < 1 for maximal delay values as high as 3.0 sec.

4.3 Discussions

An alternative solution method is proposed for computing the optimal

Nevanlinna-Pick interpolant when the problem data consists of distinct points
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in the right half plane. The optimal interpolant is given in a direct manner

without resorting to transformations or approximations of suboptimal solutions.

Three examples from robust control problems are represented. In the first

example, two different nominal plants are introduced and robust repetitive control

problem is solved for each nominal plant. Time domain performances for these

nominal plants (a clue for internal stability) and for 6 different perturbed plants

(a clue for robust stability) are illustrated. Finally, effects of time delay h, amount

of shift ε and number of modes nf on the closed loop performance are discussed.

In the second example, a delay margin optimization problem is considered and

a solution method is proposed through the optimal solution of NPIP. In the last

example, robust control of infinite dimensional systems is discussed.
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Chapter 5

Bounded Unit Interpolation in

H∞

This section studies the solution of Problem 5 which is closely related to strong

stabilization and simultaneous stabilization problems in feedback control theory,

see [1], [4], [26], [59], [60] and [73]. In [30], the bounded unit interpolation problem

is defined and additionally the close relation between this problem and sensitivity

shaping or robust stabilization by a stable controller is discussed.

This section aims to find a sufficient condition for the finite dimensional case

and to derive an algorithm for the desired interpolating function. The conser-

vatism of the proposed method is also compared with the infinite dimensional

case, as well.

The rest of the section is organized as follows: Section 5.1 proposes an inter-

polation method to solve Problem 5 by modifying the method defined in [16] to

handle the norm bound. The main disadvantage of this method is being applica-

ble only to real interpolation data. Section 5.2 proposes a different interpolation

scheme to solve Problem 5 by making use of the optimal Nevanlinna-Pick prob-

lem solution method. Section 5.2.1 is the novel contribution of this chapter as

it explains the method to generate bounded unit interpolating function having a
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predetermined form if the necessary conditions are satisfied. At the end of the

section, an algorithm is provided as a brief summary of the proposed method for

practical purposes. Two simple interpolation problems from literature are also

revisited in this section to illustrate the performance comparison of the proposed

method. Four different illustrative examples from strong stabilization literature

are revisited and solved by the proposed method in Section 5.2.2. Finally, Section

5.3 concludes by some discussion and possible future studies.

5.1 Bounded Unit Interpolating Function for

Real Data

Publication Notice: The materials of this section are at least partially covered in the publication

[65] which was published by the author and his advisor during the study time of this thesis

dissertation.

5.1.1 Solution Through Modified Unit Interpolation

In this section, we try to make use of the method proposed by [16] in order

to find a norm constrained function to solve the mNPIP defined in Chapter 2.

Consider Problem 5 with ρ = 1. Note that this problem is equivalent to solve

Problem 3 and find a solution U satisfying ‖U‖∞ < 1. We briefly summarized

the solution method of [16] to Problem 3 in Section 2.7.2. We noted that this

constructive solution strategy has two parameters, li values and the pole locations

of Hi functions, to shape the frequency response of the interpolation function. A

solution for Problem 5 can be found by the method summarized in Algorithm 2.

61



Algorithm 2 Proposed Algorithm to solve Problem 5

1: Interpolation Data: (αi, βi), i ∈ {1, . . . , n}
2: Define r = (r1, ..., rn−1) to be the relative pole location for the corresponding
αi within each Hi(s) =

∏i
j=1

s−αj
s+rj ᾱj

which will be a part of the interpolation

operation. (i.e. r = (1, ..., 1) is the case called as fixed pole location)
3: Define lmax to be the maximum allowable relative degree for the interpolating

functions Ui.
4: Let U1(s) = β1

5: for k = 2 : n do
6: lk = 1
7: while (lk < lmax) do
8: Uk = (1 + ckHk)

lkUk−1

9: Find ck from Uk(αk) = βk
10: if ((‖Uk‖∞ < 1) and (ck < 1/‖Hk‖∞)) then
11: Break while
12: else
13: lk = lk + 1
14: end if
15: end while
16: end for
17: U = Un
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5.1.2 An Illustrative Example

In [59] the authors have studied on a numerical example and derived upper and

lower bounds for the multiplicative uncertainty under which a stable controller

can be generated. The example is formed by the plant

P (s) =
(s− α)(s− 4e−s + 1)

(s− 10)(s− 15)(2e−s + 1)
(5.1)

where the factorization is in the form

Mn(s) :=
(s− α)(s− p)
(s+ α)(s+ p)

Md(s) :=
(s− 10)(s− 15)(2e−s + 1)
(s+ 10)(s+ 15)(e−s + 2)

No(s) :=
(s+ α)(s+ p)(s− 4e−s + 1)

(s− p)(s+ 10)(s+ 15)(e−s + 2)

(5.2)

and C+ roots of the quasi-polynomials in the numerator and denominator can be

calculated by using qpmr or Yalta packages. ([2], and [57])

Remark: H∞-stability and stability of such plants are discussed in detail in

[6].

The problem is to find a stable controller to robustly stabilize the set of un-

certain plants defined by the given uncertainty weight W

W (s) = K s+ 1
s+ 10 , K > 0

2 ≤ α < 10, p = 0.7990
(5.3)

See Figure 2 of [59] for the lower and upper bounds of the largest allowable K

for which the robust and strong stabilization problem is solvable with data given

in (5.3) for the plant (5.1), with α ∈ (2 , 10). In what follows we illustrate the

application of the algorithm proposed in Algorithm 2. Our objective is to find a

finite dimensional G as an alternative to the infinite dimensional one constructed

in [59].
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Figure 5.1: Upper and lower bounds for K using inner H(s) having degree l < 5

5.1.2.1 Outer Interpolation by Inner H(s)

For the given numerical example, Ws and Wn in [59] are generated by Matlab

built-in function fitmagfrd and the interpolation data calculated as β1 =

W (α)/(Md(α)Ws(α)) and β2 = W (p)/(Md(p)Ws(p)) where p = 0.7990 is the

only unstable zero of the infinite dimensional part of the plant and α is the sim-

ple zero of the plant which is used as a parameter to calculate the maximum

allowable multiplicative uncertainty K under which a stable controller can be

generated. Ws is replaced by Wn for upper bound calculations. Since we have 2

interpolation conditions, and both are real, we just need to design one H func-

tion for each interpolation phase. The simplest and immediate choice for H is

(s− α)/(s+ α) for which H becomes inner. With this choice of H the resulting

upper and lower bound calculations are shown in Figure 5.1.

5.1.2.2 Outer Interpolation by Varying Pole Location

After having the unsatisfactory results which are explained in Section 5.1.2.1 and

shown in Figure 5.1, we introduced a new parameter to the problem as the relative
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Figure 5.2: Upper and lower bounds for K using adjustable H(s) having degree
l < 5

pole location of the interstage function H. Instead of having

H(s) =
s− α
s+ α

we decided to replace its pole by a factor of r as

H(s) =
s− α
s+ rα

and searching for the optimum r which maximizes the upper and lower bounds

for a fixed α. The results of this choice is shown in the Figure 5.2.

As it is clearly seen when Figure 5.2 and Figure 5.1 are compared, letting pole

location to vary instead of fixing it to make H inner significantly improves both

the upper and lower bound approximations. It is also important to understand

what upper and lower bounds mean in terms of the solution of the mNPIP. In the

formulation derived by [59], lower bound is the bound under which the defined

problem is certainly solvable by the given solution method (i.e. by calculating

an infinite dimensional G). Similarly, upper bound is the bound above which the

defined problem is certainly not solvable by the given solution method. In other

words, for a fixed α in Figure 2 of [59], the optimum multiplicative uncertainty

K under which a stable but infinite dimensional controller can be generated is
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Figure 5.3: Lower bounds for K using adjustable H(s) having degree l ∈
[3, 5, 7, 10]
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Figure 5.4: Upper bounds for K using adjustable H(s) having degree l ∈
[3, 5, 7, 10]
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Figure 5.5: The magnitude plots of G(jω) obtained by [59] and by the proposed
algorithm, using l = 5, when α = 2.
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Figure 5.6: The magnitude plot of the calculated C(s) functions by both methods
with α = 2, and l = 5 for the proposed method.
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Figure 5.7: Just a zoomed version of the Figure 5.6

between the defined upper and lower bounds. When this explanation is con-

sidered, the expected behavior of the approximated upper and lower bounds is

to approach from above and from below, respectively. Figure 5.2 suggests that

approximate lower bound behaves as expected whereas the approximate upper

bound also approaches from below. To be sure about the approaching direction

of the bounds an extra simulation is computed. In this simulation, the varying

pole location technique described in this section is used for some different val-

ues of l ∈ [3, 5, 7, 10] to visualize the approaching direction of the approximate

bounds calculated by the technique defined by [16]. Figure 5.3 clearly shows that

the approximate lower bound approaches from below to the original lower bound

calculated by [59] as expected. However, as Figure 5.4 depicts the approximate

upper bound also approaches to the original upper bound calculated by [59] from

below. This unexpected behavior seems to grant a better upper bound than the

original bound as a first impression, however, since the problems which are solved

to generate the bounds are a relaxed version of the original problem, an approx-

imate solution for the upper bound calculation is not that much meaningful. On

the contrary, any approximate solution for the lower bound which stays strictly

below the original bound is a suboptimal solution to the original problem. We

make use of this fact to generate a low order interpolation function G for the case

when α = 2, l = 5, K = 0.4117, r = 0.2046 as given in (5.4) and the controller
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is given by (5.5). The comparison of the controller and G function designed by

[59] and designed by the newly proposed method are given in Figures 5.5, 5.6,

and 5.7. It is clear from (5.4) that the resulting finite dimensional G is outer, i.e.

both G, G−1 ∈ H∞. The interpolation data that is required for the given value

of K = 0.4117 is calculated by β1,2 = W (z1,2)/Md(z1,2)Ws(z1,2) for z1 = α = 2

and z2 = p = 0.7990 that turn out to be (αi, βi) = {(0.7990, 0.1275), (2, 0.3955)}.
It is possible to show that G(0.7990) = 0.1275 and G(2) = 0.3955 by using (5.4).

As a final remark, Figure 5.5 shows that ‖G‖∞ ≤ 1. As a result, this G function

is a solution to the mNPIP.

G(s) =
(s+ 0.001147)5

(s+ 0.4091)5
(5.4)

C(s) =
W (s)−Md(s)Ws(s)G(s)

Mn(s)N0(s)Ws(s)G(s)
(5.5)
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5.2 Bounded Unit Interpolation

Publication Notice: The materials of this section are at least partially covered in the publication

[70] which was published by the author and his advisor during the study time of this thesis

dissertation.

5.2.1 Solution Through Optimal Nevanlinna-Pick Inter-

polant

In this section we consider a form of F (s) given as

F (s) = [F̂ (s)]n (5.6)

where F̂ (s) = G(s)+1
G(s)+ρ

with ρ ∈ R and G ∈ H∞.

Proposition 1. F̂ defined by (5.6) is a unit function in H∞, i.e. F̂ ∈ H∞ and

F̂−1 ∈ H∞, if ρ > 1, G ∈ H∞ with ‖G‖∞ < 1. Moreover, under these conditions,

we have ‖F̂‖∞ < 1.

Proof. The fact that F̂ is a unit in H∞ comes from the small gain theorem. In

order to prove that ‖F̂‖∞ < 1, let us follow the definition of the norm

‖F̂ (s)‖∞ = sup
ω
|F̂ (jω)| = sup

ω

∣∣∣∣G(jω) + 1

G(jω) + ρ

∣∣∣∣ . (5.7)

Using (5.7) we can rewrite the statement ‖F̂‖∞ < 1 as

sup
ω

∣∣∣∣x(ω) + jy(ω) + 1

x(ω) + jy(ω) + ρ

∣∣∣∣ < 1←→ (x(ω) + 1)2 + y2(ω)

(x(ω) + ρ)2 + y2(ω)
< 1, ∀ω (5.8)

where G(jω) = x(ω) + jy(ω), and x(ω), y(ω) ∈ R for all ω. By simple algebra

and assuming ρ = 1 + ε for some ε > 0, we need to prove

2ε(x(ω) + 1) + ε2 > 0, ∀ω. (5.9)

Note that the condition

‖G(s)‖∞ = sup
ω
|G(jω)| = sup

ω

√
x2(ω) + y2(ω) < 1 (5.10)
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implies that |x(ω)| < 1 for all ω. Putting together ε > 0 and (x(ω) + 1) > 0 for

all ω, (5.9) is proven.

Proposition 2. If F̂ satisfies conditions F, F−1 ∈ H∞ and ‖F‖∞ < 1, then these

conditions also hold for any positive integer power of F̂ , i.e. for F = F̂ n for some

positive integer n.

Proof. The case for conditions F, F−1 ∈ H∞ is straight forward since F has

same zeros and poles as F̂ with multiplicity n. For ‖F‖∞ < 1, we can rewrite

F̂ (jω) = r(ω)ejθ(ω) and F (jω) = rn(ω)ejnθ(ω) where r(ω) ∈ R and θ(ω) ∈ R for

all ω. With this interpretation

‖F̂‖∞ = sup
ω
|F̂ (jω)| = sup

ω
|r(ω)| < 1 (5.11)

implies that |r(ω)| < 1 for all ω. Hence, we can conclude that

‖F‖∞ = sup
ω
|F (jω)| = sup

ω
|rn(ω)| = sup

ω
|r(ω)|n < 1 (5.12)

since |r(ω)| < 1 for all ω and n > 0.

Let us consider the arguments in [42] for F, F−1 ∈ H∞ and F (αi) = βi for

all i. Given interpolation data (αi, βi) for i ∈ {1, 2, . . . , n} as in Problem 3, a

unit interpolating function of degree kn0 exists for a positive integer n0, if the

following Nevanlinna-Pick matrix

Pij =

[
β

1/n
i + β̄j

1/n

αi + ᾱj

]
i,j∈{0,1,...,k}

(5.13)

is positive definite for n = n0. As explained in [42], n-th root is calculated in

such a way that if βi ∈ B and βj ∈ B are conjugate pairs, so are β
1/n
i and β

1/n
j .

All possible combinations of n-th roots of complex interpolation pairs should be

checked to decide if P is positive definite. It is proven in [42] that every unit

interpolation problem has a solution in the integer interval n0 ≤ n < ∞ if the

problem is feasible for some integer n0 > 0. Note that this condition is only

for existence of an interpolating unit, however, it says nothing about the infinity

norm (‖F‖∞) of the interpolating function. The following proposition defines a

sufficient condition for the solution of Problem 5.
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Proposition 3. In order to solve Problem 5, let R be a Pick matrix defined as

Rij =

[
1− γiγ̄j
αi + ᾱj

]
i,j∈{0,1,...,k}

(5.14)

where

γi =
ρβ

1/n
i − 1

1− β1/n
i

(5.15)

for i ∈ {0, 1, . . . , k}. If R is positive definite for some ρ > 1 and n = n0, where

n0 is a positive integer, then a real rational bounded unit interpolating function

F with degree kn0 exists.

Proof. To prove this proposition, let us first note that if R is positive definite

for some integer n = n0 > 0 then it is possible to find a rational function G ∈
H∞ of order k which satisfies the interpolation conditions G(αi) = γi for all

i ∈ {0, 1, . . . , k} and ‖G‖∞ < 1. For the calculation of optimal G(s), readers are

directed to [68]. By using this G, we can write F̂ = (G + 1)/(G + ρ) as in (5.6)

and this F̂ satisfies F̂ (αi) = β
1/n0

i for all i ∈ {0, 1, . . . , k}. Note that F̂ has degree

k and it satisfies F, F−1 ∈ H∞ and ‖F‖∞ < 1 by Proposition 1. As a final step,

if we write F = F̂ n0 then it satisfies F (αi) = βi for all i ∈ {0, 1, . . . , k}. F also

satisfies Proposition 2, hence F is a solution of Problem 5 with degree kn0.

It is important to note that, having R positive definite is a sufficient condition

to have a solution for real rational bounded unit interpolation problem provided

that the necessary conditions (parity interlacing property and |βi| < 1 for all

i ∈ {0, 1, . . . , k}) are satisfied.

Proposition 3 has two parameters, ρ and n, in order to satisfy R being positive

definite. In general, we need to conduct a search on ρ vs. n plane to find the

region on which R is positive definite. However, in this study, we want to find the

lowest possible degree interpolating function, i.e. minimum possible n. In order

to achieve this, throughout this chapter, we will first find the smallest possible n

for which R can be made positive definite. But first, let us figure out the effect

of ρ = 1 + ε on ‖F̂‖∞.
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Proposition 4. If ε = ε0 solves Problem 5 for some positive integer n = n0 then

there exists ε1 > ε0 for which the problem is feasible.

Proof. Let us assume that R(0) which is defined by (5.14) for ρ = 1+ε0 is positive

definite (i.e. R(0) > φI where I is the identity matrix of proper size and φ > 0).

Write R(1) using (5.14) for ρ = 1 + ε1 as

R
(1)
ij =

[
1− (ε0wi − 1 + δwi)(ε0w̄j − 1 + δw̄j)

αi + ᾱj

]
= R

(0)
ij + δ

[
wi + w̄j − 2ε0wiw̄j

αi + ᾱj

]
− δ2

[
wiw̄j
αi + ᾱj

]
= R

(0)
ij + δ∆

(1)
ij + δ2∆

(2)
ij

R(1) > I(φ− δ∆− δ2∆) (5.16)

where

ε1 = ε0 + δ, δ > 0, wi =
β

1/n0

i

1− β1/n0

i

∆ = max(‖∆(1)‖∞, ‖∆(2)‖∞).

For δ = 0, we know that φ > 0, hence R(1) = R(0) and R(0) is positive definite

by assumption. As δ increases right hand side of (5.16) decreases, however, R(1)

is positive definite until it reaches zero. Assume that δf > 0 is the point which

makes right hand side of (5.16) zero. Hence, it is proven that the problem is

feasible when δ ∈ [0, δf )→ ε ∈ [ε0, ε1) where ε1 = ε0 + δf > ε0.

Proposition 5. If Problem 5 is feasible for some n = n0 and ε = ε0, then it is

possible to decrease the norm of the interpolating function by some ε1 > ε0 if ε1

also solves the interpolation problem.

Proof. The result is obtained directly from the proofs of Propositions 1 and 4.

Putting all these together, we can divide the problem into two parts:
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• Fix ε as some sufficiently small number and search linearly over n and find

smallest possible n0 which makes R in (5.14) positive definite

• Using the idea in Proposition 5, fix n = n0 this time and conduct a search

on ε to find largest possible ε for which R in (5.14) stays positive definite

This interpretation of the solution leads us to find the solution to Problem 5 by

the proposed method with the smallest possible degree. The proposed method is

summarized in Algorithm 3 in detail.

Algorithm 3 Bounded Unit Interpolation

1: Interpolation Data: (αi, βi), i ∈ {0, 1, . . . , k}
2: Maximum Degree Desired: nmax
3: Continue if P.I.P. is satisfied, jump to Step 19 if not.
4: Continue if all |βi| < 1 for all i ∈ {0, 1, . . . , k}, jump to Step 19 if not.
5: ρ1 = 1 + ε where ε = 10−3.
6: M = floor(nmax/k)
7: n = 0
8: while n < M do
9: n = n+ 1
10: Calculate γi for all i ∈ {0, 1, . . . , k} using ρ1 and n as in (5.15)
11: if R in (5.14) is positive definite then
12: Set n0 = n
13: Set ρ2 as a big number. (in most practical cases ρ2 = 100 is sufficiently

large)
14: Binary search on ρ ∈ [ρ1, ρ2] by using n0 to find the range over which R

is positive definite → (ρlow, ρhigh)
15: Use [68] to calculate the optimal interpolating function for given ρhigh

and n0.
16: return
17: end if
18: end while
19: No feasible interpolating function exists, exit

In order to understand the conservatism introduced by this sufficient condition,

we can compare it to some other sufficient conditions in the literature. In [1],

a method to generate bounded unit interpolating functions is introduced. The

interpolation problem of

(α, β) = {(1, 0.29984), (2, 0.130588)}
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is solved by a 5th order unit interpolating function having an infinity norm of

0.8473. By the method proposed in this chapter, it is possible to solve the same

problem with a 3rd order bounded unit function having an infinity norm of 0.9745.

It is important to note that, since the infinity norm of both solutions remain below

1, having a smaller degree is an advantage of the proposed method. A 28th order

unit is designed by the same method in [4] to solve the interpolation problem

with the data

(α, β) = {(1, 0.1), (3, 0.2), (5, 0.15)}.

It is indeed possible to solve this problem with an 18th order unit by using the

method of this chapter.

5.2.2 Examples

The test cases of the proposed algorithm and the conservatism caused by the

proposed sufficient condition will be explained by four different examples.

5.2.2.1 Example 1

Let us revisit the example in [59] with a slight modification. The plant definition

and co-prime factorization of the plant is given as

P (s) =
(s− α)(s+ 1)(s− 4e−s + 1)

(s− 10)(s− 15)(e−s + 0.2s+ 0.1)

Mn(s) =
(s− α)(s− p)
(s+ α)(s+ p)

Md(s) =
(s− 10)(s− 15)(s2 − 1.4446s+ 4.9233)

(s+ 10)(s+ 15)(s2 + 1.4446s+ 4.9233)

N0(s) = P (s)Md(s)/Mn(s)

(5.17)
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where p = 0.7990 is the only zero of the term (s − 4e−s + 1) in C+. Note that

N0 is outer (i.e. N0, 1/N0 ∈ H∞). Let us further assume that we are given a

robustness weight as

W (s) = K
s+ 1

s+ 10

(i.e. ‖WT‖∞ < 1 for T = PC/(1 + PC) is required for robust stability) which

satisfy ‖W‖∞ < 1 when K < 1 and there exists a finite dimensional outer

approximation Ws such that |Ws(jω)| < 1−|W (jω)| for all ω. It was proven that

for such a plant P , a robustly stabilizing stable controller can be designed if it is

possible to find a bounded unit interpolating function U such that

U(zi) =
W (zi)

Md(zi)Ws(zi)

where z1 = α and z2 = p are the only simple zeros of the plant in C+, see [59]

for details. The maximum allowable uncertainty bound (i.e. Kmax) calculated

with the method defined in [59] for each value of α is given in Figure 5.8. Note

that this bound shows the maximum value by an infinite dimensional bounded

interpolating function U .

2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

unstable zero (α)

K
 (

m
u

lt
. u

n
ce

rt
ai

n
ty

)

Proposed Method

 

 

Infinite Dimensional

5th order

3rd order

Figure 5.8: Maximum allowable multiplicative uncertainty with respect to real
part of the unstable zeros, see [59] for details

We should also note that [65] attempts to find finite dimensional bounded

interpolating functions for this problem. The disadvantage of the method of [65]

is that it only applies to real interpolation data. Otherwise, it gives a good
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approximation of the maximum allowable uncertainty bound with a 5th order U

for each α. Figure 5.8 also shows the maximum allowable uncertainty bound

calculated by a 3rd and 5th order U which is designed by the proposed method of

this chapter. It is obvious that the results of this method are similar to the results

of [65] and in addition the newly proposed method is also capable of handling

complex interpolation data. This is a superior feature of the proposed method.

It is also important to note that, the proposed method approximates the infinite

dimensional behaviour better as the order of the interpolating function increases.

This is a natural and expected feature of an interpolation method.

5.2.2.2 Example 2

Let us consider a different example as shown below.

P (s) =
(s− 100)(s− 1− jω)(s− 1 + jω)

(s− 10)(s+ 1)(s+ 10)

Mn(s) =
(s− 100)(s− 1− jω)(s− 1 + jω)

(s+ 100)(s+ 1− jω)(s+ 1 + jω)

Md(s) =
(s− 10)

(s+ 10)

N0(s) = P (s)Md(s)/Mn(s)

(5.18)

Note that P has two complex and one real zeros in C+. Because of complex ze-

ros, the method of [65] is not applicable. Figure 5.9 shows the maximum allowable

uncertainty bound for each value of ω using an infinite dimensional interpolator,

a 4th order interpolator and an 8th order interpolator. Controller design method

and robustness weight W are same as Example 1. As expected, maximum allow-

able uncertainty bound approaches the infinite dimensional interpolator case as

the degree of interpolator increases.
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5.2.2.3 Example 3

This example is taken from [73], where a method to design finite dimensional sta-

ble controllers, which have same degree as the plant, is introduced. The example

is given to illustrate the MIMO case of the proposed method. In [73], a MIMO

plant P is defined as

P =

[
(s+ 1)(s− 2− jθ)(s− 2 + jθ)

(s+ 2 + j)(s+ 2− j)(s− 1)(s− 5)
,

(s+ 5)(s− 2− jθ)(s− 2 + jθ)

(s+ 2 + j)(s+ 2− j)(s− 1)(s− 5)

]
. (5.19)

It was shown that, as θ decreases, it becomes more difficult to find a stable

controller by the method of [73] and indeed, for θ < 12 the method becomes

numerically fragile.

Let us assume that we rewrite the plant P as

P = [P1, P2]

and define

P0 =
(s+ 3)(s− 2− jθ)(s− 2 + jθ)

(s+ 2 + j)(s+ 2− j)(s− 1)(s− 5)
. (5.20)
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where P1 = P0(1 +W1) and P2 = P0(1 +W2). Then we can also define

W =
2(10−5s+ 1)

s+ 3

where

|W (jω)| > |W1(jω)| = |W2(jω)|, for all ω

is satisfied as shown in Figure 5.10.

10
−10

10
−5

10
0

10
5

10
10

−200

−150

−100

−50

0

Frequency (rad/s)

M
ag

ni
tu

de
 (

dB
)

Bode Magnitude Plot

 

 

W
1

W
2

W

Figure 5.10: Bode magnitude plots of W1, W2, W

Note that, if it is possible to find a stable controller C, which internally sta-

bilizes P0 and satisfies ‖WT‖∞ < 1 for T = P0C/(1 + P0C), then this C will

strongly stabilize P . Since ‖W‖∞ < 1 as in Figure 5.10, then we can apply the

ideas in [59] to find finite dimensional stable C. An important observation is

that, since P0 is strictly proper, the controller will be improper. However, it is

always possible to adjust an improper controller to make it bi-proper without

losing stability, see [60] for details.

Figure 5.11 shows the order of the bounded unit interpolating function which

was designed by the proposed method of this chapter with respect to θ (i.e.

imaginary part of the zeros of P0 in C+). As the discussions in [73] and [51], the

degree of the unit interpolating function increases as the P.I.P. comes closer to

violation (i.e. as θ decreases).
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Figure 5.11: Degree of the interpolator with respect to imaginary part of the
unstable zeros, see [73] for details

As seen from Figure 5.11, the proposed method of this chapter is capable of

finding a stable controller for some relatively small values of θ (i.e. θ < 12),

where the original study was not able to give a numerically stable solution strat-

egy. However, the degree of the controller becomes impractically high as θ → 0.

The biggest disadvantage of the proposed method is that it can find a 4th or-

der interpolating function at its best, which yields a possibly 6th order controller

where the method of [73] can find a 4th order controller. Some further study can

be conducted to find conditions which will focus on the degree of the resulting

controller.

5.2.2.4 Example 4

In [26], a method to design stable controllers for sensitivity minimization is pro-

posed by bounded unit interpolation. Let us revisit an example from that paper.

We need to find a real, rational transfer function F such that F (si) = wi/γ for

i = 1, 2 where F is also a bounded unit function, s1,2 = 0.3125 ± 0.8548j and

w1,2 = 0.79 ∓ 0.42j. [26] have proposed a search algorithm to find F and they

showed that for γ > 1.08 it is always possible to find a third order F satisfying

all conditions.
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By the proposed method of this chapter, as shown in Figure 5.12, it is possible

to find some high degree F for γ > 1.088. Besides this disadvantage, for γ > 1.124

the proposed method of this chapter is capable of finding F of degree three or

less. This might be an advantage to design low order controllers despite some

performance degradation, i.e. for larger γ.
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Figure 5.12: Degree of the interpolating function with respect to norm of the
weighted sensitivity, see [26] for details

5.3 Discussions

An alternative approach to solve finite dimensional, real, rational, bounded unit

interpolation problem is proposed. The proposed approach starts by a predeter-

mined form for the interpolating function given by (5.6) and converts the bounded

unit interpolation problem to the classical Nevanlinna-Pick interpolation problem

by utilizing the given form. Sufficient conditions are derived using the associated

Pick matrix of the transformed problem on top of the well known necessary con-

ditions for bounded unit interpolation in H∞ (e.g. P.I.P.).

The performance of the proposed approach is compared to another method

from literature over two different examples; a two point and a three point bounded
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unit interpolation problems. This method from literature addresses exactly the

same problem and it was observed that the proposed method is able to find lower

degree interpolating functions compared to this approach.

The conservatism caused by the proposed method is discussed on four different

strong stabilization problems. Example 1 is a simple modification of the problem

studied in [59]. The same example was also studied in [65] which suggests an

interpolation method to interpolate only real interpolation data. The method of

this chapter performs as good as the method in [65] and additionally it has the

ability to handle complex interpolation data. Example 2 is created in order to

discuss the performance of the proposed method when the complex interpolation

data is involved. It is clear from this example that the proposed method can han-

dle complex interpolation data as well. We can also observe that the proposed

method approximates the performance of the infinite dimensional interpolating

function better as the allowable degree of the final interpolating function in-

creases, as expected. Example 3 and 4 are considered in order to compare the

performance of the proposed method through known examples from strong sta-

bilization literature. The degree of the interpolating function increases rapidly

as the problem data comes closer to violate the necessary condition, i.e. parity

interlacing property, as expected. This behavior conforms to the discussions in

the relevant papers. The proposed method is also able to find a controller in the

infeasible region of [73] with the expanse of the increase in the controller degree.

The proposed method is also capable of finding lower degree controllers than [26]

despite the degradation in H∞ performance.

One main disadvantage of the proposed interpolation algorithm is that it can

find interpolating functions having order at the integer multiples of the number

one less than the number of interpolation points. For some small size problems

(having 2-3 interpolation points) like the examples in this chapter, this is not a

big problem. However, this can be a major disadvantage when the size of the

problem increases. In order to handle this, some future work can be conducted

to find conditions under which F will stay bounded and unit when ρ in (5.6) is a

unit function in H∞ instead of being scalar.
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Chapter 6

Stable and Robust Controller

Synthesis for Unstable Time

Delay Systems via Interpolation

and Approximation

Publication Notice: The materials of this section are at least partially covered in the publication

[69] which was published by the author and his advisor during the study time of this thesis

dissertation.

In this chapter, we study the robust stabilization of single input single output

systems, which have finitely many unstable zeros in the open right half plane, by

stable controllers.

In this chapter, first we concentrate on a simplified case in which we assume

that the time delay system has finitely many unstable poles in the open right

half plane. We propose a method to approximate the infinite dimensional and

invertible part of the system by a finite dimensional transfer function. After that,

using the error associated with this approximation, we introduce a sufficient con-

dition under which it is possible to design a stable controller robustly stabilizing
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the time delay system. We additionally explain how to design the desired stable

and finite dimensional controller when the problem is feasible. In the second

part of the study, we deal with a more complicated case in which the time delay

system has infinitely many unstable poles in the open right half plane. Similar

to first part, by using the approximation error and the approximation itself, we

introduce a sufficient condition under which the problem is feasible and outline

how to design stable and finite dimensional controllers.

The rest of the chapter is organized as follows: Section 6.1 defines the main

problem of this section together with the assumptions. In Section 6.2, we briefly

point out the method defined in [59] for the sake of completeness in addition

to a basic result about the feasibility of the mNPIP. Section 6.3 is about robust

stabilization of time delay systems having finitely many unstable poles in the open

right half plane. Section 6.4 considers the case where the plant has infinitely many

unstable poles. Section 6.5 compares the effectiveness of the method of [59] and

the methods given in Section 6.3 and 6.4 via numerical examples in order to

present the conservatism of the proposed methods. Finally, Section 6.6 concludes

the chapter by some remarks.

6.1 Problem Statement

Following assumption holds throughout the chapter:

Assumption 1. Let us assume that the time delay system P is a ratio of two

quasi polynomials, i.e. P (s) = qn(s)/qd(s) where qn(s) is retarded type with no

direct I/O delay. The denominator quasi polynomial qd(s) can be retarded or

neutral type. Then, in this case, it has been shown that P has finitely many zeros

in C+ and can be written in the form

P =
Mn

Md

No (6.1)

where Mn and Md are inner and they hold zeros and poles of P in C+, respectively.

Readers are directed to [10] and its references for further details on the analysis
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of delay systems of retarded and neutral type. We further assume that qn(s)

and qd(s) are coprime in the sense that they do not have common roots in C+.

Since the plant has finitely many zeros in C+, Mn is a finite dimensional transfer

function. We also assume that the zeros of Mn are distinct and they are denoted

by z1, . . . , zn. Note that No = PMd/Mn is infinite dimensional and outer, for the

sake of simplicity we assume that the relative degree of the plant is zero, in this

case No, N
−1
o ∈ H∞.

Assumption 1 does not declare the number of poles of the plant P in C+. If

qd(s) is retarded type, or neutral type with all the asymptotic chains in the open

left half plane, then P has finitely many poles in C+ (as it will be the case in

Section 4), hence Md is a finite dimensional transfer function and all the infinite

dimensionality of the plant is captured by invertible No. However, if qd(s) is

neutral type with at least one asymptotic root chain in the open right half plane,

then, the plant has infinitely many unstable poles in C+ (as it will be the case in

Section 5), and Md is infinite dimensional.

Let us further assume that P is the nominal model and the actual plant belongs

to a set P(P ) as given in (2.10).

The following assumption about the uncertainty weight W holds throughout

the chapter:

Assumption 2. Uncertainty weight W is a unit in H∞, i.e. W, W−1 ∈ H∞;

moreover, it satisfies ‖W‖∞ < 1.

Now, we can define the main problem as follows:

Problem 6. Find a finite dimensional controller C ∈ H∞ which internally

stabilizes the nominal plant P and satisfies (2.11) under Assumptions 1 and 2.

Problem 6 is called the Robust Stabilization of Infinite Dimensional Plants by

Stable and Finite Dimensional Controllers (RSSFC).
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6.2 Relevant Literature

In [59], a relaxed version of Problem 6 is considered where the controller is allowed

to be infinite dimensional. According to [59], this relaxed problem has a solution

if it is possible to find a function U in H∞ such that

• U,U−1 ∈ H∞

• U(zi) = 1/Md(zi) for i = 1, . . . , n where Mn(zi) = 0

• ‖W−1
s U‖∞ < 1

where Ws is also a unit in H∞ whose frequency response satisfies the following

relation

|Ws(jω)| ≤ 1− |W (jω)|
|W (jω)|

, ∀ω ∈ R. (6.2)

If such U exists than the robustly stabilizing stable controller is given as

C =
1−MdU

MnNoU
. (6.3)

As it is discussed in the previous section, No and possibly Md are the infinite

dimensional parts of the controller. Additionally, design of U may also lead to

infinite dimensional transfer functions as it is described in [27] and [40].

6.3 Solution for the Case of Finitely Many Un-

stable Poles

When the plant has finitely many unstable poles in C+, the only infinite dimen-

sional part of the controller is No. Following design method is based on finite

dimensional approximation of No.

Proposition 1. RSSFC has a solution if there exists a rational transfer function

R such that
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• R,R−1 ∈ H∞

• R(zi) = 1/Md(zi) for all i = 1, . . . , n

• ‖K−1R‖∞ < 1

for some K,K−1 ∈ H∞ satisfying

|K(jω)| ≤ 1− |W (jω)|
|W (jω)|+ |E(jω)|

, ∀ω ∈ R (6.4)

where E = N̂oN
−1
o − 1 is the error introduced by the approximation and N̂o is a

finite dimensional approximation of No.

Proof. Let us consider a finite dimensional controller of the form

C =
1−MdR

MnN̂oR
(6.5)

where N̂o, N̂
−1
o ∈ H∞ is a finite dimensional approximation of No. Note that if it

is possible to find a rational transfer function R ∈ H∞ such that R−1 ∈ H∞ and

R satisfies the following interpolation conditions for zi ∈ C+ and ∀i

R(zi) = 1/Md(zi)

where Mn(zi) = 0 then C ∈ H∞ and Strong Stability condition of RSSFC is

satisfied.

Next, let us derive the conditions under which the internal stability of the

feedback loop is satisfied. To do so, we need to find the conditions which satisfy

S, PS,CS ∈ H∞.

We can write S as

S =
1

1 + PC
=

RMdN̂o

No

(
1 + RMd(N̂o−No)

No

) . (6.6)

Note that, if ‖ER‖∞ < 1 than S ∈ H∞ by small gain theorem where

E =
N̂o −No

No

. (6.7)
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It is also easy to show that the aforementioned condition is sufficient to show

PS, CS ∈ H∞, hence Internal Stability for RSSFC is satisfied.

In order to derive a condition for robust stability, let us first write T as

T =
PC

1 + PC
=

1−RMd

1 +RE
. (6.8)

For robust stability due to multiplicative uncertainty, we need to satisfy (2.11).

Since ‖W‖∞ < 1 then it is sufficient to simplify the condition as

|R(jω)| < 1− |W (jω)|
|W (jω)|+ |E(jω)|

(6.9)

for all ω. Let us assume that there exists an outer function K such that

|K(jω)| ≤ 1− |W (jω)|
|W (jω)|+ |E(jω)|

and K,K−1 ∈ H∞. With this assumption, we can simplify (6.9) to ‖K−1R‖∞ <

1. If this is satisfied than Robust Stability condition of RSSFC is also satisfied.

It is easy to show that ‖K−1R‖∞ < 1 implies ‖ER‖∞ < 1.

6.4 Solution for the Case of Infinitely Many Un-

stable Poles

When the plant has infinitely many unstable poles, Md becomes infinite dimen-

sional, in addition to No. We need to incorporate a finite dimensional approx-

imation of Md into the controller in order to design a finite dimensional one.

Following proposition quantifies the effect of the error of this approximation on

the controller design process when the plant has infinitely many unstable poles

in C+.

Proposition 2. Consider Problem 6 under Assumptions 1 and 2. Additionally

assume that the plant has infinitely many unstable poles, i.e. Md is infinite di-

mensional. RSSFC has a solution if there exists a finite dimensional and rational

transfer function H such that
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• H,H−1 ∈ H∞

• H(zi) = 1/M̂d(zi) for all i = 1, . . . , n

• ‖L−1H‖∞ < 1

for some L,L−1 ∈ H∞ satisfying

|L(jω)| ≤ 1− |W (jω)|
|W (jω)M̂d(jω)|+ |E(jω)|

, ∀ω ∈ R (6.10)

where N̂o and M̂d are finite dimensional approximations of No and Md, respec-

tively. Note that, differently from Proposition 1, E = M̂d−MdN̂oN
−1
o is the error

introduced by the finite dimensional approximations of both Md and No.

Proof. Proof is omitted since it is very similar to the previous case, provided that

the stable controller is taken to be

C =
1− M̂dH

MnN̂oH
. (6.11)

Let us compare (6.2), (6.9) and (6.10): (6.2) is the bound on the interpolating

unit function when the controller is assumed to be infinite dimensional. Note

that (6.9) has an additional term in its denominator which is associated with the

error of the finite dimensional approximation of No. As the approximation error

increases the maximum allowable norm of the interpolating unit decreases, and

the problem becomes harder to solve, as expected. In (6.10), we again observe

the additional error term as the approximation error which is associated with the

finite dimensional approximation of both No and Md. However, additionally the

finite dimensional approximation of Md takes place in the denominator next to the

plant’s uncertainty bound W . As a result of (6.10), we can say that the deviation

of the approximation of Md from being inner is modelled within Proposition 2 as

an extra uncertainty in the plant.
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6.5 Examples

In this section, we compare the methods proposed in this study and the method

proposed in [59] to present the conservatism caused by the finite dimensional ap-

proximation approach. We make use of three different numerical examples. First

two examples are systems with time delay having finitely many unstable poles.

Such plants are suitable to be analysed by the method defined in Proposition 1.

Third one will also be a system with time delay, however, this time the plant has

infinitely many unstable poles and is suitable for Proposition 2.

6.5.1 Example 1

Let us consider the plant P = MnNo/Md, given as

P =
(e−s + 0.1s− 2)(s+ 1)(s− z1)

(e−s + 0.3s+ 0.2)(s− 0.6)(s− 1.5)

Mn =
(s− z1)(s− z2)

(s+ z1)(s+ z2)

Md =
(s− 0.6)(s− 1.5)(s2 − 0.7488s+ 4.3109)

(s+ 0.6)(s+ 1.5)(s2 + 0.7488s+ 4.3109)

No = PMd/Mn

W = K
s+ 1

s+ 10

(6.12)

where K > 0 and z2 ≈ 20 is the only root of the quasi-polynomial (e−s+0.1s−2)

in C+. Figure 6.1 illustrates the maximum allowable uncertainty level K for

which a solution can be found for Problem 1, for the values of z1 between 1.5 and

7. Note that, when z1 < 1.5, the plant P does not satisfy PIP, hence it is not

possible to stabilize it by a stable controller. As z1 becomes larger than 1.5, the

plant relaxes (i.e. it becomes far from violating PIP) and according to [51], it

becomes easier to find a finite dimensional and stable controller to stabilize the

plant. This effect is clear in Figure 6.1 as the maximum allowable uncertainty

bound (i.e. K) under which RSSFC is feasible gets larger as z1 gets larger for
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all methods. Figure 6.1 also shows the effect of the conservatism caused by the

finite dimensional approximation of No. Matlab built-in function pade is used to

approximate No by finite dimensional functions of 13 and 21 degrees and results

in Proposition 1 are used to derive the bounds in Figure 6.1. Throughout this

study, all finite dimensional approximations of each No is conducted via Pade,

however, it is not compulsory to use Pade. Any approximation method can be

used to generate N̂o provided that the resulting transfer function is a unit in H∞.

To satisfy this requirement, each delay element in No is replaced by its Pade

approximation and an approximate right half plane pole-zero cancellation is used

to have a unit approximation in H∞.

2 3 4 5 6 7
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0.6

Infinite Dimensional (Wakaiki et al.)
Finite Dimensional (Prop. 1), App. Ord. 13
Finite Dimensional (Prop. 1), App. Ord. 21

Figure 6.1: Maximum allowable multiplicative uncertainty level with respect to
the location of the unstable zero z1 in Example 1

Figure 6.2 represents an example case where z1 = 7 and the approximation or-

der is 13. In the figure, the pole-zero map of the approximating finite dimensional

transfer function (N̂o) is shown.

6.5.2 Example 2

Let us consider the plant P = MnNo/Md, given as
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Figure 6.2: Pole-zero map of the finite dimensional approximation of N̂o given in
(6.12). Maximum approximation error (max

ω∈R
|No(jω)− N̂o(jω)|) is -14.15 dB.

P =
(e−0.1s + 0.1s− 1.25)(s2 − 2s+ (1 + ω1))

(e−s + 0.3s+ 0.2)(s− 2)(s+ 1)

Mn =
(s− p)(s2 − 2s+ (1 + ω1))

(s+ p)(s2 + 2s+ (1 + ω1))

Md =
(s− 2)(s2 − 0.7488s+ 4.3109)

(s+ 2)(s2 + 0.7488s+ 4.3109)

No = PMd/Mn

W = K
s+ 1

s+ 10

(6.13)

where K > 0 and p ≈ 8.0122 is the only root of the quasi-polynomial (e−0.1s +

0.1s− 1.25) in C+.

Note that, as ω1 → 0, the plant P gets closer to violating PIP since when

ω1 = 0 PIP does not hold because of the pole at 2 staying in between the zeros

at 1 and p. Similar to discussions in Example 1, according to [51], the strong

stabilization problem becomes harder and requires higher degrees of interpolating

functions as the plant comes closer to violate PIP. Because of this phenomena,

problem relaxes and becomes feasible for larger uncertainty levels as ω1 gets larger.
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Figure 6.3: Maximum allowable multiplicative uncertainty level with respect to
the location of the real part of the unstable zero (ω1) in Example 2

As an example, the pole-zero map of the 15th order finite dimensional approx-

imation (N̂o) is given in Figure 6.4 for ω1 = 10.

It is important to note that in Figures 6.1 and 6.3, the multiplicative uncer-

tainty bounds under which RSSFC is feasible (i.e. red and green dotted lines)

are the unattainable upper bounds, i.e. it is not possible to achieve these bounds

by finite dimensional controllers because it is not possible to solve the bounded

unit interpolation problem by finite dimensional interpolating functions at that

level. However, as described in detail in [70], it is always possible to get closer to

these bounds by increasing the order of the finite dimensional unit interpolating

function. These bounds are calculated by utilizing N̂o, the finite dimensional ap-

proximation of No, and than solving the infinite dimensional mNPIP as described

in [27] and [40].

6.5.3 Example 3

Let us consider the infinite dimensional system example from [59] as follows:
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Figure 6.4: Pole-zero map of the finite dimensional approximation of N̂o given in
(6.13). Maximum approximation error (max

ω∈R
|No(jω)− N̂o(jω)|) is -21.69 dB.

P =
(s− 2)(s− 4e−s + 1)

(s− 10)(s− 15)(2e−s + 1)

Mn =
(s− 2)(s− p)
(s+ 2)(s+ p)

Md =
(s− 10)(s− 15)(2e−s + 1)

(s+ 10)(s+ 15)(e−s + 2)

No = PMd/Mn

W = K
s+ 1

s+ 10

(6.14)

where K > 0 and p ≈ 0.799 is the only root of the quasi-polynomial (s−4e−s+1)

in C+. It is shown in [59] that for K < 0.47 it is possible to find an infinite

dimensional and stable controller to robustly stabilize the given plant P in (6.14).

They have additionally designed a controller when K = 0.468.

In this study, we show that it is possible to design finite dimensional and stable

controllers for the same plant in (6.14) when K < 0.375 by using Proposition 2.

Additionally, as an example, we design a controller when K < 0.25. For this

design, approximation of No is also obtained through its Pade approximation as

it was described in prior examples. As it is given in (6.16), we designed a 7th
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order N̂o to approximate No in (6.14) and the pole-zero map of N̂o is depicted in

Figure 6.5.

For the finite dimensional approximation of Md, finitely many unstable zeros

are utilized among its infinitely many zeros. Let us say that the zeros of Md

in C+ are zk = 0.6931 + j2πk and their complex conjugates (i.e. z̄k) for all

k ∈ {1, 3, 5, . . . } in addition to 10 and 15. In the light of this parameterization,

we can generate N th dimensional finite approximation of Md for even N > 2 as

follows

M̂d =
(s− 10)(s− 15)

(s+ 10)(s+ 15)

N−2
2∏

k=1

(s− zk)(s− z̄k)
(s+ zk)(s+ z̄k)

. (6.15)

N̂o(s) =
(s+ 30.01)(s+ 2)(s+ 0.7989)(s2 + 0.423s+ 23.81)(s2 + 5.362s+ 158.9)

(s+ 86.47)(s+ 15)(s+ 10)(s2 + 1.386s+ 10.35)(s2 + 2.144s+ 101.4)
(6.16)

L(s) =
0.25787(s+ 86.95)(s2 + 2.475s+ 110.3)

(s+ 0.9844)(s2 + 12.09s+ 77.58)
, H(s) =

0.98787(s+ 0.0002641)10

(s+ 0.2032)10
L(s)

(6.17)

We used an approximation of Md where N = 26 in (6.15) for the numerical

example in (6.14). All other elements of the designed controller are given numer-

ically in (6.17). Note that L(s) in (6.17) is generated by Matlab built-in function

fitmagfrd and the interpolating part of H(s) is calculated by the method that

is proposed in [70]. When all the elements are combined to form the controller

in (6.11), a 44th order finite dimensional and stable controller is obtained which

robustly stabilizes the infinite dimensional plant given in (6.14) for K < 0.25.

6.6 Discussions

We considered the robust stabilization of a class of unstable time delay systems

by finite dimensional and stable controllers. We divide the problem into two

subclasses and derived similar sufficient conditions under which the associated
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Figure 6.5: Pole-zero map of the finite dimensional approximation of N̂o given in
(6.14). Maximum approximation error (max

ω∈R
|No(jω)− N̂o(jω)|) is -3.52 dB.

problems are feasible. For the subclass of systems having finitely many unstable

poles in C+, we propose a method to reduce the robust and strong stabilization

problem to a mNPIP through the finite dimensional approximation of the infinite

dimensional part of the plant, which is both stable and invertible. With this

interpretation and via numerical examples, we show that as the dimension of the

approximation increases, and as the error of the approximation decreases, it is

possible to solve the problem for larger multiplicative uncertainty levels. We also

compare the results of the proposed methods to the results of the method of [59]

and concluded that we can design finite dimensional and stable controllers for

satisfactory levels of uncertainty.

For the second subclass of systems having infinitely many unstable poles in

C+, we propose another finite dimensional approximation scheme to reduce the

original problem to a mNPIP. Since the infinite dimensional part of the plant

is not invertible this time, we divide the approximation process into two parts.

We approximate the inner part of the infinite dimensional plant by finitely many

unstable roots. The approximation of the invertible part is done as it is explained

in the first subclass. We use a numerical example from the literature in order to

discuss the conservatism of the proposed method.
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Chapter 7

Discussion and Conclusions

In this thesis, we mainly focus on strong and robust stabilization of infinite dimen-

sional plants by finite dimensional controllers. It is known that the Nevanlinna-

Pick interpolation problem is closely related to robust stabilization, whereas the

unit interpolation problem is related to strong stabilization operation. Because

of these close relations, we first focus on the finite dimensional solutions of these

interpolation problems.

An alternative method is proposed for the optimal solution of the Nevanlinna-

Pick interpolation. In order to apply the aforementioned method, interpolation

data must contain distinct data points in the right half plane. The most im-

portant feature of the proposed method is to avoid any transformations and

approximations through suboptimal solutions, it directly computes the optimal

interpolating function. We illustrated the use of this optimal solution by some

numerical robust stabilization examples.

There are two well known underactuated robots in the literature, Acrobot and

Pendubot. In a recent contribution, it is shown that the linearized models of

both robots around their upright equilibrium points can be stabilized by stable

controllers. Using this property, we show that it is possible to design low or-

der and stable controllers to robustly stabilize these robots around their upright
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equilibrium points. We utilize parameterization of all suboptimal solutions of the

associated Nevanlinna-Pick interpolation problem and design the free parameter

of the parameterization in order to satisfy the stability of the controller. We

compare our controllers to the ones in the literature and show that we approxi-

mately obtain 25% improvements in terms of the closed loop system H∞ norm.

Moreover, we showed that the proposed controllers are more robust to parameter

uncertainties and they increase the robustness to individual parameter perturba-

tions for the locations of unstable poles and zeros.

Noting that the unit interpolation problem is equivalent to strong stabiliza-

tion operation, it is shown in a recent contribution that the robust stabilization

of a plant by a stable controller can be reduced to a bounded unit interpolation

problem in H∞. We propose an alternative method to solve finite dimensional

bounded unit interpolation problem. We use a predetermined structure for the

unit interpolating function and this structure transforms the bounded unit inter-

polation problem to classical Nevanlinna-Pick interpolation problem. We deduce

sufficient conditions regarding the associated Pick matrix of the transformed prob-

lem. The optimal solution of the associated Nevanlinna-Pick interpolation which

is introduced within this thesis in Chapter 4 is used to compute the desired inter-

polant. The conservatism of the proposed method is discussed on some different

numerical examples from the literature. We conclude that the proposed method

approximates the performance of the infinite dimensional interpolating function

well, especially when the number of interpolation data points is relatively low.

As the maximum allowable degree of the interpolation operation increases, the

predetermined structure approaches the performance of the infinite dimensional

case. We also compare the performance of the proposed method in some strong

stabilization benchmark problems and observe that it is possible to have better

performance in terms of (a) controller degree at the expense of H∞ performance

or (b) larger feasible regions at the expense of controller degree.

We divide the class of unstable time delay systems having finitely many right

half plane zeros into two subclasses; ones having finitely poles in C+ and ones hav-

ing infinitely many poles in C+. We derive sufficient conditions for two subclasses

under which it is possible to design finite dimensional and stable controllers for a
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member of each subclass. Both conditions rely on the finite dimensional approxi-

mation of the infinite dimensional parts of the plant. Using these approximations,

we show that the problem can be reduced to a finite dimensional bounded unit

interpolation problem in H∞. We use the finite dimensional solution method for

the bounded unit interpolation problem which is introduced within this thesis

in Chapter 5. Through numerical examples, we show that as the approximation

error decreases and the degree of the finite dimensional interpolation increases,

it is possible to find desired controllers for larger multiplicative uncertainties.
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update and examples,” T. Vyhĺıdal, J. F. Lafay, R. Sipahi (eds), Delay Sys-

tems, Springer, pp.299–312, 2014.
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