
TOPICS IN OPTIMIZATION VIA DEEP
NEURAL NETWORKS

a thesis submitted to

the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements for

the degree of

master of science

in

industrial engineering

By

Ömer Ekmekcioğlu

June 2022

Topics in Optimizatiorı via Deep Neural Networks

By Ömer Ekmekcioğlu

Juııe 2022

We certify tlı�t we luwe read tlıis tlıesis aıı<l tlıat in our opiuion it is fully adequate,

iıı scope aııd iıı quality, as a thesis for tlıe degree of Master of Scieııce.

Taglıi Klıaıı.iyev

Cem Iyigüu

Approved for the Graduate School of Engineering aııd Science:

Ezhan Karaşan
Director of the Graduate
School ii

Mustafa ~~lebi Pınar(Aclvisor)

-

L

J

ABSTRACT

TOPICS IN OPTIMIZATION VIA DEEP NEURAL
NETWORKS

Ömer Ekmekcioğlu

M.S. in Industrial Engineering

Advisor: Mustafa Çelebi Pınar

June 2022

We present two studies in the intersection of deep learning and optimization,

Deep Portfolio Optimization, and Subset Based Error Recovery. Along with the

emergence of deep models in finance, the portfolio optimization trend had shifted

towards data-driven models from the classical model-based approaches. However,

the deep portfolio models generally suffer from the non-stationary nature of the

data and the results obtained are not always very stable. To address this issue,

we propose to use Graph Neural Networks (GNN) which allows us to incorporate

graphical knowledge to increase the stability of the models in order to improve

the results obtained in comparison to the state-of-the-art recurrent architectures.

Furthermore, we analyze the algorithmic risk-return trade-off for the deep port-

folio optimization models to give insights on risk for the fully data-driven models.

We also propose a data denoising method using Extreme Learning Machine

(ELM) structure. Furthermore, we show that the method is equivalent to a robust

two-layer ELM that implicitly benefits from the proposed denoising algorithm.

Current robust ELM methods in the literature involve well-studied L1, L2 reg-

ularization techniques as well as the usage of the robust loss functions such as

Huber Loss. We extend the recent analysis on the Robust Regression literature

to be effectively used in more general, non-linear settings and to be compatible

with any ML algorithm such as Neural Networks (NN). These methods are useful

under the scenario where the observations suffer from the effect of heavy noise.

Tests for denoising and regularized ELM methods are conducted on both syn-

thetic and real data. Our method performs better than its competitors for most

of the scenarios, and successfully eliminates most of the noise.

Keywords: Optimization, Machine Learning, Deep Learning.

iii

ÖZET

DERİN SİNİR AĞLARI ÜZERİNDEN ENİYİLEME
KONULARI

Ömer Ekmekcioğlu

Endüstri Mühendisliği, Yüksek Lisans

Tez Danışmanı: Mustafa Çelebi Pınar

Haziran 2022

Derin öğrenme ve optimizasyonun kesiştiği, Derin Portföy Optimizasyonu ve Alt

Küme Tabanlı Hata Önleme çalışmalarına odaklanıyoruz. Finansta derin mod-

ellerin ortaya çıkmasıyla birlikte portföy optimizasyon literatürü, klasikleşmiş

model temelli yaklaşımlardan, veriye dayalı modellere doğru kaymıştır. Bununla

birlikte, derin portföy modelleri genellikle verilerin durağan olmayan yapısı ne-

deniyle sorun yaşamaktadır ve elde edilen sonuçlar her zaman istikrarlı değildir.

Tekrarlayan Sinir Ağları teknolojisine kıyasla elde edilen sonuçları iyileştirmek ve

modellerin kararlılığını artırmak için verideki grafiksel bilgiden yararlanmamıza

izin veren Grafik Sinir Ağlarını kullanmayı öneriyoruz. Ek olarak, tamamen veriye

dayalı modellerde risk algısı hakkında fikir vermek adına derin portföy optimiza-

syon modelleri arasında algoritmik risk-getiri dengesini analiz ediyoruz.

İkinci olarak, Aşırı Öğrenme Makinesi (AÖM) yapısını kullanan bir gürültü

giderme yöntemi öneriyoruz. Ayrıca, önerilen yöntemin, iki katmanlı bir gürbüz

AÖM’ye eşdeğer olduğunu gösteriyoruz. Literatürdeki mevcut gürbüz AÖM

yöntemleri, iyi bilinen L1, L2 düzenleştirme tekniklerinin yanı sıra Huber Kaybı

gibi gürbüz kayıp fonksiyonlarının kullanımını içerir. Böylece AÖM’nin kul-

lanımını, Makine Öğrenme algoritmasından bağımsız olarak genel bir veri tem-

izleme yöntemi haline getiriyoruz. Sunduğumuz yöntemler, gözlemlerin yoğun

gürültünün etkisinden muzdarip olduğu senaryolarda kullanışlıdır. Gürültü gi-

derme ve düzenleştirilmiş AÖM yöntemleri için yapılan testleri hem sentetik hem

de gerçek veriler üzerinde gerçekleştiriyoruz. Metodumuz, senaryoların çoğunda

rakiplerinden daha iyi performans gösterir ve gürültünün çoğunu başarıyla or-

tadan kaldırır.

Anahtar sözcükler : Eniyileme, Makine Öğrenimi, Derin Öğrenme.

iv

Acknowledgement

I want to express my gratitude to my advisor Mustafa Pınar. His sincerity and

mentorship beyond academic matters meant so much to me during the last three

years.

Among the endless list of friends who continuously supported me, I have special

thanks to Deniz Akkaya, Mert Albaba, Emre Mumcuğlu, Efsun Kavaklıoğlu, Buse

Şen, Unay Dorken, Burak Altıntaş and Cem Kesici, Tolunay Alankaya and Fatih

Selim Aktaş.

I’m grateful to my family for all the support, love, and care. I devote this

thesis to my father, who guided me my whole life but never saw the ending to

this journey.

v

Contents

1 Introduction 1

2 Background 3

2.1 Subset Based Error Recovery . 3

2.1.1 Sparse Recovery . 3

2.1.2 Non-Linear Robust Model Description 4

2.1.3 ELM Model Description 5

2.1.4 Robust Methods and Related Loss Functions 6

2.1.5 Convex Neural Networks 7

2.2 Deep Portfolio Optimization . 9

2.2.1 Neural Networks and Time Series 9

2.2.2 Portfolio Optimization Problem 12

3 Deep Portfolio Optimization 14

3.1 Contribution . 16

vi

CONTENTS vii

3.2 Our Method . 16

3.3 Architecture . 18

3.4 Results . 20

3.5 Remarks . 24

3.6 Conclusion . 25

4 Subset Based Error Recovery 34

4.1 Introduction . 34

4.2 Contribution . 35

4.3 Algorithm . 36

4.4 Theoretical Analysis . 39

4.5 Results . 43

4.5.1 Data Denoising . 43

4.5.2 ELM Method . 46

4.6 Conclusion . 49

5 Conclusion 54

List of Figures

3.1 Deep Learning Architectures for Portfolio Optimization 18

3.2 Proposed GNN Architecture . 19

3.3 GAT Returns with Std Error on Dataset1 28

3.4 LSTM Returns with Std Error on Dataset1 29

3.5 GAT Returns with Max Error on Dataset1 29

3.6 LSTM Returns with Max Error on Dataset1 30

3.7 GAT Returns with Std Error on Dataset2 30

3.8 LSTM Returns with Std Error on Dataset2 31

3.9 GAT Returns with Std Error on Dataset3 31

3.10 LSTM Returns with Std Error on Dataset3 32

3.11 GAT Returns with Std Error on Dataset4 32

3.12 LSTM Returns with Std Error on Dataset4 33

4.1 Relative Err Lin . 48

viii

LIST OF FIGURES ix

4.2 MSE Lin . 49

4.3 Corr Lin . 50

4.4 err found lin . 51

4.5 relative err nonlin . 51

4.6 MSE Nonlin . 52

4.7 corr nonlin . 52

4.8 err found nonlin . 53

List of Tables

3.1 Dataset Structure . 20

3.2 Evaluation of Total Returns on Datasets 21

3.3 Evaluation of Sharpe Ratios on Datasets 21

3.4 Return Statistics on Every Instance for Dataset 1 22

3.5 Return Statistics on Every Instance for Dataset 1 23

3.6 Return Statistics on Every Instance for Dataset 2 24

3.7 Return Statistics on Every Instance for Dataset 2 25

3.8 Return Statistics on Every Instance for Dataset 3 26

3.9 Return Statistics on Every Instance for Dataset 3 27

3.10 Return Statistics on Every Instance for Dataset 4 27

3.11 Return Statistics on Every Instance for Dataset 4 28

4.1 NN Result Part 1 . 44

4.2 NN Results Part 2 . 44

x

LIST OF TABLES xi

4.3 Boston Price Dataset Results . 45

4.4 Diabetes Dataset Results . 45

4.5 ELM Results . 46

4.6 ELM Results . 46

4.7 ELM Results . 47

4.8 ELM Results . 47

Chapter 1

Introduction

Recently, the success of deep learning methods in various fields, especially the

fields of computer vision and natural language processing prepared a basis for

deep learning tools that could be applied to various problems. Inspired by these

advancements, we aim to merge ideas from mathematical optimization and deep

learning to tackle traditional optimization problems while contributing to the

deep learning methods. This thesis presents two major studies, Deep Portfolio

Optimization and Subset Based Error Recovery. Even though these studies are

not directly linked with each other, they both show ideas on how classical opti-

mization ideas could be integrated into deep learning literature to improve the

state-of-the-art. In the first study, we will be delving into the portfolio optimiza-

tion literature and utilizing deep learning frameworks to obtain fully data-driven

solutions. We will be utilizing deep learning methods to solve a problem origi-

nally designed for model-based optimization frameworks. Following that, we will

focus on a sparse optimization tool, which we will be utilizing in deep learning

models. This study will aim to benefit deep learning methods by following the

ideas from sparse optimization literature.

In the first study, we delve into the realm of Portfolio Optimization literature,

which is a well-known problem that has been studied extensively since the 1960s

1

[1]. Starting with the Markowitz Model, many optimization models were pro-

posed to deal with different objectives. Seeing that, deep models improved the

time series prediction task quite significantly, paving the way for improvements

in financial studies [2], we decided to further utilize this tool in portfolio opti-

mization similar to the studies [3]. We investigate various models, point out a few

challenges and propose a graph neural network solution to solve the data-driven

portfolio optimization in an end-to-end manner.

In the second study, we approach the sparse recovery problem from a different

perspective and focus on data denoising. Modern datasets are generally huge

and it is common to have faulty or corrupted entries among the observations.

This may cause stability and robustness issues in many applications. Having a

robust deep learning model is important to mitigate issues from these corrupted

observations. Being inspired by the developments in robust regression literature

[4], we study robust non-linear machine learning techniques to extend their results

to non-linear problems. Sparse regression problem is heavily studied as a method

that selects features of a given data matrix. We focus on a slightly different version

of this problem where the goal is to select corrupted observations. Integrating

ideas from the sparse recovery literature to extreme learning machines and deep

learning methods allows us to study methods with theoretical guarantees.

The rest of this thesis includes an extensive background section that covers

the fundamental ideas used in the studies. We then present our work done in the

Deep Portfolio Optimization and Subset Based Error Recovery studies.

2

Chapter 2

Background

In this section, we cover a wide range of topics regarding the relevant topics

covered in both of our studies. Therefore, we present background section in two

sub-sections, explaining the preliminaries for each work in their respective section.

2.1 Subset Based Error Recovery

2.1.1 Sparse Recovery

The Literature on sparse recovery mainly focuses on the following problem

min ∥y −Xw∥22 (2.1)

s.t. ∥w∥0 ≤ k, (2.2)

where X ∈ Rn×p represents the data matrix, y ∈ Rn contain the observations,

and w ∈ Rp are the unknown coefficients to be estimated. The notation ∥w∥0
denotes the ℓ0-norm of w which counts the number of non-zero elements of w. The

number of non-zero elements (the cardinality of the support of w) is restricted to

be at most k.

3

Due to the ℓ0 constraint, the problem is NP-Hard [5, 6]. In the literature,

various solution techniques have been proposed, ranging from convex relaxations

of the problem to heuristic algorithms to handle the cardinality constraint. Some

of the previously proposed and prominent solution methods are Fista [7] and

Iterative Hard Thresholding (IHT) [8].

In the present study of Subset Based Error Recovery, the IHT algorithm is

used as one of the main building blocks of our algorithm. However, to clean the

data from corrupting errors, the problem will be cast as selecting sparse corrupted

observations from the data instead of finding a sparse regression solution. Instead

of finding a sparse set of features, we find a sparse set of corrupted observations,

which allows us to utilize this problem as a data-denoising tool [4].

2.1.2 Non-Linear Robust Model Description

The model of this study is a non-linear one where the observations are heavily

corrupted by a noise similar to those analysed in [4]:

y∗ = Φ(Xw∗) (2.3)

y = y∗ + b+ ϵ, (2.4)

where X is a matrix of features, w∗ is a vector of weights, Φ(·) is a non-linear

map, b denotes the corruptive noise in the observation due to the measurements,

and ϵ denotes the regular Gaussian white noise. In the following sections, the

model will be analyzed for the case y = ŷ+b without the Gaussian white noise to

be able to devise a simple yet efficient hard thresholding method. This relaxation

allows the IHT approach to be viable during subset selection. In robust network

literature, noise vector b is generally taken as a sparse vector such that ∥b∥0 ≤ 0.4n

where n is the number of observations [9]. Due to this sparsity pattern in b

which is induced from the ℓ0-norm, one can reformulate the problem in the form

of a compressed sensing problem [4]. Bhatia et. al. [4] proves the convergence

guarantees and compares performances for the subset based regression techniques

TORRENT and ADACRR [10] using this sparse recovery reformulation to the

4

robust regression methods. We shall follow a similar approach to analyze the

recovery problem and its applications.

2.1.3 ELM Model Description

Let X = [x1, x2, ..., xn]
T be a feature matrix of dimension n×p, such that xi ∈ Rp.

Let y ∈ Rn be the target vector for all n observations. Fixed weight matrix

W ∈ Rp×l represents the randomly generated layer and w2 ∈ Rl is optimized

in the second layer. The dimension of the first layer is denoted by l whereas ϕ

denotes any transfer function such as ReLU, Leaky ReLU, tanh or sigmoid:

Z = ϕ(XW) (2.5)

ŷ = Zw2. (2.6)

In order to calculate the second layer weights, w2, one can use various gradient

descent algorithms in addition to the widely used ℓ2 norm minimization formula.

The widely used closed form solution of the second layer weight is shown in [11]

as

w2 =

(ZTZ)−1ZTy n ≥ l,

ZT (ZZT)−1y n ≤ l.
(2.7)

The above closed form expressions are derived from least squares minimization.

Depending on the existence of the generalized inverse, one of the identities is used.

The transformation in the random layer is analogous to dimensionality reduc-

tion using random projections when l < p and the related JL Lemma. This

property will be useful to show that the data structure is preserved throughout

the network regardless of the non-linear transforms.

In addition, there are algorithms involving Iterative Hard Thresholding in

ELMs [12]. However, these algorithms are applied to the decision weights on the

second layer to obtain sparse weights. The present study is completely different

5

in terms of the use of the iterative hard thresholding and sparsity sought in the

variables. However, our theoretical study supports the foundation of the proposed

algorithm in [12] implicitly where they lack theoretical results.

2.1.4 Robust Methods and Related Loss Functions

Regularization methods are studied in detail in many different areas including

machine learning, compressed sensing and optimization.

The objective function of a classical regularized regression problem could be

defined as:

L(w) + λR(w)

where w represents the regression weights, L is the desired loss function, R is a

regularization term to induce robustness and sparsity, and λ is a hyper-parameter

tuning the trade-off between the cost function and the regularization term.

Robust loss functions are selected from the functions which are less sensitive

to the outliers to induce robustness in the system. Huber loss is one of the most

commonly used robust loss functions in the literature. Intensive analysis on the

function and its implementations for many ML studies are available, e.g., [13],[14].

As an overview, one can summarize the most commonly used regularization

methods in NN’s as ℓ1, ℓ2 regularization and dropout. Regularization methods

in NN are similar to the classical regression counterparts. In addition to the

regularization term in the output weights, ℓ1 and ℓ2 norms of a layer weights can

be easily integrated to the loss function. For a generic two layer Neural Network,

we have a similar transformation described in 2.5, however, instead of the fixed

6

and random first layer weights W , first layer weights W1 are learned.

Z = ϕ(XW1) (2.8)

ŷ = Zw2. (2.9)

Loss function of this Neural Network with layer regularization would be

L(W1, w2) + λ1R1(W1) + λ2R2(w2)

Where R2 is a general ℓ2 or ℓ1 norm, and R1 is a generally in the form:

R1 = β1 ∥W1i∥1 + β2 ∥W1i∥2

similar to an elastic net regularization where W1i denotes the i’th column of the

weight matrix W1.

In the literature there exist methods to transform robust functions and regular-

ization methods into a compact format to be used in robust networks [9]. These

are efficient in terms of computation and implementation as the form of each loss

can be written in terms of iteratively re-weighted least squares function. Further-

more, involved methods on parameter selection are known for online-sequential

learning [15] with more specific implementation details that are not within the

scope of this thesis.

2.1.5 Convex Neural Networks

In very recent literature [16] the convexity of the two-layer Neural Networks is

analyzed. Pilancı et al. [16] shows the equivalence of the classical two-layer ReLU

neural network (2.8) to the following convex program

7

min
{vi,wi}P1

1

2

∥∥∥∥∥
P∑
i=1

DiX(vi − wi)− y

∥∥∥∥∥
2

+ β

P∑
i=1

(∥vi∥2 + ∥wi∥2)

s.t. (2Di − I)Xvi ≥ 0, ∀i ∈ {1, .., P}

(2Di − I)Xwi ≥ 0, ∀i ∈ {1, .., P}

where the diagonal matrices Di’s correspond to a hyperplane arrangement and P

is the number of all hyperplane arrangements. Since the analysis of the hyper-

plane arrangements and the equivalence of the two problems are out of the scope

of this study, we refer the readers to [16] for details. Furthermore, the original

weights for the neural network can be obtained based on a result detailed in [16].

The most crucial point of this convex formulation is the hyperplane arrangements

denoted by Di in the formulation. This feature is introduced to aggregate the

data with its small subsets so that the problem becomes a sparse recovery problem

with the group sparsity regularization term.

There are robust Neural Network studies extending this approach in [17]. With

this approach, the robustness around a given perturbation ball can be imple-

mented using convex optimization. However, from a practical viewpoint, these

implementations are not on a par with the classical neural networks, and the scal-

ing performance to large data sizes is worse compared to that of neural networks.

The afore-mentioned convex approach is generally not practical but very in-

sightful for theoretical analysis. We also find that our approach parallels those

theoretical insights presented in [16] and [17].

8

2.2 Deep Portfolio Optimization

2.2.1 Neural Networks and Time Series

In time series analysis, standard neural network architectures generally incorpo-

rate recurrent layers, various convolutional layers, such as dilated convolutions,

and attention mechanisms [18]. These layers allow models to effectively use the

sequential data. Attention mechanisms and GNN’s are also effectively used in

the recent literature for time series prediction tasks.

2.2.1.1 Feed-Forward NN

Feed-forward neural networks are the basis of neural network architectures. The

transformation in a two-layer feed-forward neural network in its simplest form is

defined as it is in 2.8. These layers are generally used along with a more involved

layer such as a convolution or recurrent layers.

2.2.1.2 Convolutional NN

In addition to the success of convolutional layers in computer vision and image

processing literature, 1-dimensional convolutional layers are also used in the lit-

erature on time series analysis [19]. Methods such as dilated convolutions are

effective in increasing the receptive field, yielding results comparable to recurrent

models.

2.2.1.3 Recurrent NN

Recurrent Neural Networks (RNN) are essential architectures for time-series tasks

in deep learning. Recurrent layers combine time series information with features

9

to effectively perform the task. In the vanilla version of RNNs, there are potan-

tial drawbacks of vanishing and exploding gradients. In order to address this

issue, LSTM and GRU layers are proposed in the literature [20], [21]. LSTM is

among the most commonly used layers in the deep sequence models due to its

success in natural language processing and time-series data. Even though the

inner structure of the layer is quite convoluted, it essentially learns to remem-

ber and forget sequential information to improve the performance of the classical

recurrent layers.

2.2.1.4 Residual Connections

Residual connections also referred to as skip connections, behave very similar to

classical feedback systems. These connections are used to propagate the gradi-

ent backward from a source. The gradient is split into two when there is a skip

connection and it is useful when a vanishing gradient problem occurs [22]. In

computer vision, ResNet architecture was a significant breakthrough as it made

training deeper neural networks significantly easier which improved the perfor-

mance of the networks. A simple representation of a residual connection could

be written as

X ′ = ϕ(X) +XWs

where ϕ(X) is a general layer transformation and XWs denostes the skip con-

nection with weights in a general form. Commonly, Ws is used as an identity

matrix.

2.2.1.5 Dropout

In general, the network dimensionality is desired to be large enough to capture the

information within the data to effectively perform learning without underfitting.

Doing this might result in overfitting. Dropout is among the most common

techniques used in neural networks to prevent overfitting. As the name suggests,

10

the method involves dropping some neurons with a pre-determined probability

during training to prevent excessive focus on a few neurons [23]. This idea is

described in the original paper as a way of sampling. The idea is to sample

multiple sub-networks (thinned networks) from the original network and train

them separately. In the testing phase, the full network is used to perform the given

task. However, by having the neurons trained separately with the given stochastic

regularization idea, the robustness of the network is improved significantly.

2.2.1.6 Graph Neural Networks

Graph convolutions are the generalized version of the convolutional networks.

Instead of using the transformation of the adjacent features, a graph structure

is used to generalize the adjacency notion. The most basic two-layer Graph

Convolutional Network is represented as follows:

H = f(X,A) = ϕ(AReLU(AXW1)W2),

where X ∈ Rp×l with p denoting the company number (for the assets) and l

denotes the lookback window (features). A ∈ Rp×p is the (normalized) adjacency

matrix. Wi ∈ Rl×hi and hi denote the number of filters used in each layer i.

Some of the prominent layers used in GNN’s are GAT, GCN and ARMA.

• Graph Attention layer (GAT):

In [24], it was proposed to use an attention mechanism in GNN’s. For

every node, this layer concatenates the joint information of its neighbors

while weighting the information important to that node. The operation

could be described as follows:

αij =
exp(LeakyReLU(aT [XWi∥XWj]))∑
Ni

exp(LeakyReLU(aT [XWi∥XWj]))

X ′ = αXW + b

11

where ∥ operator denotes concatenation, N denotes the adjacency matrix

with self-loops. Due to its performance in node classification problems, this

layer has been used in most of our architectures.

• Graph Convolution with Residual Connection (GCS):

This is a simple Graph Convolutional layer with residual connections. The

operation performed by this layer is as follows:

Ã = D−1/2AD−1/2

X ′ = D−1/2AD−1/2XW1 +XW2 + b,

where D denotes the degree matrix, and the adjacency matrix A does not

contain self-loops [25]. With the residual connections, this layer is very easy

to train and could be considered as the baseline graph convolutional layer.

• Auto-Regressive Moving Average Convolution (ARMA):

This layer carries the spirit of the original auto-regressive models and GCS

layers [26]. For a given order K, the model performs the following:

X0 = X

Ã = D−1/2AD−1/2

X t+1
k = σ(ÃX tW t +XV t)

X ′ =
1

K

K∑
k=1

X t
k.

2.2.2 Portfolio Optimization Problem

In the literature, the Mean-Variance portfolio problem was extensively studied.

There are various studies involving different loss functions and different con-

straints. The classical optimization problem targets maximizing future returns

while keeping a cap on variance of portfolio return using the first and second-order

12

information of the time series data:

max
w

µTw − αwTΣw

s.t. wi ≥ 0 ∀i ∈ {1, . . . , p}

eTw = 1,

or minimizing the variance of portfolio return while ensuring a minimum expected

portfolio return:

min
w

wTΣw − βµTw

s.t. wi ≥ 0 ∀i ∈ {1, . . . , p}

eTw = 1

where e denotes a vector with all components equal to one, and α, β are real

scalars that reflect the balance between risk and returns (the models are to be

equivalent under judicious choices of parameters α and β). There are many

variants to the above problems that relax the non-negativity constraint or change

the objective function to a fractional function which maximizes the Sharpe ratio.

Essentially, these problems are similar in nature, and the goal is to obtain the

highest return with the least amount of portfolio risk. In this study, we will focus

on the notion of algorithmic risk with less attention to portfolio risk as there are

different robustness problems that arise in fully data-driven approaches.

13

Chapter 3

Deep Portfolio Optimization

In this section, we will briefly review relevant literature, present the deep learning

framework we used for the portfolio optimization problem, point out a few chal-

lenges in the literature and explain the method we follow to utilize graph neural

networks in this general deep learning framework. We will explain how we ob-

tained the graph structure and how we improved the results of the state-of-the-art

methods.

Recently in portfolio optimization literature, data-driven methods started to

replace the classical model-based optimization methods. Data-driven methods

range from reinforcement learning to natural language processing models which

predict the market movements from the text data [27]. Depending on the dataset

structure, various deep learning methods have been tested for this problem. Ear-

lier methods focus on the time-series prediction task. However, recent studies

show that it is not always clear how to allocate resources for the portfolio. To

bridge this gap, [28] proposes a framework where forecasting is performed first,

and allocations are made afterward by a two-stage method. The latest approaches

in the literature involve the usage of an end-to-end deep learning framework to

directly learn the asset allocation [3].

Furthermore, end-to-end methods are preferred over their competitors due to

14

the flexibility in loss functions. These allow the neural network to be adjusted

towards different goals such as return maximization or Sharpe Ratio minimiza-

tion. Furthermore, constrained portfolio problems can also be integrated into the

end-to-end deep portfolio network with a slight change in loss functions, mak-

ing the end-to-end approach in portfolio optimization quickly become a desirable

approach [29].

In the classical time-series prediction or trend prediction problems, GNN’s

have proven their success [30],[31],[32]. However, these models generally require

hand-crafted adjacency matrices and are generally used for the classical regres-

sion/classification tasks. We propose to leverage the effectiveness of these graph-

ical models by incorporating the graph knowledge in the end-to-end portfolio

optimization framework proposed in [29].

Besides all the nice features deep end-to-end models provide, there are still

computational problems in terms of the stability of the algorithms. In the lit-

erature, some of the layers, especially dense layers, turned out to be very noisy,

causing performance and reliability issues. Furthermore, the datasets used in the

field are generally smaller than the ones used in the other fields of deep learning

literature. This makes the networks difficult to train due to the sample sizes ob-

tained from the daily market data. We propose to use a graphical neural network

approach to address these problems and we compare our results with the state-of-

the-art recurrent models. We also leverage the classical graphical lasso algorithm

while generating the inverse covariance matrix, which saves us from handcrafting

all the adjacency information and makes our algorithm easy to implement.

The main challenge in this problem is to handle the financial market datasets.

In synthetic or long time series, having large amounts of observations makes

the problem simpler. However, in market datasets, relevant market data might

be quite small compared to the other literature. The main reason is that the

relevant historic market prices might be quite small for a given company. For

example, 10 years of data make roughly 3000 observations per company, assuming

that the company stays in the observed market index over that period. This is

nowhere near the amount of data used in most applications. Time granularity is

15

another restrictive factor as the daily variations are mostly noisy and the relevant

data used in the prediction are the last few days most of the time [3]. From a

practical point of view, privacy is a final concern as the data in financial studies

might be quite restrictive due to the company policies. There are even new

studies proposing to address this issue by generating realistic time series data

while preserving the privacy of the clients [33],[34].

3.1 Contribution

Our contribution to the literature could be summarized as follows.

• Introducing GNN models to the problem: GNN’s yield higher portfolio

returns compared to the state of the art recurrent models.

• Recurrent models suffer from stability issues. We address this problem by

using GNN’s, and analyze the algorithmic risk-return trade-off in a fully

data-driven portfolio optimization framework.

• Instead of carefully handcrafting the adjacency matrix, we propose to use

the inverse covariance matrix of the returns, which is a method known in

the optimization literature but not deployed in the deep learning literature.

3.2 Our Method

Let G = (V,E) be a graph. In our model, V denotes the companies, and edges, E,

are weightless and bidirectional to denote the relations between the companies.

We assume given a dataset D ∈ Rn×p where there are n time steps, i.e., trading

days, and p companies. The first step is to create a graph representation using

the given dataset. To infer the adjacency relation, we use the Graphical Lasso Al-

gorithm to calculate the inverse covariance matrix. Since this sparse matrix gives

the conditional relation between each company, it is an intuitive model-based

16

approach we can use freely. In the literature, some studies manually construct

graphs using market information available [30]. However, to have an easy-to-use

framework, we refrain from using expert knowledge and utilize graphical lasso.

The graphical lasso algorithm solves the following problem.

Θ̂ = argmin
Θ

Tr(SΘ)− log det(Θ) + λ
∑
i ̸=j

|Θ| ,

where S denotes the covariance matrix. This optimization problem is a well-

known and well-studied problem in the literature, and its adaptive extensions are

also available [35]. These adaptive extensions are important in cases where the

change in the adjacency graph is crucial such as car sensor data. In the present

study, due to the structure of the real-life dataset that we have worked on, this

extension is not used. However, especially in large datasets, an adaptive version

could be preferred to have more precise adjacency matrices.

Combining the return data with the adjacency graph obtained, we obtain our

input graph G, and we use our proposed GNN model to predict the portfolio al-

location by modifying the previous formulation using flattening and dense layers:

out = softmax(flatten(H)W3),

where W3 ∈ Rhfp×p since the flattened graph will be a vector of length hf × p,

and the output will be p-dimensional. The “softmax” activation is very useful

to directly obtain the allocations in the portfolio optimization problem which

are non-zero and summed to one. Furthermore, allocation constraints could be

implemented or relaxed by modifying the output activation of the network [29].

In this study, we mainly focus on maximizing returns. In [36], it is shown that

the Sharpe ratio criterion can effectively minimize the variance of the returns,

which is the portfolio risk. In addition to the portfolio risk, the stability of

the algorithm is an additional source of concern for the investor in data-driven

methods. We believe that having a robust and stable model is instrumental

17

in achieving high returns while effectively minimizing the algorithmic risk. We

aim to obtain results giving less algorithmic risk by manipulating the network

architecture of the deep learning approaches so that we can maximize the return

per risk notion in the fully data-driven case. We also look for the algorithmic

risk-return trade-off for multiple algorithms.

3.3 Architecture

We adopt an end-to-end approach in our proposed network similar to [3]. This

is the most recent approach in the literature and it is flexible and effective. The

other possible approach is a two-stage approach, which is shown in Figure 3.1

where we first predict and then optimize. We mostly focus on the end-to-end

architectures due to their desirable properties and performance [29].

(a) Two-Stage Architecture

(b) End-To-End Architecture

Figure 3.1: Deep Learning Architectures for Portfolio Optimization

We have tested multiple GNN layers and dense layers. However, due to the

dimensionality of the dataset, we prefer to stick to a simple architecture similar

to the ones used in node classification problems [24]. Input to our model is the

past return information, the first and second moments of the returns as well as

the adjacency matrix. This input is fed into three layers of graph convolutions.

Afterward, we flatten the data and feed it into two dense layers. In these dense

layers, we use residual connections to improve the training performance. We

also observed that utilizing the GELU activation function instead of the classical

ReLU in the convolutional layers yields better results [37]. On different tests,

18

we have used different graphical convolutions and the results are reported in the

results section.

64 64 64 64

conv1

128 128

conv2

1

conv3

F I

flatten

64 I

dense
1

32 I

dense
2

F I

output

Figure 3.2: Proposed GNN Architecture

In Figure 3.2, we represent our GNN architecture. We have tested the model

with the graphical convolutional layers described in the Background section. In

the Figure 3.2, the number of filters represents the number of attention heads

used in the GAT model. We also used a very similar architecture in our ARMA

and GCS models, however, the hyperparameters slightly vary. In the figure,

filter sizes do not reflect the real sizes of the figure and are drawn to present

the architecture. Essentially, in all our architectures, we stack multiple graphical

convolutional layers and follow up with dense layers with drop-out and residual

connections.

19

3.4 Results

We have used datasets obtained from https://host.uniroma3.it/docenti/

cesarone/DataSets.htm, which are also used in [38]. Among the available

datasets, we have used Dow Jones 2005 (Dataset 1), Euro Bonds (Dataset 2),

Commodities and Italian Bonds mix (Dataset 3), and World Bonds Mix (Dataset

4). These datasets contain 1564 days of data of assets with sizes varying from 11

to 104 securities. We also reproduce from [38] the data features in Table 3.1.

Table 3.1: Dataset Structure

Datasets Assets Days Range
DowJones2005 (1) 21 1564 1/2013-12/2018
EuroBonds (2) 62 1564 1/2013-12/2018
ItBondComodities (3) 11 1564 1/2013-12/2018
WorldMixBonds (4) 104 1564 1/2013-12/2018

We have separated these datasets and created 12 trading instances. For every

instance, we have separated training and testing data. Training data for every

instance consists of the training and testing data of the previous instance. Each

first instance contains 400 days of training and 100 days of prediction. We then

merge that mini data to have training data for the following mini data and con-

tinue until we cover all the available data. For example, the second instance

will contain 500 days of training data and 100 days of validation; the third in-

stance will contain 600 days of training and 100 days of validation so on. This

methodology was also adopted in [29]. To evaluate the algorithmic risk, we run

each model 10 times for each mini dataset, and the average results are reported.

We denote our proposed models after the graphical convolutional layers used in

the model: ARMA, GAT and GCS. LSTM denotes the architecture proposed in

[3] and [29]. CVX refers to the classical long-only mean-variance return maxi-

mization problem. We followed a 90% − 10% split in training data to validate

and tune our hyperparameters. Throughout all the experiments, Tensorflow and

Spektral libraries are used to train and evaluate the neural networks [25]. In the

implementation of the optimization-based models, CVXPY is used [39].

20

https://host.uniroma3.it/docenti/cesarone/DataSets.htm
https://host.uniroma3.it/docenti/cesarone/DataSets.htm

In terms of the performance criteria, our main focus was to obtain high re-

turns. Therefore Table 3.2 summarize our primary results. Furthermore, we have

investigated the Sharpe ratios obtained from the models to have an idea of the

risk of the returns. We report these results in Table 3.3. However, our main

focus wasn’t on the Sharpe ratios and deep models are not trained for that. It

is only used to have an understanding of the performance of the model. Our

secondary focus was to reduce the algorithmic risk, which we defined as the risk

of not converging to a similar local optimal point consistently. We present our

evaluations for this criteria using the figures 3.3,3.7,3.9,3.11,3.4,3.8,3.10,3.12.

Table 3.2: Evaluation of Total Returns on
Datasets

Dataset ARMA GAT GCS LSTM CVX
1 1.3601 1.5557 1.3921 1.2708 1.8715
2 1.6936 0.8172 2.1713 0.8418 1.1609
3 0.5046 0.3610 0.4217 0.3898 0.4112
4 1.2971 0.7250 1.7297 0.8156 1.2526

Table 3.3: Evaluation of Sharpe Ratios on
Datasets

Dataset ARMA GAT GCS LSTM CVX
1 0.6164 0.6142 0.6337 0.5820 0.7612
2 0.7542 0.4543 1.0111 0.5772 0.0146
3 0.5407 0.5373 0.4396 0.5205 0.7260
4 0.4957 0.4015 0.7360 0.4859 0.0815

Results in Figure 3.2 indicate that the proposed GCS and ARMA networks

yield results surpassing the returns obtained by the state-of-the-art LSTM net-

works. Moreover, the GAT network fixes the stability problem of the deep models

by converging to a similar local optimal solution consistently. Due to the limited

observations in the financial datasets, it is quite difficult to train a robust deep

architecture. This is also applicable to the model-based architectures as in the

4th dataset, the CVX model failed to give meaningful results when the dataset

is small. We omitted the first two time instances because of this problem. As a

21

Table 3.4: Return Statistics on Every In-
stance for Dataset 1

GAT Mean GAT Std LSTM Mean LSTM Std
0.048215 0.00012 0.069446 0.01740
0.046904 0.00815 0.036681 0.01861
0.180032 0.00672 0.198491 0.03683
-0.002247 0.0026 -0.055583 0.05020
-0.120561 0.00771 -0.117312 0.02362
-0.033928 0.00001 -0.026766 0.04347
-0.011228 0.00029 0.051438 0.05923
0.135172 0.01676 0.238524 0.06555
0.139644 0.00026 0.204196 0.09279
0.079272 0.00017 0.219471 0.04841
0.620897 0.16890 0.297301 0.16500
0.473544 0.16920 0.154340 0.16508

result of these challenges, simpler models like GCS are effective in those datasets.

Furthermore, GAT results appear to be consistent in most instances. The sig-

nificant stability difference between the LSTM model and our proposed GAT

model is apparent in the figures. In the reported figures, the x-axis represents

the trading instances where we evaluate our models and the y-axis represents the

obtained returns. The error bar is plotted to show the standard deviation of the

obtained returns. The difference in the error bars is useful to understand that the

algorithmic risk decreases with the usage of the GAT models. This indicates that

the graph models converge to a similar point in every different training session

eliminating the algorithmic risk. Figures 3.3 and 3.4 show the standard deviation

of the different returns obtained from the first dataset for every instance for each

run. Similarly, Figures 3.5 and 3.6 show the maximum difference encountered in

every evaluation period. We present the results obtained for each time instance

in Tables 3.4, 3.5,3.6,3.7,3.8,3.9,3.10,3.11. In general, the error bars in the figures

representing the LSTM models are larger indicating a larger standard deviation

in the obtained results, whereas the GAT model is more consistent and the error

bars reflect only a small amount of variation.

In some datasets, LSTM mean returns are slightly higher than the GAT model

22

Table 3.5: Return Statistics on Every In-
stance for Dataset 1

GCS Mean GCS Std ARMA Mean ARMA Std
0.038412 0.05123 0.041035 0.03390
0.04756 0.06023 0.049132 0.05677
0.149021 0.09615 0.125844 0.09016
-0.03995 0.08870 -0.01665 0.06642
-0.099934 0.08627 -0.039357 0.08307
0.037406 0.05082 -0.016773 0.06644
0.089273 0.07589 0.125617 0.13105
0.169544 0.06934 0.173572 0.05251
0.237483 0.13495 0.161368 0.12450
0.315011 0.16075 0.192065 0.10870
0.263893 0.14250 0.274490 0.18700
0.184350 0.17246 0.289794 0.18170

returns. However, the variance in the returns is significantly high for every train-

ing period, making the models quite unreliable. Similarly, if we want to obtain

higher returns with higher risk, the GCS and ARMA models could be used to

outperform the returns of the recurrent models. There are ocassions where the

standard deviation of the LSTM and graphical models are 0. In those cases, they

yield the same return, converging to the same local optima. In other points, de-

pending on the dataset, LSTM and graph models are competing in returns and

standard deviations. Since it is difficult to observe a model to strongly dominate

another model in each time instance, it is meaningful to compare the cumulative

returns as shown in 3.2. These results show that graph models are superior to

the LSTM model in various scenarios both in terms of the returns and in terms

of the sharpe ratios.

Portfolio optimization is often analyzed along with Pareto-optimal solutions

due to the risk-return trade-off. In our results, we can see a variant of the port-

folio’s risk-return trade-off in terms of algorithms’ risk-return trade-off. Our pro-

posed GAT model significantly reduces the algorithmic risk while maintaining,

or even exceeding the return levels achieved with state-of-the-art LSTM meth-

ods. Furthermore, the GCS and ARMA models manage to beat the returns of the

23

Table 3.6: Return Statistics on Every In-
stance for Dataset 2

GAT Mean GAT Std LSTM Mean LSTM Std
0.038904 0.00417 0.087058 0.02000
-0.128798 0.00018 0.041902 0.03134
-0.200803 0.01719 -0.031716 0.13476
-0.103257 0 -0.103261 0
0.114179 0 0.114179 0
0.084612 0 0.065986 0.01382
0.20806 0.00484 0.19411 0.08750
0.03447 0.024714 0.050097 0.10716
0.249354 0.01272 0.164206 0.04918
0.033278 0.05461 0.102287 0.07098
0.310822 0.06093 0.125728 0.037847
0.176451 0.06454 0.031241 0.03167

LSTM model which makes the graphical models highly effective for deep portfolio

optimization.

3.5 Remarks

In deep portfolio optimization, some of the traditional portfolio optimization

metrics should be evaluated from a different perspective. As it could be observed

from the results reported in [36], the effect of Sharpe ratio minimization effectively

decreases the variance of returns. However, when the Sharpe ratio minimization

is the key objective, returns also decrease significantly. Furthermore, the resulting

portfolio remains risky due to the algorithmic risk stemming from the instability

of the models. We can mitigate this issue separately by focusing on the stability

and robustness of the network. This will yield returns not far off the predicted

levels, which is beneficial to evaluate the portfolio’s performance.

Recent studies suggest that the first few days are important in a recurrent

model [3]. Similarly, from our results, we observed that the graphical relations

24

Table 3.7: Return Statistics on Every In-
stance for Dataset 2

GCS Mean GCS Std ARMA Mean ARMA Std
0.094956 0.02412 0.084313 0.02368
0.083139 0.05309 0.017688 0.08396
0.128395 0.04228 0.094413 0.15007
0.022334 0.34606 0.361661 0.22888
0.527551 0.27234 0.367827 0.35571
0.14709 0.05072 0.191131 0.11247
0.239199 0.10860 0.286001 0.09095
0.132828 0.11793 -0.026266 0.11242
0.199725 0.05234 0.00733 0.11185
0.151399 0.10003 0.053952 0.08785
0.249482 0.08962 0.226717 0.09371
0.19520 0.06458 0.225212 0.05041

are effective to explain the information within the data, which makes the model

more robust than the recurrent counterparts. These insights are important for

the deep portfolio optimization frameworks since the notion of algorithmic “risk”

should also be considered for fully-data-driven approaches. We also observe that

different layers excel at interpreting different return structures. For example,

when the returns are increasing in the data, ARMA convolutions return high

rewards compared to their alternatives. However, due to its higher loss when the

returns are declining, the model overall may fail to return the highest rewards.

These observations could be useful if the allocation decision could be made with

an ensemble model, which we will be focusing on in our future work.

3.6 Conclusion

End-to-end deep learning methods started to replace model-based portfolio opti-

mization tools. We have analyzed the classical Markowitz portfolio optimization

problem from a deep learning perspective and addressed one of the key issues. Al-

gorithmic risk is a crucial problem in the data-driven approaches to the problem.

25

Table 3.8: Return Statistics on Every In-
stance for Dataset 3

GAT Mean GAT Std LSTM Mean LSTM Std
0.056009 0.00611 0.059118 0
0.103474 0.01560 0.115378 0.00001
0.243125 0.04964 0.259768 0
-0.064475 0.00002 -0.064491 0
0.152873 0 0.152878 0
0.079757 0.00004 0.079773 0
0.001202 0 0.001199 0
-0.109843 0 -0.109845 0
-0.161551 0 -0.161555 0
0.010926 0 0.010925 0
0.102952 0.00004 0.10297 0
-0.053466 0.00822 -0.056293 0

We improved the stability of the state-of-art recurrent models by utilizing graph

neural networks. Our contribution to the literature is twofold. We proposed to

use the graphical lasso to create an adjacency matrix of the companies. This

allowed us to obtain an adjacency matrix without the need for expert knowledge

and hand-crafting. Second, we showed that the GNN results are more stable

compared to the LSTM models and the achieved returns are comparable, even

better in some cases. These results show that the algorithmic risk minimization

could be enhanced with neural network techniques, which is crucial in a fully

data-driven architecture.

26

Table 3.9: Return Statistics on Every In-
stance for Dataset 3

GCS Mean GCS Std ARMA Mean ARMA Std
0.05912 0 0.058494 0.00143
0.034659 0.07603 0.056641 0.08171
0.259772 0 0.259741 0.00002
-0.064491 0 -0.064491 0
0.125136 0.06479 0.152876 0
0.079529 0.07281 0.094402 0.05800
0.051029 0.09568 0.041275 0.05942
-0.099974 0.10227 -0.115771 0.04093
-0.185021 0.13051 -0.154651 0.02973
0.004418 0.06935 -0.000504 0.05060
0.113949 0.09368 0.094835 0.04887
0.043611 0.09673 0.081722 0.13678

Table 3.10: Return Statistics on Every In-
stance for Dataset 4

GAT Mean GAT Std LSTM Mean LSTM Std
0.042279 0.01278 0.053117 0.02176
-0.128956 0.00007 -0.069907 0.04750
-0.19507 0.00007 -0.16372 0.10501
-0.103258 0 -0.013079 0.27055
0.114179 0 0.114179 0
0.084615 0 0.024966 0.03719
0.210526 0.00006 0.173922 0.10851
0.029786 0.03394 0.120206 0.10492
0.239829 0.00126 0.143658 0.12427
-0.000763 0.00089 0.109348 0.08395
0.301698 0.06475 0.18956 0.06376
0.130126 0.04339 0.133377 0.03863

27

Table 3.11: Return Statistics on Every In-
stance for Dataset 4

GCS Mean GCS Std ARMA Mean ARMA Std
0.012129 0.04658 -0.001259 0.04340
-0.007884 0.09972 0.046798 0.10370
0.118145 0.21802 -0.066621 0.15955
0.331967 0.34264 0.133187 0.25834
0.281846 0.20566 0.337363 0.35518
0.225618 0.04142 0.217437 0.11502
0.076641 0.08017 0.157311 0.13209
0.091074 0.13573 0.014852 0.08778
0.186322 0.09682 0.094761 0.11105
0.169197 0.06723 0.093558 0.10268
0.109906 0.11902 0.176996 0.09885
0.134762 0.07332 0.092671 0.08549

2 4 6 8 10 12
Instance

0.0

0.2

0.4

0.6

0.8

Re
tu

rn

GAT RETURNS

Figure 3.3: GAT Returns with Std Error on Dataset1

28

2 4 6 8 10 12
Instance

0.1

0.0

0.1

0.2

0.3

0.4

Re
tu

rn
LSTM RETURNS

Figure 3.4: LSTM Returns with Std Error on Dataset1

2 4 6 8 10 12
Instance

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Re
tu

rn

GAT RETURNS

Figure 3.5: GAT Returns with Max Error on Dataset1

29

2 4 6 8 10 12
Instance

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Re
tu

rn
LSTM RETURNS

Figure 3.6: LSTM Returns with Max Error on Dataset1

2 4 6 8 10 12
Instance

0.2

0.1

0.0

0.1

0.2

0.3

0.4

Re
tu

rn

GAT RETURNS

Figure 3.7: GAT Returns with Std Error on Dataset2

30

2 4 6 8 10 12
Instance

0.1

0.0

0.1

0.2

0.3

Re
tu

rn
LSTM RETURNS

Figure 3.8: LSTM Returns with Std Error on Dataset2

2 4 6 8 10 12
Instance

0.1

0.0

0.1

0.2

0.3

Re
tu

rn

GAT RETURNS

Figure 3.9: GAT Returns with Std Error on Dataset3

31

2 4 6 8 10 12
Instance

0.1

0.0

0.1

0.2

Re
tu

rn
LSTM RETURNS

Figure 3.10: LSTM Returns with Std Error on Dataset3

2 4 6 8 10 12
Instance

0.2

0.1

0.0

0.1

0.2

0.3

Re
tu

rn

GAT RETURNS

Figure 3.11: GAT Returns with Std Error on Dataset4

32

2 4 6 8 10 12
Instance

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Re
tu

rn

LSTM RETURNS

Figure 3.12: LSTM Returns with Std Error on Dataset4

33

Chapter 4

Subset Based Error Recovery

4.1 Introduction

Foundations of the ELM are rooted in function approximation theory. ELM

uses a randomly generated network layer to obtain successful approximations on

continuous functions [11]. This random layer is shown to be effective and efficient

in terms of both accuracy and the computation complexity [40]. Leveraging this

efficiency, we propose to use the ELM architecture in two possible ways: as a

data denoising tool and a standalone algorithm.

Randomly generated weights are not only used in ELM’s but also in dimen-

sionality reduction, method of random projections, and compressed sensing due

to their performance on accuracy/computation complexity trade-off. Further-

more, Johnson-Lindenstrauß Lemma allows ELMs to reduce the dimension of the

problem for efficiency in computations while preserving the structure of the data

[41], [42] with theoretical guarantees. The second layer of the ELM architecture

introduces non-linear interactions of the features to improve the prediction capa-

bilities of the system. At this point, using ELMs as a sparse error recovery and

data denoising tool becomes highly efficient. Therefore, a robust ELM application

along with an extendable data denoising method applicable to different machine

34

learning frameworks (especially NN’s) is proposed in this section. In the follow-

ing section, we describe the contribution of our approach to the literature, and

proceed by describing our algorithm and give theoretical results. We conclude by

comparing our algorithm with multiple ELM methods and show the effectiveness

of data denoising with the comparison of multiple learning algorithms on both

synthetic and real data.

4.2 Contribution

Under the non-linear CS framework, recovery guarantees of the proposed denois-

ing algorithm are analyzed. We shall use these results to provide the denoising

algorithm for non-linear ML problems by extending the robust regression analysis

[4],[43] into a general denoising method applicable for neural networks, ELM and

other ML algorithms. The motivation for applying such a denoising technique

originates from the fact that sparse recovery methods are highly disturbed under

heavy corruption. Denoising methods effective to address this issue are also ex-

pected to be effective in non-linear optimization problems. Furthermore, in light

of the recent convex NN interpretations and following the studies on activation

regions, we propose to use randomized activation regions to effectively evaluate

the quality of the data points.

First, we describe how multiple layers of ELMs can be used to formulate sparse

recovery problems for non-linear machine learning problems to denoise data from

highly corruptive noise. Second, we provide a hard threshold based subset selec-

tion algorithm for an ELM application that outperforms robust loss functions and

regularization methods [9], and derive convergence guarantees. One of the main

contributions to the analysis performed on the convergence guarantees involves

the JL Lemma and its relation with the RIP property which allows the former

proofs to be still valid. To the best of our knowledge, only robust functions and

their combinations with regularization methods were previously studied in the ro-

bust ELM literature. Therefore, a method providing robustness with a theoretical

background is deemed a welcome and timely contribution to the literature.

35

4.3 Algorithm

The main reason for using ELM architecture in the data selection is to calculate

the most important entries as fast as possible while capturing the possible non-

linearities in the data. The preservation of the data after the random projections

is a consequence of the JL Lemma:

Lemma 1 (JL). Given 0 < δ < 1, a set X of n points in Rd, and a number k ≥
3
cδ2

lnn for an appropriate positive constant c, there exists a random projection

f : Rd → Rk which has the following property with probability at least 1− 3
2
n,∣∣∣∥f(vi)− f(vj)∥ −

√
k ∥vi − vj∥

∣∣∣ ≤ δ
√
k ∥vi − vj∥

for all distinct pairs of points vi and vj in X.

Using this projection property, in a two-layer ELM, we can preserve the data

structure in the first random layer, transform the data with a transfer function

and create non-linearities in the second “calculated” layer which will be helpful

to capture non-linearities. In the numerical tests in section 6, the addition of

multiple random layers is studied to analyze the effectiveness of the method in

capturing highly dependent data structures.

Remark 1. The idea of random projections is similar to creating random acti-

vation patterns using randomized hyperplane arrangements in the convex neural

network formulations. Using randomized activation patterns allow us to benefit

from only a specific combination of fixed activation region from the data. Us-

ing this fixed activation region selected, we evaluate the performance of the data

points. Finally, we select a useful subset of the data with respect to that evalua-

tion.

The hard thresholding step is introduced to the robust regression literature in

[43] and extensively studied in [4],[10]. A similar idea can be extended to the

proposed ELM architecture to obtain the best subset of the data which is not

36

corrupted for non-linear setting:

minb ∥y − ZW2 + b∥22
s.t. Z = ϕ(XW1)

∥b∥0 ≤ k

The first constraint above varies in the problem formulation depending on the

number of layers that will be used in the denoising algorithm. The number

of layers is viewed as a hyper-parameter depending on the structure of the non-

linearities within the data. The general denoising problem is formulated as follows

min ∥y − ZWn + b∥22
s.t. Z = ϕ(. . . ϕ(ϕ(XW1)W2) . . .Wn−1),

∥b∥0 ≤ k.

First, the algorithm considers a θ-layered neural network where the θ− 1 hidden

layers are fixed and randomly generated. The function ϕ is selected as Leaky

ReLU for theoretical analysis. However, ReLU, Sigmoid, tanh or any other in-

jective transfer function could be used. The second layer output is obtained

using least squares loss. The weight calculation is performed under the assump-

tion n ≥ l, otherwise the generalized inverse should be used as explained in the

background section. Furthermore, the proposed method will be used as a pre-

processing method in most applications, therefore the layer dimension is kept

smaller than the data dimension with the given bounds of JL-Lemma to make

the system work as fast as possible while preserving RIP property [41].

37

Algorithm 1: Subset Based Error Recovery (SuBER)

Input: X

Result: ŵ2t

e : residual error

initialization:

W1 = N (0, I);

t = 0;

k: hyperparameter for subset size;

compute first layer: Z = ϕ(XW1);

w2 = (ZTZ)−1ZTytrain;

while t ≤ max iter do

calculate predictions: ŷt = Zw2t ;

select minimum k elements: St := mink (∥y − ŷt∥) calculate w2t:

w2t = (ZT
St
ZSt)

−1ZT
St
ySt ;

end

Algorithm 1 relies on the idea that one could disregard the indices where the

error is large using IHT. This can be interpreted as an IHT method applied on XT

instead of X after the w2 weights are calculated using the closed-form solution

of the least-squares regression. Iteratively calculating the final layer weights and

the best subset of data points allows us to converge to a denoised subset of the

data. A more detailed explanation is provided in section 4.4.

In the algorithm, the hyperparameter for the subset size is required as a hyper-

parameter λ that would be used analogously in ℓ1 or ℓ2 regularization methods or

the parameter γ that would be used in the Huber Loss. In addition, the number

of random layers is adjusted as a hyperparameter.

The special case of the algorithm when θ = 2 and ϕ = Leaky ReLU reduces

the problem into a regression problem with a regular ELM architecture where

the data subsets are selected dynamically. This special case is analyzed below as

the ELM application and its performance on the existing ELM methods in the

literature will be presented.

38

4.4 Theoretical Analysis

In order to provide the convergence guarantees, we use an approach similar to

the convergence proof of the Robust Regression algorithm [4]. First, we recall the

following definitions in order to use the RIP results. We use B0(k) to denote the

“ball” consisting of k-sparse vectors.

Definition 1 (RSC and RSS Properties,[44]). A matrix X ∈ Rn×p is said to sat-

isfy the α restricted strong convexity (RSC) property and the β restricted smooth-

ness (RSS) property of order k if for all w ∈ B0(k), we have

αk ∥w∥22 ≤
1

n
∥Xw∥22 ≤ βk ∥w∥22 .

The definition above is a more stringent version of the definition used in similar

settings. Definition 3 below implies the same properties for any subset K ⊆ X.

It is important to note that the first layer of random weights in this study is a

matrix instead of a vector as it usually is in the Compressed Sensing framework.

However, one can assume to have the collection of vectors w to form W1 in the

NN and ELM cases.

Definition 2 (NSC and NSS Properties). A non-linear transformation of a ma-

trix X ∈ Rn×p is said to satisfy the α non-linear strong convexity (NSC) property

and the β non-linear smoothness (NSS) property of order k if for all w ∈ B0(k),

we have

αk ∥w∥22 ≤
1

n
∥ϕ(Xw)∥22 ≤ βk ∥w∥22 .

It was shown in [45] that if the function ϕ is injective, the necessary and

sufficient conditions for NSC and NSS properties are satisfied. Similar to the

subset version of the RSC and RSS, NSC and NSS imply the same properties for

the subsets K ⊆ X.

In this study, injective transfer functions such as Leaky ReLU, Sigmoid, tanh

39

are used to satisfy this property. However, it is observed that the non-injective

function ReLU performs well in practice.

Definition 3 (SSC, SSS, [4]). A matrix X ∈ Rn×p is α strong convex and β

strong smooth of order k for S ⊆ {1, . . . , n} with |S| ≤ k iff

αk ≤ λmin(X
T

SXS) ≤ ∥XS∥22
≤ λmax(X

T

SXS) ≤ βk,

where λmin and λmax are the minimum and the maximum eigenvalues for the

given matrix and XS is a matrix consisting rows of X corresponding to indices

chosen from S.

Definition 4. For any w ∈ Rl and c0 > 0 the random variable ∥XW1w∥22 is

strongly concentrated about its expected value if

P (
∣∣∥XW1w∥22 − ∥w∥22

∣∣ ≥ ϵ ∥w∥22) ≤ 2e−nc0

for 0 < ϵ < 1.

Lemma 2. [46] ReLU and Leaky ReLU functions can be characterized as

ϕ(Xw) = DwUΣV Tw

where SVD of X is expressed as X = UΣV T and Dw is a diagonal matrix with

ReLU/Leaky ReLU coefficients on the diagonals.

For the Leaky ReLU activation function, the matrix Dw is invertible. This is

not possible for ReLU when there are 0 entries on the diagonal.

Theorem 1 (L. ReLU Preserves SSC,SSS). Let ϕ be the Leaky ReLU function

and assume ∥XW1w∥22 is strongly concentrated about its expected value. Then for

all w ∈ B0(k) and any 0 < δ < 1 we have

1− δ

10
∥w∥2 ≤ ∥Zw∥2 ≤ (1 + δ) ∥w∥2

with probability at least 1− 2(12/δ)ke−c0(δ/2)n.

40

Proof. Since ∥XW1w∥22 is strongly concentrated we have

(1− δ)2 ∥w∥22 ≤ ∥XW1w∥22 ≤ (1 + δ)2 ∥w∥22

for all δ ∈ (0, 1) and w ∈ B0(k) with the given probability [41]. Then, for the

Leaky ReLU function ϕ, we have

σ2
max(Dw) ∥XW1w∥22 ≥ ∥DwXW1w∥22

≥ σ2
min(Dw) ∥XW1w∥22 ,

where σ2
max and σ2

min are the maximum and minimum singular values for a given

matrix. Combining these two results, we obtain

(1− δ)2σ2
min(Dw) ∥w∥22 ≤ ∥Zw∥22

≤ (1 + δ)2σ2
max(Dw) ∥w∥22 .

For any w, Dw is a diagonal matrix having entries 0.1 and 1’s. Thus one can find

global upper and lower bounds as desired.

Remark 2. For any piecewise linear transfer function with σmax = σmin = 1 at

all pieces, SSC and SSS bounds are equivalent after the transformation

α ≤ σ2
min(XW1) ≤ ∥ϕ(XW1)∥22

≤ σ2
max(XW1) ≤ β.

We note that the above bound is equivalent to the bound in Definition 3.

Hard Thresholding Step: The reduced formulation without the Gaussian

noise, i.e, y = ŷ + b, is used to transform the problem into a hard thresholding

problem properly. The hard thresholding step consists of the following optimiza-

tion problem

min
b

∥∥(I − Z(ZTZ)−1ZT)(y + b)
∥∥2

2
(HTS)

s.t. ∥b∥0 ≤ k,

41

where Z = ϕ(XW1) or in the more convoluted form of multiple ϕ functions. After

the forward propagation, the equivalence of the residuals and the b value can be

seen by the definition that y− ŷ = b. As a result the formulation above is simply

reduced to selecting the observation indices with the largest b values.

Convergence Guarantees: For the proof we will combine the following rela-

tions: (Exactly the same as in [4] using the non-linear case Definition 2 instead

of their Definition 1). We show that essentially the same convergence guarantees

hold.

Theorem 2. Let Z ∈ Rn×l satisfy the SSC property at order k with parameter

αk and the SSS property at order l − k with parameter βl−k such that βl−k

αk
<

1
1+

√
2
. Let w2 ∈ Rl be an arbitrary vector and y = Zw2 + b∗ where ∥b∗∥ ≤

l − k is a sparse vector of possibly unbounded corruptions. Then Subset Based

Regularization yields an ϵ-accurate solution ∥w2 − w2t∥ ≤ ϵ.

It is important to note that the convergence guarantee is exactly the same

as the one required for the robust regression problem in [4]. In view of the

proof provided in [4], we can use our Theorem 1 to obtain the convergence proof.

Therefore, we have omitted the details.

Convergence Guarantees For Multiple Layers: The idea for wider net-

works follows a similar pattern using the previous result.

Remark 3. If we work with θ layers defining

Z = ϕ(ϕ(. . . ϕ(XW1)W2) . . .Wθ),

then we may apply Theorem 2 after assuming SSC and SSS properties for Z.

Also, one can see that if we apply the steps in the proof of Theorem 1 we may

obtain an SSS-SSC guarantee for such Z under mild conditions.

With each additional non-random layer, the minimum and the maximum sin-

gular values have an impact on the convergence guarantees on top of the structure

of the original covariance matrix.

42

Remark 4. In [46], the analysis shows that the magnitude of the eigenvalues

diminishes with each successive layer. This suggests that the proposed algorithm

converges for θ-Layers with very high probability if the 2-Layer ELM convergence

condition holds, which is similar to the condition of the convergence of a robust

regression algorithm [4].

4.5 Results

In this section, we first present the performance of our algorithm when it is

used as a denoising tool. Second, we deploy our algorithm as a stand-alone

ELM algorithm and compare it with other robust ELM architectures in the lit-

erature. In both sections, the synthetic data X ∈ Rn×p where n > p is gen-

erated similarly to the tests conducted in [4] and [9]. For corruptions, we set

∥b∥0 = 0.2n and randomly apply corruption to randomly selected indices with

the randomly selected magnitudes of ±5 ∥y∥∞. More specifically, initial tests were

made on randomly generated observations xi ∈ R1000 where i ∈ {1, . . . , 2000}.
The error size is selected as 400 and the entries are corrupted such that obser-

vation instances are selected at random and corrupted with additive corruption

b ∼ Unif(−5 ∥y∥∞ , 5 ∥y∥∞). The original outputs, y, are produced such that

y = Xw+ b+ ϵ for linear case and y = XTXw+Xw+ b+ ϵ, where w ∼ N (0, 1)

denotes the randomly generated weights. To be able to demonstrate the flexibility

of the algorithm there is no additional sparsity pattern requirement enforced on

the weight vector w in contrast to other studies. In the output function, Huber

loss has been adopted for all of the models.

4.5.1 Data Denoising

After the original data is generated, two-layer, three-layer, and four-layer de-

noising methods are used to select the noiseless subset candidates to be used in

the network. These models are trained and tested using Python Keras Library.

Feed-forward networks with two hidden layers are used with neuron sizes equal

43

to 64 in each layer for the results. Tables 4.1 and 4.2 show the performance of the

denoising algorithm where the data had low non-linearity and high nonlinearity,

respectively.

Table 4.1: NN Result Part 1

Denoising Results for Low Non-Linearity
Data Loss MSE
Original 45.947 1141.648
2-Layer Denoise 13.202 72.372
3-Layer Denoise 13.765 72.372
4-Layer Denoise 13.558 78.429
Original+Dropout 30.166 543.952

Table 4.2: NN Results Part 2

Denoising Results for High Non-linearity
Data Loss MSE
Original 112.575 5211.718
2-Layer Denoise 93.261 3455.253
3-Layer Denoise 92.295 3455.25
4-Layer Denoise 92.193 3349.651
Original+Dropout 100.328 4090.479

The performance of the neural networks in Tables 4.1, 4.2 indicates that our

denoising algorithm introduces a significant amount of robustness.

The performance of the multi-layer denoising does not appear to be affected

by the number of layers in terms of the MSE. Synthetic data may not always be

very suitable for deep learning, therefore the following tests were conducted on

real data. Boston Housing Prices and Diabetes datasets are used for this purpose.

The original dataset is corrupted using heavy noises as explained previously using

the sparse noise vector ∥b∥0 < 0.4n ≈ 160. In parallel with the previous tests, we

take, b ∼ Unif(−5 ∥y∥∞ , 5 ∥y∥∞).

44

Table 4.3: Boston Price Dataset Results

Denoising Results for Boston Pricing Dataset
Data Loss MSE
Original 5.779 66.788
2-Layer Denoise 4.195 12.838
3-Layer Denoise 4.199 12.838
4-Layer Denoise 4.131 12.562
Original+Dropout 10.667 64.376

Table 4.4: Diabetes Dataset Results

Denoising Results for Diabetes Dataset
Data Loss MSE
Original 38.335 126.748
2-Layer Denoise 37.239 103.539
3-Layer Denoise 37.236 103.539
4-Layer Denoise 36.509 93.557
Original+Huber+Dropout 36.609 112.05

In the tests, the models compared are benefiting from robust loss functions

and regularization methods. The denoising method alone was able to surpass the

competing methods. It was also observed that 2-Layer Denoise gives a better

performance than the competitor robust methods. The differences in the layers

create different initializations of the NN activation patterns. The results show

that using the 2-Layer approach is also highly effective. Moreover, the same

robust loss functions and regularization methods are applicable to denoised data

theoretically, and better results could have been obtained if dropout was included

in our algorithm tests. The main goal here is not to find the best possible fit for

the real data, but to demonstrate the power of data-denoising even compared to

relatively complex models. The results in Table 4.3 and the MSE results in Table

4.7 point out to similar outcomes obtained both from denoising and the proposed

ELM algorithm.

45

4.5.2 ELM Method

In this section, the goal is to show that the ELM inheriting the denoising method

similar to the robust linear regression [4] approaches remains prevalent compared

to similar methods in the literature. For the tests, layer sizes are selected equal

to 500 in order to benefit from the fast denoising due to the JL Lemma. MSE and

Relative error results are displayed in Table 4.5 where Relative error is defined as
∥ytest−ŷ∥2
∥ytrain∥ and MSE values are normalized with the observation number n. As an

alternative measure, the corruption effect of the corrupted observations on the

weights and the original weights are presented as the corruption rate below i.e.

corruption rate =
∥wo−w∥2
∥wo∥2

, where wo denotes the least squares solution obtained

through the y values before the corruption occurs. In the tests, 100 simulations

were made for each method, and the average of these results is reported. The

corruptions are set such that ∥b∥0 = 0.2n for the Tables 4.5,4.6 and ∥b∥0 = 0.4n

for Table 4.7 as [9] and [4] perform tests up to this level of corruption.

Table 4.5: ELM Results

ELM Results for Linear Case
Methods MSE Rel. Err. Corr. Rate
ELM 1.5788 2.5679 3.2650
SuBER 0.2550 1.0323 0.6491
ELM+ℓ2 1.5870 2.5746 3.2745
RP+Bisquare 0.2846 1.0912 0.5666
IRLS+Huber 0.3192 1.1547 0.9080

Table 4.6: ELM Results

ELM Results for Non-Linear Case
Methods MSE Rel. Err. Corr. Rate
ELM 7.0031 5.3384 5.6655
SuBER 1.0626 2.0804 0.9662
ELM+ℓ2 7.0534 5.3575 5.6405
RP+Bisquare 0.7061 1.6966 0.8745
IRLS+Huber 1.2196 2.2286 1.4429

46

Table 4.7: ELM Results

ELM Results for Boston Price Dataset
Methods MSE Rel. Err. Corr. Rate
ELM 34.1896 0.4582 2.4161
SuBER 14.8351 0.3076 0.5088
ELM+ℓ2 56.8503 0.5936 4.0187
RP+Bisquare 1.4507e+03 3.0544 0.2306
IRLS+Huber 15.2007 0.3111 0.6351

Table 4.8: ELM Results

ELM Results for Diabetes Dataset
Methods MSE Rel. Err. Corr. Rate
ELM 615.0192 0.7787 1.1799
SuBER 277.9764 0.5237 0.3165
ELM+ℓ2 603.1095 0.7700 1.0743
RP+Bisquare 412.9272 0.6479 0.6624
IRLS+Huber 294.3530 0.5389 0.5048

The method RP+Bisquare is simply the random projections followed by robust

regression library in MATLAB as the models are equivalent. From this analysis,

it is apparent that our method is at least on-par with the competing methods,

and even better under some of the categories. The linear model performance

of the proposed model is slightly worse than the regular regression problem [4].

However, it is quite difficult to observe such linear data in real datasets. Even

the Boston Price dataset is not completely linear even though it is one of the

simplest datasets. Also, the increasing rate of corruption makes the convergence

problematic for the robust regression libraries due to the corrupted entries. The

proposed algorithm and the IRLS algorithm in [9] give on-par performances on

the real dataset. As our method is originally proposed for denoising the data for

different algorithms, a performance matching that of one of the most established

robust ELM algorithms can be considered an encouraging result.

Figures 4.1,4.2,4.3 are plotted with respect to the increasing corruption size

for the linear model, and the rest of the figures concern the non-linear model.

47

0 10 20 30 40 50 60 70 80 90 100

Error Size

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

R
el

at
iv

e
E

rr
or

Relative Error

Algo
OLS
OLS-l2
IRLS-Huber

Figure 4.1: Relative Err Lin

The corrupted index number was increased by 8 in each iteration. An average

of 10 different runs per method is taken to smooth the effect of the random

layer. In each figure, the dominance of our algorithm is visible. The regular OLS

and ℓ2 regularized OLS methods fail to adapt to the corruptions as expected.

Commonly used Huber loss respectively performs better than the OLS. However,

our algorithm performs better compared to the results of Huber loss as well. The

Huber Loss used in these tests is borrowed from [9] IRLS-ℓ2-Huber algorithm as

it is one of the most competitive algorithms in the literature. In practice, Huber

is the most common loss among the ML tools and libraries. Therefore it is the

most meaningful loss selection for comparison.

The computational complexity varies with respect to the convergence of the

inner step. In our algorithm, the inner step enjoys the property of “quick” steps as

discussed in [4]. Since in each update weights are calculated with respect to the

least squares solution without the need of a gradient method, the convergence

of the weights occurs in very few iterations. In other robustness studies [9],

proposed algorithms involving iteratively re-weighted least squares methods have

a similar inner step. As a result, the time complexity of the proposed algorithm

is comparable to the available methods in the literature. The advantages of our

method can be summarised as follows:

48

0 10 20 30 40 50 60 70 80 90 100

Error Size

0

1

2

3

4

5

6

M
S

E

MSE

Algo
OLS
OLS-l2
IRLS-Huber

Figure 4.2: MSE Lin

1. Effective under heavy corruptions in terms of magnitude

2. Scales well with the corruption percentage

3. Hard-Threshold is simple to implement

4. Theoretically compatible with all injective activation functions

5. Time complexity increases with respect to the inner loop. Update method

converges in 5-10 iterations

6. Fast in large scale data due to random projections (JL Lemma) with respect

to the regular regression variant [4],[43].

4.6 Conclusion

We have proposed an ELM architecture that can be used for data denoising and

robust ELM regression problems. In the light of recent developments in convex

neural networks, we have advocated that creating randomized activation patterns

using ELMs would be a practical approach to evaluate the performance of the

data points. To evaluate the data points, we cast the denoising problem as a

49

0 10 20 30 40 50 60 70 80 90 100

Error Size

0

1

2

3

4

5

6

7

C
or

ru
pt

io
n

R
at

e

Corruption Rate

Algo
OLS
OLS-l2
IRLS-Huber

Figure 4.3: Corr Lin

sparse recovery problem over the data points. This allows us to give theoretical

guarantees for our algorithm, a feature that is rarely encountered in the litera-

ture. Furthermore, the denoised data obtained from our method can be fed into

any NN architecture to benefit from the robustness properties of certain NNs.

Therefore, the results we have obtained using our pre-processing step can be fur-

ther improved when paired with proper NN architectures. In the second part of

the study, we have shown that the proposed method can also be used as a stan-

dalone robust ELM architecture. Our numerical results indicated that both the

denoising and standalone ELM methods achieve better performance compared to

their competitors. In future work, the denoising properties of a network will be

analyzed when the first layers are not random but trainable.

50

0 10 20 30 40 50 60 70 80 90 100

Error Size

100

200

300

400

500

600

700

800

900

1000

E
rr

or
s

F
ou

nd

Errors Found

Found
Original

Figure 4.4: err found lin

0 10 20 30 40 50 60 70 80 90 100

Error Size

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

R
el

at
iv

e
E

rr
or

Relative Error

Algo
OLS
OLS-l2
IRLS-Huber

Figure 4.5: relative err nonlin

51

0 10 20 30 40 50 60 70 80 90 100

Error Size

0

5

10

15

20

25

30

M
S

E

MSE

Algo
OLS
OLS-l2
IRLS-Huber

Figure 4.6: MSE Nonlin

0 10 20 30 40 50 60 70 80 90 100

Error Size

0

1

2

3

4

5

6

7

8

9

C
or

ru
pt

io
n

R
at

e

Corruption Rate

Algo
OLS
OLS-l2
IRLS-Huber

Figure 4.7: corr nonlin

52

0 10 20 30 40 50 60 70 80 90 100

Error Size

100

200

300

400

500

600

700

800

900

1000

E
rr

or
s

F
ou

nd

Errors Found

Found
Original

Figure 4.8: err found nonlin

53

Chapter 5

Conclusion

We have compiled two research studies in this thesis on the fields of deep learning

and optimization. We merge ideas from both of these literature to improve the

state-of-the-art methods in portfolio optimization and robust extreme learning

machines.

In our first study, we explore a deep learning approach to a classical portfolio

optimization problem. We combine ideas from classical optimization literature,

such as Graphical Lasso, to obtain an adjacency matrix of a market. This graph

reveals the connections between companies, which is further used in Graph Neural

Networks to obtain better allocations for portfolio optimization problems com-

pared to the recurrent models and model-based optimization frameworks. We

focus on obtaining robust solutions where the datasets are relatively small and

evaluate the algorithmic in deep portfolio models. We combine state-of-the-art

graph neural network models with deep learning techniques to obtain architec-

tures that perform better than the state of the art architectures.

In our second work, we proposed to use a randomized approach to have a

robust extreme learning machine framework as well as a data denoising tool.

The idea is to solve a sparse recovery problem, not in the columns of the data

matrix, but in the rows of the matrix. This allows us to search and recover heavy

54

corruptive noise present in the system. We then propose two ways this method

can be used along with theoretical guarantees on recovery. When our proposed

algorithm is used as a standalone robust ELM, we surpass robust ELM methods

in the literature. Furthermore, we show that our data-denoising tool is effective

when used with a deep learning problem.

Finally, it was observed that both optimization and deep learning methods

could be merged to improve the state-of-the-art methods in various lines of liter-

ature. Optimization tools are effective and efficient in many cases when used as a

data processing tool. Deep models are also highly effective when adjusted to solve

classical optimization problems. Integration of ideas from both optimization and

deep learning paves the way for further improvement in portfolio optimization,

data denoising, and potentially, in many other fields.

55

Bibliography

[1] H. Markowitz, “Portfolio selection,” The Journal of Finance, vol. 7, pp. 77–

91, Mar. 1952.

[2] S. M. Bartram, J. Branke, and M. Motahari, Artificial intelligence in asset

management. No. 14525, CFA Institute Research Foundation, 2020.

[3] Z. Zhang, S. Zohren, and S. Roberts, “Deep learning for portfolio optimiza-

tion,” The Journal of Financial Data Science, vol. 2, p. 8–20, Aug 2020.

[4] K. Bhatia, P. Jain, and P. Kar, “Robust regression via hard thresholding,”

CoRR, vol. abs/1506.02428, 2015.

[5] B. Natarajan, “Sparse approximate solutions to linear systems,” SIAM J.

Comp., vol. 24, no. 2, pp. 227–234, 1995.

[6] B. Moghaddam, Y. Weiss, and S. Avidan, “Generalized spectral bounds for

sparse lda,” Tech. Rep. TR2006-046, MERL - Mitsubishi Electric Research

Laboratories, Cambridge, MA 02139, June 2006.

[7] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm

for linear inverse problems,” SIAM Journal on Imaging Sciences, vol. 2,

no. 1, pp. 183–202, 2009.

[8] T. Blumensath and M. E. Davies, “Iterative hard thresholding for com-

pressed sensing,” Applied and Computational Harmonic Analysis, vol. 27,

no. 3, pp. 265–274, 2009.

56

[9] K. Chen, Q. Lv, Y. Lu, and Y. Dou, “Robust regularized extreme learning

machine for regression using iteratively reweighted least squares,” Neuro-

computing, vol. 230, pp. 345 – 358, 2017.

[10] A. S. Suggala, K. Bhatia, P. Ravikumar, and P. Jain, “Adaptive

hard thresholding for near-optimal consistent robust regression,” CoRR,

vol. abs/1903.08192, 2019.

[11] G. Huang, Q. Zhu, and C. Siew, “Extreme learning machine: Theory and

applications,” Neurocomputing, vol. 70, no. 1, pp. 489 –501, 2006.

[12] O. F. Alcin, A. Sengur, S. Ghofrani, and M. C. Ince, “Ga-selm: Greedy algo-

rithms for sparse extreme learning machine,” Measurement, vol. 55, pp. 126

– 132, 2014.

[13] E. Tsakonas, J. Jaldén, N. D. Sidiropoulos, and B. Ottersten, “Convergence

of the huber regression m-estimate in the presence of dense outliers,” IEEE

Signal Processing Letters, vol. 21, no. 10, pp. 1211–1214, 2014.

[14] D. Akkaya and M. Pınar, “Minimizers of sparsity regularized huber loss

function,” Journal of Optimization Theory and Applications, vol. 187, no. 1,

p. 205–233, 2020.

[15] Z. Shao and M. Er, “An online sequential learning algorithm for regularized

extreme learning machine,” Neurocomputing, vol. 173, 08 2015.

[16] M. Pilanci and T. Ergen, “Neural networks are convex regularizers: Exact

polynomial-time convex optimization formulations for two-layer networks,”

in ICML, 2020.

[17] Y. Bai, T. Gautam, Y. Gai, and S. Sojoudi, “Practical convex formulation

of robust one-hidden-layer neural network training,” 2021.

[18] B. Lim and S. Zohren, “Time-series forecasting with deep learning: a survey,”

Philosophical Transactions of the Royal Society A: Mathematical, Physical

and Engineering Sciences, vol. 379, p. 20200209, Feb 2021.

[19] A. Borovykh, S. Bohte, and C. W. Oosterlee, “Conditional time series fore-

casting with convolutional neural networks,” 2018.

57

[20] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Com-

putation, vol. 9, no. 8, p. 1735–1780, 1997.

[21] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of

gated recurrent neural networks on sequence modeling,” 2014.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” 2015.

[23] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-

nov, “Dropout: A simple way to prevent neural networks from overfitting,”

Journal of Machine Learning Research, vol. 15, no. 56, pp. 1929–1958, 2014.

[24] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio,

“Graph attention networks,” 2018.

[25] D. Grattarola and C. Alippi, “Graph neural networks in tensorflow and keras

with spektral,” 2020.

[26] F. M. Bianchi, D. Grattarola, L. Livi, and C. Alippi, “Graph neural networks

with convolutional arma filters,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, p. 1–1, 2021.

[27] Z. Zhang, S. Zohren, and S. Roberts, “Deep reinforcement learning for trad-

ing,” 2019.

[28] W. Wang, W. Li, N. Zhang, and K. Liu, “Portfolio formation with prese-

lection using deep learning from long-term financial data,” Expert Systems

with Applications, vol. 143, p. 113042, 2020.

[29] C. Zhang, Z. Zhang, M. Cucuringu, and S. Zohren, “A universal end-to-end

approach to portfolio optimization via deep learning,” 2021.

[30] R. Kim, C. H. So, M. Jeong, S. Lee, J. Kim, and J. Kang, “Hats: A hierar-

chical graph attention network for stock movement prediction,” 2019.

[31] F. Feng, X. He, X. Wang, C. Luo, Y. Liu, and T.-S. Chua, “Temporal

relational ranking for stock prediction,” ACM Transactions on Information

Systems, vol. 37, p. 1–30, Apr 2019.

58

[32] B. Lim, S. O. Arik, N. Loeff, and T. Pfister, “Temporal fusion transformers

for interpretable multi-horizon time series forecasting,” 2020.

[33] J. Yoon, J. Jordon, and M. van der Schaar, “PATE-GAN: Generating syn-

thetic data with differential privacy guarantees,” in International Conference

on Learning Representations, 2019.

[34] H. Ni, L. Szpruch, M. Wiese, S. Liao, and B. Xiao, “Conditional sig-

wasserstein gans for time series generation,” Jun 2020.

[35] D. Hallac, Y. Park, S. Boyd, and J. Leskovec, “Network inference via the

time-varying graphical lasso,” 2017.

[36] G. Tegner, “Recurrent neural networks for financial asset forecasting,” Mas-

ter’s thesis, KTH, Mathematical Statistics, 2018.

[37] D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),” 2016.

[38] Çağın Ararat, F. Cesarone, M. Çelebi Pınar, and J. M. Ricci, “Mad risk

parity portfolios,” 2021.

[39] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling language

for convex optimization,” Journal of Machine Learning Research, vol. 17,

no. 83, pp. 1–5, 2016.

[40] G. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme learning machine

for regression and multiclass classification,” IEEE Transactions on Systems,

Man, and Cybernetics, Part B (Cybernetics), vol. 42, no. 2, pp. 513–529,

2012.

[41] R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin, “A simple proof

of the restricted isometry property for random matrices,” Constructive Ap-

proximation, vol. 28, pp. 253–263, 12 2008.

[42] T. Cheng, “Restricted conformal property of compressive sensing,” CoRR,

vol. abs/1408.5543, 2014.

[43] Y. Chen, C. Caramanis, and S. Mannor, “Robust sparse regression under ad-

versarial corruption,” in Proceedings of the 30th International Conference on

59

Machine Learning (S. Dasgupta and D. McAllester, eds.), vol. 28 of Proceed-

ings of Machine Learning Research, (Atlanta, Georgia, USA), pp. 774–782,

PMLR, 17–19 Jun 2013.

[44] P. Jain and P. Kar, “Non-convex optimization for machine learning,” Found.

Trends Mach. Learn., vol. 10, p. 142–336, Dec. 2017.

[45] J. Yi and G. Tan, “Nonlinear compressed sensing based on composite map-

pings and its pointwise linearization,” CoRR, vol. abs/1506.02212, 2015.

[46] S. Dittmer, E. J. King, and P. Maass, “Singular values for relu layers,”

CoRR, vol. abs/1812.02566, 2018.

60

	Introduction
	Background
	Subset Based Error Recovery
	Sparse Recovery
	Non-Linear Robust Model Description
	ELM Model Description
	Robust Methods and Related Loss Functions
	Convex Neural Networks

	Deep Portfolio Optimization
	Neural Networks and Time Series
	Feed-Forward NN
	Convolutional NN
	Recurrent NN
	Residual Connections
	Dropout
	Graph Neural Networks

	Portfolio Optimization Problem

	Deep Portfolio Optimization
	Contribution
	Our Method
	Architecture
	Results
	Remarks
	Conclusion

	Subset Based Error Recovery
	Introduction
	Contribution
	Algorithm
	Theoretical Analysis
	Results
	Data Denoising
	ELM Method

	Conclusion

	Conclusion

