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ABSTRACT 

ROLES OF SENESCENCE ESCAPE AND EPIGENETIC 
MODIFICATIONS IN LIVER CANCER 

 
Gökhan YILDIZ 

Ph.D. in Molecular Biology and Genetics 
Supervisor: Prof. Dr. Mehmet ÖZTÜRK 
        August 2013, 126 Pages 

 
 
 
Development of hepatocellular carcinoma (HCC) is a multi-step progressive process 

in which a healthy liver transforms into cancerous tissue. Senescence is a permanent 

proliferation arrest in response to cell stress such as DNA damage, serving as a major 

barrier against tumor development. Most tumor cells are believed to bypass the 

senescence barrier (become “immortal”) by inactivating growth control genes and 

reactivating telomerase reverse transcriptase gene. Senescence-to-immortality 

transition is accompanied by major phenotypic and biochemical changes mediated by 

genome-wide transcriptional modifications. This appears to happen during HCC 

development in patients with liver cirrhosis; however, the accompanying 

transcriptional changes are virtually unknown. This study describes genome-wide 

transcriptional changes related to the senescence-to-immortality switch during 

hepatocellular carcinogenesis. Starting with a strong support of the hypothesis that in 

vitro senescent HCC clones are alike in vivo cirrhosis cells, and in vitro immortal 

HCC cells are alike in vivo HCC hepatocytes using microarray data analysis methods; 
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we determined differentially expressed genes and deregulated biological mechanisms 

during senescence escape and immortalization. Gene set enrichment analysis revealed 

that cirrhosis/senescence-associated genes were preferentially expressed in non-tumor 

tissues, less malignant tumors, and differentiated or senescent cells. In contrast, 

HCC/immortality genes were up-regulated in tumor tissues, or more malignant tumors 

and progenitor cells. In HCC tumors and immortal cells genes involved in DNA 

repair, cell cycle, telomere extension and branched chain amino acid metabolism were 

up-regulated, whereas genes involved in cell signaling, as well as in drug, lipid, 

retinoid and glycolytic metabolism were down-regulated. Through the analysis of 

senescence-related gene expression in different liver tissues we showed that cirrhosis 

and HCC display expression patterns compatible with senescent and immortal 

phenotypes, respectively; dysplasia being a transitional state. Based on these 

distinctive gene expression features we developed a 15-gene hepatocellular 

immortality signature test that discriminated HCC from cirrhosis with high accuracy. 

Since an epigenetic player gene, ATAD2, came forward as one of the hepatocellular 

immortality signature test genes in senescence escape processes, we also investigated 

roles of epigenetic regulatory genes in hepatocellular carcinogenesis. Bioinformatics 

analyzes on cirrhosis and HCC as well as dysplasia and normal liver samples using a 

comprehensive list of epigenetic regulatory genes revealed several transcriptionally 

deregulated epigenetic regulatory mechanisms during liver carcinogenesis. However, 

we could not detect any mutational differences in N-terminal tail encoding DNA 

sequences of histone variants. Our findings demonstrate that senescence bypass plays 

a central role in hepatocellular carcinogenesis engendering systematic changes in the 

transcription of genes regulating DNA repair, proliferation, differentiation and 

metabolism.
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ÖZET 

KARACİĞER KANSERİNDE SENESENSTEN KAÇIŞ VE 
HİSTONE MODİFİKASYONLARININ ROLLERİ 

 
Gökhan YILDIZ 

Moleküler Biyoloji ve Genetik Doktorası 
Tez Danışmanı: Prof. Dr. Mehmet ÖZTÜRK  

Ağustos 2013, 126 Sayfa 
 
 
Hepatosellüler karsinom (HSK) oluşumu, sağlıklı bir karaciğerin kanserli bir dokuya 

dönüşümüyle sonuçlanan çok aşamalı bir süreçtir. Senesens DNA hasarı gibi hücresel 

streslere karşı yanıt olarak ortaya çıkan ve tümör gelişimi önünde engel işlevi gören, 

hücre çoğalmasının kalıcı olarak durdurulması olayıdır. Çoğu tümör hücresinin hücre 

çoğalmasını kontrol eden genleri etkisizleştirerek ve telomeraz ters transkriptaz genini 

yeniden etkinleştirerek senesens engelini aştıkları (“ölümsüz” oldukları)  

düşünülmektedir. Senesensten ölümsüzlüğe geçiş genom çapında gen ifadesi 

değişikliklerin yönettiği önemli fenotipik ve biyokimyasal değişikliklerle birlikte 

gerçekleşmektedir. Bu durum, geçiş sırasında gerçekleşen gen ifade değişiklikleri 

neredeyse hiç bilinmese de, sirozlu hastalarda HSK gelişimi sırasında da 

gerçekleşiyor görünmektedir. Bu çalışmada HSK gelişimi sırasında senesensten 

ölümsüzlüğe geçişte tüm genom çapında gerçekleşen gen ifade değişikliklerini 

tanımlanmaktadır. In vitro senesensli HSK hücrelerinin in vivo sirozlu hepatositlere 

ve in vitro ölümsüz HSK hücrelerinin in vivo HSK hücrelerine benzediği hipotezini 

mikrodizin veri analizi yöntemleriyle kanıtlanmasıyla başladıktan sonra; senesensten 
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kaçış ve ölümsüzlük sırasında değişikliğe uğrayan biyolojik mekanizmaları ve farklı 

düzeyde ifade edilen genleri belirledik. Gen seti zenginleştirme analizleri 

siroz/senesens ilişkili genlerin özellikle tümörlü olmayan dokularda, daha az malign 

tümörlerde ve farklılaşmış veya senesensli hücrelerde ifade edildiklerini ortaya 

koydu. Buna karşılık HSK/ölümsüzlük genlerinin ifadelerinin tümörlü dokularda ve 

ilerlemiş malign tümörlerde arttığı belirlendi. HSK tümörlerinde ve ölümsüz 

hücrelerde DNA onarımı, hücre döngüsü, telomere uzaması ve amino asit 

metabolizması genlerinin ifadesi artarken; hücre sinyali, ilaç metabolizması, lipid 

metabolizması ve glikolitik metabolizma genlerinin ifadeleri de azalmaktadır. Farklı 

dokular üzerinde senesens ile ilişkili genlerin ifadelerinin incelenmesi ile de displazi 

aşamasının bir geçiş aşaması olduğu yanında siroz ve HSK örneklerinin sırasıyla 

senesensli ve ölümsüz hücrelere benzer gen ifade profilleri sergiledikleri 

belirlenmiştir. Bu belirgin gen ifadesi farklılıklarından yararlanarak HSK örneklerinin 

siroz örneklerinden ayrımını yüksek hassasiyetle sağlayan 15 genlik bir karaciğer 

hücresi ölümsüzlük imza testi geliştirdik. Karaciğer hücresi ölümsüzlük imza testi 

genleri arasında öne çıkan ATAD2 geninin bir epigenetic düzenleyici gen olması 

sebebiyle epigenetik düzenleyici genlerin karaciğer kanserinin gelişimindeki rollerini 

de araştırdık. Siroz, HSK, displazi ve normal karaciğer doku örnekleri verileriyle ve 

kapsamlı bir epigenetic düzenleyici genler listesiyle yaptığımız biyoinformatik 

analizler sonucunda karaciğer kanseri gelişimi sırasında gen ifadesi değişikliklerine 

uğrayan bir çok epigenetic düzenleyici mekanizmayı da belirledik.  Ancak histon 

varyantlarının N-terminal uçlarını kodlayan DNA dizilerinde mutasyon farklılığı 

bulamadık. Elde ettiğimiz bulgular senesensin DNA onarımı, hücre çoğalması, hücre 

farklılaşması ve hücre metabolizması üzerinde gen ifade farklılıklarına sebep olarak 

HSK gelişiminde merkezi bir rol oynadığını ortaya koymaktadır.
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CHAPTER 1 

INTRODUCTION 

 
 

 1.1 Hepatocellular carcinogenesis 

 
Hepatocellular carcinogenesis is a multi-step progressive process, which comprise 

of tumor free liver disease steps (mainly fibrosis, non-alcoholic fatty liver disease and 

cirrhosis) and liver cancer (mainly hepatocellular carcinoma) [1-3]. During the 

hepatocellular carcinogenesis a normal healthy liver suffers impact of several 

metabolic changes, infections, inflammation events, chromatin abnormalities and 

molecular biological changes that finally cause generation of the HCC [3-9].  
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Figure 1.1: Steps of the hepatocellular carcinogenesis: A normal healthy liver can 
transform into non-alcohol induced liver disease (NAFLD) or fibrosis. Next step of the NAFLD can be 
fibrosis or hepatocellular carcinoma (HCC) if the disease is worsened. Cirrhosis may occur as a result 
of continued fibrosis and it might transform to HCC or generate dysplastic nodules become the HCC 
step. HCC can also progress from the early HCC to advanced HCC.  
 
 

1.2 Tumor-free chronic liver diseases 

 

1.2.1 Characteristic properties, functions and homeostasis of the liver 

 

The human liver is the largest internal organ of the body, weighing 1.44–

1.66 kg, with a triangular shape in reddish brown color containing four lobes of 

unequal size. The liver is connected to two blood vessels called hepatic artery and 

portal vein. The hepatic artery is responsible for carrying blood from the aorta. The 

portal vein carries blood containing digested nutrients. These blood vessels subdivide 

into capillaries leading to a lobule. Lobules are the functional units of the liver. A 

human liver contains 50.000 to 100.000 lobules and each lobule is composed of 

millions of hepatic cells, which are the fundamental metabolic cells of the liver. 80% 
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of the liver volume is occupied by hepatocytes whereas other cell types such as 

sinusoidal hepatic endothelial cells, Kupffer cells, and hepatic stellate cells constitute 

6.5% of the total volume [10].  

 

In addition to being a storage and filtration organ for blood, and being a 

secretory and excretory organ by forming the bile, the liver is mainly responsible for 

the majority of the metabolic systems of the body. Major metabolism events taking 

place in the liver are listed below [10-12]: 

 

 

1.2.1.1 Carbohydrate metabolism 

 

Specific functions performed by liver in terms of carbohydrate metabolism 

are: glycogen storage, conversion of glucose, gluconeogenesis, and generation of 

several chemical compounds of carbohydrate metabolism. By performing these 

functions the liver has a glucose buffer function to maintain a normal blood glucose 

concentration in the body (the excess amount of glucose can be stored in the liver as 

glycogen, or triglycerides can be converted to glucose by gluconeogenesis to increase 

the glucose amount in the blood when it is needed) [11].  

 

 

1.2.1.2 Fat metabolism 

 

Nearly all the events of synthesis of the fat in the body from carbohydrates 

and proteins occur in the liver. Following the synthesis of fat in the liver, it is stored 

in the adipose tissue after transportation of fat in the form of lipoproteins in the liver. 

Energy from the neutral fats is derived by first splitting the fat into glycerol and the 

fatty acids, then splitting the fatty acids into two-carbon acetyl radicals by beta 

oxidation and finally forming acetylcoenzyme A (acetyl-CoA). Acetyl-CoA can enter 

the citric acid cycle and be oxidized to achieve high amounts of energy. This event, 

the β-oxidation, can take place in any other cell of the body, but it occurs extremely 

rapidly in the hepatocytes. The excess amount of acetyl-CoA produced by 

hepatocytes is converted to acetoacetic acid and transferred to other tissues to be used 

to produce energy by the β-oxidation [1].  
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Almost all the cholesterol synthesized in the liver is converted into the bile 

salts, but the rest is transported in the lipoproteins. After that, the lipoproteins are 

carried to other tissue cells in the body by the blood. Phospholipids are also 

synthesized in the same method in the liver and transported in the lipoproteins [12].  

 

In summary, specific functions of the liver in fat metabolism are: high rate of 

oxidation of fatty acids to supply energy for other bodily functions, formation of most 

of the lipoproteins, synthesis of large quantities of cholesterol and phospholipids, and 

conversion of large quantities of carbohydrates and proteins into fat [11, 12]. 

 

 

1.2.2 Fibrosis of the liver 

 
The liver fibrosis is a diseased state of a liver with excess accumulation of 

extracellular matrix (ECM), as an intrinsic response to chronic injury, resulting from 

chronic inflammation. The inflammation in liver causes cell death of cells of the liver 

via necrosis or apoptosis and triggers wound-healing process leading to scar tissue 

formation. Major factors causing liver fibrosis are chronic hepatitis B or C virus 

infections, autoimmune and biliary diseases, alcoholic and non-alcoholic 

steatohepatitis [1, 13].  

 

Cellular effectors of the liver fibrosis, which produce excess amount of ECM, 

are activated myofibroblasts that mainly derive from hepatic stellate cells and portal 

fibroblasts (Figure 1.2). In addition to that, there are three major multicellular 

functional units of the liver fibrosis, which have role in the fibrogenic pathways: (a) 

hepatic stellate cells, liver sinusoidal endothelial cells (LSECs), macrophages/ 

Kupffer cells, and hepatocytes; (b) stromal inflammatory myofibroblasts, T cells, and 

macrophages; and (c) portal/peri-portal cholangiocytes/ductular cells, portal 

fibroblasts, and various inflammatory cells [4] (Figure 1.2).  

 

The mild liver fibrosis is mainly asymptomatic and it usually reverses within a 

few weeks following the resolution of tissue damage, as demonstrated in less 

advanced rodent and human liver fibrosis [1, 13]. However, continued scar tissue 

formation and inflammation during fibrosis progresses towards cirrhosis, which 
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usually leads to hepatocellular carcinoma (HCC). In addition to that, advanced 

fibrosis or cirrhosis diseases are largely irreversible, even though they do not progress 

towards the HCC [13, 14].  

 

Potential mechanisms of fibrosis-dependent hepatocellular carcinogenesis are: 

 

i) Deregulated integrin signaling by the fibrotic matrix: Over-expressions of ECM 

components integrin 1b or integrin b3 may trigger apoptosis or cell cycle arrest via 

up-regulation of p21 and p27 in HCC cell lines) [1]. 

 

ii) Paracrine signaling of hepatic stellate cells (HSCs) and hepatocytes: During the 

liver fibrosis, HSCs produce growth factors such as hepatocyte growth factor, IL-6, 

and Wnt ligands creating a microenvironment supporting hepatocyte proliferation. In 

addition to that, activated myofibroblasts can both induce hepatocyte cell proliferation 

and metastasis by through PDGF and TGF-β mediated cross-talk mechanisms [15].     

 

iii) Increased stromal stiffness: The ECM is more rigid in liver fibrosis, and this 

situation causes cell proliferation and HSC activation in liver [16]. 

 

iv) Growth factor sequestration by ECM: The TGF-β signaling, which is highly 

dependent on ECM interactions, is down-regulated in liver fibrosis via sequestration 

of TGF-β by latent TGF-β binding proteins (LTBPs) [17]. 

  

v) Reduced tumor surveillance by natural killer (NK) and natural killer T cells (NKT): 

NK cells have ability to induce cell death of tumor cells and activated hepatic stellate 

cells. However, because of the structure of the microenvironment created during the 

liver fibrosis, NK cells may remain in the stroma without making cell-cell contact to 

kill tumor cells [18, 19]. 

 

1.2.3 Non-alcoholic fatty liver disease  

 

Nonalcoholic fatty liver disease (NAFLD), which is characterized by 

hepatocellular injury and inflammation with or without fibrosis, is a spectrum of 

disorders that are characterized by steatosis of the liver; it occurs in people who do 



 6 

not consume significant amounts of alcohol [5]. The simple steatosis, abnormal 

accumulation of lipids in cells, is the only histological finding of the NAFLD. 

NAFLD is a “silent liver disease” because it is usually diagnosed in asymptomatic 

patients after accidental discovery of elevated liver enzymes or ultrasound [5,20]. 

Prolonged NAFLD can progress to cirrhosis and finally become HCC [21]. It is 

believed that NAFLD occurs as a result of metabolic syndrome (MS) in the liver [22].   

 
1.2.4 Cirrhosis 

 

Cirrhosis is known as the most crucial risk factor for development of HCC. 

Known risk factors for development of HCC in virus-related cirrhosis are age, male 

gender, ferocity of the liver disease, active viral replication during follow-up, viral 

genotype, alcohol intake, and aflatoxin exposure [6]. Earlier acquisition of HBV 

infection and longer duration of disease are also additional risk factors of HCC 

development in cirrhosis patients [23]. Cirrhosis is the final stage of the non-tumor 

chronic liver diseases manifested with replacement of liver tissue with fibrosis, 

generation of regenerative cirrhotic nodules and ascites (abdominal fluid 

accumulation) [24].  
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a 

               

b 

               
 

Figure 1.2: Major molecular units and mechanisms of the liver fibrosis: a) 
Fibrogenic activation mechanism of myofibroblasts. b) Major cellular functional unit affecting 
hepatocytes during liver fibrosis. TGF-β1, Transforming growth factor 1; IL, interleukin; IFN, 
interferon; A2AR, adenosine 2A receptor; AT1R, angiotensin 1 receptor; CBR1, cannabinoid receptor 
1; ET-1, endothelin-1; ETAR, endothelin A receptor; FXR, farnesoid X receptor; Hh(R), hedgehog 
(receptor); Int, integrin; LPA1R, lysophosphatidic acid receptor 1; NGFR, nerve growth factor 
receptor; PTX2, pentraxin 2; TRAILR, TNF-related apoptosis-inducing ligand receptor; YB-1, Y-box 
binding protein. Permission granted for reuse of figures by Copy Right Clearance Center (see 
Appendix). 
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1.3 CLD and liver cancer inducing major factors 

 

1.3.1 Hepatitis B virus (HBV) and hepatitis C virus (HCV) infections 

 

There are two major types of viruses, hepatitis B virus (HBV) and hepatitis C 

virus (HCV), able to replicate in hepatocytes and cause non-tumorigenic chronic liver 

diseases (CLD) and hepatocellular carcinoma (HCC) [25]. These viruses have high 

heterogeneity in their genome. There are eight different genotypes (A-H) of HBV and 

four major genotypes (G1-G4) of HCV characterized [26].  

 

It is estimated that around 2 billion individuals are infected with HBV. Most 

of the HBV infections take place at birth and most of them (more than 90%) become 

chronic [7]. Regarding to HCV infections, almost 85% of the HCV infections become 

chronic. In Africa and Asia HBV is endemic and 60% of HCC is associated with 

HBV infection whereas, in the United States of America, Europe, Egypt and Japan 

60% of HCC is associated with HCV infection [8]. Nearly half of people with chronic 

HBV or HCV infections develop CLD. In 5-20 years 5-20% of the infected people 

progress to cirrhosis. However, 1-2% of them progress to HCC each year, but it takes 

nearly 30 years from the original infection [26]. Each year more than 250.000 new 

HCC cases emerge and 500.000-600.000 people die because of the HCC [27].  

 

The inflammation and regeneration events during the chronic liver damage 

create a suitable environment for HBV and HCV viruses. HBV and HCV generate 

proteins that make NK cells and NKT cells of the liver incapable of killing infected 

cells [28]. 

 

The HBV contributes to the development of HCC mainly by producing 

hepatitis B x (HBx) protein and, pre-S and S polypeptides, whereas non-structural 

proteins (NS) NS3 and NS5A are the main players of the HCV mediated oncogenic 

transformation to HCC [29, 30]. Both HBx and pre‐S or S polypeptides of these 

viruses provide advantageous traits to hepatocytes for oncogenic transformation such 

as growth-factor independent proliferation and resistance to growth inhibition [8].  
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The oncogenic transformation events after chronic HBV and HCV infections 

trigger cellular senescence response in hepatocytes. However, both HBV and HCV 

viruses by-pass the cellular senescence mechanisms by inactivating tumor suppressors 

of the senescence mechanisms via different mechanisms such as up-regulating of 

DNA methyltransferases (DNMTs) to prevent gene expression of DNA repair genes 

and cyclin dependent kinase (CDK) inhibitors INK4A and p21, expressing microRNA 

(miRNA) miR-221 to prevent the gene expression of CDK inhibitor p27 [31-34].  

 

1.3.2 Obesity and insulin resistance 

 
Obesity is the major factor causing NAFLD and finally HCC. The prevalence 

of NAFLD is 80–90% in obese adults and steatosis is 4.6-fold higher than in normal 

weight people [5]. Leptin, an adipokine secreted by adipocytes to the blood stream 

with circadian rhythm, is the major player of the obesity mediated liver diseases. 

Since Leptin is functioning in lipid and carbohydrate metabolisms, it is demonstrated 

that deregulated gene expressions of Leptin and its receptor are associated with 

deregulated energy metabolism in NAFLD and HCC [35, 36]. Obesity is also 

associated with the insulin resistance, which is another factor causing NAFLD 

together with oxidative stress and inflammation [37, 38]. 

 

 

1.3.3 Chronic alcohol consumption and aflatoxin exposure 

 
  It is known for long-time that chronic intake of alcohol can cause cirrhosis and 

HCC in the liver [39]. Major mechanisms of alcohol-induced CLD and HCC are 

related to deregulated metabolic events, oxidative stress induction, and inflammation 

induction in the liver.  

  Liver is the main organ that alcohol-metabolism events take place in the body. 

The first major impact of the chronic alcohol intake on liver is excess production of 

acetaldehyde, produced by alcohol dehydrogenase (ADH) during the alcohol-

metabolism events; which causes DNA damage in the liver [40]. Chronic alcohol 

consumption also causes production of isoprostane, a lipid peroxidation marker, in the 

liver [41], which is an indicator of oxidative stress that causes liver fibrosis and 
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cirrhosis in the liver. These, alterations in the alcohol-metabolism induce secretion of 

pro-inflammatory cytokines, such as TNF-α, Interleukin-1β, and Interleukin 6, from 

Kupffer cells, which cause chronic destruction of hepatocytes, cirrhosis, and finally 

HCC [42].  

 Aflatoxin B1 (AFB1) is the most common type of the aflatoxins produced by 

fungus Aspergillus flavus. AFB1 is a very potent mutagene, which causes a very 

specific AGG to AGT mutation at codon 249 of the tumor suppressor p53 protein, 

which causes activation of several oncogenes and finally induction of HCC in the 

liver [9]. In addition to that, AFB1 infection usually coexists with HBV infection, but 

the molecular mechanism of this association is not known yet [43].   

 

1.4 Hepatocellular carcinoma (HCC) 

 
HCC is a multi-step progressive disease (Figure 1.3a) arises from 

accumulation of multiple genetic aberrations, epigenetic alterations, deregulated 

molecular signaling events and environmental factors (Figure 1.3b) detailed below.  

 

1.4.1 Etiology of liver cancer 

 

Liver cancer is the fifth most common cancer in men and seventh in female 

with more than 500.000 new cases and almost the same number of deaths in each 

year. 85% of the liver cancer cases occur in countries being developed. The most 

common type of the liver cancer is HCC (80% of the cases), while there are other 

types of liver cancers, such as cholangiocarcinoma and hepatocellular adenoma. 

Nearly 90% of the HCC cases are related to HBV or HCV infections; whereas there 

are other major HCC inducing factors, such as chronic alcohol consumption and 

aflatoxin exposure. Variations of HCC incidences in terms of age, sex or geographic 

distribution are mostly related to variations of virus infections. Geographically, HCC 

mostly (80%) occur in Sub-Saharan Africa and eastern Asia. In recent years, HCC 

cases started to decrease in these regions; while increasing in North America. HCC is 

mostly diagnosed at 55-65 years of life; and rarely seen in a person less then 40 years 

old  [3]. 
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a 

          
 

b 

        
 

Figure 1.3: Multi-step progressive treat and molecular mechanisms of 
hepatocellular carcinogenesis: a) Different factors, such as viral infection and chronic alcohol 
consumption induce injury in hepatocytes. Injured hepatocytes die and new hepatocytes are produced 
to compensate the absence. However, continued injury causes destruction of hepatocytes. This situation 
triggers repetitive cycles of hepatocyte death and regeneration, which causes generation of chronic 
liver diseases; and cirrhosis. Progression of the diseases is characterized with conversion of cirrhotic 
nodules to hyperplastic nodules and dysplastic nodules, and finally HCC, in sequence. HCC can also be 
classified into early and advanced HCC. Telomere shortening is a feature of CLD and cirrhosis. 
Telomerase reactivation is associated with hepatocellular carcinogenesis. Loss and mutation of p53 
with genomic instability are characterized with hepatocellular carcinogenesis as well. b) Mechanisms 
of hepatocellular carcinogenesis. Details of these mechanisms are provided in the text. Permission 
granted for reuse of figures by Nature Publishing Group (see Appendix). 
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1.4.2 Deregulated molecular signaling pathways in HCC 

 

Hepatocellular carcinogenesis is a multi-step progressive event as a result of 

accumulations of different genetic abnormalities, epigenetic changes, impaired 

metabolic processes and deregulated signaling pathways of different cell types of the 

liver [44-46]. As described above, during the progression from healthy liver to non-

tumorigenic chronic diseased liver to the HCC, chronic inflammation events and 

associated changes in the molecular signaling pathways in the liver play major role in 

hepatocellular carcinogenesis. Thus, understanding the major deregulated molecular 

signaling pathways during the hepatocellular carcinogenesis is a key step to 

understand molecular basis of the HCC. 

 

 

1.4.2.1 NF-κB, JAK-STAT, IL-6 pathway axis in HCC 

 

The nuclear factor kappa B (NF-κB) signaling generally functions as a 

regulator pathway of cell survival, immunity, and inflammation in cells [47, 48]. NF-

κB proteins function as protein dimers, composed by seven different proteins. p105, 

p50 (together form NF-κB1), p100, p52 (together form NF-κB2), RelA (p65), RelB, 

and c-Rel. When there is no stimulation, IκB proteins bind to NF-κB dimers and keep 

them inactive in the cytoplasm. However, IκB cannot function on dimers of p105 and 

p100. NF-κB dimers are released from IκB kinases, become activated, and translocate 

into nucleus to induce transcription of several genes when a proinflammatory signal, 

such as tumor necrosis factor (TNF) or interleukin 1β (IL-1β) stimulus arrives to a 

cell [49, 50].  

 

NF-κB pathway has anti-apoptotic roles in early liver development. Both 

RelA/p65 deficient mice and IKKβ deficient mice are embryonically lethal because of 

liver apoptosis and degeneration [51, 52]. In addition to those, NF-κBs cause gene 

expression of several reactive oxygen species (ROS) scavenging proteins, such as 

ferritin heavy chain and manganese-dependent super-oxide dismutase, to maintain 

anti-oxidant defense in hepatocytes [53]. 
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However, the anti-apoptotic functions of the NF-κB in the liver work as a 

major tumor promoter mechanism in case of inflammation. Using a non-degradable 

IκBα mutant expressing mouse model Pikarsky et al. showed that continuous NF-κB 

activation in hepatocytes causes survival of malignant cells by TNF-α production and 

paracrine TNF-α signaling in the liver [54].  

 

Another NF-κB associated tumor promoting signaling mechanism occurs 

through communications of NF-κB, IL-6 and (signal transducer and activator of 

transcription 3) STAT3 in diethylnitrosamine (DEN) mouse model. NF-κB and 

STAT3 transcription factors have common target genes and they communicate in both 

positive and negative crosstalk mechanisms [47, 48]. In mouse DEN model, a 

chemically induced HCC mouse model that displays a similar gene expression and 

histology profile of human HCC samples, DEN-induced hepatocyte death causes 

release of IL-1α from hepatocytes. IL-1α activates NF-κB signaling in Kupffer cells, 

which release several cytokines and growth factors to the environment. IL-6, released 

by Kupffer cells with this mechanism, activates STAT3 in hepatocytes and cause 

transcription of several hepatocyte proliferation inducing genes [55, 56].  

 

STAT3, which is normally inactive in cells, is phosphorylated and activated 

by Janus kinases (JAKs) in response to different cytokines and growth factors such as 

IL-6, and hepatocyte growth factor (HGF) [57, 58]. The active STAT3 found to be 

present almost 60% of human HCC samples, and especially in aggressive ones, but 

not in surrounding non-tumor tissue or in normal liver [59]. The main reason of 

elevated numbers of active STAT3 must be related to the increased expression of IL-6 

in the tumor microenvironment, because active NF-κB positive samples do not 

overlap with active STAT3 positive samples. In addition to that, hepatocyte specific 

IL-6 receptor transgenic mice spontaneously develop HCC, and gain of function 

mutations of human gp130 protein (another IL-6 receptor protein) [60] were found in 

60% of hepatocellular adenomas like the percentage of active STAT3s in HCC 

samples.  

 

In conclusion, inflammation related NF-κB, JAK-STAT, IL-6 pathway axis 

seems as an important mechanism of the hepatocellular carcinogenesis. 
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1.4.2.2 Mitogen activated protein kinases (JNK, p38, ERK), and Akt pathways in 

HCC 

 

Mitogen activated protein kinases (MAPKs) consist of at least four sub-

families including Jun N-terminal kinase (JNK), p38 MAPKs, extracellular signal 

regulated kinases (ERKs) [61]. 

 

Jun N-terminal kinase (JNK) proteins (JNK1, JNK2, and JNK3) are encoded 

by MAPK8, MAPK9, and MAPK10 genes, respectively. JNKs are activated by 

MKK4 and MKK7, mainly by TNF-α or IL-1; and de-activated by different DUSP 

family members. Main activities of JNK pathway are favoring proliferation, survival 

and motility of hepatocytes, mostly through the activation of c-Jun [62]. JNK also 

functions in the processes of activation of mitochondrial apoptotic pathways [63].  

 

JNK pathway is especially important in HBV-associated HCC, because 

elevated JNK activation is correlated with HBsAg positivity of cells [64]. 

Hyperphosphorylated JNK1 is found in more than 50% of both European and Chinese 

HCC samples [65, 66]. In addition to that, JNK activation increase is positively 

related to increased transcription of different histone methyltransferases, such as 

EZH2, SUV39H2, MLL3, SMYD3, and SMYD5 [66].  JNK1 -/- mice show 

decreased hepatocellular carcinogenesis after DEN treatment, mainly due to increase 

expression of p21 and decreased expression of c-Myc due to the lack of JNK1 

expression [65].  

 

Despite the fact that JNK pathway is one of the activated pathways in the 

HCC, JNK pathway usually antagonizes with other activated pathways, such as NF-

κB, p38, and ERK pathways. NF-κB negatively regulates JNK activation processes 

[67, 68]. However, JNK is activated in absence of active NF-κB in hepatocytes, 

mainly due to increased ROS in hepatocytes. The increase of inflammatory cytokines 

and ROS accumulation in the liver, as results of metabolic syndrome related 

mechanisms, such as obesity and insulin resistance induce JNK activation, but not the 

NF-κB pathway [69]. Thus, NF-κB and JNK pathways play separate and independent 

roles during hepatocyte death and proliferation cycle events of the inflammation-

related events in the liver.  
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The p38 family consists of p38α, p38β, p38γ, and p38δ isoforms; and 

activated by MKK3, MKK4, and MKK6 kinases [70, 71]. p38α is one of the critical 

proteins in initiation of HCC from viral infection associated hepatitis. HBx protein, 

produced by HBV, increases activation of p38 that increase assembly of virus 

particles in the hepatocytes. However, HCV activates p38 pathway to produce pro-

inflammatory chemokine IL-8 [72, 73].  

 

In addition to positive contributions of p38 to hepatocellular carcinogenesis, 

p38 can negatively regulate hepatocellular carcinogenesis; because p38 antagonizes 

with JNK pathway and causes decrease of the proliferation of advanced liver tumor 

cells [74].   

 

Extracellular signaling-regulated kinase (ERK) is activated by Ras proteins, 

which are bound to growth factor receptors. After receptor activation, the signal is 

transmitted to Ras, Raf, MEK, and ERK, in sequence. Main functions of this 

signaling pathway are to regulate cell growth, resistance to apoptosis, extracellular 

matrix production, and angiogenesis in a cell [75-77].  

 

             Raf-1 is hyperactivated in many cancers, including HCC [78, 79]. In an 

immunohistochemical study using HCC patient samples it is found that MEK1/2 are 

overexpressed in 100% (46/46) of samples, ERK1/2 are overexpressed in 91% 

(42/46) of samples, and ERK1/2 are phosphorylated in 69% (32/46) of samples; 

suggesting that the ERK signaling is highly active in many HCC cases [80]. Despite 

the fact that, studies using ELK1/2 knock out mice for hepatocellular carcinogenesis 

are missing to understand in vivo roles of the ERK pathway in hepatocellular 

carcinogenesis, extensive in vitro studies have been done on different ERK pathway 

components. Generally, in vitro experiments on ERK pathway indicate that knock 

down of ERK members cause attenuation of liver tumor cell proliferation, and DNA 

replication, and tumorigenesis (using xenograft tumors) [81, 82].   

 

As it happens with JNK and p38, there is a negative communication between 

JNK and ERK pathways, as well as p38 and ERK pathways. Sustained JNK activation 

by TNF-α stimulation inhibits ERK activation in hepatocytes; and inhibition of p38 
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pathway by an inhibitor (SB203580) activates ERK in primary human hepatocyte 

cultures [83]. 

 

The PI3K/Akt/mTOR pathway is complex pathway that generally regulates 

growth, survival, cellular metabolism, and anti-apoptosis events of a cell. In this 

pathway phosphatidylinositol 3-kinase (PI3K) phosphorylates phosphatidylinositol 

4,5-biphosphate (PIP2) and converts it to PIP3, which activates the Akt protein. The 

PTEN protein is antagonistic to activities of PI3K to inhibit Akt activation [84]. The 

other component of this pathway that regulates Akt is the mTOR. mTOR can be 

found in two different complexes: mTORC1, which activates Akt as an upstream 

regulator, and mTORC2, which is downstream of Akt protein [85].  

 

The expression of Akt was found as a poor prognostic factor for survival for 

HCC, with a study using more than 500 HCC patient samples [86]. In addition to that, 

it is found that activation of mTOR is related with recurrence of HCC after excision 

of early HCC [84].  

 

 

1.4.2.3 TGF-β pathway 

 

Transforming growth factor beta (TGF-β) is a secreted protein that activates 

the TGF-β pathway by binding to TGF receptors and activating the canonical small 

mothers against decapentapegic (SMAD) pathway, which translocate to nucleus to 

induce transcription of various genes, or DAXX pathway [87]. The TGF-β pathway 

may have both tumor blocking or tumor promoting functions with a context 

dependent manner [88]. It is known that TGF-β is functioning for generation of liver 

fibrogenesis in non-tumorigenic CLD. TGF- β is produced and released from non-

parenchymal cells, such as HSCs; used by hepatocytes and induces wound healing 

mechanisms in the hepatocytes during fibrogenesis of the liver [89]. On the other 

hand, different groups including ours showed that TGF-β is able to induce cellular 

senescence on in vitro HCC cells [90]. Senturk et al. showed that TGF- β treatment 

down-regulates c-Myc expression, but upregulates p21 and p15 proteins and cause G1 

arrest through accumulation of ROS and down-regulation of NOX4 protein in HCC 

cells [90].  



 17 

1.4.2.4 Wnt pathway 

 

Main components of the Wnt signaling is composed of the ligand protein Wnt, 

Frizzled family transmembrane receptors, which binds to Wnt, and intracellular 

effector proteins, dishevelled (DSH), adenomatous polyposis coli (APC), casein 

kinase 1 (CK1), glycogen synthase kinase 3β (GSK3β), and β-catenin. β-catenin is 

normally inactive in the cytoplasm in a complex with APC, CK1, and GSK3β. 

Binding of Wnt ligand to the Frizzled receptor causes activation of DSH, which in 

turn prevents ubiquitination of β-catenin. The free and active β-catenin protein in the 

cytoplasm translocates to the nucleus to achieve its gene expression modulation 

activities [91].  

 

The Wnt pathway is an important mechanism in liver development, but this pathway 

is inactive in adult liver. However, this pathway is reactivated in regenerating adult 

liver, hepatoblastoma, and HCC. Studies using β-catenin transgenic mice indicate that 

abnormally active Wnt signaling is not enough for hepatocellular carcinogenesis [92]. 

On the other hand, one of the most frequently seen genetic events in HCC seen in 20-

40% of the HCC patients is point mutations on the CTNNB1 gene, which encodes the 

β-catenin protein, that cause aberrant activation of the Wnt/β-catenin pathway [93-

95]. 

 

 

 

1.4.2.5 c-Met Pathway 

 

c-Met is a receptor tyrosine kinase usually activated by hepatocyte growth 

factor (HGF) ligands. Following the activation, c-Met can activate different signaling 

mechanisms, such as JAK-STAT pathway and ERK pathway [96]. c-Met can also be 

activated by other ligands such as Des-gamma-carboxy thrombin (DCP), a 

prothrombin secreted from HCC cells that induces HGF independent c-Met pathway, 

epidermal growth factor (EGF), IL-1, IL-6, and TNF-α, and HBx. c-Met might also be 

activated in response to attachment of cells without a ligand [97].  
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It is found that c-Met is over-expressed in 20-48% of the human HCC samples 

[98, 99]. The increased gene expression is considered as a prognostic factor for HCC. 

c-Met transcription is elevated in invasive or poorly differentiated HCCs, as well as 

HCC samples with high proliferative index [98, 100]. It is also found that patients 

with c-Met transcription in elevated levels have decreased 5-year survival rates after 

surgical resection [100, 101]. Finally, based on the c-Met gene expression signatures, 

HCC patients able to be classified into good prognosis or bad prognosis in 83-95% 

accuracy with a predictive model [102]. Thus, the c-Met signaling emerges as a good 

target for targeted anti-HCC therapies in the future. 

 

In addition to these pathways other pathways such as insulin like growth 

factor (IGF) [103], epidermal growth factor (EGF) [84], vascular endothelial growth 

factor (VEGF) [104], platelet derived growth factor (PDGF) [105], Sonic-Hedgehog 

[106], and Hippo pathways [106] are also deregulated in HCC, but less than the 

pathways described above. 

 

  

1.4.3 Genetic abnormalities in HCC 

 

The hepatocellular carcinogenesis is a multi-step progressive disease with 

accumulation of different abnormalities at different stages of the progression events, 

as described in the previous sections. Throughout these multistep processes different 

genetic abnormalities in the genome of the hepatocytes also accumulate and constitute 

one of the important factors of the hepatocellular carcinogenesis. Genetic 

abnormalities observed in hepatocellular carcinogenesis can be investigated in three 

different titles: i. Genomic instability events, ii. Somatic mutations. 

 

1.4.3.1 Genetic instability events observed in HCC 

 

The term “genetic instability” refers to abnormalities in structure of the 

chromosome (e.g., amplifications, deletions, and rearrangements), chromosomal copy 

number abnormalities (e.g., aneuploidy and polyploidy), and microsatellite instability 

[107]. Recurrent chromosomal abnormalities identified in HCC cases include allelic 
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deletion of 1p, 4q, 6q, 8p, 9p, 10q, 13q, 16q, and 17p; as well as amplification of 1q, 

5, 6p, 7, 8q, 17q, and 20q [107, 108].  

 

It is logical to assume deregulated gene expression profiles of genes located in 

these abnormal chromosomal locations in HCC. Over-expression of c-Myc gene 

located in chromosome 8q24 in virus and alcohol related HCCs is long been 

considered with a correlation of c-Myc’s genomic location [109]. In addition to that, 

events of gain of 6p and loss of 6q are also considered as a possible early event in 

liver tumorigenesis of glycogen storage disease type I [110].  

 

Some specific genetic instability events are considered as causative events of 

different stages of HCC as well. Gain of 1q and loss of 1p and 17p were only 

observed in early HCCs but not in CLDs; and gain of 5q, 6p, 8q and loss of 4q, 8p are 

seen mostly in advanced HCCs [107].  

 

 

1.4.3.2 Recurrent somatic mutations of HCC 

 

Genetic studies of the pre-next generation sequencing (NGS) era identified 

that genes encoding tumor suppressor protein 53 (TP53), and β-catenin (CTNNB1) 

are the most frequently mutated genes in HCC. TP53 mutations are found in 10-61% 

of HCCs most of the time specifically at codon 249 (R249S), since it is related to 

AFB1 contamination [9, 111]. β-catenin was found to be mutated at 20-40% of HCC 

samples, especially in HCC related ones [93, 94, 95, 112]. c-MET was found to be 

mutated in 30% of HCCs arising during childhood [113]. 

 

With use of the NGS techniques, in the last two years we learned previously 

uncharacterized recurrent mutations in HCC. Guichard et al. used exome sequencing 

method and mostly alcohol induced HCC patients [114]; whereas Fujimoto et al. used 

whole genome sequencing method and HBV or HCV infection related HCC samples 

[115]. Using the exome sequencing method Guichard et al. identified four new 

mutated genes in HCC: ARID1A, RPS6KA3, NFE2L2, and IRF2. They also 

identified 5 different pathways containing recurrently mutated genes: i. Beta-catenin 

pathway (CTNNB1: 32.8%, AXIN1: 15.2%, APC: 1.6%), ii. P53 pathway (TP53: 
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20.8%, IRF2: 4.8%, CDKN2A: 7.2%), iii. Chromatin remodeling pathway (ARID1A: 

16.8%, ARID2: 5.6%), iv. PI3K/Ras pathway: (KRAS: 1.6%, PIK3CA: 1.6%, 

RPS6KA3: 9.6%), v. Oxidative and endoplasmic reticulum stress pathway: (NFE2L2: 

6.4%) [114].  

 

Using the whole genome sequencing method Fujimoto et al. also identified 

new mutated genes in HCC. Interestingly, they also identified recurrently mutated 

chromatin regulator genes, such as ARID1A, ARID1B, ARID2, MLL, and MLL3, 

suggesting that mutations of epigenetic regulator encoding genes are important factors 

for HCC [115]. 

 

In addition to identification of previously unidentified mutated genes in HCC 

using the NGS techniques, most frequently seen mutations of HCC have been 

identified in the core promoter region of the human telomerase reverse transcriptase 

(TERT) gene this year [116-118].  

 

Two independent groups identified two highly recurrent mutations 

(chromosome 5 1,295,228 C>T, and 1,295,250 C>T) in core promoter sequences of 

the TERT gene in 71-85% of the melanomas examined [116, 117]. In addition to that, 

both groups also claimed that these mutations create a binding site for the E-twenty-

six (ETS) transcription factors, which constitutes a new hypothesis for the mechanism 

of the TERT activation in cancer cells [116, 117].  

 

Huang et al. searched these mutations in different type of cancers including 

HCC as well using the in vitro cell lines of the cancer cell line encyclopedia (CCLE). 

For HCC, they observed C228T mutations in 4 cell lines out of 6 [117]. However, a 

more comprehensive study for TERT promoter mutations of HCC samples came from 

the work of Killela et al. They identified C228T and/or C250T mutations in 44.2% of 

the HCC patient samples investigated (27/61). More interestingly, the TERT 

mutations identified mostly in early stage HCC samples, indicating that these 

mutations might be an early event for initiation of the HCC [118]. Thus, the TERT 

gene locus became the most frequently mutated gene yet identified in HCC. 
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1.4.4 Epigenetics and HCC 

 

Deregulated epigenetic mechanisms of HCC will be summarized in: i) DNA 

methylation alterations in HCC, ii) Roles of microRNAs in HCC, iii) Histone code 

related alterations in HCC, iv) Roles of histone variants in HCC.   

 

 

1.4.4.1 DNA methylation alterations in HCC 

 

DNA hypermethylation and hypomethylation events occur in the CpG islands 

of gene promoters are frequent epigenetic disruptions in HCC. Nearly 50-60% of all 

genes have a CpG island, multiple cytosines and guanines containing DNA 

sequences, in the 5’ area of their promoters [119]. Inappropriate methylation of the 

cytosine bases from C-5 with methyl provided from S-adenosylmethyonine (SAM) in 

CpG islands interferes with promoter function of the gene. Hypermethylation of a 

gene promoter attenuates and finally blocks the gene expression; whereas 

hypomethylation activates transcription; thus promoter CpG island methylation is 

generally related with gene silencing. Two major groups of proteins regulate these 

events: DNA methyl transferases (DNMTs), which enzymatically add methyl groups; 

and methyl-CpG binding proteins (MBPs), which recognize methylated CpG 

sequences and recruit other epigenetic players, such as histone modifying enzymes 

and chromatin remodelers to specific sites [119]. Although another group of genes 

called TET proteins, which catalyze enzymatic conversion of 5-methylcytosines to 5-

hydroxy-methyl-cytosines (5hmC), were also identified, further studies are needed to 

uncover their roles on DNA methylation processes [120]. 

 

There are five DNMT proteins identified in mammals: DNMT1, DNMT2, 

DNMT3A, DNMT3B, DNMT3L. Among them only DNMT3A and DNMT3B are de 

novo methyltransferases. DNMT1 maintains DNA previous methylation patterns 

during DNA replication [121]. All these three enzymes over-expressed in HCC 

compared to non-tumor samples [122, 123]. DNA methylation seems an important 

epigenetic mechanism for liver homeostasis; because an old experiment with rats fed 

with methionine deficient diet for 9 weeks generated HCC due to loss of 40% global 

loss of DNA methylation on DNA [124]. In addition to that, DNA hyper-methylation 
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of promoters of tumor suppressors such as, p14, p15, and p16 are well known in HCC 

[124]. Frequencies of hyper-methylated promoter sequences of different genes in 

HCC are determined [108]. However, the mechanistic events of contribution of DNA 

methylation aberration to hepatocellular carcinogenesis are still ill-known.  

 

 

1.4.4.2 Roles of microRNAs in HCC 

 

MicroRNAs (miRNAs) are approximately 22 nucleotide long RNA molecules 

able to post-transcriptionally down-regulate gene expression of target genes by 

binding to complementary sequences of 3’ untranslated regions (3’-UTRs). miRNAs 

are expressed in tissue specific manner [125]. 

 

There are several differentially expressed miRNAs identified in HCC. It was 

demonstrated by Zhou et al. that expression levels of some miRNAs are powerful for 

detecting early stages of HCC [126].  Some examples of miRNAs functioning as 

oncogene in HCC are miR-221, which inhibits apoptosis, and miR-9, which promotes 

cell invasion [127].  miR-101, miR-195, miR-122, let-7c, and miR-338 are some of 

the miRNAs function as tumor suppressors for HCC [127].  

 

 

1.4.4.3 Histone code related alterations in HCC 

 

Histones are important players of the epigenetic events. The fundamental unit 

of the chromatin structure is the nucleosome that consists of 147 base pairs of DNA 

wrapped around conventional H2A, H2B, H3, and H4 histones. In addition to these 

histone proteins, the H1 histone protein is another member of the nucleosome 

structure on the outer part of the nucleosome and it basically stabilizes this 

nucleosome structure. The N-terminal tails of the histones (especially H3 and H4) are 

subjected to post-translational modifications (PTMs), which functions as specific 

signals (histone codes). Types of these known small covalent modifications are: 

methylation, acetylation, phosphorylation, ubiquitination, sumoylation, deamination, 

ADP ribosylation. The most studied modifications among them are methylations and 

acetylations of histones H3 and H4. Histone proteins can be methylated on lysine 
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(mono, di, or tri) or arginine (mono or di) residues by specific enzymes called histone 

methyltransferases (HMTs). In addition to that, there are methyl removing enzymes 

called histone demethylases (HDMs) removing methyl molecules with different 

specificities. Generally histone methylations are considered as gene transcription 

permissive and heterochromatin permissive marks, although there are well known 

exceptions [119]. Functions of specific histone methylations and enzymes catalyzing 

these reactions are listed in Table 1.1.    

  

Table 1.1: Histone lysine modifications of histone H3 and H4: Histone lysine 

methylation sites, their known transcriptional activities, code writers and erasers are listed in separate 

columns. R, Arginine; K, Lysine; Me, Methylation; HMT, histone methyltransferase; HDM. Histone 

demethylase. 

         

Recent studies on histone modifications indicate that Histone H3 tri-

methylated lysine (H3K27Me3) modification is significantly increased in HCC 

compared to non-tumor tissue; and this aberration is significantly correlated with poor 

differentiation, large tumor size, and shortened survival time of HCC patients [128]. 

The H3K27Me3 mark putting HMT called enhancer of zeste homolog 2 (EZH2 or 

KMT6), the catalytical component of the Polycomb Repressive Complex 2 (PRC2), is 

also over-expressed in HCC; and mostly associated with aggressiveness of HCC like 

the H3K27Me3 mark [128, 129]. More specifically, EZH2 causes constitutive 

activation of the Wnt/beta-catenin pathway by silencing transcription of Wnt pathway 

Hisone Modification Activity HMT HDM
H3R2Me1 Unknown PRMT6 Unknown
H3R2Me2 Regulation PRMT6 JMJD6, PADI4
H3K4Me1 Activation WDR5, SETD7, MLL5, ASH2L, SMYD1 KDM1A, KDM1B, C14ORF169, KDM5B
H3K4Me2 Activation WDR5, MLL5, SMYD3, ASH2L, SETD3, SMYD1, WHSC1L1 KDM1A, KDM1B, KDM5A, KDM5B, KDM5C, KDM5D
H3K4Me3 Activation PRDM9, SMYD3, SETD1A, SETD1B, MLL, MLL2, MLL3, MLL4, SMYD1 KDM2B, C14ORF169, KDM5A, KDM5B, KDM5C, KDM5D
H3R8Me1 Activation PRMT5 Unknown
H3R8Me2 Unknown Unknown PADI4
H3K9Me1 Activation EHMT1, EHMT2 KDM1A,KDM3A, KDM3B, PHF8
H3K9Me2 Repression SUV39H1, SUV39H2, EHMT1, EHMT2, PRDM2 KDM1A, KDM3A, KDM3B, JHDM1D, PHF2, PHF8, KDM4D
H3K9Me3 Repression SUV39H1, SUV39H2, SETDB2 KDM4A, KDM4B, KDM4C, KDM4D
H3R17Me1 Activation CARM1 Unknown
H3R17Me2 Unknown CARM2 PADI4
H3K27Me1 Activation EZH1, EZH2 Unknown
H3K27Me2 Repression EZH1, EZH2, WHSC1L1 JHDM1D, KDM6A, KDM6B, PHF8, UTY
H3K27Me3 Repression EZH1, EZH2, WHSC1L1 KDM6A, KDM6B, UTY
H3K36Me1 Activation ASH1L Unknown
H3K36Me2 Repression SETD3, SMYD2, ASH1L, NSD1, SETMAR KDM2A, KDM2B, C14ORF169, JMJD5
H3K36Me3 Activation SETD2, WHSC1 KDM4A, KDM4C
H3K79Me1 Activation Unknown Unknown
H3K79Me2 Activation DOT1L Unknown
H3K79Me3 Activation SETDB1, DOT1L Unknown
H4R3Me1 Repression PRMT1, PRMT5 Unknown
H4R3Me2 Regulation PRMT1, PRMT7, PRMT5 JMJD6
H4K20Me1 Activation SETD8, WHSC1 PHF8
H4K20Me2 Repression NSD1 Unknown
H4K20Me3 Repression SUV420H1, SUV420H2, PRDM6, WHSC1 Unknown
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antagonists [130]; and prevents gene expression of several tumor suppressor miRNAs 

in HCC [131]. The other HMTS and HDMs deregulated in HCC are SMYD3 (a 

histone H3K4 and H3K5 methylating enzyme), which is up-regulated by HBx in 

HepG2 cells [132], and JHDM1D (KDM7A, a HDM removing methyl residues from 

histone H3K9Me2, H3K27Me2, and H3K4Me1), which is up-regulated after nutrient 

starvation in HepG2 cells [133].   

 

Histone acetyltransferases (HATs) and histone deacetylases (HDACs) catalyze 

acetylations of histone proteins. HATs are categorized in two groups (A-type HATs, 

functioning in nucleus; and B-type HATs functioning in the cytoplasm); whereas 

HDACs are categorized in four classes [119].  

 

HDAC1, HDAC2, and HDAC3 are found being over-expressed in HCC. 

HDAC3 seems more important then the other class I HDACs, since it is a candidate 

prognostic and cancer proliferating factor for HCC [134]. SIRT1 is another HDAC 

over-expressed in HCC and this expression was associated with advanced stages of 

HCC [135]. HDAC2 and SIRT1 are critical epigenetic factors in regulation of 

transcription of NF-KB target genes in alcohol induced liver diseases [121]. 

 

 

1.4.4.5 Roles of histone variants in HCC 

 

In addition to the canonical histone proteins, there are another type of histone 

proteins called “replacement histone variants” able to take place in the nucleosomes 

of the chromatin structure (Table 1.2). Despite they have high similarity in protein 

sequences and basic function; these two groups of proteins have several differences. 

Replacement histone variants and conventional histones are encoded by separate 

genes. Canonical histones are mainly expressed in the synthesis (S) phase of the cell 

cycle and incorporated to the DNA during the DNA replication; whereas replacement 

histone variants are synthesized independently of S phase and they are usually 

incorporated to the DNA independently to the DNA replication. Genome-wide 

distributions of these two types of histones also differ. The typical example of this 

difference is incorporation of the histone H3 variant CENP-A to solely the 

kinetochore region of a chromosome; whereas canonical histone H3 does not have 
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such specificities. Functional nucleosome deposition machineries of the two groups of 

histones are also differing [136].       

 

In HCC, CENPA and MacroH2A1 are over-expressed in HCC; MacroH2A2 is 

over-expressed in liver steatosis [136-138].  

 

          Table 1.2: Known mammalian replacement histone variants: 

           
 

 1.5 Cellular senescence 

 

1.5.1 Mechanisms of cellular senescence 

 

Cellular senescence is a state of a cell, which permanently stops dividing with 

continued metabolic activity. Typical senescent cells are characterized with having an 

enlarged and flattened morphology, presence of vacuoles and and multi-nuclei, and 

positive staining with senescence associated beta-galactosidase (SA-β-Gal) at pH 6.0 

in vitro [139-141]. The cellular senescence is classified into two main types: 

Replicative senescence and stress induced premature senescence, which is also sub-

categorized into oncogene induced senescence (OIS), PTEN loss induced senescence 

(PICS), and senescence induced by other molecular factors (e.g., TGF-beta, or 

oxidative stress) (Figure 1.4). 

 

H1 VARIANTS H2A VARIANTS H2B VARIANTS H3 VARIANTS
H1F0 H2A.X TSH2B H3.1

H1FOO H2A.Z1 (H2AFZ) H2BWT H3.2
H1FX H2A.Z2 (H2AFV) H3.3

MacroH2A.1-1 (H2AFY) CENPA
MacroH2A.1-2 H3T

MacroH2A.2 (H2AFY2) H3.X
H2AL1 H3.Y
H2AL2 H3.5

H2ABbd
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Figure 1.4: Different senescence response mechanisms: a) Replicative senescence, 
mainly driven by shortening of telomere , activates p16INK4A expression and activates DNA damage 
pathways causing in p53 induction. b) P53 activation during OIS is mediated by two mechanisms. i) 
p53 is stabilized via phosphorylation by the DNA damage response (DDR), ii) ARF mediates 
stabilization of p53 via inhibiting MDM2. The dashed arrows indicate that there are contradictory data 
on importance of ARF in human and mouse. c) p53 up-regulation in PICS is mainly mediated by 
mTOR, but the ETS2–INK4A pathway can also induce senescence. d) MYC inactivation (inhibiting an 
inhibitor of senescence) can cause the restoration of TGF-β signaling pathway that may induce 
senescence. Inhibition of S phase kinase-associated protein 2 (SKP2) with additional oncogenic events 
can induce senescence as well. CDK, cyclin-dependent kinase. Permission granted for reuse of figures 
by Nature Publishing Group (see Appendix). 
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1.5.1.1 The replicative senescence 

 

The phenomenon of senescence was first discovered at 1965 in the form of 

replicative senescence by Hayflick and Moorhead. They observed that primary 

fibroblast were unable to divide more than 50 population doublings and finally 

became senescent [142]. The molecular mechanism of the replicative senescence is 

regulated by a cascade of molecular events strictly dependent to the biology of 

telomeres. The telomeres are ends of the eukaryotic chromosomes. The main 

components of the telomeres are; repetitive DNA sequences (several TTAGGG 

repeats for vertebrates including humans), and a protein complex called “shelterin 

complex”, which covers and protects the telomeric DNA repeat sequences [143, 144]. 

Because of the inability of the eukaryotic replication machinery to properly replicate 

the ends of the linear chromosomes, telomeres of eukaryotic animals are shortened at 

each DNA replication. The shortened telomeric DNA sequences lose their ability to 

bind to the shelterin complex, which protects telomeres as ends of the chromosomes 

and chromosomal instability events [145]. However, after rounds of DNA replications 

telomeres are shortened to a critical stage and signal to the DNA damage response 

(DDR) mechanism of a cell and the cell become senescent via the mechanisms 

described below. However, the shortening of telomeres can be prevented by the 

natural activities of an enzyme complex called telomerase. A telomerase reverse 

transcriptase consists of a protein subunit (hTERT) and an RNA subunit (hTERC); 

and adds telomeric repeats to the ends of the chromosomes to prevent their shortening 

[146, 147]. Normally, only certain stem cell populations and activated lymphocytes 

have the active telomerase in adults [143, 148].  

 

The replicative senescence, triggered by erosion of the telomeres, is achieved 

by p53-dependent or pRb-dependent pathways. In the p53-dependent replicative 

senescence pathway, the shortening of the telomere is first sensed by the cells as 

double strand breaks (DSB) or single strand breaks (SSB), causing the formation of γ-

H2AX-positive senescence-associated DNA damage foci (SDF). The SDF cause 

activation of ATR in DSBs, and ATM in SSBs that activate p53 protein. The 

activated p53 induces transcription of the p21Cip1 protein, which causes p53-

dependent senescence [149]. In the mechanism of the Rb-dependent senescence 

pathway, the erosion of the telomeres directly triggers activation of the p16INK4A 
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protein, which binds to cyclin dependent kinases (CDKs) CDK4/6 to inhibit their 

suppressive function of Rb and induces senescence [150].  

 

 

1.5.1.2 Oncogene-induced senescence (OIS) 

 

 Oncogene-induced senescence (OIS), a cellular response mechanism to 

oncogenic transformation events, was first observed by Serrano et al. on in vitro 

primary human or rodent cells after over-expression of activated Ras mutant 

(HRASG12V) [151]. The OIS events were also observed with ectopic expressions of 

other oncogenes, such as RAF, MEK, and BRAFV600E, E2F1 [152-155]. In the OIS 

mechanism the hyper-replication of DNA triggered by active oncogenes activates S 

phase specific DDR mechanisms. The DDR and SDF, as well as DDR-unrelated 

activation of the ARF protein can activate the p53-p21 senescence pathway in the OIS 

[156]. As it happens in the replicative senescence mechanism, the DNA damage 

unrelated activation of the Rb-dependent senescence also occurs [157, 158]. Thus, the 

OIS serves as a barrier mechanism against the oncogenic transformation events in a 

cell.  

 



1.5.1.3 PTEN loss induced senescence (PICS) 

 

The PICS mechanism of senescence is an OIS-like mechanism with the role of 

hyper-proliferative activities and lack of DDR or SDF in the initiative events. In the 

PICS, again the p53 and pRb-dependent mechanisms have role; but mTOR-mediated 

but not DDR mediated activation of the p53-dependent pathway, and CDH1-

containing anaphase-promoting complex (APC/C-CDH1)-mediated activation of the 

pRb-dependent pathway are the main differences of the PICS from OIS or replicative 

senescence [159-161]. 
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1.5.1.4 Other senescence mechanisms 

 

i) Increase of the ROS by activated oncogenes, but not related to the OIS, causes a 

senescence response [162].  

 

ii) p63 and p73 proteins, members of the p53 protein family, can induce cellular 

senescence by activating the p21 in absence of the p53 [163, 164].  

 

iii) Tumor suppressor protein von Hippel-Lindau (VHL) can induce cellular 

senescence in vitro and in vivo via pRb activation and p400 reduction [165]. 

 

iv) Inactivation of S-phase kinase-associated protein 2 (SKP2), an E3 ligase, together 

with an additional oncogenic event, such as activation of RAS or loss of PTEN, can 

trigger senescence by activating the pRb via p21 and p27 [166].  

 

v) The inhibition of the c-Myc oncogene activates TGF-β-induced senescence via the 

p53 and pRb-dependent mechanisms [160]. 

 

 

1.5.2 Senescence in chronic liver diseases 

 

During the chronic liver diseases (CLD) injury of the liver causes activation 

and differentiation of the hepatic stellate cells into myofibroblasts, which secrete 

extracellular matrix components. In case of presences of intact senescence mechanism 

players in the liver, active myofibroblasts are cleared by the NK cells when they 

become senescent as a contributor mechanism of the wound healing processes of the 

liver [167]. However, inability of conversion of the active myofibroblasts to the 

senescent fibroblasts because of inactive senescent mechanisms cause accumulation 

of myofibroblasts and their ECM in the liver causing fibrosis and cirrhosis [168].  

 

It is found by several different studies that the telomere lengths of the 

hepatocytes are longer in normal liver than chronic hepatitis, fibrotic, and cirrhotic 

liver. Even the HCC cells have shortened telomeres, but it is also known that HCC 

cells can activate telomerase to become immortal [169]. p16, p27, p21, p53, which are 
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critical components of the cellular senescence mechanism, are among the genes 

usually inactivated in HCC [168].  

 

Although the cellular senescence is considered as a protective mechanism of a 

cell, some of the features of a senescent cell are in favor of malignant transformation 

of a cell. The senescent hepatocytes can secrete different cytokines, such as 

Interleukin-1α, leptin, MCP1, and RANTES; as an event called senescence associated 

secretory phenotype (SASP) [168]. The SASP activates CD4+ T cell mediated 

clearance of the senescent cells. However, studies on CD4 -/- mice showed a 

defective immune response causing promotion of tumor development [170]. In 

addition to that the cytokines released via SASP can induce proliferation of the other 

cells in the microenvironment [168]. It is also known death senescent cells may 

exhibit resistance to cell death induced by apoptosis [171-173].  

 

 

1.5.3 Epigenetic players of the cellular senescence 

 

Epigenetic events play fundamental roles in regulation of cellular senescence 

processes. The best example of the roles of epigenetic players in cellular senescence 

is regulation of transcriptional repression and activation of the INK4-ARF locus by 

interplay of several epigenetic players. This locus encodes crucial players of the 

cellular senescence mechanisms: p16INK4a, p15INK4b and p19ARF proteins. 

p19ARF stabilizes p53 protein to sustain cell cycle arrest and apoptosis; whereas 

p16INK4a, p15INK4b proteins together block phosphorylation of pRb [174].  In 

normal conditions, when senescence is not induced, this locus is epigenetically 

repressed by different epigenetic players. EZH2, catalytic component of the PRC2, 

puts transcription repressive H3K27Me3 marks on this gene. This mark is recognized 

by PRC1 complex containing RING1b and BMI1 proteins, which put H2AK119Ub 

mark to further, prevent gene transcription. HDAC3, HDAC4, and histone H3K36 

demethylase JHDM1B also recruited to this region to prevent transcription. Finally, a 

stable transcription block is put on the INK4-ARF locus DNA sequences by DNMTs 

following these events [175]. Although gene expression of this locus is prevented by 
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several different players of the epigenetic mechanisms, activation of transcription 

from this locus is initiated with removal of one large noncoding RNA (lncRNA) 

called ANRIL during induction processes of the cellular senescence. When ANRIL, 

which recruits PRC2 members to this region, is down-regulated PRC2 complex leaves 

this chromatin region, which induces recruitment of the SWI/SNF complex to this 

region. These changes cause acetylation of H4K16, demethylation of H3K27Me3 

mark by JMJD3, and demethylation of CpG islands of the INK4-ARF locus; which 

finally allow production of the effective proteins [174].  

 

In addition to the specific epigenetic events affecting certain genes, global 

epigenetic modifications also happen during cellular senescence. Human fibroblasts 

have decreased levels of histones during senescence. Generally cells have decreased 

H3K56ac, H3K9me2, H3K9Me3 and H4K20Me3 levels, whereas increased 

H3K9me1 and H4K20me2 levels while they are undergoing senescence [176]. These  

differences may explain gene expression alterations and increased genomic instability 

events during senescence. For example, telomere region, which is normally 

surrounded with heterochromatin marks, has decreased CpG methylation, H3K9Me3 

and H4K20Me3 mark, H3 and H4 histone levels [176].   

 

Senescent cells can acquire major alterations in their chromatin structures 

called senescence associated heterochromatin foci (SAHF) formation. These foci are 

highly compact chromatin regions with highly methylated DNA sequences and 

heterochromatin protein HP1, hypoacetylated histones, increased H3K9Me3 and 

H4K20Me3 marks, and enrichment of a specific histone variant MacroH2A (both 

H2AFY and H2AFY2) [176, 177]. The other critical components of the SAHF are 

histone chaperones ASF1 and HIRA [177]. Although the SAHF is not formed in all 

cases of cellular senescence events, it is thought that SAHF contributes to senescence 

processes mainly by maintaining senescence [178].  

 

In addition to the INK4-ARF locus, many genes epigenetically activated 

during the senescence, including the genes favoring increase inflammatory signaling. 

Senescence associated secretory phenotype (SASP) is characterized with secretion of 

pro-inflammatory cytokines, such as IL-6 and IL-8 from senescent cells. It is found 

that during oncogene induced senescence RAS protein can cause proteosomal 
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degradation of KMT1C (G9a) and KMT1D (GLP) enzymes, which catalyze 

formation of transcription repressive H3K9Me1 and H3K9Me2 marks, respectively. 

Degradations of these epigenetic proteins activate transcription of cytokines, such as 

IL-6 and IL-8 during senescence [179, 180].     

 

HDACs are important separate group of epigenetic players family regulating 

several events during senescence. HDAC1 HDAC5 and HDAC6 are down-regulated 

in senescent hematopoietic stem cells [181]. However, roles of HDAC1 in senescent 

seem context dependent, since over-expressio of HDAC1 in HeLa cells cause induces 

senescence by activating p300/Sp1 interaction to induces transcription of senescence 

inducing genes such as p16 [182]. Over-expression of HDAC1 is associated with 

decreased liver regeneration capacity of old mice [183]. SIRT1, another HDAC using 

NAD+ as cofactor that normally regulates many lipid metabolism events in the liver, 

is associated with regulation of lifespan [184]. SIRT1 level decrease during cell 

replication and its deficiency is associated with replicative senescence in human 

fibroblast cells [185]. In liver, over-expression of HDAC1 or SIRT1 causes hepatic 

steatosis [175, 186].    

 

In addition to the protein components, there are also non-coding RNAs 

(miRNAs and lncRNAs) being produced by both tumor suppressors and oncogenes. 

Active p53 induces transcription of miR-34a, miR-34b, and miR-34c to down-

regulate production of several proliferation-inducing proteins, such as E2F3, bcl-2, 

Met, CDK6, for induction of cellular senescence [187-189]. p53, p63, and p73 

proteins can induce transcription of let-7, miR-143, miR-107, miR-16, miR-145, miR-

134, miR-449a, miR-503, and miR-21 [190, 191]. c-myc try to evade the cellular 

senescence response by reducing gene expression of some miRNAs induced by p53 

(e.g., miR-34a, let-7) and by inducing gene expression of miRNAs targeting mRNAs 

of some tumor suppressors (e.g., miR-17-92) [192, 193]. 
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CHAPTER 2 

OBJECTIVES AND RATIONALE 

Liver cancer is ranked as the fifth most common cancer in men and seventh in 

female with more than 500.000 new cases and nearly the same number of deaths in 

each year [3]. The most common type of the liver cancer is HCC, 80% of the cases 

[3]. Hepatocellular carcinogenesis is a multi-step progressive disease [3, 44]. Main 

steps of the hepatocellular carcinogenesis are transition of the normal liver to fibrotic 

liver, generation of fatty liver, cirrhosis, dysplastic liver and cancerous liver (mainly 

hepatocellular carcinoma). Cancerous liver also progress from early HCC to advanced 

HCC, or well-differentiated HCC to poorly differentiated HCC [3].  

The most important risk factor for HCC is cirrhosis that is present in 80 to 

90% of patients with HCC [3]. During chronic hepatitis, the development of cirrhosis 

is associated with accelerated telomere shortening. Moreover, cirrhotic tissues exhibit 

strong senescence-associated β-galactosidase (SA-β-Gal) activity, suggesting that 

most hepatocytes in a cirrhotic liver display a senescent phenotype [44].  
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In most human HCC tumors TERT expression is positive, telomerase activity 

is high and telomere length is short, but stabilized. Thus, it appears that human HCC 

cells, as opposed to cirrhotic hepatocytes, acquire an immortal phenotype, although 

this has not yet been fully demonstrated. In favor of this suggestion, the genes 

encoding p53 and p16INK4A, two major players in senescence control, are known to be 

inactivated by mutation and/or epigenetic silencing in nearly 50% of HCCs [169]. 

 

However, several important questions remain unanswered with regard to the 

relevance of senescence escape or immortality in human HCC.  

i) a comprehensive list of genes associated with hepatocellular 

senescence and immortality is lacking;  

ii) cellular processes associated with senescence-related changes in 

cirrhosis and HCC are not well-documented;  

iii) timing of senescence-to-immortality transition during HCC 

development is unknown;  

iv) the potential value of senescence-related gene signatures for the 

diagnosis and/or prognosis of HCC has not yet been assessed;  

v) although several epigenetic alterations have been identified for HCC, 

a comprehensive study identifying transcriptionally deregulated 

epigenetic regulatory mechanisms  as well as genetically altered 

epigenetic players of human hepatocellular carcinogenesis are still 

unknown. 

 

A better understanding of these mechanisms could contribute significantly to 

the discovery of novel molecular targets for diagnosis and treatment of cirrhosis and 
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HCC diseases. Thus, in order to find answers of these remaining questions we 

prepared a study design (Figure 2.1). Details are explained in the materials and 

methods and results sections. 

   

 

Figure 2.1: The basic study design to achieve the objectives of the thesis: Genome-

wide transcriptional profiles of senescent and immortal clones generated from parental Huh7 cell line 

were determined with use of the microarray technology. These in silico samples were called as “the in 

vitro data set”. Same microarray gene expression profiling experiments were done to patient cirrhosis 

and HCC samples and collection of these samples were called as “the in vivo dataset”. Both in vitro 

and in vivo datasets were analyzed separately and in combination with different bioinformatics method, 

mainly via gene set enrichment analysis methods. Details are provided in materials and methods and 

results sections. 
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CHAPTER 3 

MATERIALS AND METHODS 

 

3.1 Cell culturing materials and methods 

 
3.1.1 Standart cell culture materials and solutions of our laboratory 

 

 Dulbecco’s modified Eagle’s medium (DMEM), Roswell Park Memorial 

Institute (RPMI) 1640 medium, Opti-MEM medium, penicillin/streptomycin, trypsin-

EDTA, fetal calf serum (FCS), and G-418 (neomycin) were from GIBCO (Invitrogen, 

Carlsbad, CA, USA). Tissue culture flasks, petri dishes, plates, cryotubes were 

purchased from Corning Life Sciences Inc. (USA). Serological pipettes were 

purchased from Costar Corp. (Cambridge, UK). Transfection reagent Oligofectamine 

was purchased from Invitrogen. Standard tissue culture solutions were prepared as 

follow:  
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i) Complete DMEM/RPMI working medium: 10% FBS/FCS, 1%              

penicillin/streptomycin, 1% non-essential amino acid. Store at 4oC. 

ii) 10X Phosphate-buffered saline (PBS): 80 g NaCl, 2 g KCl, 14.4 g 

Na2HPO4,  2.4 g KH2PO4, pH 7.4. Store at 4oC.  

 

3.1.2 Cryopreservation of stock cells 

 

Cells were collected by 5 ml of complete medium following trypsin treatment 

and centrifuged at 1500 rpm for 3 min. After washing with 5 ml 1X PBS, cells were 

centrifuged at 1500 rpm for 3 min. The pellet was re-suspended in 1 ml of freezing 

medium, which contains complete growth medium supplemented with 10% DMSO, 

and transferred to cryotubes. Cells were kept at -200C for 1 hour and transferred to -

800C for overnight and transferred to nitrogen tank for long-term storage.  

 

3.1.3 Thawing of frozen cells 

 

The vial of the frozen cell line was taken from the nitrogen tank, put into ice 

immediately, then placed into water bath at 370C. The cells were re-suspended using a 

pipette, transferred to 15 ml falcon tube with 5 ml of medium, centrifuged at 1500 

rpm for 3 min. to get rid of the DMSO. The pellet was then re-suspended in complete 

culture medium to be plated into suitable culture flask or plate. Cells were kept 

overnight in culture and culture medium was refreshed in the next day. 

 

3.1.4 Parental cell lines and human hepatocytes  

 
All cell lines were cultured at 370C and 5% CO2 conditions in suitable media 

supplemented with 10% FCS, 1% non-essential amino acids, 100 mg/ml 

penicillin/streptomycin. Huh7, HepG2, Hep3B, Hep3B-TR, Hep40, PLC/PRF-5, 

Mahlavu, Focus, SkHep1, FLC4 and MRC5 cell lines were cultured in complete 
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DMEM, whereas SNU182, SNU387, SNU398, SNU423, SNU449, SNU475 were 

cultivated in complete RPMI 1640 growing media. Freshly isolated human 

hepatocytes were obtained commercially (hNHEPS™- Human Hepatocytes, Lonza 

Group, Basel, Switzerland).  The fibrolamellar HCC FLC4 cell line was provided by 

E. Galun (Hadassah), MRC-5 human embryonic lung fibroblast cells (at population 

doubling 45) were provided by R. Pedeux (Grenoble, France) and maintained in 

culture as previously described [194]. 

 

3.1.5 Senescent and immortal Huh7 clones 

 
The establishment and culture conditions of senescence-programmed C3 and 

G12, and immortal C1 and G11 clones have been described previously [195]. Briefly, 

HCC-derived Huh7 cells were transfected with pcDNA3.1 (Invitrogen) or pEGFP-N2 

(Clontech) vectors to obtain C1 and C3, and G11 and G12 clones, respectively. 

Following transfection, single cell-derived colonies were selected by G-418 sulfate 

(500 µg/ml; Gibco) treatment under low-density clonogenic conditions.  

Senescence-programmed C3 and G12 clones proliferated stably until 

population doubling 80 (PD80) and PD90, respectively. Then, they entered 

senescence arrest as manifested by characteristic morphological changes, abundant 

senescence-associated beta-galactosidase (SA-β-Gal) staining and <5% 5-bromo-2′-

deoxyuridine (BrdU) positivity after mitotic stimulation. Immortal C1 and G11 clones 

proliferated stably beyond PD140. For genome-wide expression studies, senescence-

arrested C3 and G12 clones and immortal C1 and G11 clones were plated in triplicate 

onto 15-cm diameter petri dishes, left in culture for three days and collected for RNA 

extraction. 

 

3.1.6 Small interfering RNA (siRNA) transfection materials and methods 

 
Hep3B cells were transfected with specific ATAD2-siRNA1 

(ACUAACACUGCUGAAGCUG), purchased from Eurogentec (Seraing, Belgium) 

using the method described by Caron et al. [196]. Briefly, 105 cells were plated into 



 39 

each well of a six-well plate, cultured for 24 h at 37°C and transfected twice (with 24 

h intervals) with 10 µl of 0.02 mM ATAD2 siRNA1 using oligofectamine reagent 

(Invitrogen, Carlsbad, CA, USA). Cells were incubated with 200uM of siRNA and 

4ul of oligofectamine transfection reagent for 6 hours without serum and antibiotics 

for transfection. Following 6 hours of incubation, 3X serum containing media were 

added to the media. Cells were maintained in standard culturing conditions for 72 

hours. After 72h cells were subjected to protein extraction and western blotting 

experiments as described below.   

 

3.1.7 Adriamycin treatment of Huh7 cells 

 
Senescence was induced in Huh7 cells by Adriamycin (0.1 µM) treatment for 

three days as previously described [197]. Briefly, Adriamycin (Doxorubicin)- and 

DMSO vehicle control-treated cells were maintained in culture for three days. After 

three days cells were fixed by incubating with 4% formaldehyde for 15 min. in room 

temperature, subjected to SA-β-Gal staining as described below, counter stained with 

nuclear fast red (N3020, Sigma-Aldrich) and morphologically analyzed. After 

confirming the senescence induction by morphological examination and SA-β-Gal 

staining, cell lysates were subjected to western blotting analysis. 

 

3.2 Senescence-associated beta-galactosidase (SA-β-Gal) staining 

materials and method 

 
SA-β-Gal buffer contains: 40 mM citric acid/sodium phosphate buffer (pH 

6.0), 5 mM potassium ferrocyanide, 5 mM potassium ferricyanide, 150 mM NaCl, 2 

mM MgCl2, 1 mg/ml X-gal (from 40 mg/ml stock solution) in ddH2O. The pH of the 

solution was adjust to 6.0, and filtered before use. 

 For the SA-β-Gal staining cells were first rinsed twice using 1X PBS then 

fixed via keeping in 4% formaldehyde solution for 10 min. at room temperature. 

Following washing with 1X PBS for twice, cells were kept in SA-β-Gal buffer for 
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staining. Positive staining (presence of the blue colour) was observed using the light 

microscope after incubation of cells at 37°C in CO2-free incubator for 12-16 hours. 

 

3.3 RNA extraction, cDNA synthesis and polymerase chain reaction 

(PCR) materials and methods 

 
3.3.1 RNA extraction and cDNA synthesis 

 

NucleoSpin RNA II Kit (Macherey-Nagel) was used for isolation of the total 

RNA from cultured cells using the protocol provided by the manufacturer. RevertAid 

First Strand cDNA synthesis kit (Fermentas; Leon-Rot, Germany) was used for first-

strand cDNA synthesis using 2 µg of DNase I-treated total RNA of each sample. 

cDNAs were stored at -20°C. cDNAs were subjected to semi-quantitative and 

quantitative reverse transcriptase PCR amplifications using specific primers. PCR 

reagents were obtained from from Fermentas. DyNAmo HS SYBR Green qPCR Kit 

F-410L, master mix solution for qPCR reactions, was ordered from Finnzymes 

(Finland). 

 

3.3.2 Polymerase chain reaction (PCR) materials and methods 

 
3.3.2.1 Semi-quantitative and quantitative real-time RT PCR assays of ATAD2 

experiments 

 
Thermal cycler conditions of the PCR experiments were: 95°C for 5 min; 45 

cycles of 95°C for 30 sec, at 600C for 30 sec, at 720C for 30sec; and a final extension 

at 72°C for 5 min.  

Quantitative expression analyses were performed using DyNAmo HS SYBR 

Green qPCR Kit F-410 (Finnzymes) on Mx 3005P real-time RT-PCR machine 

(Stratagene).  
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For PCR experiments of ATAD2 transcript 5′-AGG CTC ATT GGA AAA 

ACC T-3′ sequences were used as forwards primer; and 5′-CCT GCG GAA GAT 

AAT CGG TA-3′ sequences were used as reverse primer. GAPDH was tested as a 

housekeeping control gene using the following primers: forward: 5′-GGC TGA GAA 

CGG GAA GCT TGT CAT-3′; reverse: 5′-CAG CCT TCT CCA TGG TGG TGA 

AGA-3′. All primers were purchased from IONTEK (Istanbul, Turkey). 

2 µl cDNA for each sample were used in 20 ul final volume of PCR mixture. 

Expression levels were calculated using the following formula:  

R = (Etarget)ΔCt
target

(control-sample) /(Eref) ΔCt
ref

(control-sample). In the above formula Etarget and 

Eref represent the primer efficiencies for target and reference genes, respectively. PCR 

efficiency values of the indicated primers were 2.0. All experiments were performed 

in triplicates. GAPDH was used as internal control in qRT-PCR experiments. 

 

3.3.2.2 Agarose gel electrophoresis materials and methods 

 
Electrophoresis solutions were prepared and used as follow: 

 

i) 50X Tris-acetic acid-EDTA (TAE):  2 M Tris-acetate, 50 mM EDTA pH 

8.5. 50X solutions were diluted to 1X for working solution. 

 

ii) Ethidium bromide (EtBr): 10 mg/mL in water solutions were used as stock 

solution; 30 ng/mL solutions were used as working solution for EtBr. 

 

iii) 6X Gel loading dye solution: 10 mM Tris-HCl (pH 7.6), 0.03% 

bromophenol blue, 0.03% xylene cyanol, 60% glycerol, 60mM  EDTA 

(0.5M pH 8.0). 
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3.3.2.3 Agarose gel electrophoresis of DNA 

 

DNA fragments were separated with 2.0% agarose gel by horizontal 

electrophoresis. Agarose gels were prepared by heating agarose diluted with 1X TAE 

buffer in microwave. EtBr was added to a final concentration of 30 mg/mL. The DNA 

samples were mixed with 6X bromo-phenol blue loading buffer and loaded onto gels. 

The gels were run at 100-120 V at room temperature until the fragments were 

adequately separated. Nucleic acids were visualized under ultraviolet light. 

 

3.4 Western blotting materials and methods 

 
3.4.1 Western blotting materials and solutions 

 

NuPAGE pre-cast 3-8% Tris-Acetate gels, running and transfer buffers were 

purchased from Invitrogen. 4X sample loading buffer, 10X denaturing agent used in 

immunoblotting were also from Invitrogen.  Solutions used in western blotting 

experiments were prepared as following: 

i) RIPA lysis buffer: 10 mM Tris-HCl (pH 7.6), 5 mM EDTA, 50 mM NaCl, 

30 mM sodium pyrophosphate, 50 mM sodium fluoride, 100 mM sodium 

orthovanadate, 1% TritonX-100 and 1X protease inhibitor complex in 

double-distilled water. 

ii) 10X Tris buffered saline (TBS): 12.2 g Trisma base, 87.8 g NaCl in 1 liter 

ddH2O, pH 7.8. 

iii) TBS-tween (TBS-T): 0.2% Tween-20 was dissolved in 1x TBS. 

iv) Ponceau S: 0.1% (w/v) Ponceau, 5 % (v/v) acetic acid in double-distilled 

water. 

v) Blocking solution: 5% (w/v) non-fat dry milk/bovine serum albumin in 

0.2% TBS-T. 
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3.4.2 Western blotting 

 

ATAD2 protein expression was compared by western blot analysis of cell 

lysates. Cells were lysed with Radio-Immunoprecipitation Assay (RIPA) Buffer (10 

mM Tris-HCl, pH 7.6, 5 mM EDTA, 50 mM NaCl, 30 mM sodium pyrophosphate, 

50 mM sodium fluoride, 100 mM sodium orthovanadate, 1% TritonX-100 and 1X 

protease inhibitor complex (Roche, Indianapolis, USA). Cconcentrations of protein 

lysates were measured by the conventional Bradford assay utilizing 

spectrophotometer at 595 nm. Sample protein concentrations were normalized in 

accordance with bovine serum albumin (BSA) protein of a known concentration. 30 

µg of total proteins were subjected to gel electrophoresis using NuPAGE system with 

3-8% Tris-Acetate gels and buffers. Proteins were wet-transferred onto HyBond ECL 

nitrocellulose membranes. The blocking was perfomed for 1 hr at room temperature 

with 5% dry milk in TBS-T solution. Membranes were incubated with the primary 

antibodies overnight at +4ºC. Following primary antibody incubations and extensive 

washing with TBS-T, secondary antibodies conjugated with horse-radish peroxidase 

(HRP) were incubated 1 hour at room temperature. After an additional wash of half an 

hour, chemiluminescent reaction was detected using ECL+ western blot detection kit 

(Amersham, UK), according to the manufacturer’s protocols. X-ray films were 

exposed to the emitted chemiluminescence, duration depends on the specific 

antibody. An anti-ATAD2 rabbit polyclonal antibody (Sigma; cat. no: HPA019860) 

was used at 1:500 dilution as the primary antibody. Anti-calnexin rabbit polyclonal 

antibody (Sigma; cat. no: C4731) was used at 1:10000 dilution for the loading control.  

 

3.5 Cirrhosis and HCC tissue samples 

 
Liver cirrhosis and HCC samples were collected from two medical centers in 

Turkey (Table 3.1). Ethical study protocols of Ankara and Dokuz Eylul Universities 

were followed and approved by these universities after taking written consents from 

each patient before experiments. Tissue samples were snap frozen in liquid nitrogen 

and stored at −80°C until use. Frozen tissues were cut into 20 µm thick slices, and 

scraped into microtubes for RNA extraction. Two 6 µm tissue slices were also cut for 
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pathological examination. Total RNAs from each sample were isolated using the 

materials and methods described above. RNA samples were analyzed using Agilent 

Bioanalyzer, as performed to cell line samples. Samples with RNA integrity number 

(RIN) > 6.5 were used for gene expression profiling studies. 

 

Table 3.1: Patient samples (in vivo dataset) used in this study: The in vivo cirrhosis 

and HCC dataset was deposited to GEO and publically available with accession number of GSE17548. 

HBV: Hepatitis B virus. HCV: Hepatitis C virus. N.a: Not available. WD HCC: Well differentialted 

hepatocellular carcinoma. MD HCC: Moderately differentialted hepatocellular carcinoma. 

             

 

3.6 Genome-wide gene expression profiling of samples 

 
Affymetrix platform with GeneChip Human Genome U133 Plus 2.0 arrays 

were used for microarray analysis of both cell and tissue RNA samples, following 

manufacturer instructions. GeneChip Operating Software (Affymetrix) was used to 

collect and store the microarray data. CEL files were uploaded to RMAExpress 

software to assess the quality of the arrays at the image level 

(http://rmaexpress.bmbolstad.com). Quality assessment of the Affymetrix datasets 

Dataset Country Sample ID Array Code Age Gender Etiology Diagnosis
GEO: GSE17548 Turkey GSM437492 TR-1N 45 male HBV cirrhosis
GEO: GSE17548 Turkey GSM437493 TR-1T 45 male HBV WD HCC
GEO: GSE17548 Turkey GSM437466 TR-2N 52 male HBV Cirrhosis
GEO: GSE17548 Turkey SM437467 TR-2T 52 male HBV HCC
GEO: GSE17548 Turkey GSM437461 TR-3T 62 male HCV HCC
GEO: GSE17548 Turkey GSM437473 TR-4N 60 male HBV Cirrhosis
GEO: GSE17548 Turkey GSM437474 TR-4T 60 male HBV  HCC
GEO: GSE17548 Turkey GSM437483 TR-5T n.a. male n.a. HCC
GEO: GSE17548 Turkey GSM437457 TR-6N 50 male HBV  Cirrhosis
GEO: GSE17548 Turkey GSM437458 TR-6T 50 male HBV  HCC
GEO: GSE17548 Turkey GSM437463 TR-21N 56 male HBV Cirrhosis
GEO: GSE17548 Turkey GSM437464 TR-21T 56 male HBV Focal HCC
GEO: GSE17548 Turkey GSM437469 TR-22N 44 female n.a. MD HCC
GEO: GSE17548 Turkey GSM437491 TR-23T 65 male HBV WD HCC
GEO: GSE17548 Turkey GSM437488 TR-24N 52 female HCV Cirrhosis
GEO: GSE17548 Turkey GSM437489 TR-24T 52 female HCV MD. HCC
GEO: GSE17548 Turkey GSM437484 TR-25N n.a. male n.a. Cirrhosis
GEO: GSE17548 Turkey GSM437471 TR-26N 64 male HCV Cirrhosis
GEO: GSE17548 Turkey GSM437477 TR-27N 41 male HBV+HDV Cirrhosis
GEO: GSE17548 Turkey GSM437487 TR-7T 69 male HBV MD HCC
GEO: GSE17548 Turkey GSM437486 TR-28N 48 female HBV Cirrhosis
GEO: GSE17548 Turkey GSM437481 TR-29N 52 male HBV Cirrhosis
GEO: GSE17548 Turkey GSM437480 TR-210N 48 male HBV Cirrhosis
GEO: GSE17548 Turkey GSM437479 TR-211N 50 male HBV Cirrhosis
GEO: GSE17548 Turkey GSM437472 TR-212N n.a. female n.a. Cirrhosis
GEO: GSE17548 Turkey GSM437476 TR-9T 62 male HCV MD HCC
GEO: GSE17548 Turkey GSM437478 TR-10T n.a. male HBV MD HCC
GEO: GSE17548 Turkey GSM437465 TR-11T n.a. male n.a. HCC
GEO: GSE17548 Turkey GSM437459 TR-210T 49 male HBV MD HCC
GEO: GSE17548 Turkey GSM437468 TR-211T 59 male HBV MD HCC
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was performed using affyPLM (http://www.bioconductor.org). NUSE and RLE plots 

were drawn and outliers with high deviation from the average probe intensity value 

were excluded from further analyses.  

The microarray data reported in this thesis have been deposited in the Gene 

Expression Omnibus (GEO) database under accession numbers of GSE17546 (Huh7 

clones) and GSE17548 (cirrhosis and HCC tumor samples). All cell line clones, 15 

cirrhosis and 15 HCC tumor samples passed RNA quality control (RNA Integrity 

Number, RIN>6.5) and microarray quality control tests.  

RMA normalization and class comparison analyses were performed using 

BRB-ArrayTools developed by Dr. Richard Simon and BRB-ArrayTools 

Development Team (http://linus.nci.nih.gov/BRB-ArrayTools. html; Version 4.2.0). 

 

3.7 Other Microarray Datasets 

 
Two independent microarray datasets (GSE6764 and GSE19665) were 

downloaded from Gene Expression Omnibus (GEO) database 

(http://www.ncbi.nlm.nih.gov/geo) and analyzed by BRB ArrayTools after 

normalization with RMA method. 

 

3.8 Gene Set Enrichment Analyzes (GSEA) 

 
3.8.1 Basic GSEA materials and methods 

  
Gene set enrichment analyses (GSEA) were performed using GSEA program 

of the Broad Institute [198]. Whole genome gene expression data of each sample was 

used for GSEA experiments. C2_ALL curated gene list of Molecular Signature 

Database (MSigDB), which contains gene lists from online pathway databases, such 

as Reactome (www.reactome.org) and Biocarta (www.biocarta.com), genetic 

perturbation study gene lists of publications in PubMed 



 46 

(http://www.ncbi.nlm.nih.gov/pubmed/), was used in GSEA studies.  

 

3.8.2 Interpretation of GSEA results of in vitro and in vivo datasets 

 
As results of the GSEA analyzes, GSEA program provided both summarized 

(Figure 3.1) and detailed results of the analyzes. The summarized results of the 

analyzes provided us the total number of enriched and significantly enriched (p<0.01, 

p<0.05 or False Discovery Rate<0.25) gene sets of each phenotype. The detail 

enrichment results tables of each dataset (Figure 3.2a) provided detailed scores of 

each gene set analyzed (3263 gene sets for each dataset in total). The further detailed 

results of each gene sets were also provided by the program via enrichment plot 

figures (Figure 3.2b).   

 

3.8.3 Integration and analyzes of the GSEA data to determine 74 commonly 

enriched gene sets of the two datasets 

 
The total lists of enriched gene sets of each phenotype (2165 gene sets for 

senescent, 1098 gene sets for immortal, 2017 gene sets for cirrhosis, and 1246 gene 

sets for HCC) were integrated in four possible combinations and analyzed using the 

Matlab© in order to determine commonly enriched gene sets of the phenotypes 

(Figure 3.3). In order to that, enrichment result tables of each phenotype were 

integrated using the method described in table 3.2 and GSEA data of the commonly 

enriched gene sets of the four possible combinations (lists of commonly enriched 

gene sets in both senescence and cirrhosis samples, both immortal and cirrhosis 

samples, both senescence and HCC samples, and both immortal and HCC samples) 

were determined. The list of the 74 gene sets that significantly (p<0.05) enriched were 

identified by sorting these results. Pearson's correlation coefficients of these 

correlations were calculated using Matlab© and Fisher's exact test was performed 

using VassarStats (Vassarstats.net). 
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Figure 3.1: Summarized GSEA results of in vitro and in vivo datasets: a) GSEA 
experiment of the samples of the in vitro dataset (immortal and senescence samples) resulted with 
enrichment of 1098 gene sets in the immortal phenotype and 2165 gene sets in the senescent 
phenotype. 113 of 1098 gene sets and 598 of 2165 gene sets were enriched significantly (p<0.05) in the 
in vitro dataset. b) GSEA experiment of the samples of the in vivo dataset (HCC and cirrhosis samples) 
resulted with enrichment of 1246 gene sets in the immortal phenotype and 2017 gene sets in the 
senescent phenotype. 189 of 1246 gene sets and 161 of 2017 gene sets were enriched significantly 
(p<0.05) in the in vivo dataset.  
 

a 

b 
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a 

 

b 

              

Figure 3.2: Examples of detailed outputs of GSEA experiments: a) Part of the detailed 

enrichment results table of the HCC phenotype: List of the top ten enriched gene sets based on their 

normalized enrichment scores (NES) are seen in the enrichment results table. GS Details (link of the 

details of the enrichment score of the gene set, where enrichment plot figure can be found), Size 

(number of genes in the gene set), ES (enrichment score of the gene set),  NES (normalized enrichment 

score of the gene set), NOM p-val (nominal p-value score of the gene set), FDR q-val (false discovery 

rate value of the gene set), FWER p-value (family-wise error rate, which represents score of a more 

stringent FDR value), Rank at max (rank of the gene set among other gene sets analyzed based on its 

NES score), Leading Edge (percentage values of the genes contributiong the enrichment score of a 
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gene set) results of each enriched gene set are provided in this table. b) Enrichment plot of a typical 

significantly enriched gene set: Enrichment plots (EP) are one of the results of GSEA experiments, 

which provide detailed information on different aspects. The y-axis of an EP graphic shows enrichment 

scores (ES), while x-axis shows distributions of individual genes of the gene set on the two phenotypes 

analyzed. Thus, black bars represent a gene and green line shows enrichment profile of genes of the 

gene set. Accumulation of the green line two one of the phenotypes determines both number and the 

sign (positive or negative) of the ES of a gene set. The ranked list metric score at the bottom of the 

enrichment plot figure shows rank of each gene among the whole genes in the total analysis. This rank 

is one of the criteria that determine if a gene is a core- enriched gene, or not. 

 

3.8.4 Leading Edge Analysis (LEA) 

 
Leading Edge Analyzes (LEA) were performed on selected DNA repair and 

cell cycle gene sets using GSEA results and GSEA desktop software. Similarities of 

DNA repair and cell cycle gene sets were determined based on number of common 

core enriched genes in each gene set in the analysis. 

 

3.9 Cluster Analysis 

 
Cluster 3.0 software [199] was used to assess unsupervised clustering of 

datasets. First, data were adjusted by centering genes and arrays separately based on 

mean values, and then the average linkage clustering was applied to genes and arrays 

using a correlation (uncentered) similarity metric. Cluster files were visualized by 

Java Treeview [200]. 
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Figure 3.3: Steps of the method used for identification of 74 commonly enriched 

gene sets: In order to identify 74 significantly (p<0.05) and commonly enriched gene sets in samples 

of the in vitro and in vivo datasets, we first obtained GSEA results of the in vitro (senescent and 

immortal samples) and in vivo (cirrhosis and HCC samples) microarray datasets. Results of the GSEA 

experiments were integrated using Matlab functions (details in Table 3.2). Results of the analyzes using 

Matlab provided a list of 74 (34 gene sets in both senescent and cirrhosis samples, 39 gene sets in both 

immortal and HCC samples, 1 gene set in both senescent and HCC samples) significantly enriched 

gene sets. Significance value of this result was calculated with the Fisher exact test method.  

 

In Vitro Microarray Dataset 

Senescent 

GSEA with C2_ALL list 

Immortal 

In Vivo Microarray Dataset 

Cirrhosis HCC 

Yildiz-Fig. 6 

2165 Enrichments 
(598 Significant) 

1098 Enrichments 
(113 Significant) 

2017 Enrichments 
(161 Significant) 

1246 Enrichments 
(189 Significant) 

Data Integration with Matlab (Table 3.2) 

Senescent-
Cirrhosis 

Immortal-
Cirrhosis 

Senescent-HCC Immortal-HCC 

1629 Common 
Gene Sets 

 (34 Significant) 

389 Common 
Gene Sets 

 ( 0 Significant) 

 536 Common 
Gene Sets 

 (1 Significant) 

710 Common 
Enrichments 

 (39 Significant) 

GSEA with C2_ALL list 

74 Commonly Enriched Gene Sets 
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Table 3.2: Pseudocode of the method used during Matlab analyzes: Enrichment 

results of the each phenotype (senescent, immortal, cirrhosis and HCC) were used as inputs for the 

analyzes. Common gene sets were identified using the intersect command of the Matlab. Enrichment 

result tables of shared enriched gene sets of the phenotypes were determined using the xls write 

command. p<005 filter was applied to determine the final list of 74 gene sets. Correlation value was 

determined using the enrichment scores of the dataset. Fisher exact test was also perfomed to test the 

result.   

  

 

 

 

 

Data Integration of GSEA Results of In Vitro and In Vivo Datasets in Matlab 
and Fischer's Exact Test of these Results 

Input: GSEA enrichment result tables of Senescent, Immortal, Cirrhosis, HCC phenotypes 

Intersect (based on GSEA ids): Senescent with Cirrhosis 

xls write: columns ES, NES, NOM p-val, FDR q-val 

Intersect (based on GSEA ids): Immortal with Cirrhosis 

xls write: columns ES, NES, NOM p-val, FDR q-val 

Intersect (based on GSEA ids): Senescent with HCC 

xls write: columns ES, NES, NOM p-val, FDR q-val 

Intersect (based on GSEA ids): Immortal with HCC 

xls write: columns ES, NES, NOM p-val, FDR q-val 

Filter (based on significant p values) 

Perform Fisher's exact test 

Calculate correlation 
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3.10 Generation and Validation of a Senescence-based Genomic 

Classifier 

 
A senescence-based genomic classifier associated with differential diagnosis 

of HCC from cirrhosis was generated in BRB Array Tools by Prediction Analysis of 

Microarrays [201] using data reported by Wurmbach et al. [202] as a “training set”. 

The resulting classifier was tested using the nearest template prediction (NTP) method 

[203] on a validation set constructed by combining data reported here for Turkish 

patients with data from Deng et al. [204] for Japanese patients. Nearest template 

prediction was performed using NTP module [203] of GenePattern program 

(http://www.broadinstitute.org/cancer/sof tware/genepattern/) using default 

parameters of the module. The final image was generated using HeatMapImage 

module of the GenePattern and the output of the NTP. 

 

3.11 Generating Epigenetic Regulatory (EpiReg) Gene lists 

 
In order to create the total EpiReg gene list, which contains already identified 

histones, histone chaperones, chromatin remodelers, histone code readers and/or 

writers epigenetic regulatory genes, as well as putative epigenetic regulatory genes 

bearing well-characterized epigenetic regulatory protein domain sequences such as 

SET, JMJC, and PHD, I used QuickGO (http://www.ebi.ac.uk/QuickGO/) gene 

ontology website, GeneCards website (http://www.genecards.org/), MsigDB 

(Molecular Signature Database) (http://www.broadinstitute.org/gsea/msigdb/) and the 

current literature [205, 206]. Affymetrix Human GeneChip U133 plus 2.0 probe set 

ids, which were taken from the NetAffx website 

(http://www.affymetrix.com/analysis/index.affx) were also included for each gene in 

the total EpiReg list. 
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Members of the total EpiReg gene list were used either individually or in 

different combinations during the rest of analyzes. EpiReg gene sets used during Gene 

Set Enrichment Analysis (GSEA) analyzes were generated from the total EpiReg gene 

list. These gene sets comprise of two major gene set classes: EpiReg group gene sets, 

which include gene lists of certain epigenetic regulatory functions such as histone 

methyltransferases (HMTs), histone deacetylases (HDACs), and the EpiReg Domain 

gene sets, which include genes having well-characterized epigenetic regulatory 

protein domain sequences such as SET, JMJC, PHD, Ankyrin repeat in different gene 

sets. Both group and domain EpiReg gene sets also contain uncharacterized, putative 

EpiReg genes based on their conserved epigenetic regulatory domains. 

 
 

3.12 Histone Mutation Analyzes 

 
3.12.1 Samples of the histone mutation search experiments 

 
32 samples used during histone N-terminal tail encoding mutation 

investigations were part of the samples used in another study [207]. 

 

3.12.2 PCR experiments of the Histone mutation study 
 
 AccuPrime GC-Rich DNA Polymerase (Cat No: 12337-016, Invitrogen Life 

Technologies Corp.) was used for PCR reactions. PCR ingredients for one sample: 10 

ul of 5X AccuPrime GC-Rich Buffer A, 5 ul of 5X Q-Solution (Qiagen), 2 ul of 

forward and reverse primers, 0.4 ul of AccuPrime Taq, 27.6 ul of ddH2O, 3 ul of 

DNA (50 ng/ul). PCR reaction: (3 min. at 95°C) 1 cycle, (30 sec. at 95°C, 1 min. at 

58°C, 2 min. at 72°C) 32 cycle, (10 min. at 72°C) 1 cycle.  
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Primers used for mutation analyses of histone variants were: 

CENPA Forward: 5’-CCCAGAAGCCAGCCTTTC-3’ 

CENPA Reverse: 5’-GCCTCGGTTTTCTCCTCTTC-3’ 

H3F3A Forward: 5’-TTGATTTTTCAATGCTGGTAGG-3’ 

H3F3A Reverse: 5’-CAAGAGAGACTTTGTCCCATTTTT-3’ 

H3F3B Forward: 5’-GGGGCGTCTTTCTTAGGTG-3’ 

H3F3B Reverse: 5’-AGCAGGGGAGGAGTGAGC-3’ 

H2AFZ Forward: 5’-CGCCGCCTTGGTAATTCTAT-3’ 

H2AFZ Reverse: 5’-GGAAATGCAAAGAAAAACATCA-3’ 

H2AFV Forward: 5’-GGGATCACCTACATATTGTTAACTACC-3’ 

H2AFV Reverse: 5’-AATAATGTAATGACAGCATGGATTC-3’ 

H2AFY Forward: 5’-CTCGCCTTCACAGTGTGCT-3’ 

H2AFY Reverse: 5’-TGGTGTCTGGGTTGACTGAG-3’ 

H2AFY2 Forward: 5’-AGGCCACTGTGTCAGCAAG-3’ 

H2AFY2 Reverse: 5’-CCTGCCAGGTACTCAATGAC-3’ 

 

3.12.3 Agarose Gel Electrophoresis and Sequencing 

 
 5 ul of PCR product loaded to 2% agarose gel (standard DNA grade agarose 

Cat. No: D5-E, Euromedex in 1X TAE buffer) with 5 ul of 1kb Plus Ladder (Cat. No: 

10787-018, Invitrogen Life Technologies Corp.). Rest of the PCR products were 

sequenced by GATC Biotech (GATC Biotech. Konstanz, Germany) with Sanger 

sequencing method. 
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Table 3.3: Genomic DNA samples of the histone variant sequencing experiments: 

                               

 
 

3.12.4 Restriction Enzyme Digestion 

 
           PCR products of selected samples were digested with EarI (Cat. No: R0528S, 

New England Biolabs Inc.) and MboII (Cat. No: R0148S, New England Biolabs Inc.) 

restriction enzymes at 37°C according to instructions of the manufacturer and run at 

2% agarose gel. 

 

 
3.12.5 Analyzing Sequencing Data 

 
Sequencing results were batch analyzed with ClustalW2 multiple sequence 

alignment tool (http://www.ebi.ac.uk/Tools/msa/clustalw2/), and manually if 

necessary. Wild type sequences were retrieved from UCSC genome browser database 

(http://genome.ucsc.edu/).  

SEQUENCING CODE ORIGINAL NAME COUNTRY
1 J8T JAPAN
3 T37 MOZAMBIQUE
4 C14 CHINA
5 T80 GERMANY
6 C4 CHINA
7 T51 MOZAMBIQUE
8 K9T MOZAMBIQUE
9 J5T JAPAN
11 C11 CHINA
14 T70 FRANCE
17 J2T JAPAN
18 J1T JAPAN
19 J9T JAPAN
20 C5 CHINA
21 J3T JAPAN
22 T75 GERMANY
23 J7T JAPAN
24 I2T ISRAEL
26 C8 CHINA
27 T76 GERMANY
28 C1 CHINA
29 C2 CHINA
30 J10T JAPAN
31 T69 FRANCE
32 T39 SWAZILAND
33 C9 CHINA
34 G3 GERMANY
35 J6T JAPAN
36 T67 JAPAN
37 I3T ISRAEL
48 C7 CHINA
49 T9 MOZAMBIQUE
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CHAPTER 4 

RESULTS 

 

 

4.1 Genome-Wide Transcriptional Reorganization Associated with 

Senescence-to-Immortality Switch during Human Hepatocellular 

Carcinogenesis 

 
4.1.1 Top 100 deregulated genes of in vitro and in vivo datasets 

 
We determined whole-genome gene expression profiles of four independently 

established Huh7 clones (two different senescent clones and two different immortal 

clones) with three independent biological replicates from each clone. Thus, a total of 

12 different whole-genome gene expression signatures were obtained in the in vitro 

dataset. In order to obtain whole-genome gene expression profiles of in vivo cirrhosis 
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and HCC samples, we used tissue samples of 15 cirrhosis and 15 HCC samples as our 

in vivo dataset (Table 3.1).  

 

As a first step of our analyses, we first determined list of the genes with the 

highest gene expression differences in each phenotype of the two datasets. In order to 

do that, first the signal intensities of 54.675 (54K) probe sets were collapsed to gene 

symbols to be able to work with genes instead of probe sets for the rest of the 

analyses. After collapsing the 54K probe sets to 20.606 genes, genes were rank 

ordered based on their average gene expression values in each phenotype. Heatmap 

figures of the 100 genes in the rank ordered lists (50 for each phenotype of a dataset) 

were generated for each datasets (Fig. 4.1a).  

 

The heatmap figures indicate that samples of the in vitro data are highly 

homogenous for each phenotype, which is plausible since replicate samples of the 

each phenotype were obtained from certain clones of the Huh7 cell line. On the other 

hand, samples of the in vivo dataset, especially HCC samples, have heterogenous gene 

expression profiles based on gene expression profiles of the top 100 genes. This 

situation might also be expected, since the samples of the in vivo dataset have 

different ethiologies, such as presence of HBV or HCV induced samples in the HCC 

phenotype.  

 

The lists of the 100 genes for each dataset do not display high similarity, 

either. Among the list of nearly 200 genes in total only two genes, MND1 and 

TMEM27, are common in both datasets (Fig. 4.1). In addition to that, even though the 

TERT gene, which encode the protein part of the telomerase enzyme as a critical 
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player of the cellular immortalization processes, is among the highly expressed genes 

in the immortal samples as indicative of a molecular proof of our samples; the TERT 

gene is not among the 100 genes of the in vivo dataset. Thus, the results of the list of 

the highly deregulated genes indicate that, understanding the mechanisms of the 

senescence escape related processes needs extensive analyses, since it is not possible 

via the list of the genes with highly deregulated gene expressions.  

 

      
 
Figure 4.1: Heat map representation of the top 100 deregulated genes of in vitro 
and in vivo datasets: a) Heat map representation of the top 100 (50 genes for each phenotype) 
deregulated genes in immortal Huh7 clones (Immortal) versus senescent Huh7 (Senescent) clones. The 
arrow shows the TERT gene, one of the genes with highest expression values in immortal samples and 

a! b!

Cirrhosis!HCC!
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lowest expression values in senescent samples. Three biological replicates from each clone were 
analyzed for genome-wide gene expression using Affymetrix 54 K microarrays and normalized data 
were used for gene set enrichment analysis (GSEA). b) Heat map representation of the top 100 (50 
genes for each phenotype) deregulated genes in immortal HCC samples versus cirrhosis samples. 
Fifteen cirrhosis and fifteen HCC samples were analyzed for genome-wide gene expression using 
Affymetrix 54K microarrays and normalized data were used for GSEA. Red: up-regulated; blue: down-
regulated. Black dots indicate common genes of the two 100 gene lists. 

 
4.1.2 Gene Set Enrichment Analyses (GSEA) of in vitro and in vivo datasets 

using the C2_ALL curated gene sets list 

 
 

In order to identify gene expression-based biological differences of senescent 

and immortal samples, as well as cirrhosis and HCC samples we first performed Gene 

Set Enrichment Analysis (GSEA) on in vitro and in vivo datasets. The GSEA method 

performs pairwise analysis of microarray data and determines enrichment of a certain 

biological process in a certain phenotype by calculating the significance values of 

certain groups of genes (gene sets). The gene sets used in these analyses can vary 

according to the question being asked, such as genes of a molecular pathway, a 

metabolic process, genes containing a common DNA motif in their promoter, a list of 

genes affected by a chemical treatment, etc. The Molecular Signature Database 

(MSigDB) of the Broad Institute contains different curated gene lists ready-to use for 

GSEA experiments, C1 list to C7 lists. Among these lists, I used C2_ALL list, which 

contains gene sets of different ontology databases (Biocarta, KEGG, Reactome) as 

well as gene lists determined with research articles as results of different chemical and 

genetic perturbations (e.g., lists of down-regulated and up-regulated genes following 

treatments with different chemicals or small interfering RNAs, siRNAs). The 

C2_ALL curated list, which contains 3263 different gene sets, was a great tool to 

determine differentially regulated biological processes of samples of the in vitro and 

in vivo datasets.     
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Figure 4.2: Statistically significantly enriched senescence or immortalization 
gene sets of in vitro and in vivo datasest: Previously identified gene sets (available at 
molecular signature database (MSigDB; www.broadinstitute.org/gsea/) were screened to identify those 
that are up-regulated in in vitro and in vivo datasets by the analysis of their relative expression levels 
using GSEA method. a) Gene set enrichment plots showing the up-regulated expression of two 
previously known senescence-associated gene sets in senescent Huh7 clones, including genes that are 
commonly up-regulated in senescent cells (‘‘FRIDMAN_SENESCENCE_UP’’) [208] and p53-
responsive genes up-regulated during replicative senescence arrest 
(‘‘TANG_SENESCENCE_TP53_TARGERTS_UP’’) [209]. In addition, genes known to be down-
regulated during immortalization in general (‘‘FRIDMAN_IMMORTALIZATION_DN’’) [208], and 
by human papillomavirus 31 (‘‘CHANG_IMMORTALIZED_BY_HPV_DN’’) [210] were also up-
regulated in senescent Huh7 clones. b) Genes known to be down-regulated by TERT-mediated 
immortalization (‘‘KANG_IMMORTALIZED_BY_TERT_DN’’) [211] and TERT-repressed target 
genes (‘‘SMITH_TERT_TAR- GETS_DN’’) [212] were also enriched in senescent Huh7 clones. c) 
Genes involved in telomere end packaging 
(‘‘REACTOME_PACKAGING_OF_TELOMERE_ENDS’’; www.reactome.org) were up-regulated in 
senescent Huh7 clones. d) In contrast, genes involved in telomere extension 
(‘‘REACTOME_EXTENSION_OF_TELOMERES’’; www.reactome.org) were enriched in immortal 
Huh7 clones. e) Enrichment plot of p53-responsive genes up-regulated during replicative senescence 
arrest (‘‘TANG_SENESCENCE_TP53_TARGERTS_UP’’) [209] showing over-expression in 
cirrhosis. f) In contrast, p53-responsive genes down-regulated during replicative senescence arrest 
(‘‘TANG_SENES- CENCE_TP53_TARGERTS_DN’’) [209] and those involved in telomere 
extension (‘‘REACTOME_EXTENSION_OF_TELOMERES’’; www.reactome.org) were 
overexpressed in HCC tumors. Enrichment scores (ES) are shown on the y- axis. Positive and negative 
ES indicate enrichment in immortal and senescent Huh7 clones, respectively. X-axis bars represent 
individual genes of the indicated gene sets. FDR: False discovery rate, p: nominal p-value. Three 
biological replicates from each clone were analyzed for genome-wide gene expression using 
Affymetrix 54K microarrays and normalized data were used for GSEA. 
 
 
 

The GSEAs of immortal versus senescent samples using the C2_ALL 

determined 113 gene sets significantly enriched (p<0.05) in immortal samples, and 

598 gene sets significantly enriched (p<0.05) in senescent samples. The same 

analyses using the in vivo dataset identified 189 genes sets significantly enriched 

(p<0.05) in HCC samples and 161 gene set significantly enriched (p<0.05) in 

cirrhosis samples. Thus, we continued with further investigating these significantly 

enriched gene sets of the two datasets for the rest of the analyses.  
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4.1.3 Senescence and Immortality Gene Set Enrichments of in vitro and in vivo 

datasets 

 
Among the results of significantly enriched gene sets, we first analyzed results 

of senescence and immortality related gene sets of the two datasets starting with the in 

vitro dataset; since these gene sets can prove whether our senescent and immortal 

microarray data are reliable, or not.  

 

There were eight different senescence or immortality related gene sets among 

significantly enriched gene sets of the in vitro GSEA results (Table 4.1; Figure 4.2a-

d). Commonly up-regulated genes during senescence, identified by Fridman et al. 

(‘‘FRIDMAN_SENESCENCE_UP’’)  [208] were significantly enriched in senescent 

Huh7 cells. In addition to that, p53-responsive genes up-regulated during replicative 

senescence arrest, determined by Tang et al. [209] 

(‘‘TANG_SENESCENCE_TP53_TARGERTS_UP’’) were also enriched in senescent 

samples. Since our senescent Huh7 clones were generated with replicative senescent 

(see materials and methods), this enrichment is especially meaningful. In addition to 

these gene sets, the list of the genes down-regulated during immortalization in general 

(‘‘FRIDMAN_IMMORTALIZATION_DN’’) [208], as well as genes down-regulated 

by human papilloma virus (HPV) 31 

(‘‘CHANG_IMMORTALIZED_BY_HPV_DN’’) [210] were also enriched in 

senescent samples (Table 4.1; Figure 4.2a). 
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The other four senescence-immortality related gene sets enriched in in vitro 

dataset are related to either TERT or telomeres (Table 4.1; Figure 4.2b-d). 

‘‘KANG_IMMORTALIZED_BY_- TERT_DN’’ gene set [211], containing genes 

down-regulated by TERT-mediated immortalization, 

‘‘SMITH_TERT_TARGETS_DN’’ gene set [212], containing TERT-repressed target 

genes, and ‘‘REACTOME_PACKAGING_OF_- TELOMERE_ENDS’’ gene set, 

containing genes involved in telomere end packaging, were all significantly enriched 

in senescent Huh7 clones (Table 4.1; Fig. 4.2b,c). The remaining gene set 

(‘‘REACTOME_EXTENSION_OF_TELOMERES’’), containing genes involved in 

telomere extension is enriched in immortal Huh7 cells (Table 4.1; Fig. 4.2d).  

 

Although eight senescence-immortality gene sets were enriched in the in vitro 

samples, only three senescence-immortality gene sets of the C2_ALL list were 

enriched in the in vivo dataset. The gene set ‘‘TANG_SENESCENCE_TP53_TAR- 

GETS_UP’’ [209] are enriched in cirrhosis samples as happened in senescent cells 

(Table 4.1; Fig. 4.2e). In contrast, HCC phenotype was enriched in 

‘‘TANG_SENESCENCE_TP53_TARGETS_DN’’ [209] gene set, containing p53-

responsive genes down-regulated during replicative senescence arrest; as well as the 

‘‘REACTOME_EXTENSION_OF_TELOMERES’’ gene set, which was also 

enriched in immortal ells (Table 4.1; Fig. 4.2f). 
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4.1.4 Senescence-related gene networks in cirrhosis and hepatocellular 

carcinoma  

 
In order to test the hypothesis that, gene expression profiles of in vitro 

senescent cells are similar to those of in vivo cirrhosis samples; and in vitro immortal 

cells are similar to those of in vivo HCC samples, we first analyzed the whole lists of 

significantly enriched gene sets of the both datasets. The significantly enriched gene 

set lists of the two datasets were analyzed pairwise (senescent-cirrhosis, immortal-

cirrhosis, senescent-HCC, and immortal-HCC) to observe the overall percentage of 

the similarities of the four phenotypes.  

 

Among the whole list of 1629 common gene sets in senescence and cirrhosis 

samples 328 (20%) of them were significant (p<0.05) in at least one phenotype. 

However, among 388 gene sets commonly enriched both in immortal and cirrhosis 

samples only 25 of them (6.4%) were significantly enriched in any of the classes. A 

similar analysis between immortal and HCC samples resulted with 35% common 

enrichment (249 of 710) in at least one phenotype. Finally, senescence and HCC 

samples shared 7.8% of their commonly enriched genes. Thus, these first data 

analyses with overall gene expression pattern based differentially enriched molecular 

mechanisms of the four phenotypes suggested that in vitro senescent cells are like in 

vivo cirrhosis samples, and in vitro immortal cells are like in vivo HCC samples [213]. 
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Figure 4.3: Comparative analysis of gene sets enriched in Huh7 clones and 
diseased liver tissues associated cirrhosis with senescence and HCC with 
immortality phenotypes, respectively: a) Scatter plot compares enrichment scores of 74 gene 
sets commonly enriched in Huh7 clones (senescent or immortal) and diseased liver tissues (cirrhosis or 
HCC) with a p value less than 0.05. Thirty-nine gene sets (53%) were significantly enriched in both 
HCC and immortal samples whereas 34 (46%) gene sets were significantly enriched in both cirrhosis 

and senescent samples (correlation value r=0.97, p=2X10-43). Only one gene set (1%) was enriched in 
both HCC and senescent clones. b) Distribution of biological features defined by different gene sets in 
cirrhosis/senescence (blue columns) and HCC/immortality (red columns) phenotypes, respectively. 
These analyses also revealed that cirrhosis/senescence- and HCC/ immortality-associated gene sets 
implicated distinct biological features specific to each phenotype. Red color: immortal and/or HCC; 
blue color: senescent and/or cirrhosis. 
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To identify the driver senescence and immortality related gene networks we 

applied a more stringent criterion and determined lists of gene sets significantly 

enriched (p<0.05) in both samples of the four pairs. This analysis revealed a list of 74 

gene sets with 98.6% of them distributed to either senescence-cirrhosis pair (34 gene 

sets, 46%) or immortal-HCC pair (39 gene sets, 52.7%), whereas only one gene set 

was significantly enriched in both senescence and HCC classes (Figure 4.3a). The 

two-tailed Fisher exact test, (p = 2.6X10-20) and Pearson correlation values of co-

enrichment scores (r=0.97, p = 2X10-43) resulted with highly significant results; 

indicating that in vitro senescent cells are like in vivo cirrhosis samples, and in vitro 

immortal cells are like in vivo HCC samples (Figure 4.3a).  

 

The list of 74 senescence escape oriented deregulated gene networks of 

hepatocellular carcinogenesis is presented in the Table 3.2 and the distributions of the 

73 common gene sets according to their cellular functional mechanisms in senescent-

cirrhosis and immortal-HCC samples are depicted in the Figure 4.3b. Gene sets up-

regulated in cirrhosis/ senescence group were also up-regulated in non-tumor tissues 

as opposed to those with tumors (four gene sets), or in less malignant tumors versus 

more malignant tumors (11 gene sets). In contrast, genes up-regulated in 

HCC/immortality group were associated with tumors as opposed to non-tumor tissues 

(four out of five gene sets), or in more malignant tumors as compared to less 

malignant tumors (four gene sets). The HCC/immortality state was characterized by 

an up-regulation of genes involved in DNA repair (13 gene sets), cell cycle (seven 

gene sets), progenitor state (two gene sets), telomere extension, DNA methylation and 

branched chain amino acid metabolism. In contrast, genes involved in cell signaling 

(six gene sets), lipid metabolism (four gene sets), drug metabolism, retinol 
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metabolism and glycolysis were down-regulated (Figure 4.3b, Table 4.2; see 

discussion). 

 

The shared significant enrichments of 20 DNA repair and cell cycle gene sets 

were further analyzed. Figure 4.4a shows gene name similarities of these separate 

gene sets indicative of presence of repetitively enriched genes in different gene sets 

(Figure 4.4a). Thus, the core enriched genes, the genes making the major contribution 

to the enrichment score of a gene set, of these gene sets were determined separately in 

immortal and HCC samples. Figure 4.4b indicates that immortal and HCC samples 

have both common recurrently core enriched and differentially core enriched genes in 

common DNA repair and cell cycle genes; suggesting mostly common, but also 

slightly differing active DNA repair and cell cycle mechanisms in immortal and HCC 

samples (see discussion) (Figure 4.4b).  

 

Detailed analysis of genes involved in retinoid metabolism revealed that the 

expression of several genes encoding critical enzymes catalyzing the synthesis of 

retinoic acid (the active form of retinoids) was down-regulated in HCC tumors as 

compared to cirrhotic liver tissue. There was also down-regulated expression of genes 

involved in the storage of retinoids in tumors. Down-regulated genes included two 

members of retinol dehydrogenases, four members of alcohol dehydrogenases, 

NADP(H)-dependent retinol dehydrogenase/reductase (DHRS4) and β-carotene 

15,15’-monooxygenase 1 (BCMO1), which are all involved in the synthesis of retinal, 

the immediate precursor of retinoic acid. Two genes involved in the synthesis of 

storage retinyl esters, namely lecithin:retinol acyltransferase (LRAT) and patatin-like 

phospholipase-4 (PNPLA4) were also down-regulated in HCC cells (Figure 4.5). 
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Table 4.2: 74 senescence escape oriented deregulated gene networks of             
                   hepatocellular carcinogenesis: 
 

   

GENE SET NAME Class Associations
KALMA_E2F1_TARGETS IMM-HCC Cell cycle
REACTOME_MITOTIC_PROMETAPHASE IMM-HCC Cell cycle
REACTOME_ACTIVATION_OF_THE_PRE_REPLICATIVE_COMPLEX IMM-HCC Cell cycle
REACTOME_G2_M_CHECKPOINTS IMM-HCC Cell cycle
REACTOME_CYCLIN_A1_ASSOCIATED_EVENTS_DURING_G2_M_TRANSITION IMM-HCC Cell cycle
MANALO_HYPOXIA_DN IMM-HCC Cell cycle
BIOCARTA_PTC1_PATHWAY IMM-HCC Cell cycle
RIZ_ERYTHROID_DIFFERENTIATION IMM-HCC Differentiated state
MISSIAGLIA_REGULATED_BY_METHYLATION_DN IMM-HCC DNA methylatıon-activated
REACTOME_DNA_REPAIR IMM-HCC DNA repair
KAUFFMANN_DNA_REPAIR_GENES IMM-HCC DNA repair
WAKASUGI_HAVE_ZNF143_BINDING_SITES IMM-HCC DNA repair
REACTOME_DOUBLE_STRAND_BREAK_REPAIR IMM-HCC DNA repair
REACTOME_HOMOLOGOUS_RECOMBINATION_REPAIR IMM-HCC DNA repair
REACTOME_ACTIVATION_OF_ATR_IN_RESPONSE_TO_REPLICATION_STRESS IMM-HCC DNA repair
BIOCARTA_ATRBRCA_PATHWAY IMM-HCC DNA repair
KEGG_MISMATCH_REPAIR IMM-HCC DNA repair
KEGG_BASE_EXCISION_REPAIR IMM-HCC DNA repair
PUJANA_BRCA_CENTERED_NETWORK IMM-HCC DNA repair
PUJANA_BREAST_CANCER_WITH_BRCA1_MUTATED_UP IMM-HCC DNA repair
PUJANA_BRCA2_PCC_NETWORK IMM-HCC DNA repair
PUJANA_XPRSS_INT_NETWORK IMM-HCC DNA repair
KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_BIOSYNTHESIS IMM-HCC Amino acid metabolism
RAMASWAMY_METASTASIS_UP IMM-HCC Higher malignancy
LOPEZ_MESOTELIOMA_SURVIVAL_TIME_UP IMM-HCC Higher malignancy
SMID_BREAST_CANCER_LUMINAL_A_DN IMM-HCC Higher malignancy
WEST_ADRENOCORTICAL_CARCINOMA_VS_ADENOMA_UP IMM-HCC Higher malignancy
MUNSHI_MULTIPLE_MYELOMA_DN IMM-HCC Nontumor-vs-Tumor
PYEON_HPV_POSITIVE_TUMORS_UP IMM-HCC Oncogenic virus
KOKKINAKIS_METHIONINE_DEPRIVATION_48HR_DN IMM-HCC Other
PENG_GLUTAMINE_DEPRIVATION_UP IMM-HCC Other
NAKAMURA_CANCER_MICROENVIRONMENT_DN IMM-HCC Other
CROONQUIST_STROMAL_STIMULATION_DN IMM-HCC Other
FOURNIER_ACINAR_DEVELOPMENT_LATE_DN IMM-HCC Progenitor state
FOURNIER_ACINAR_DEVELOPMENT_LATE_2 IMM-HCC Progenitor state
REACTOME_EXTENSION_OF_TELOMERES IMM-HCC Telomere extention
WHITEFORD_PEDIATRIC_CANCER_MARKERS IMM-HCC Tumors-vs-Nontumor
VECCHI_GASTRIC_CANCER_EARLY_UP IMM-HCC Tumors-vs-Nontumor
WEST_ADRENOCORTICAL_TUMOR_MARKERS_UP IMM-HCC Tumors-vs-Nontumor
EBAUER_TARGETS_OF_PAX3_FOXO1_FUSION_UP SEN-CIRR Differentiated state
TARTE_PLASMA_CELL_VS_PLASMABLAST_UP SEN-CIRR Differentiated state
KEGG_DRUG_METABOLISM_CYTOCHROME_P450 SEN-CIRR Drug Metabolism
REACTOME_GLYCOLYSIS SEN-CIRR Glycolysis
KEGG_LINOLEIC_ACID_METABOLISM SEN-CIRR Lipid metabolism
KEGG_ARACHIDONIC_ACID_METABOLISM SEN-CIRR Lipid metabolism
KEGG_GLYCOSPHINGOLIPID_BIOSYNTHESIS_LACTO_AND_NEOLACTO_SERIES SEN-CIRR Lipid metabolism
UZONYI_RESPONSE_TO_LEUKOTRIENE_AND_THROMBIN SEN-CIRR Lipid metabolism
NAKAYAMA_SOFT_TISSUE_TUMORS_PCA2_DN SEN-CIRR Lower malignancy
HOSHIDA_LIVER_CANCER_SUBCLASS_S3 SEN-CIRR Lower malignancy
BOYAULT_LIVER_CANCER_SUBCLASS_G123_DN SEN-CIRR Lower malignancy
CAIRO_HEPATOBLASTOMA_CLASSES_DN SEN-CIRR Lower malignancy
DOANE_BREAST_CANCER_ESR1_UP SEN-CIRR Lower malignancy
VANTVEER_BREAST_CANCER_ESR1_UP SEN-CIRR Lower malignancy
SMID_BREAST_CANCER_BASAL_DN SEN-CIRR Lower malignancy
MOREAUX_MULTIPLE_MYELOMA_BY_TACI_UP SEN-CIRR Lower malignancy
BOYLAN_MULTIPLE_MYELOMA_PCA1_UP SEN-CIRR Lower malignancy
LIEN_BREAST_CARCINOMA_METAPLASTIC_VS_DUCTAL_DN SEN-CIRR Lower malignancy
MOREAUX_B_LYMPHOCYTE_MATURATION_BY_TACI_UP SEN-CIRR Lower malignancy
CAIRO_HEPATOBLASTOMA_DN SEN-CIRR Nontumor-vs-Tumor
VECCHI_GASTRIC_CANCER_EARLY_DN SEN-CIRR Nontumor-vs-Tumor
DELYS_THYROID_CANCER_DN SEN-CIRR Nontumor-vs-Tumor
SABATES_COLORECTAL_ADENOMA_DN SEN-CIRR Nontumor-vs-Tumor
EHRLICH_ICF_SYNDROM_DN SEN-CIRR Other
LEE_LIVER_CANCER_MYC_DN SEN-CIRR Other
VALK_AML_CLUSTER_1 SEN-CIRR Other
KEGG_RETINOL_METABOLISM SEN-CIRR Retinol Metabolism
TANG_SENESCENCE_TP53_TARGETS_UP SEN-CIRR Senescence
AMIT_EGF_RESPONSE_120_HELA SEN-CIRR Signaling-EGF
NAGASHIMA_EGF_SIGNALING_UP SEN-CIRR Signaling-EGF
REACTOME_G_ALPHA_Q_SIGNALLING_EVENTS SEN-CIRR Signalling-other
BASSO_CD40_SIGNALING_DN SEN-CIRR Signalling-other
ODONNELL_TFRC_TARGETS_UP SEN-CIRR Signalling-other
BROWNE_HCMV_INFECTION_2HR_UP SEN-CIRR Viral infection
REACTOME_RNA_POLYMERASE_I_III_AND_MITOCHONDRIAL_TRANSCRIPTION SEN-HCC Mitochondrial transcription
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4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

R
PA

1 
R

FC
4 

M
R

E1
1A

 
R

FC
3 

B
R

C
A

1 
R

PA
2 

PO
LE

 
AT

M
 

PC
N

A 
B

R
C

A
2 

M
C

M
6 

M
C

M
2 

LI
G

1 
C

H
EK

2 
PO

LD
1 

M
C

M
4 

M
C

M
5 

M
SH

2 
R

A
D

1 
PR

K
D

C
 

R
FC

5 
C

H
EK

1 
AT

R
 

C
D

C
7 

R
A

D
50

 
R

A
D

51
 

XP
O

1 
H

2A
FX

 
M

A
D

2L
1 

R
FC

2 
C

D
C

20
 

R
A

D
54

L 
FA

N
C

G
 

TO
P2

A 
R

A
D

52
 

U
N

G
 

FE
N

1 
R

A
D

21
 

B
LM

 
PO

LE
2 

PO
LD

3 
C

D
C

25
C

 
TO

PB
P1

 

HCC 
IMMORTAL 

# 
of

 C
or

e 
En

ric
hm

en
ts

 

Gene 



 71 

Figure 4.4: DNA repair and cell cycle gene sets of the 74 gene sets list display the 
major gene expression based similarities and differences of the two datasets 
regarding to DNA repair and cell cycle mechanisms:  DNA repair and cell cycle gene 
sets among the 74 gene sets were further analyzed using the leading edge analysis (LEA) method. a) 
Set-to-set analysis of the selected gene sets display degrees of pair-wise similarities among gene sets. 
Number of shared genes increase in darker green boxes compared to lighter ones. White color 
represents absence of common genes in the sets. b) Numbers of core enrichments of each gene were 
determined in two datasets. Genes core enriched more than five times at least in one phenotype were 
included in the chart. The chart shows both commonly enriched and differentially enriched genes of the 
selected DNA repair and cell cycle gene sets; providing clues for common and different DNA repair 
and cell cycle mechanisms in in vitro and in vivo HCC samples.     
 
 
4.1.5 A senescence to immortality switch between dysplasia and HCC  

 
Our GSEA results of in vitro and in vivo datasets demonstrated high 

similarities between senescence and cirrhosis, as well as immortal cells with HCC 

tissues. As described in the introduction, presence of cellular senescence is one of the 

characteristic traits of the cirrhotic liver tissue, and by-pass of the cellular senescence 

is the critical step of immortalization towards generation of HCC in a cirrhotic liver.   

Thus, after determining common deregulated molecular pathways, metabolic events, 

and critical genes of these mechanisms, we determined differentially expressed genes 

during senescence-immortality switch in our in vitro datasets and tested gene 

expression differences of these genes on in vivo liver cancer datasets to identify 

critical individual genes of the senescence-immortality switch process.     

 

The list of significantly (>2.0 fold change with p values less than 10-7 

between senescent and immortal clones) differentially expressed 1813 probe sets 

(corresponding to 1220 genes) was determined by class comparison analysis (data not 

shown). In order to determine the timing of the senescence-immortality switch during 

the multistep progression of the HCC, we used raw data of a publically available 

dataset containing samples of five different stages of the hepatocellular 

carcinogenesis [202]. The dataset of the Wurmbach et al. contains 10 normal liver 
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samples, 13 cirrhotic tissues, 17 dysplastic lesions (originally described low-grade 

and high-grade dysplasia cases combined), 17 early HCCs (originally described very 

early and early HCC cases combined) and 18 advanced HCCs (originally described 

advanced and very advanced cases combined). The unsupervised clustering analysis 

using gene expression values of the 1813 probe sets in the Wurmbach dataset 

(containing 75 samples in total) generated two main clusters. Cluster 1 grouped 

together 39 out of the 40 non-HCC samples (97.5%) and 1 out of the 35 (3%) HCC 

samples. Conversely, cluster 2 was composed of 34 out of the 35 HCCs (97%) and 

one of 40 (2.5%) of the non-HCC samples (Fig. 4.6) suggesting that gene expression 

values of the senescence-immortality genes can identify non-tumor and tumor liver 

disease samples.  

 

The other result of this analysis was formation of a homogenous subgroup of 

dysplastic and cirrhotic samples in the cluster 1, while normal liver samples shared 

similarities with either cirrhotic or dysplastic tissue. Thus, dysplastic liver samples 

were clustered with cirrhotic samples, rather than HCC samples; suggesting that 

dysplasia is a more senescence-like state instead of being an immortal-like state. In 

addition to that, HCC samples formed several minor clusters, with a tendency of early 

and advanced tumors to form distinct sub-clusters in this analysis (Fig. 4.6).  
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Figure 4.5: Retinol metabolism is deregulated in senescence to immortality 
switch: Comparative analysis of core enriched gene sets in Huh7 clones (senescent versus immortal) 
and diseased liver tissues (cirrhosis versus HCC) indicated that retinol metabolism genes 
(‘‘KEGG_RETINOL_METABOLISM’’) undergo systematic changes in immortal cells and HCC, 
when compared to senescent cells and cirrhosis, respectively. a) Heat map of core enriched retinol 
metabolism genes in Huh7 clones (left) and diseased liver tissues (right). Red: up-regulated; blue: 
down-regulated. Genes commonly deregulated in both Huh7 clones and diseased liver tissues are 
indicated with a dot. b) A simplified view of retinol metabolism. Enzyme-encoding genes down-
regulated in HCC are shown in blue. LRAT: lechitin retinol acetyl transferase, PNPLA4: patatin-like 
phospholipase domain containing-4; RDHs: retinol dehydrogenases; ADHs: alcohol dehydrogenases; 
DHRS4: dehydrogenase/reductase (SDR family) member-4; BCMO1: beta-carotene 15,159- 
monooxygenase-1; CYPs: Cytochrome P-450 family proteins; UGTs: UDP glucoronosyltransferases. 
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Figure 4.6: Hierarchical clustering of 75 non-malignant and malignant liver 
tissue samples using 1813 senescence-associated gene probe sets:  Hepatocellular 
carcinoma and non-tumor liver tissues formed two distinct clusters (1 and 2) with the exception of one 
dysplasia and two early HCC samples. The rows and columns represent genes and samples, 
respectively on the cluster map. Tissue samples are normal liver (pink), cirrhosis (blue), dysplasia 
(yellow), early HCC (gray), and advanced HCC (black). Red: over-expressed, green: under-expressed 
probe set in the heat map. 
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Figure 4.7: Relative gene expression profiles of 18 probe sets: Scatter plot graphic 
compares relative expression levels (Log2 ratios) of 18 classifier probe sets representing 17 genes in 
Huh7 clones (immortal versus senescent) and diseased liver tissues (HCC versus cirrhosis). Expression 
ratios of classifier genes showed a linear correlation (correlation value r=0.7, p=0.0017) with ratios 
observed in Huh7 clones (immortal/senescent) and diseased liver tissues (HCC/cirrhosis). The 
classifier set was identified by PAM analysis of 1813 senescence-associated probe sets using a training 
tissue set composed of cirrhosis (n=13) and HCC (n=35) samples described by Wurmbach et al. [202]. 
Two probe sets which did not show expression patterns compatible with our in vivo senescence model 
were discarded to define a final signature set composed of 16 probe sets representing 15 genes. 
 
 
4.1.6 Fifteen-gene hepatocellular-immortality signature   

 
Based on remarkable clustering of tumor and non-tumor tissues by the 1220 

senescence-related genes, we then asked whether we could select a smaller subset of 

genes for discrimination of HCC from cirrhosis. We used expression data from 35 

HCC and 13 cirrhosis samples from Wurmbach et al. [202] as a ‘‘training set’’. The 

PAM analysis using ‘‘nearest shrunken centroid method’’ identified a list of 18 probe 

sets able to predict all 13 cirrhosis samples and 33 out of 35 HCC samples (96% 

accuracy) of the Wurmbach dataset with specificity of 0.943 and sensitivity of 1 for 

cirrhosis phenotype; specificity of 1 and sensitivity of 0.943 for HCC phenotype. The 
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list of 18 classifiers, composed of six immortality-associated probe sets (representing 

five genes) up-regulated in HCC tissues, ten senescence-associated probe sets up-

regulated in cirrhosis samples, and two senescence- associated probe sets up-regulated 

in HCC (Fig. 4.7). Fisher’s exact test demonstrated a strong association of cirrhosis 

with senescence and HCC with immortal phenotypes (p=0.0015). Then, we selected 

ten ‘‘cirrhosis- and senescence- associated’’ and five ‘‘HCC- and immortality-

associated’’ genes (16 probe sets in total) to construct a ‘‘hepatocellular immortality 

signature set’’ (Table 4.3). 

 
After that, we tested the diagnostic value of the signature genes using a ‘‘test 

set’’ composed of 45 tissue samples, including 30 Turkish patient samples reported 

here and 15 Japanese patient samples with publicly available expression data [204]. 

Based on Nearest Template Prediction method [203], the signature set was able to 

predict 100% (20/20) of cirrhotic tissues with high confidence (FDR<0.05). Five of 

25 HCC samples (20%) were unpredictable (FDR>0.05). Of the remaining 20 HCC 

samples, 19 (95%) were predicted correctly (Fig. 4.8). Overall, the signature set 

provided high confidence prediction (FDR<0.05) in 89% (40/45) of patients with 

97.5% (39/40) accuracy. 
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Figure 4.8: Nearest template prediction (NTP) of 15 gene hepatocellular 
signature test: Validation of molecular prediction of HCC and cirrhosis by 15-classifier genes. 
Using the nearest template prediction method [200], we compared expression levels of sixteen probe 
sets representing 15 classifier genes in a test tissue set composed of 20 cirrhosis and 25 HCC samples 
originating from Turkish (TR) patients described in this report, and Japanese (JP) patients described 
elsewhere [204]. BH FDR (Benjamini-Hochberg false discovery rates) values (top), clinical versus 
predicted phenotypes (middle) and heatmaps of classifier gene expression levels (bottom) are shown. 
The test provided a diagnostic result for 40 out of 45 samples (89%) with 97.5% (39/40) accuracy. 

 
 
4.1.7 Association of ATAD2 RNA and protein levels with HCC and cellular 

immortality 

 
ATAD2, one of the fifteen hepatocellular immortality signature genes, was of 

particular interest warranting further investigation. The ATAD2 gene is mapped to 

chromosome 8q24 and codes for a predicted protein of 1,391 amino acids that 

contains a double AAA ATPase domain and a bromodomain [214]. The 8q24 locus 

displays frequent copy number gains in HCC [215], and many other cancers [216]. 

Therefore, we selected ATAD2 as a representative of our hepatocellular immortality 
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signature to validate its immortality- and HCC-associated expression by additional 

experiments (Fig. 4.9). Freshly isolated normal adult human hepatocytes and MRC-5 

normal human fetal lung fibroblasts (at PD44) were used as non-immortal control 

cells that enter replicative senescence at around PD65 [194]. When compared to 

normal hepatocytes, most HCC cell lines (n=12/14; 86%) displayed between two- and 

20-fold higher ATAD2 mRNA expression. ATAD2 expression was less in MRC-5 

cells than hepatocytes (Fig. 4.9a). In order to further investigate ATAD2 expression, 

we tested its protein levels using a polyclonal rabbit anti-ATAD2 antibody that 

recognized a single major band in Hep3B HCC cells (Fig. 4.9b line Hep3B). The 

knock-down of ATAD2 by siRNA1 in these cells resulted in the loss of an anti-

ATAD2 immunoreactive band (Fig. 4.9b line Hep3B-si), demonstrating the 

specificity of this antibody. ATAD2 protein was undetectable in normal hepatocytes, 

but highly abundant in six out of nine HCC cell lines, and easily detectable in the 

remaining three (Fig. 4.9b). In order to further investigate immortality-associated 

expression of ATAD2 in HCC cells, we induced senescence arrest in Huh7 cells by 

0.1 mM Adriamycin treatment (Fig. 4.9c) as previously described [197], and 

compared ATAD2 expression between Adriamycin-treated and control Huh7 cells by 

western blot assay. We observed a drop in the levels of ATAD2 proteins in 

senescence-arrested cells, as compared to immortal Huh7 cells (Fig. 4.9d). 
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Figure 4.9: Association of ATAD2 RNA and protein expressions with HCC and 
cellular immortality: a) Amplified expression of ATAD2 RNA in HCC cell lines, as compared to 
normal hepatocytes and MRC-5 fibroblasts. Total RNAs were extracted from freshly isolated adult 
human hepatocytes (Hepatocytes), MRC-5 human embryonic lung fibroblast cells (PD44) and 14 HCC 
cell lines; reverse transcribed into cDNA; and ATAD2 RNA was quantified by quantitative real-time 
PCR using specific primers. ATAD2 expression values for each sample were normalized with 
housekeeping gene GAPDH RNA values. Relative expression of ATAD2 in MRC-5 and HCC cell 
lines was expressed in reference to its expression in hepatocytes. Averages of three measurements. 
Error bars: SD. b) Amplified expression of ATAD2 protein in HCC cells, as compared to normal 
hepatocytes. Total proteins were extracted from freshly isolated adult human hepatocytes 
(Hepatocytes), untreated (Hep3B) and ATAD2 siRNA1- treated (Hep3B-si) Hep3B and eight other 
HCC cell lines, and ATAD2 protein levels were tested by western blot analysis using a specific anti-
ATAD2 antibody (ATAD2). Western blot analysis of calnexin protein from the same blots was used 
for loading control (Calnexin). c, d) Comparative analysis by western blotting demonstrated that 
ATAD2 protein is overexpressed in immortal Huh7 cells as compared to senescence-arrested Huh7 
cells. c) Huh7 cells were treated with Adriamycin (0.1 mM) or DMSO (Control) for three days and 
subjected to senescence assay by SA-b-Gal staining (blue). Cells were counterstained with fast red 
(red). d) Total protein was extracted from control and Adriamycin-treated Huh7 cells, and ATAD2 and 
Calnexin proteins were tested as described in (b). Figures were adapted from reference 217.  
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4.2 Differential Expression of Epigenetic Regulatory Genes During 

Liver Carcinogenesis 

 
4.2.1 Creating the epigenetic regulatory genes (EpiReg) list 

 
As described in the introduction different epigenetic alterations have been 

observed during process of hepatocellular carcinogenesis. Although identification of 

these epigenetic alterations in HCC suggests that deregulation of epigenetic 

mechanisms is an important event of hepatocellular carcinogenesis, a comprehensive 

study is still lacking. Thus, in order to determine genome-wide expressional changes 

of different epigenetic players during liver carcinogenesis, we first generated a 

comprehensive list of epigenetic regulatory genes (EpiReg) as described in the 

materials and methods section.  

 

To prepare the total EpiReg list, containing 1990 probe sets corresponding to 

872 genes, we first included known histone and DNA code writer proteins (Histone 

methyltransferases, HMTs, Histone demethylases, HDMs, Histone acetyltransferases, 

HATs, Histone deacetylases, HDACs, DNA methyltransferases, DNMTs, and other 

histone modifier proteins such as histone ubiquitinating, histone phosphorylating 

proteins, etc.), histone and DNA code reader proteins (such as methylated CpG DNA 

binding proteins, and TUDOR domain containing reader proteins), histones 

(conventional and variant histones), histone chaperones, and other proteins with 

known chromatin regulatory functions (such as ARID1A, ARID2, SMARCD1). After 

that I included uncharacterized, conserved epigenetic regulatory function related 

protein domain containing putative genes to the EpiReg list to complete the list. Some 

examples of these genes are JMJC domain containing JMJD6, JMJD7, JMJD8 genes, 
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ankyrin repeat domain containing ANKS6, ACAP1, ANKFY1 genes, and pleckstrin 

homology domain (PHD) containing SHPRH, ZMYND8, ZMYND11 genes. 

 

4.2.2 Differentially expressed EpiReg gene sets during cirrhosis to HCC 

transition 

 

 In order to determine significantly deregulated groups of epigenetic regulatory 

mechanisms in a critical step of liver carcinogenesis (cirrhosis to HCC transition), we 

first created EpiReg gene sets using the EpiReg gene list to be able to analyze the list 

via GSEA method (Table 4.4). Differential expressions of the gene sets were 

determined with separate analyzes of cirrhosis and HCC samples of two microarray 

datasets, Wurmbach [202] and Yildiz [213].  GSEA studies determined three group 

gene sets (Histone chaperones, HMTs and other modifiers) and four domain gene sets 

(SET, BROMO, SANT, and TUDOR domain) significantly enriched in both datasets 

according to their p values (p<0.05) and false discovery rates (FDR<0.25). All seven 

gene sets were enriched in HCC phenotype compared to cirrhosis phenotype in both 

datasets (Table 4.5). 
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Table 4.4. EpiReg gene sets and number of genes in each gene set used in GSEA 
studies:  
 

            
 
 
Table 4.5. Significantly enriched EpiReg gene sets in cirrhosis and HCC samples 
of Wurmbach and Yildiz microarray datasets: 
 

  
 
 
4.2.3 Differential expression of epigenetic regulatory genes in different stages of  

hepatocellular carcinogenesis 

 
To determine whether certain epigenetic player groups are significantly 

deregulated as sets during different stages of liver carcinogenesis, we used lists of 

EpiReg gene sets and performed GSEA using Wurmbach et al.’s whole-genome gene 

expression microarray dataset [202], which includes normal liver, cirrhotic liver, 

dysplastic liver, early HCC, and advanced HCC samples. GSEA experiments revealed 

that generally EpiReg genes are differentially expressed as sets at each step during 

step-wise progression of liver carcinogenesis  

EPIREG Domain Genesets Size EPIREG Group Genesets Size
BROMO 40 Chaperone 16

CHROMO 33 Code Reader 482
PHD 181 Histone 83

SANT 53 HMT 60
TUDOR 25 Other Modifier 49

    WD40    17        Other       55
SET 51 DNADEM 6

Histone Domain 87 DNMT 6
AcTrfase 13 HAT 18

Ankyrin_rpt 222 HDAC 19
DNA Mtfase 5 HDEM 34

His_deacetylase 19 Me CpG DNA Binding 5
JMJ 7
MBT 8

Me CpG DNA Bnd 5
MeTrfase 14

PWWP 22
Znf_CW 8

Wurmbach HCC Vs. Cirrhosis Yildiz HCC Vs. Cirrhosis
EPIREG Group Genesets Size p-value FDR value p-value FDR value

Histone chaperone 15 0.006 0.051 0.01 0.15
HMT 59 0.006 0.041 0.02 0.087

Other Modifier 47 0.008 0.029 0.029 0.083

EPIREG Domain Genesets
SET 50 0.004 0.036 0.034 0.083

BROMO 34 0.04 0.107 0.045 0.089
SANT 42 0.043 0.108 0.047 0.104
TUDOR 20 <0.002 0.07 0.004 0.074
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starting from cirrhotic liver till the advanced HCC, without a change during normal 

liver to cirrhotic liver transition (Table 4.6). These analyzes also revealed that EpiReg 

gene sets were up-regulated at each step of liver carcinogenesis from dysplasia to 

advanced HCC progression. Six of the seven common significantly deregulated gene 

sets between cirrhosis and HCC (Table 4.5) were also significantly enriched during 

dysplasia to early HCC transition step of the hepatocellular carcinogenesis (Table 

4.6). The other significantly enriched genes sets were enriched generally in either 

cirrhosis to dysplasia transition or dysplasia to early HCC transition steps. 

Ankyrin_rpt, WD40 and PWWP domain gene sets were down-regulated as sets during 

cirrhosis to dysplasia transition (indicated with asterisk in Table 4.6); whereas 

CHROMO, PHD, Ankyrin_rpt, HMT and HAT gene sets were enriched in early HCC 

samples during dysplasia to early HCC transition.  

 
 

4.2.4 Common core-enriched EpiReg genes of Wurmbach and Yildiz datasets 

 

 In order to investigate the driver genes of the similarities between two 

independent datasets, we determined common core enriched genes; genes make main 

contribution to significant enrichment result of a gene set. Figures 4.10 and 4.11 show 

common core enriched genes of six EpiReg groups in Wurmbach and Yildiz datasets. 

Identification of common core enriched genes revealed high similarity in core 

enriched genes in these two datasets. Among histone methyltransferase gene sets 25 

genes were commonly core enriched in two datasets (25 out of 29 core enriched genes 

of Wurmbach samples, 86%, and 25 out of 35 genes of Yildiz samples, 71%, were 

common). The SET domain containing genes set, which is highly similar to HMT 

gene set had same 23 genes among core enriched genes, 23/26 (89%) and 23/30 



 86 

(77%) in Wurmbach and Yildiz datasets, respectively. The highest similarity scores 

were observed in BROMO domain and SANT domain gene sets. All 21 core enriched 

BROMO domain genes and all 19 SANT domain genes of Yildiz dataset were also 

core enriched in Wurmbach dataset. Histone chaperone and other modifier gene sets 

also displayed high similarities in these two datasets (Figure 4.10, Figure 4.11). In 

addition to that, since these six epigenetic player gene sets also enriched in early HCC 

samples of the Wurmbach dataset compared to non-tumor dysplastic samples, we also 

determined core enriched genes of these gene sets in Wurmbach dataset (Figure 4.12).  
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a 
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c 

     
 
Figure 4.10: Commonly core enriched genes of the three significantly enriched 
EpiReg group gene sets in Wurmbach and Yildiz datasets: Only core enriched genes of 
a gene set were included heat maps. Red indicates up-regulation, blue indicate down-regulation of a 
gene. Black dots indicate common genes in gene sets of the two datasets. HCC: hepatocellular 
carcinoma, Cirr: cirrhosis. 
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a 

   
b 

   
c 

   
 
Figure 4.11: Commonly core enriched genes of the three significantly enriched 
EpiReg domain gene sets in Wurmbach and Yildiz datasets: Only core enriched genes 
of a gene set were included heat maps. Red indicates up-regulation, blue indicate down-regulation of a 
gene. Black dots indicate common genes in gene sets of the two datasets. HCC: hepatocellular 
carcinoma, Cirr: cirrhosis. 
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Figure 4.12: Core enriched genes of the six significantly enriched EpiReg group 
gene sets in early HCC and dysplasia comparison of the Wurmbach dataset: Only 
core enriched genes of a gene set were included heat maps. Red indicates up-regulation, blue indicate 
down-regulation of a gene. HCC: hepatocellular carcinoma. 
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4.3 N-Terminal tail coding sequences of H2A and H3 histone variants 

have no mutation in HCC 

 

Last year a new epigenetic mechanism in cancer, amino acid substitution 

leading mutations in N-terminal tail encoding DNA sequences of histone H3 variant 

H3F3A had been identified in 31% of the pediatric glioblastoma samples [218]. These 

three somatic mutations (K27M, G34R/G34V) in histone H3 raised a new possibility 

in the field of molecular oncology that, histone code disrupting mutations could cause 

cancer.  

 

Before checking whether histone variant encoding DNA sequences are also 

mutated in HCC, we first determined possible gene expression differences of the 

histone variants between cirrhosis and HCC samples. Gene expression patterns and 

consistencies of the histone variants in two independent datasets (Figure 4.13, Figure 

4.14) suggested that histone variants could be important players in HCC.  

 

Thus, we investigated possible amino acid substitution causing mutations in 

histone N-terminal tail coding DNA sequences of seven histone variants (H3F3A, 

H3F3B, CENPA, H2AFZ, H2AFV, H2AFY, H2AFY2) in HCC patient samples. 

Analyzes of PCR and sequencing results (from both forward and reverse directions) 

of 32 HCC samples could not detect consistent difference in any histone variants 

investigated, except one possible amino acid substitution leading mutation (ACC to 

TCC, Threonine to Serine) at 31. amino acid of histone H3 variant H3F3B in 31% of 

the samples investigated with readings from forward direction only (Figure 4.15a).    
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Figure 4.13: Core enriched genes of the Histone EpiReg gene set in Wurmbach 

and Yildiz datasets: Some of the conventional and variant histones were core enriched and 

transcriptionally up-regulated in both datasets. Red indicates up-regulation, blue indicate down-

regulation of a gene. Black dots indicate common genes in gene sets of the two datasets. HCC: 

hepatocellular carcinoma, Cirr: cirrhosis.  

 

To validate this finding we determined two restriction enzymes (MboII, and 

EarI), which give different products from possible mutant and wild type (wt) samples 

with restriction enzyme digestion. However, restriction enzyme digestion experiments 

indicated that nucleotide differences determined via Sanger sequencing experiments 

were results of a consistent reading error occur in one reading direction (Figure 

4.15b). In conclusion, we could not determine any amino acid substitution leading 

mutation in protein histone N-terminal tail region coding genomic DNA sequences of 

7 histone variants in HCC samples investigated, as other researchers could not 

identify for other cancer types [218]. 

Wurmbach Dataset Yildiz Dataset 

HCC! CIRR! HCC! CIRR!
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Figure 4.14: Cirrhosis versus HCC gene expression level comparisons of seven 

histone variants in Wurmbach and Yildiz datasets: Mean microarray gene expression 

signal intensities of seven histone variants in cirrhosis and HCC samples of the two datasets were 

calculated and compared. Asterisk indicated significant gene expression difference (p<0.05), 

determined with the t-test method.  
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Figure 4.15: A possible amino acid substitution leading mutation in histone N-

terminal encoding DNA sequences of Histone H3F3B: a) Multiple sequence alignment of 

amplified and sequenced region of H3F3B in 32 HCC samples revealed ACC to TCC (Threonine to 

Serine) mutation at 31. amino acid of histone H3 variant H3F3B in ten samples (31% of the samples) 

with reading results from forward direction.  Green line indicates N-terminal tail encoding sequences. 

Blue box shows the differing region. Orange box shows possible mutant sequences. Yellow box shows 

the sequences could not be specified by the Sanger sequencing method, but identified manually. b) 

Mutation validation experiments by restriction enzymes digestions with selected five possible wild type 

(wt) and mutant samples did not present any difference. Total PCR product is 329 bas pairs (bp). EarI 

cuts only mutant and gives 125 bp and 104 bp product. MboII digests both wt and mutant. It gives 146 

bp and 83 bp products for wt samples and 112 bp, 83 bp and 34 bp products for mutant samples. 

Part of N-TAIL 
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CHAPTER 5 

DISCUSSION 

 

 

5.1 Genome-Wide Transcriptional Reorganization Associated with 

Senescence-to-Immortality Switch during Human Hepatocellular 

Carcinogenesis 

 

 Hepatocellular carcinogenesis is a multi-step progressive disease as explained 

in the introduction section [44]. Main steps of the hepatocellular carcinogenesis are 

transition of the normal liver to fibrotic liver, generation of fatty liver, cirrhosis, 

dysplastic liver and cancerous liver (mainly hepatocellular carcinoma). Cancerous 
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liver also progress from early HCC to advanced HCC, or well-differentiated HCC to 

poorly differentiated HCC [44].  

 

 Our current knowledge on hepatocellular carcinogenesis suggests that there 

are two main events in hepatocellular carcinogenesis: i) chronic inflammation, which 

is triggered by various factors that we know as HCC inducing factors, such as HBV 

infection, HCV infection, chronic alcohol consumption, and obesity [3, 44]. Briefly, 

chronic inflammation can be categorized as “initiative” process of molecular 

mechanisms, which cause hepatocellular carcinogenesis. ii) senescence escape and 

immortalization, which is the important event regulating transition of tumor-free cells 

to immortalized cancerous cells. Thus, senescence escape can be categorized as 

“critical” step of hepatocellular carcinogenesis, since non-dividing hepatocytes 

transform into immortal cancer cells in this step. My Ph.D. studies are sum of an 

attempt to understand distinct molecular mechanisms altering during senescence 

escape of hepatocytes, in order to better understand the critical step of the 

hepatocellular carcinogenesis. 

 

Cellular senescence, considered for a long time to be an in vitro phenomenon, 

emerged in recent years as a critical mechanism that may play key roles in tissue 

aging as well as in the development of different tumor types [140]. Here, we used a 

unique in vitro hepatocellular senescence model to map senescence-related events 

associated with in vivo HCC development. Our in vitro model displayed a gene 

expression pattern compatible with replicative senescence and TERT-induced cellular 

immortalization, in conformation of our previously published observations [195]. We 

were fortunate to find a high number of differentially expressed genes between 
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senescent and immortal clones that served as an investigational tool to examine 

senescence-related transcriptional events occurring during hepatocellular 

carcinogenesis. Based on this, we provide here transcription-based evidence that 

cirrhosis and HCC represent two opposite cellular phenotypes, senescence and 

immortality, respectively. One of the major features of this phenotypic opposition was 

the status of telomere maintenance genes both between senescence and immortality, 

and cirrhosis and HCC (Figures. 3.1 and 3.2). The activation of TERT and telomere 

end extension genes in immortal and HCC phenotypes is of particular interest. 

Accelerated shortening of telomeres associated with a lack of telomerase activity and 

high cell turnover during chronic hepatitis has been recognized as a hallmark of 

cirrhosis several years ago [220, 221]. More recently, constitutional “loss-of-

function” type of telomerase (TERT or TERC genes) mutations have been identified 

as a risk factor for cirrhosis [222, 223]. In contrast to cirrhosis, HCC is known to 

reactivate TERT expression [224], display high telomerase activity [225] and stabilize 

telomeres [219], [226]. Based on our present data supported by these earlier reports, 

we propose that the activation of telomerase activity is a key event for the gain of 

immortalized phenotype by HCC cells. Supporting this idea very recently, recurrent 

and activating TERT promoter mutations have been reported for HCC cell lines and 

tissues [116-118], in strong support of our hypothesis. More interestingly, we 

identified one of the mutations described in these publications, C228T mutation, in 

parental Huh7 cells and C1 immortal clones, but not in C3 senescent clones (data not 

shown). In addition to that, we determined that the C228T mutation in promoter of the 

TERT gene creates a suitable transcription factor binding domain for both (E-twenty 

six) ETS and (signal transducer and activator of transcription) STAT family proteins 

(data not shown). Thus, the difference in C228T mutation in immortal and senescent 
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clones used in my studies may provide an important clue in order to better understand 

the senescence escape mechanisms during hepatocellular carcinogenesis. However, 

further studies are needed. 

The list of significantly enriched senescence and immortality related gene sets 

in the C2_ALL list in of in vitro and in vivo results indicate that eight and three 

senescence and immortality gene sets were enriched in in vitro and in vivo datasets, 

respectively. The significant enrichment results in correct in vitro phenotypes (genes 

found up-regulated in senescent cells or immortal cells by different researchers were 

also up-regulated or down-regulated our senescent or immortal samples) provided an 

important reliability to our in vitro datasets (Table 4.1; Fig. 4.2).  

 

Considering the specific trait of our in vitro samples (senescent and immortal 

samples), the difference of numbers of enriched gene sets (eight versus three) between 

two datasets seems quite normal. In addition, two of the three gene sets enriched in 

the in vivo dataset, ‘‘TANG_SENESCENCE_TP53_TARGETS_UP’’ and 

‘‘REACTOME_EXTENSION_OF_TELOMERES’’, were common in two datasets, 

suggesting promising similarities between senescent and cirrhosis samples, as well as 

immortal and HCC samples. 

 

The types of the commonly enriched gene sets in two dataset are also quite 

informative regarding to the mechanisms of cellular senescence and immortalization 

events of our samples. The ‘‘TANG_SENESCENCE_TP53_TARGETS_UP’’ gene 

set, containing p53-responsive genes up-regulated during replicative senescence 

arrest, was enriched in both senescent and cirrhosis samples. Since our senescent 

Huh7 cells were generated via the replicative senescence process (see materials and 
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methods), this enrichment result provided a reliability for the transcriptional profile-

based analyses we were performing. In addition to that, enrichment of the replicative 

senescence gene sets in both senescence and cirrhosis samples among different 

senescence mechanisms (e.g., oncogene induced senescence, PTEN-loss induced 

senescence, etc.) also suggests that the replicative senescence is the major senescence 

process in cirrhosis samples during the hepatocellular carcinogenesis. The common 

enrichment of the gene set called 

‘‘REACTOME_EXTENSION_OF_TELOMERES’’, in immortal and HCC samples 

of the two datasets also suggests that the active mechanisms of extending the telomere 

ends are a critical event in HCC samples. 

 

The transition from a senescent state to an immortal state coincided with early 

HCC lesions while dysplastic lesions remained associated with cirrhosis and normal 

liver sample groups indicating a non-immortal state (Figure 3.6). This pattern 

correlates with malignant transformation in other tissues where pre-neoplastic lesions 

display a senescent state from which neoplastic transformation emerges with a gain of 

phenotypic and molecular features that are linked to an immortal state [227]. 

Co-enrichment of a high number of gene sets in cirrhotic tissues and senescent 

cells as well as in HCCs and immortal cells was highly interesting. This finding 

further emphasized the biological evidence for a gain of immortal phenotype in 

human HCC. Among the gene sets co-enriched in HCC and immortal cells, cell cycle 

and DNA repair gene sets were at the top of the list (Figure 4.4b, Table 4.2).  

Up-regulation of cell cycle and DNA repair genes in HCC is already known 

[202], [228]; and the over-expression of cell cycle genes in immortal cells is expected. 
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The up-regulation of DNA repair genes may serve as a mechanism to escape from 

DNA damage-induced senescence arrest by increasing DNA repair capacity of 

immortal or HCC cells. However, the situation might be more complex, according to 

the data of differentially up-regulated DNA repair and cell cycle mechanisms and 

genes in immortal and HCC phenotypes (Figure 4.4, Figure 5.1). Among three single-

strand DNA damage repair mechanisms [229] only two of them, base excision repair 

(BER) and mismatch repair (MMR), were commonly up-regulated in immortal and 

HCC samples. In a similar vein, among three double strand break repair mechanisms 

(non-homologous end joining repair, microhomology mediated end joining and 

homologous recombination repair) [229] only homologous recombination (HR) gene 

sets were up-regulated commonly in immortal cells and HCC tissue samples (Figure 

4.4a, Table 4.2). The list of at least five times commonly core enriched genes among 

selected common DNA repair and cell cycle gene sets (Figure 4.4b) indicates that 

despite the similarities in in vitro immortal cells and in vivo HCC tissue samples, in 

vitro and in vivo samples selectively up-regulates transcription of specific genes in 

certain mechanisms (Figure 5.1). For example, among core enriched DNA damage 

signal mediators in vitro HCC cells selectively up-regulates transcription of the 

Ataxia telangiectasia and Rad3 related (ATR) gene, whereas in vivo HCC cells have 

selective up-regulation of Ataxia telangiectasia mutated (ATM) gene. Although ATR 

is mostly associated with repair of single strand DNA breaks and ATM is mostly 

associated with repair of double strand DNA breaks [230], these transcriptional 

differences are indicative of a different mechanism; since both single strand and 

double strand DNA repair mechanisms are commonly active in both in vitro and in 

vivo HCC samples. Selective transcriptional differences also occur in DNA damage 

and cell cycle mechanisms. In vitro HCC cells selectively up-regulates gene 
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expression of certain genes of DNA damage repair mechanisms; whereas certain cell 

cycle mediator genes are repeatedly up-regulated only in in vivo HCC cells (Figure 

5.1). Thus, selective repeated transcriptional up-regulation differences of certain DNA 

damage and cell cycle repair genes in in vitro and in vivo HCC samples might provide 

valuable insight information to better understand DNA repair and cell cycle 

mechanism alterations in HCC.  

 

          

Figure 5.1: Genes core enriched at least five times in different common DNA 

repair and cell cycle gene sets of immortal or HCC samples: Determined genes were 

categorized according to their functional groups using their data on KEGG (www.genome.jp/kegg/) 

and Genecards (genecards.org) databases. Gene symbols in black color indicate core enrichment in 

both phenotypes. Genes in red indicate a repeatedly core enriched gene only in vitro immortal samples. 

Genes in orange color indicate a repeatedly core enriched gene only in in vivo HCC samples. 
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Another interesting outcome of co-enrichment analysis was the differential 

association of metabolism regulatory gene sets with cirrhosis/senescence and 

HCC/immortality phenotypes. Co-enrichment patterns revealed that genes involved in 

glycolysis as well as those regulating drug, lipid and retinol metabolisms were down-

regulated in both immortal cells and HCC tumors. Down-regulation of genes 

encoding the enzymes necessary for retinoic acid biosynthesis and intracellular 

retinoid storage in HCC is of particular interest. Retinoic acid, which is the active 

metabolite of retinoids, regulates a wide range of biological processes including 

development, differentiation, proliferation, and apoptosis [231]. Normal hepatocytes 

together with hepatic stellate cells play an indispensable role in the availability of 

retionic acid and the storage of dietary retinoids [232]. Deregulated expression of 

retinoid metabolism genes in HCC is expected to cause a deficit in the synthesis of 

retinoic acid as well as in the storage of its metabolic precursors (Figure 4.5). 

Accordingly, reduced retinoid content has been reported for HCC [232-234]. A deficit 

in cellular retinoic acid levels in HCC cells, due to the expression changes reported 

here, may cause severe perturbations in a multitude of cellular processes governed by 

retinoic acid [231] by conferring a survival advantage to immortalized HCC cells. 

Thus the restoration of retinoic acid availability in HCC cells may adversely affect 

their survival. In favor of this hypothesis, treatment with a synthetic analog of retinoic 

acid successfully prevented second primary tumors in post-surgical HCC patients 

[235]. Thus, a deficit in the availability of endogenous retinoic acid might facilitate 

malignant transformation and tumor progression. 

The most important risk factor for HCC is cirrhosis that is present in 80 to 

90% of patients with HCC [3]. The patients with cirrhosis develop HCC with a rate of 

1.4–3.3% per year [3]. Therefore, the screening of cirrhotic patients by 
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ultrasonography of the liver combined with measurement of serum alpha-fetoprotein 

levels every 6 to 12 months for HCC development is recommended. However, the 

strength of the evidence supporting the efficacy of surveillance is modest [110]. To 

overcome the lack of efficacy, molecular HCC diagnosis techniques have been 

proposed [236]. Previously reported molecular techniques used either candidate genes 

[237] or genome-wide expression data [202, 224, 238, 239] to discriminate HCC from 

cirrhosis or dysplasia. None of these molecular tests have yet to enter into 

surveillance recommendations [236], probably because their prediction strength did 

not reach the required level and/or they require simultaneous analysis of dozens, even 

hundreds, of genes. Here, we provide a highly promising hepatocellular immortality 

signature test for HCC diagnosis. This novel molecular test requires the expression 

profiles of only 15 genes. Moreover, this is a functional test based on the analysis of 

senescence- and immortality-associated genes in tissue samples. The test was able to 

correctly predict 100% of cirrhosis cases. Twenty percent of HCCs displayed a 

borderline gene expression pattern, so that the classifier was not able to categorize 

them as HCC or cirrhosis. However, the test was able to predict the remaining HCC 

patients with 97.5% accuracy. 

Literature investigation of the 15 genes hepatocellular immortality signature 

list had lead us to further analyze ATAD2 gene for several reasons (Table 5.1).  We 

wanted to further analyze a gene up-regulated in HCC and immortal cells. This aim 

narrowed down our list to five genes (ATAD2, TOP2A, CCNE2, FAM83D and 

CRNDE). Since CRNDE was a gene encoding a large non-coding RNA, but not a 

protein [240] we also excluded this gene. Among the remaining four genes TOP2A 

and CCNE2 genes and their protein products had already been well characterized in 

HCC [241, 242]. In addition to that, FAM83D was a characterized cytoplasmic, 
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spindle pole related protein, which could not be directly related to the genome-wide 

transcriptional alterations during senescence escape processes. Thus, finally we 

decided to focus on ATAD2 in the 15 genes list, which was up-regulated in HCC, 

encoded in a well-known amplified genomic region (chromosome 8q24), chromatin 

remodeling protein domain containing, nucleus protein 

[http://www.ncbi.nlm.nih.gov/gene/29028]. 

Table 5.1:  Table of 15 genes hepatocellular immortality signature test list: Official 

gene symbols, either up-regulated in HCC or cirrhosis, encoded from a well-known amplified genomic 

location, either encoding a protein or not, cellular component of the encoded protein and cellular 

processes of the encoded protein are listed. N.A: Not available. 

 

 

One of the hepatocellular immortality signature genes is ATAD2. By using 

techniques independent of microarray tools, we demonstrated in vitro that ATAD2 

RNA and protein that are weakly present or not expressed in normal hepatocytes and 

fibroblasts are highly expressed in HCC cell lines. We also showed that ATAD2 

protein levels go down in association with Adriamycin-induced senescence arrest in 

otherwise immortal Huh7 cells. ATAD2 protein is likely to be a chromatin modifier 

[214]. Its exact cellular function is unknown, but its overexpression in immortal cells, 

and in many cancer types [196, 243] is in favor of an essential role in tumor 

SYMBOL UP IN HCC AMPLIFIED REGION PROTEIN CODING CELLULAR COMPONENT CELLULAR PROCESS
ATAD2 YES YES YES Nucleus Regulation of DNA dependent transcription
TOP2A YES YES YES Nucleus Mitotic cell cycle, DNA replication, DNA repair
CCNE2 YES YES YES Cytosol cell cycle checkpoint

FAM83D YES YES YES Cytoplasm, spindle pole Cell division, mitosis
CRNDE YES NO NO N.A. N.A.
EPCAM NO NO YES Cell surface Positive regulation of cell proliferation

TMEM27 NO NO YES Integral to membrane Proteolysis
TFPI2 NO YES YES Extracellular matrix Blood coagulation
FOS NO NO YES Cytosol, nucleus Inflammatory response, transcription factor activity

NAT2 NO NO YES Cytosol Xenobiotic metabolic process
GPR128 NO NO YES Plasma membrane G-protein coupled receptor signaling pathway

CYP39A1 NO YES YES ER membrane Bile acid metabolic process
FAM134B NO YES YES Golgi and ER Sensory perception of pain
SDCBP2 NO NO YES Cytoplasm, plasma membrane Intracellular signal transduction
MUM1L1 NO NO YES Nucleus N.A.
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malignancy. Finally, our preliminary findings suggest that hepatocellular immortality 

signature genes such as ATAD2 may serve as promising HCC biomarkers. 

 

5.2 Differential Expression of Epigenetic Regulatory Genes During 

Liver Carcinogenesis 

 

The initial research findings that liver cancer is one of the rare malignancies 

that can be induced by dietary restriction of methyl donors [244, 245] and high 

number of transcriptional alterations during senescence escape step of the liver 

carcinogenesis provided us clues regarding to crucial role of epigenetic mechanisms 

in liver cancer. Thanks to the increasing interest on the epigenetics research area in 

recent years, epigenetic changes during liver carcinogenesis have been studied 

extensively as the other diseases [114, 127, 129, 130]. So far, different deregulated 

epigenetic mechanisms have been identified in liver cancer including promoter DNA 

hypermethylation of tumor suppressor genes, hypomethylated conserved DNA 

elements, roles of several over-expressed and under-expressed noncoding RNAs, 

over-expressed histone modifying enzymes and mutated chromatin regulators [105]; 

however still more data are needed to understand epigenetic mechanisms of the liver 

carcinogenesis. 

 

In order to understand transcriptional changes of epigenetics related genes 

during hepatocellular carcinogenesis, I started with generating a list of known and 

putative protein coding epigenetic regulatory (EpiReg) genes and analyzed them 

using two independent microarray gene expression datasets, one containing samples 

of five different stages of liver tissue types [202]. 
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 Using very stringent criteria (only gene sets significantly enriched in terms of 

both p value and FDR values in both datasets at the same time were considered as 

significantly enriched gene sets), we identified six out of 30 significantly deregulated 

gene sets in two independent cirrhosis and HCC samples containing datasets. 

Interestingly, all gene sets were enriched in HCC samples, suggesting increased 

activities of epigenetic mechanisms in cancerous liver samples. Enrichments of both 

SET domain and TUDOR domain containing protein groups, which recognize 

specific methylated lysine residues of histones, as well as HMT proteins, which 

enzymatically catalyze transfer of methyl moieties to lysine residues of histones, 

suggest increase of histone methylation patterns in HCC cells compared to cirrhotic 

hepatocytes. Furthermore, transcriptional up-regulation of genes encoding BROMO 

domain containing proteins, which bind to acetylated histones, SANT domain 

containing proteins, which bind to unmethylated lysines, and other modifiers, which 

contains histone ubiquitinases and kinases, as groups in HCC samples also suggest 

that different histone code modifications increase in liver cancer. In addition to these 

alterations, significant enrichment of histone chaperones in two datasets might be 

correlated with increase cell proliferation and increase need of histone deposition in 

HCC cells. 

 

In order to determine deregulated epigenetic mechanisms during multi-step 

progression of hepatocellular carcinogenesis, we performed similar pair-wised GSEA 

experiments using samples of the Wurmbach dataset. These analyzes revealed several 

results:  
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i) A significant enrichment of EpiReg gene sets does not occur during 

normal liver to cirrhotic liver transition step of the hepatocellular 

carcinogenesis.  

ii) Significant enrichments of epigenetic gene sets start at cirrhosis to 

dysplasia transition, but with a negative enrichment in more 

advanced stage. Since these enriched gene sets are methylated lysine 

binding domain gene sets (Ankyrin repeat, WD40, PWWP proteins) 

and it is known that heterochromatin formation with increased 

histone lysine methylation occurs in senescent-cirrhosis cells, 

significant down-regulations of these proteins might be related to 

preparation to transcriptional increase in dysplastic cells.  

iii) The highest number of enrichment occurs during non-tumor to 

tumor transition (dysplasia to early HCC transition) step of the 

hepatocellular carcinogenesis. Six of the totally 11 significantly up-

regulated genes were also enriched during cirrhosis to HCC 

transition. These results suggest that, during progression from non-

tumor tissue to tumor tissue high number of epigenetic alterations 

occur in HCC and both dysplasia to HCC transition and cirrhosis to 

HCC transition (known two possible ways of hepatocellular 

carcinogenesis) are similar in terms of deregulated epigenetic 

mechanisms.   

iv) During progression to curable early HCC step to incurable advanced 

HCC stage none of the epigenetic regulatory mechanisms are 

transcriptionally deregulated; suggesting that epigenetic alterations 

are mostly related to initiation of HCC, but not its progression.  
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Despite these findings, we could not determine any genetic abnormalities in 

histone N-terminal tail encoding genomic DNA sequences of HCC samples. The 

amino acid substitution leading mutations identified in childhood gliomas can be a 

unique future of this cancer type, since other researchers also could not determine 

these mutations in several different cancer types [219]; or the same study should be 

repeated using hepatoblastoma patient samples, since the mutations were identified in 

glioblastomas but not in gliomas [218].  

 

 

5.3 Future perspectives 

The work provided here is results of an attempt to determine genome-wide 

transcriptional alterations based biological differences during cirrhosis to HCC, or 

senescence escape to immortality, transition step of the hepatocellular carcinogenesis. 

With this work we provided lists of important biological mechanisms as well as genes 

that need to be further analyzed, in order to better understand mechanism of 

senescence escape during hepatocellular carcinogensis. 

 

In order to better understand the molecular biology of liver carcinogenesis 

based on my findings, following studies will be quite beneficial: 

i) Genes in the list of hepatocellular immortality signature test, especially 

ATAD2 and CRNDE, should be more analyzed with extensive wet-lab 

experiments. 

ii) Determined deregulated metabolism pathways both in vitro and in vivo 

samples should be further studied. Retinol and lipid metabolisms should be 

priorities. 
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iii) Even though deregulations of DNA repair and cell cycle mechanisms in 

HCC are already identified, specific mechanisms and selective 

transcriptional up-regulation of specific genes determined in in vitro and in 

vivo HCC samples will be helpful to identify previously unknown 

molecular mechanisms in terms of DNA repair in HCC. 

iv) Even though the data were not shown here we identified mutational 

difference in promoter region of TERT loci of senescent and immortal 

clones, which were used in the experiments described here. A possible 

scenario of transcriptional activation of the TERT gene in mutant 

hepatocytes by STAT proteins as a previously unidentified senescence 

escape molecular mechanism seems quite plausible. Thus, this hypothesis 

should be investigated with extensive wet-lab experiments. 

v) The predictive accuracy of the 15 gene test should be further tested with 

new independent and extensive tissue samples, if possible, in order to 

emphasize the predictive capacity of the test.   

vi) The high number of genes transcriptionally differed in senescent and 

immortal cells as well as cirrhosis and HCC tissue samples suggest that 

extensive epigenetic alterations, which are responsible for this result, occur 

during senescence escape. Results of our comprehensive epigenetic study 

with the EpiReg gene list were also suggesting this idea. In order to better 

determine and understand these epigenetic changes bioinformatics data 

should be further analyzed and supported with wet-lab experiments with 

use of patient tissue samples. 
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RFXANK 
ANKRD50 
ANKRD26 
PSMD10 
ASB4 
KIDINS220 
ASB3 
ANKRD49 
ANKRD52 
KRIT1 
EHMT2 

TRPC1 
ANKRD13C 
ANKHD1 
SHANK3 
INVS 
NFKBIL1 
GIT2 
TRPC6 
DGKZ 
ASB7 
TNKS2 
ANKRD18A 
ANKRD40 
MIB2 
ASB6 
ANKRD7 
FEM1B 
ANKRD17 
ANKRD2 
FEM1C 
MTPN 
ANKRD31 
PPP1R12A 
ASZ1 
ASB17 
BTBD11 
ASB5 
TRPV1 
ZDHHC17 
TRPC5 
ASB15 
DGKI 
ANKRD11 
PLA2G6 
ABTB2 
ANKRD30B 
FEM1A 
CLPB 
ANKRD12 
TRPC4 
PPP1R12C 

ANKRD45 
ASB13 
CAMTA1 
ANKRD29 
ANKRD28 
EHMT1 
YTHDC2 
ANKS3 
ASB12 
TRPC3 
HECTD1 
CDKN2D 
IBTK 
ANKRD13A 
ASB14 
ANKRD33 
TEX14 
SHANK1 
PPP1R13B 
ANKRD13B 
ABTB1 
ANKDD1A 
ANKRD30A 
ASB2 
ANKRD6 
ANKRD22 
UACA 
NFKBIB 
GIT1 
TRPV2 
RNASEL 
BCORL1 
ASB11 
ANKRD24 
CASKIN1 
TRPA1 
TRPV5 
ANKMY1 
ANKRD10 
ESPN 
ZDHHC13 

TRPV3 
ANKAR 
ILK 
ANKRD9 
ANKMY2 
TNNI3K 
DYSFIP1 
TRPV6 
NUDT12 
GLS 
ANKRD55 
ANK1 
NFKBIA 
ASB1 
TRPC7 
ANKRD1 
ANKRD42 
PIK3AP1 
PPP1R13L 
CTTNBP2 
ANKRD53 
ANKFY1 
USH1G 
FANK1 
TANC2 
ASB16 
NFKBIE 
ANKRD37 
ASB10 
PPP1R12B 
ANKRD57 
PPP1R16B 
OSBPL1A 
CASKIN2 
BANK1 
ANKS4B 
BCL3 
OSTF1 
ANK2 
NFKBIZ 
TANC1 
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ANKRD44 
ANKS1A 

TRPV4 
ANK3 

GLS2 

 
 
GENES OF BROMO GENE SET: 
ATAD2 
CECR2 
TRIM24 
PHIP 
TRIM33 
BRPF3 
BRD8 
TRIM28 
BRD3 

BAZ1B 
BRD7 
BRD2 
SMARCA4 
TAF1 
TRIM66 
BAZ2A 
BRD9 
EP300 

BRD4 
ZMYND11 
BRPF1 
SP140 
KIAA2026 
BRWD3 
BSN 
BRDT 
BRWD1 

BAZ1A 
CREBBP 
TAF1L 
BRD1 
BAZ2B 
SMARCA2 
SP110 

 
 
GENES OF CHAPERONE GENE SET: 
ASF1A 
RSF1 
ASF1B 
CHAF1A 

EP400 
DEK 
CHD8 
NPM1 

DAXX 
NAP1L4 
NAP1L1 
NASP 

ATRX 
HIRA 
SRCAP 

 
 
GENES OF CHROMO GENE SET: 
CBX3 
SUV39H2 
CHD7 
SMARCC1 
ARID4B 
SUV39H1 
CBX1 

CHD6 
CBX4 
CHD8 
CBX5 
CBX8 
CDYL 
CHD4 

CHD1 
CHD2 
ARID4A 
CHD9 
CBX2 
CBX6 
SMARCC2 

MORF4L1 
CHD5 
CBX7 
CHD3 
MYST1 
CDYL2 

 
 
GENES OF CODEREADER GENE SET: 
ATAD2 
UHRF1 
TDRKH 
ANKRD43 
CECR2 
PPP1R16A 
RBBP5 
TAF5 
ANKRD27 
TERF1 
TRIM24 
CDKN2C 
CBX3 
ACBD6 
PHF16 
ANKFN1 

CDKN2B 
CHD7 
CDKN2A 
PHF20L1 
TP53BP2 
SMARCC1 
RCOR3 
BCOR 
MORC2 
LBR 
FOXA1 
ANKRD16 
SUZ12 
HACE1 
ARID4B 
ASB9 

PHIP 
ANKRD32 
TRIM33 
RAI14 
ANKRD39 
BRPF3 
PHF6 
RNF2 
CBX1 
HGS 
MSH6 
ANKS1B 
BRD8 
TRIM28 
TTF1 
PHF14 

BRD3 
PHF20 
SND1 
ANKRD5 
AKAP1 
CHD6 
ANKRD46 
ANKRD35 
PLEKHF2 
MIB1 
SUPT16H 
BDP1 
TNKS 
MTA3 
ANKS6 
BRD7 
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SYTL4 
PYGO2 
GABPB2 
ZFYVE26 
FGD1 
ANKRA2 
ANKIB1 
SNCAIP 
ANKZF1 
RUFY1 
BMI1 
HDGF 
HIRIP3 
MYBL1 
BRD2 
ASB8 
SMARCA4 
UHRF2 
SPIRE2 
ZZZ3 
MTA1 
MLLT6 
SCML2 
RFXANK 
EED 
ING3 
ANKRD50 
ZFYVE19 
PHF12 
ANKRD26 
TRIM66 
MLLT10 
GON4L 
RIMS2 
ZFYVE9 
PSMD10 
CBX5 
PHF13 
TRIM27 
PHF21A 
SET 
SMARCA1 
ASB4 
CBX8 
L3MBTL4 
KIDINS220 
EEA1 
BAZ2A 
CDC5L 
BRCA1 

ASB3 
ANKRD49 
BRD9 
BRD4 
ANKRD52 
TDRD3 
KRIT1 
ZMYND11 
PHF3 
TRPC1 
MTMR4 
ANKRD13C 
ANKHD1 
PCGF2 
TAF5L 
NFX1 
RBBP7 
ZFYVE20 
DIDO1 
BRPF1 
CCDC79 
CRAMP1L 
RBBP4 
SHANK3 
INVS 
MYBL2 
CHD4 
MTF2 
NFKBIL1 
CHD1 
SP140 
GIT2 
CHD2 
TRPC6 
DGKZ 
DPF2 
DMTF1 
SFMBT1 
ASB7 
TNKS2 
KIAA2026 
MUM1 
ANKRD18A 
ZNF541 
RFFL 
BRWD3 
FYCO1 
BSN 
ANKRD40 
BRDT 

MIB2 
ASB6 
TCF20 
PHF17 
BRWD1 
RAG2 
ANKRD7 
DMAP1 
FEM1B 
ANKRD17 
TDRD10 
BAZ1A 
ANKRD2 
FEM1C 
ARID4A 
MIER3 
NCOR2 
ZFYVE16 
RCOR1 
MTPN 
ANKRD31 
CHD9 
PPP1R12A 
ASZ1 
ASB17 
BTBD11 
ASB5 
ING5 
TRPV1 
ZDHHC17 
TAF3 
MIER2 
PHF19 
TRPC5 
DNAJC1 
MTA2 
ASB15 
DGKI 
ANKRD11 
PLA2G6 
ABTB2 
SCMH1 
ANKRD30B 
TERF2 
FEM1A 
RNF34 
MORC1 
CLPB 
WDFY1 
ANKRD12 

RERE 
TRPC4 
PPP1R12C 
ANKRD45 
ASB13 
CAMTA1 
PLEKHF1 
ANKRD29 
APBB1 
ANKRD28 
CHAF1B 
MYB 
PHF21B 
YTHDC2 
ANKS3 
ASB12 
DPF1 
CXXC1 
MYRIP 
ZFYVE1 
TRPC3 
HECTD1 
RNF17 
CDKN2D 
RING1 
ZCWPW2 
IBTK 
INTS12 
ANKRD13A 
ASB14 
TAF1L 
TDRD5 
ANKRD33 
FOXA3 
MORC3 
L3MBTL2 
ZFYVE28 
STK31 
ING4 
ING2 
TEX14 
SHANK1 
MARCH9 
BRD1 
PPP1R13B 
ANKRD13B 
ABTB1 
L3MBTL3 
PHF11 
PYGO1 
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MTMR3 
ANKDD1A 
TDRD7 
PHF15 
ANKRD30A 
ASB2 
PHF1 
ANKRD6 
TP53BP1 
ING1 
ANKRD22 
CBX6 
SMARCC2 
UACA 
NFKBIB 
GIT1 
MBTD1 
NCOR1 
TRPV2 
RNASEL 
BCORL1 
ASB11 
ANKRD24 
RIMS1 
TDRD6 
ZFYVE21 
RPH3A 
ZFYVE27 
CASKIN1 
PHF7 
RPH3AL 

MORF4L1 
RUFY2 
TRPA1 
SHPRH 
HDGFL1 
TRPV5 
ANKMY1 
ANKRD10 
ESPN 
PHF23 
BAZ2B 
ZCWPW1 
WDFY2 
ZDHHC13 
TRPV3 
ANKAR 
ILK 
ANKRD9 
ANKMY2 
TNNI3K 
MIER1 
DYSFIP1 
CHD5 
RCOR2 
CCDC101 
PHF10 
TRPV6 
NUDT12 
GLS 
ANKRD55 
ANK1 

NFKBIA 
CBX7 
KIAA1045 
ASB1 
FGD4 
TRPC7 
DPF3 
ANKRD1 
ANKRD42 
WDFY3 
PIK3AP1 
PPP1R13L 
SFMBT2 
RAI1 
CTTNBP2 
MLPH 
CHD3 
ANKRD53 
ANKFY1 
SMARCA2 
USH1G 
SYTL3 
FANK1 
TRERF1 
TANC2 
SMARCA5 
ASB16 
NFKBIE 
ANKRD37 
CDYL2 
TDRD9 

ASB10 
PPP1R12B 
ANKRD57 
PPP1R16B 
OSBPL1A 
SP110 
FGD2 
CASKIN2 
BANK1 
ANKS4B 
BCL3 
SPIRE1 
AIRE 
MORC4 
OSTF1 
SYTL2 
SYTL5 
ANK2 
NFKBIZ 
FGD3 
TANC1 
HDGFRP3 
PCLO 
ANKRD44 
ANKS1A 
TRPV4 
ANK3 
GLS2 
MUM1L1 

 
 
GENES OF DNA MTFASE GENE SET: 
DNMT3A DNMT3B DNMT1 MGMT 
 
 
GENES OF DNADEM GENE SET: 
ALKBH2 ALKBH1 ALKBH3 
 
 
GENES OF DNMT GENE SET: 
DNMT3A 
DNMT3B 

DNMT1 
MGMT 

DNMT3L 

 
 
GENES OF HAT GENE SET: 
CSRP2BP 
MYST2 
METTL8 

TAF1 
HAT1 
EP300 

CDYL 
CREBBP 
MYST4 

MYST3 
MYST1 
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GENES OF HDAC GENE SET: 
HDAC4 
SIRT1 
HDAC5 
HDAC2 
SIRT7 

SIRT4 
HDAC1 
HDAC8 
HDAC3 
MGC16025 

SIRT2 
HDAC11 
SIRT6 
HDAC10 
SIRT3 

SIRT5 
HDAC6 
HDAC9 

 
 
GENES OF HDEM GENE SET: 
PHF8 
HSPBAP1 
JMJD4 

MINA 
JARID2 
HIF1AN 

JMJD1C 
PHF2 
HR 

UTY 
JMJD5 

 
 
GENES OF HIS_DEACETYLSE GENE SET: 
HDAC4 
SIRT1 
HDAC5 
HDAC2 
SIRT7 

SIRT4 
HDAC1 
HDAC8 
HDAC3 
MGC16025 

SIRT2 
HDAC11 
SIRT6 
HDAC10 
SIRT3 

SIRT5 
HDAC6 
HDAC9 

 
 
GENES OF HISTONE GENE SET: 
HIST1H3H 
HIST1H2BG 
HIST1H2AG 
H2AFX 
CENPA 
HIST1H2AE 
HIST1H2AM 
H2AFZ 
TAF9 
H1FX 
HIST1H1C 
H2AFV 
H1F0 
CENPT 
HIST1H4C 
POLE3 
DR1 
HIST1H4E 
HIST1H4D 
HIST1H3C 

HIST1H3E 
TAF12 
HIST2H2BE 
HIST1H4B 
HIST1H2AK 
HIST1H4A 
HIST1H2BL 
HIST1H3B 
H2AFY 
HIST2H2AA3 
HIST1H1E 
HIST1H2BJ 
HIST1H3F 
HIST1H2BO 
SUPT3H 
HIST1H2BK 
HIST1H3I 
HIST1H1B 
H3F3A /// 
LOC440926 

HIST1H2AL 
HIST1H2AB 
HIST1H1T 
HP1BP3 
HIST1H4H 
H2AFJ 
HIST1H3G 
HIST1H2BI 
HIST1H4L 
HIST1H2BF 
HIST1H2BB 
POLE4 
HIST1H2BH 
H2BFS 
HILS1 
H2AFY2 
HIST1H4F 
HIST1H2BE 
HIST1H2AC 
HIST1H2BD 

HIST1H2BM 
HIST1H4G 
TAF6L 
HIST1H3A 
H2BFM 
HIST1H1D 
HIST1H2AI 
HIST1H2BN 
HIST3H2A 
HIST1H2AJ 
HIST1H2BC 
H1FOO 
HIST3H3 
H1FNT 
HIST1H2BA 
H3F3B 
HIST1H3J 

 
 
GENES OF HMT GENE SET: 
SMYD3 
EZH2 
SUV39H2 

ASH1L 
SETDB1 
WHSC1 

CARM1 
SMYD2 
WDR5 

SUV39H1 
CRIPAK 
MLL2 
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SUV420H1 
SETD6 
PRMT7 
MLL5 
MLL3 
AFF3 /// MLL 
SETD2 
NSD1 
EHMT2 
SETD5 
DOT1L 
SETD1A 

SETDB2 
SMYD5 
MLL 
EZH1 
SETD7 
MLL4 
PRMT5 
SETMAR 
PRMT1 
PRDM15 
SETD4 
SETD1B 

PRDM4 
WHSC1L1 
EHMT1 
PRDM8 
PRDM16 
SMYD4 
SUV420H2 
SETD3 
SETD8 
PRDM2 
SMYD1 
PRDM6 

PRDM14 
PRDM11 
PRDM13 
PRMT8 
PRDM5 
PRDM7 
PRDM12 
ASH2L 
PRDM9 
PRMT6 
PRDM1 

 
 
GENES OF JMJ GENE SET: 
PHF8 
HSPBAP1 
JMJD4 

MINA 
JARID2 
HIF1AN 

JMJD1C 
PHF2 
HR 

UTY 
JMJD5 

 
 
GENES OF MBT GENE SET: 
SCML2 
L3MBTL4 

SFMBT1 
SCMH1 

L3MBTL2 
L3MBTL3 

MBTD1 
SFMBT2 

 
 
GENES OF ME CPG DNA BINDING GENE SET: 
MBD3 
MBD5 

MBD1 
MBD2 

MBD4 

 
 
 
GENES OF ME CPG DNA BNDGENE SET: 
BAZ2A 
MBD3 

MBD5 
MBD1 

MBD2 
BAZ2B 

MBD4 

 
 
GENES OF METRFASE GENE SET: 
CARM1 
SETD6 
METTL8 
PRMT7 

DOT1L 
SETD7 
MLL4 
PRMT5 

PRMT1 
SETD4 
SETD8 
PRMT8 

PRMT6 

 
 
GENES OF OTHER GENE SET: 
TOP2A 
HELLS 
NUSAP1 
OIP5 
TIPIN 
POLA1 

MCM2 
CDCA5 
SMC4 
NCAPH 
TIMELESS 
ITGB3BP 

HMGA1 
MCM7 
ACTL6A 
TMPO 
ARID2 
SYCP3 

KLHDC3 
APTX 
BAT3 
SMARCD1 
RCC1 
BNIP3 
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RAN 
TLK2 
SUPT4H1 
RBL1 
ACIN1 
UPF1 
FOXC1 

TNP1 
CTCFL 
ARID1A 
SMARCE1 
TOP2B 
ATF7IP 
NPM2 

MYCN 
ZFP57 
HMGN1 
NAP1L2 
JUND 
RB1 
RBL2 

PAM 
MAF 
NAP1L3 
JUNB 

 
 
GENES OF OTHERMODIFIER GENE SET: 
PRKDC 
CHEK1 
AURKB 
BARD1 
RPS6KA3 
PRKAA2 
USP21 
RNF8 
RNF20 
BAZ1B 
UBE2A 
CBX4 

TLK1 
RPS6KA5 
BAP1 
EYA4 
CHUK 
ATR 
BRCC3 
USP22 
GSG2 
ATXN7L3 
USP3 
UBE2B 

EYA3 
DAPK3 
HLCS 
CBX2 
USP16 
RPS6KA4 
RNF40 
RAG1 
DTX3L 
ARID1B 
HUWE1 
ATM 

RNF168 
PIM1 
EYA1 
ITGB1 
ATXN7 
MYSM1 
MAP3K12 
EYA2 
DLK1 
ZFAND6 
JAK2

 
 
GENES OF PHD GENE SET: 
UHRF1 
TRIM24 
PHF16 
ASH1L 
DNMT3A 
PHF20L1 
BARD1 
WHSC1 
DNMT3B 
PHF8 
TRIM33 
BRPF3 
PHF6 
RNF8 
RNF2 
HGS 
TRIM28 
RNF20 
PHF14 
PHF20 
RSF1 
MLL2 
BAZ1B 
PLEKHF2 
MIB1 

SYTL4 
PYGO2 
ZFYVE26 
FGD1 
ANKIB1 
RUFY1 
BMI1 
MLL5 
UHRF2 
SPIRE2 
MLLT6 
AFF3 /// MLL 
ING3 
ZFYVE19 
PHF12 
TRIM66 
MLLT10 
RIMS2 
ZFYVE9 
PHF13 
TRIM27 
PHF21A 
EEA1 
BAZ2A 
BRCA1 

NSD1 
ZMYND11 
PHF3 
MTMR4 
PCGF2 
NFX1 
ZFYVE20 
DIDO1 
BRPF1 
CHD4 
MTF2 
SP140 
USP22 
MLL 
ATRX 
DPF2 
MLL4 
RFFL 
FYCO1 
MIB2 
USP3 
TCF20 
PHF17 
RAG2 
BAZ1A 

ZFYVE16 
ING5 
TAF3 
PHF19 
RNF34 
WDFY1 
USP16 
PLEKHF1 
WHSC1L1 
RNF40 
PHF21B 
RAG1 
DPF1 
CXXC1 
DTX3L 
MYRIP 
ZFYVE1 
RNF17 
RING1 
INTS12 
ZFYVE28 
PHF2 
ING4 
RNF168 
ING2 
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MARCH9 
BRD1 
PHF11 
PYGO1 
MTMR3 
PHF15 
PHF1 
ING1 
RIMS1 
MYST4 
ZFYVE21 

RPH3A 
ZFYVE27 
PHF7 
RPH3AL 
RUFY2 
SHPRH 
PHF23 
BAZ2B 
WDFY2 
CHD5 
PHF10 

DNMT3L 
MYST3 
KIAA1045 
FGD4 
DPF3 
WDFY3 
RAI1 
MLPH 
CHD3 
ANKFY1 
SYTL3 

OSBPL1A 
SP110 
FGD2 
HDAC6 
SPIRE1 
AIRE 
SYTL2 
SYTL5 
FGD3 
PCLO 

 
 
GENES OF PWWP GENE SET: 
DNMT3A 
DNMT3B 
BRPF3 
MSH6 

HDGF 
ZMYND11 
BRPF1 
MBD5 

MUM1 
ZCWPW2 
BRD1 
HDGFL1 

ZCWPW1 
HDGFRP3 
MUM1L1 

 
 
GENES OF SANT GENE SET: 
EZH2 
TERF1 
CHD7 
SMARCC1 
RCOR3 
TTF1 
CHD6 
BDP1 
MTA3 
EP400 
MYBL1 

SMARCA4 
ZZZ3 
MTA1 
GON4L 
SMARCA1 
CDC5L 
CCDC79 
CRAMP1L 
MYBL2 
EZH1 
DMTF1 

ZNF541 
DMAP1 
MIER3 
NCOR2 
RCOR1 
MIER2 
DNAJC1 
MTA2 
TERF2 
RERE 
MYB 

SRCAP 
SMARCC2 
NCOR1 
MYSM1 
MIER1 
RCOR2 
SMARCA2 
TRERF1 
SMARCA5

 
 
GENES OF SET GENE SET: 
SMYD3 
EZH2 
SUV39H2 
ASH1L 
SETDB1 
WHSC1 
SMYD2 
SUV39H1 
CRIPAK 
MLL2 
SUV420H1 
SETD6 
MLL5 

MLL3 
AFF3 /// MLL 
SETD2 
NSD1 
EHMT2 
SETD5 
SETD1A 
SETDB2 
SMYD5 
MLL 
EZH1 
SETD7 
MLL4 

SETMAR 
PRDM15 
SETD4 
SETD1B 
PRDM4 
WHSC1L1 
EHMT1 
PRDM8 
PRDM16 
SMYD4 
SUV420H2 
SETD3 
SETD8 

PRDM2 
SMYD1 
PRDM6 
PRDM14 
PRDM11 
PRDM13 
PRDM5 
PRDM7 
PRDM12 
PRDM9 
PRDM1 
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GENES OF TUDOR GENE SET: 
TDRKH 
PHF20L1 
LBR 
ARID4B 
PHF20 

SND1 
AKAP1 
TDRD3 
MTF2 
TDRD10 

ARID4A 
PHF19 
RNF17 
TDRD5 
STK31 

TDRD7 
PHF1 
TP53BP1 
TDRD6 
TDRD9 

 
 
GENES OF WD40 GENE SET: 
RBBP5 
TAF5 
WDR5 
PHIP 

EED 
TAF5L 
RBBP7 
RBBP4 

BRWD3 
BRWD1 
WDFY1 
CHAF1B 

HIRA 
WDFY2 
WDFY3 

 
 
GENES OF ZNF_CW GENE SET: 
MORC2 
MORC1 
ZCWPW2 
MORC3 
ZCWPW1 
MORC4
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Abstract

Senescence is a permanent proliferation arrest in response to cell stress such as DNA damage. It contributes strongly to
tissue aging and serves as a major barrier against tumor development. Most tumor cells are believed to bypass the
senescence barrier (become ‘‘immortal’’) by inactivating growth control genes such as TP53 and CDKN2A. They also
reactivate telomerase reverse transcriptase. Senescence-to-immortality transition is accompanied by major phenotypic and
biochemical changes mediated by genome-wide transcriptional modifications. This appears to happen during
hepatocellular carcinoma (HCC) development in patients with liver cirrhosis, however, the accompanying transcriptional
changes are virtually unknown. We investigated genome-wide transcriptional changes related to the senescence-to-
immortality switch during hepatocellular carcinogenesis. Initially, we performed transcriptome analysis of senescent and
immortal clones of Huh7 HCC cell line, and identified genes with significant differential expression to establish a
senescence-related gene list. Through the analysis of senescence-related gene expression in different liver tissues we
showed that cirrhosis and HCC display expression patterns compatible with senescent and immortal phenotypes,
respectively; dysplasia being a transitional state. Gene set enrichment analysis revealed that cirrhosis/senescence-associated
genes were preferentially expressed in non-tumor tissues, less malignant tumors, and differentiated or senescent cells. In
contrast, HCC/immortality genes were up-regulated in tumor tissues, or more malignant tumors and progenitor cells. In
HCC tumors and immortal cells genes involved in DNA repair, cell cycle, telomere extension and branched chain amino acid
metabolism were up-regulated, whereas genes involved in cell signaling, as well as in drug, lipid, retinoid and glycolytic
metabolism were down-regulated. Based on these distinctive gene expression features we developed a 15-gene
hepatocellular immortality signature test that discriminated HCC from cirrhosis with high accuracy. Our findings
demonstrate that senescence bypass plays a central role in hepatocellular carcinogenesis engendering systematic changes
in the transcription of genes regulating DNA repair, proliferation, differentiation and metabolism.
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Introduction

Cellular senescence, a permanent loss of proliferative capacity
despite continued viability and metabolic activity, is a critical
feature of mammalian cells. It serves as a potent anti-tumor
mechanism but it may also contribute to tissue aging [1,2,3]. This
process was initially described in the form of replicative senescence
[4], or telomere-dependent senescence, that has later been

characterized as a DNA damage checkpoint response to the loss
of telomere integrity, because of progressive shrinkage of the
telomere DNA during cell replication [5]. Subsequently, telomere-
independent or premature forms of senescence have been
discovered. Thus, not only telomere attrition but also oncogene
activation [6], tumor suppressor gene inactivation, as well as
exposure to DNA-damaging agents can trigger senescence
responses [1]. Cellular processes leading to a senescence-type of
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cell proliferation arrest are mediated mainly by p53 and p16INK4A-
Rb signal transduction cascades [1,7,8]. Senescence response can
be delayed or bypassed by experimental activation of telomerase
reverse transcriptase (TERT), and/or inactivation of p53 and
p16INK4A-Rb pathways. This leads cells to an immortal state with
unlimited proliferation capacity [9]. Cells in pre-senescent,
senescent and immortal states display highly divergent transcrip-
tion patterns allowing them to exhibit distinct phenotypic and
biochemical features [10,11,12].

Human tumors frequently exhibit TERT activation and
inactivation of p53 and p16INK4A-Rb-mediated senescence control
pathways leading on the postulation that gain of cellular
immortality is one of their common features [13]. Hepatocellular
carcinoma (HCC) cells are also believed to acquire immortality,
particularly in patients with liver cirrhosis known to exhibit a
senescent phenotype [14,15]. Telomerase deficiency in mice
accelerates the development of experimentally induced cirrhosis
[16] and compromises liver regeneration [17]. The inactivation of
c-myc or reactivation of p53 in murine HCC cells induces
premature senescence leading to tumor regression [18,19]. These
findings infer that c-myc activation and p53 inactivation may serve
as a means to overcome senescence control, at least in murine
HCC tumors. Human liver cells do not express the TERT enzyme
and exhibit moderate telomere shortening during aging, yet
senescence markers usually remain negative in old liver tissues.
During chronic hepatitis, the development of cirrhosis is associated
with accelerated telomere shortening. Moreover, cirrhotic tissues
exhibit strong senescence-associated b-galactosidase (SA-b-Gal)
activity, suggesting that most hepatocytes in a cirrhotic liver
display a senescent phenotype [20,21,22,23]. In most human
HCC tumors TERT expression is positive, telomerase activity is
high and telomere length is short, but stabilized. However, a subset
of HCC tumors display high SA-b-Gal activity suggestive of
senescence arrest [14,20,24,25,26]. Thus, it appears that human
HCC cells, as opposed to cirrhotic hepatocytes, acquire an
immortal phenotype, although this has not yet been fully
demonstrated. In favor of this suggestion, the genes encoding
p53 and p16INK4A, two major players in senescence control, are
known to be inactivated by mutation and/or epigenetic silencing
in nearly 50% of HCCs [15]. However, several important
questions remain unanswered with regard to the relevance of
senescence escape or immortality in human HCC. Among others,
(i) a comprehensive list of genes associated with hepatocellular
senescence and immortality is lacking; (ii) the cellular processes
associated with senescence-related changes in cirrhosis and HCC
are not well-documented; (iii) the timing of senescence-to-
immortality transition during HCC development is unknown;
and (iv) the potential value of senescence-related gene signatures
for the diagnosis and/or prognosis of HCC has not yet been
assessed. A better understanding of these mechanisms could
contribute significantly to the discovery of novel molecular targets
for diagnosis and treatment of cirrhosis and HCC diseases, which
account for more than 500,000 deaths each year [27].

Here, we applied an integrative functional genomics approach
to explore the impact of senescence-related genes in liver cirrhosis
and HCC. We first generated genome-wide expression profiles of
in vitro hepatocellular senescence and immortality using a unique
senescence model based on the reprogramming of replicative
senescence in HCC-derived Huh7 cells [28]. By combined analysis
of in vitro, in vivo and in silico data, we provide a comprehensive list
of genes and cellular processes associated with hepatocellular
senescence and gain of cellular immortality in humans. We also
report on a robust 15-gene hepatocellular immortality signature
test that can efficiently differentiate HCC from cirrhosis.

Materials and Methods

Huh7 Clones
The establishment and culture conditions of senescence-

programmed C3 and G12, and immortal C1 and G11 clones
have been described previously [28]. Briefly, HCC-derived Huh7
cells were transfected with pcDNA3.1 (Invitrogen) or pEGFP-N2
(Clontech) vectors to obtain C1 and C3, and G11 and G12 clones,
respectively. Following transfection, single cell-derived colonies
were selected by G-418 sulfate (500 mg/ml; Gibco) treatment
under low-density clonogenic conditions. Senescence-programmed
C3 and G12 clones proliferated stably until population doubling
80 (PD80) and PD90, respectively. Then, they entered senescence
arrest as manifested by characteristic morphological changes,
abundant SA-b-Gal staining and ,5% 5-bromo-29-deoxyuridine
(BrdU) positivity after mitotic stimulation. Immortal C1 and G11
clones proliferated stably beyond PD140. For genome-wide
expression studies described here, senescence-arrested C3 and
G12 clones and immortal C1 and G11 clones were plated in
triplicate onto 15-cm diameter petri dishes, left in culture for three
days and collected for RNA extraction.

Other Cells and Cell Lines
Freshly isolated human hepatocytes were obtained commer-

cially (hNHEPSTM- Human Hepatocytes, Lonza Group, Basel,
Switzerland). Origin and culture conditions of HCC cell lines
Huh7, HepG2, Hep3B, Hep40, PLC/PRF/5, SNU-387, SNU-
398, SNU-423, SNU-449, SNU-475, FOCUS, Mahlavu and SK-
Hep-1 were previously described [29]. The fibrolamellar HCC
FLC4 cell line was provided by E. Galun (Hadassah, Israel) and
cultivated as described for other HCC cell lines. MRC-5 human
embryonic lung fibroblast cells (at PD45) were provided by R.
Pedeux (Grenoble, France) and maintained in culture as previ-
ously described [30].

Patients and Samples
Liver cirrhosis and HCC samples were collected from two

medical centers in Turkey. Tissue samples were snap frozen in
liquid nitrogen and stored at 280uC until use. Frozen tissues were
cut into 20 mm thick slices, and scraped into microtubes for RNA
extraction. Two 6 mm tissue slices were also cut for pathological
examination.

Ethics Statement
Clinical tissue sample collection was performed in accordance

with a study protocol pre-approved by Ethical Committees of
Ankara and Dokuz Eylul Universities, following written consent
from each patient.

RNA Extraction
Total RNA from cell lines and tissues was extracted using total

RNA isolation kit (Promega, Madison, USA) and NucleoSpin
RNA II Kit (MN Macherey-Nagel), respectively. DNase digestion
was performed following kit instructions. Cell line and tissue RNA
samples were analysed using Agilent Bioanalyzer.

Genome-wide Gene Expression Profiling
Affymetrix platform with GeneChip Human Genome U133

Plus 2.0 arrays were used for microarray analysis of both cell and
tissue RNA samples, following manufacturer instructions. Gene-
Chip Operating Software (Affymetrix) was used to collect and
store the microarray data. CEL files were uploaded to RMAEx-
press software to assess the quality of the arrays at the image level
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(http://rmaexpress.bmbolstad.com). Quality assessment of the
Affymetrix datasets was performed using affyPLM (http://www.
bioconductor.org). NUSE and RLE plots were drawn and outliers
with high deviation from the average probe intensity value were
excluded from further analyses. The microarray data reported in
this paper have been deposited in the Gene Expression Omnibus
(GEO) database under accession numbers of GSE17546 (Huh7
clones) and GSE17548 (cirrhosis and HCC tumor samples). All
cell line clones, 15 cirrhosis and 15 HCC tumor samples passed
RNA quality control (RNA Integrity Number, RIN.6.5) and
microarray quality control tests. RMA normalization and class
comparison analyses were performed using BRB-ArrayTools
developed by Dr. Richard Simon and BRB-ArrayTools Develop-
ment Team (http://linus.nci.nih.gov/BRB-ArrayTools.html; Ver-
sion 4.2.0).

Other Microarray Datasets
Two independent microarray datasets (GSE6764 and

GSE19665) were downloaded from Gene Expression Omnibus
(GEO) database (http://www.ncbi.nlm.nih.gov/geo) and analyzed
by BRB Array tools after normalization with RMA.

Gene Set Enrichment Analysis
Gene set enrichment analyses (GSEA) were performed using

GSEA program of the Broad Institute [31]. For comparing in vitro
and in vivo GSEA profiles based on ‘‘C2_ALL’’ curated gene list, a
custom Matlab! routine was applied to extract commonly
enriched gene sets. Pearson’s correlation coefficients were calcu-
lated using Matlab! and Fisher’s exact test performed using
VassarStats (Vassarstats.net).

Cluster Analysis
Cluster 3.0 software [32] was used to assess unsupervised

clustering of datasets. First, data were adjusted by centering genes
and arrays separately based on mean values, and then the average
linkage clustering was applied to genes and arrays using a
correlation (uncentered) similarity metric. Cluster files were
visualized by Java Treeview [33].

Generation and Validation of a Senescence-based
Genomic Classifier

A senescence-based genomic classifier associated with differen-
tial diagnosis of HCC from cirrhosis was generated in BRB Array
Tools by Prediction Analysis of Microarrays [34] using data
reported by Wurmbach et al. [35] as a ‘‘training set’’. The
resulting classifier was tested using the nearest template prediction
(NTP) method [36] on a validation set constructed by combining
data reported here for Turkish patients with data from Deng et al.
[37] for Japanese patients. Nearest template prediction was
performed using NTP module [36] of GenePattern program
(http://www.broadinstitute.org/cancer/software/genepattern/)
using default parameters of the module. The final image was
generated using HeatMapImage module of the GenePattern and
the output of the NTP.

ATAD2 Expression Analysis by Quantitative PCR and
Western Blot Analyses

ATAD2, one of the 15 genes identified as a senescence-based
genomic classifier set was further analyzed for immortality-
associated over-expression in 14 HCC cell lines, as compared to
freshly isolated human hepatocytes and MRC-5 human embry-
onic lung fibroblast cells (PD44) at RNA and protein levels.
ATAD2 RNA expression was compared by quantitative real-time

PCR as previously described [38], using a specific primer pair
(forward: 59-AGG CTC ATT GGA AAA ACC T-39; reverse: 59-
CCT GCG GAA GAT AAT CGG TA-39). GAPDH was tested as
a housekeeping control gene using the following primers: forward:
59-GGC TGA GAA CGG GAA GCT TGT CAT-39; reverse: 59-
CAG CCT TCT CCA TGG TGG TGA AGA-39. The relative
expression of ATAD2 RNA in cell lines was calculated as
compared to that of normal hepatocytes. ATAD2 protein
expression was compared by western blot analysis of cell lysates,
as described previously [38], except that an anti-ATAD2 rabbit
polyclonal antibody (Sigma; cat. no: HPA019860) was used at
1:500 dilution as the primary antibody. Anti-calnexin rabbit
polyclonal antibody (Sigma; cat. no: C4731) was used at 1:10000
dilution for the loading control. The specificity of anti-ATAD2
antibody was validated by western blot analysis in Hep3B cells
after transfection with ATAD2-siRNA1 described by Caron et al.
[39]. For comparative analysis of ATAD2 protein expression
between immortal and senescent cells, senescence was induced in
Huh7 cells by Adriamycin (0.1 mM) treatment for three days as
previously described [40]. Briefly, Adriamycin- and DMSO
vehicle control-treated cells were maintained in culture for three
days. After confirming the senescence induction by morphological
examination and SA-b-Gal staining, cell lysates were subjected to
western blot analysis.

Results

Study Design
In order to analyze the participation of senescence-related genes

in human liver diseases, we designed a study protocol, as outlined
in Fig. 1. First, we generated genome-wide expression profiles of
Huh7 cell-line derived isogenic clones, as well as cirrhosis and
HCC tissues. The isogenic Huh7 clones that we used differed from
each other by their entry into replicative senescence arrest (at
PD80 to PD90) or lack of it (beyond PD150), resulting in a major
shift in tumorigenicity [28]. Next, we subjected in vitro and in vivo
gene expression data to gene set enrichment analysis (GSEA) to
identify and compare functional groups of genes associated with
senescence versus immortality, and cirrhosis versus HCC. Further-
more, we integrated our in vitro data with publicly available in vivo
data for a senescence-based comparison of progressive liver lesions
associated with hepatitis C virus (HCV)-induced HCC, and
established a senescence-based gene signature test for differential
diagnosis of HCC.

Gene Expression Profiles of Hepatocellular Senescence
in vitro

We profiled four independently established Huh7 clones,
subdivided into senescent and immortal phenotypes (i.e., two
clones from each phenotype) using gene expression analysis with
pangenomic 54 K Affymetrix microarrays. Three independent
biological replicates from each clone were used so that a total of 12
gene chips were performed. Hierarchical clustering of expression
values of the top 50 down- and up-regulated genes of each
phenotype segregated cell samples based on phenotypic assign-
ment, which suggested a common transcriptional consequence of a
switch between senescent and immortal fates (Fig. 2a). Next we
calculated GSEA enrichment scores [31] for six senescent cell
samples against six immortal cell samples using all curated gene
sets (‘‘C2_All’’) available at molecular signature database
(MSigDB; www.broadinstitute.org/gsea/). Based on significant
nominal P values (P,0.05), senescent and immortal phenotypes
were enriched in 598 and 113 gene sets, respectively (Data S1).
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Enriched gene sets included those participating in senescence-
and immortality-related cellular processes and pathways, provid-
ing evidence for transcriptional validation of senescent and
immortal phenotypes of Huh7 clones (Figs. 2b–e). As shown in
Fig. 2b, senescent Huh7 cells were enriched in gene sets that are
commonly up-regulated in senescent cells (‘‘FRIDMAN_SENES-
CENCE_UP’’) [10]. In addition, p53-responsive genes up-
regulated during replicative senescence arrest (‘‘TANG_SENES-
CENCE_TP53_TARGERTS_UP’’) [41], as well genes down-
regulated during immortalization in general (‘‘FRIDMAN_IM-
MORTALIZATION_DN’’) [10], and by human papillomavirus
31 (‘‘CHANG_IMMORTALIZED_BY_HPV_DN’’) [42], were
also up-regulated in senescent Huh7 clones. Interestingly, four
enriched gene sets were connected directly with either TERT or
telomeres (Fig. 2c–e). Genes down-regulated by TERT-mediated
immortalization (‘‘KANG_IMMORTALIZED_BY_-
TERT_DN’’) [43], as well as TERT-repressed target genes
(‘‘SMITH_TERT_TARGETS_DN’’) [44], were enriched in
senescent Huh7 clones (Fig. 2c). Furthermore, genes involved in
telomere end packaging (‘‘REACTOME_PACKAGING_OF_-
TELOMERE_ENDS’’; www.reactome.org) were up-regulated in
senescent Huh7 clones (Fig. 2d), while genes involved in telomere
extension (‘‘REACTOME_EXTENSION_OF_TELOMERES’’;
www.reactome.org) were enriched in immortal Huh7 clones
(Fig. 2e).

Association of Cirrhosis and Hepatocellular Carcinoma
with Senescent and Immortal Phenotypes Respectively

According to the protocol described in Fig. 1, next we
performed global gene expression analysis of 30 liver tissues,
including 15 cirrhosis and 15 HCC samples. All HCC samples
used in this study were obtained from cirrhotic patients (Table S1).
Hierarchical clustering with 50 most up- and down-regulated
genes were identified by GSEA-segregated tissue samples accord-
ing to their clinical phenotypes (Fig. 3a). Gene set enrichment
analysis of this in vivo data set using ‘‘C2_All’’ gene sets determined
that cirrhosis and HCC phenotypes are associated with 161 and
189 enriched gene sets, respectively (nominal P values,0.05; Data
S1). Among those gene sets, several were connected to senescence-
and immortality-related events. For example, cirrhosis was
enriched in p53-responsive genes up-regulated during replicative
senescence arrest (‘‘TANG_SENESCENCE_TP53_TAR-
GETS_UP’’) [41] (Fig. 3b). In contrast, HCC was enriched in
p53-responsive genes down-regulated during replicative senes-
cence arrest (‘‘TANG_SENESCENCE_TP53_TARGETS_DN’’)
[41] (Fig. 3c-top). Hepatocellular carcinoma tumors were also
enriched in the expression of genes involved in telomere extension
(‘‘REACTOME_EXTENSION_OF_TELOMERES’’; www.
reactome.org) (Fig. 3c-down).

Senescence-related Gene Networks in Cirrhosis and
Hepatocellular Carcinoma

The comparison of cell line and tissue enrichment scores based
on commonly enriched gene lists (Data S1) revealed a striking
correlation between senescence and cirrhosis (P,102115; r = 0.35),
as well as, between immortality and HCC (P = 86102114;
r = 0.72). This finding suggested that many functional gene
clusters overexpressed in cirrhosis and HCC were directly related
to the senescent and immortal phenotypes, respectively. To further
investigate this interesting correlation, we selected gene sets that
are co-enriched in four groups of biological samples (i.e. senescent
cells, immortal cells, cirrhotic tissues and HCCs) with a nominal P-
value less than 0.05. As shown in Fig. 4a, 34 of 74 common gene
sets (46%) were co-enriched in senescent cells and cirrhotic tissues,
whereas 39 (53%) were co-enriched in immortal cells and HCCs
(Two-tailed Fisher exact test, P = 2.6610220). Pearson correlation
values of co-enrichment scores were also significant (r = 0.97,
P = 2610243; Data S1). Gene sets up-regulated in cirrhosis/
senescence group were also up-regulated in non-tumor tissues as
opposed to those with tumors (four gene sets), or in less malignant
tumors versus more malignant tumors (11 gene sets). In contrast,
genes up-regulated in HCC/immortality group were associated
with tumors as opposed to non-tumor tissues (four out of five gene
sets), or in more malignant tumors as compared to less malignant
tumors (four gene sets). The HCC/immortality state was
characterized by an up-regulation of genes involved in DNA
repair (13 gene sets), cell cycle (seven gene sets), progenitor state
(two gene sets), telomere extension, DNA methylation and
branched chain amino acid metabolism. In contrast, genes
involved in cell signaling (six gene sets), lipid metabolism (four
gene sets), drug metabolism, retinol metabolism and glycolysis
were down-regulated (Fig. 4b).

Detailed analysis of genes involved in retinoid metabolism
[45,46] revealed that the expression of several genes encoding
critical enzymes catalyzing the synthesis of retinoic acid (the active
form of retinoids) was down-regulated in HCC tumors as
compared to cirrhotic liver tissue. There was also down-regulated
expression of genes involved in the storage of retinoids in tumors.
Down-regulated genes included two members of retinol dehydro-

Figure 1. Flow chart summarizing the study design. We analyzed
genome-wide gene expression in isogenic Huh7 clones with senescent
and immortal phenotypes, as well as in cirrhotic tissues and HCC
tumors. Both sets of data were subjected to GSEA using ‘‘C2-All’’
curated gene sets (‘‘C2_All’’) of molecular signature database (MSigDB;
www.broadinstitute.org/gsea/). In order to assess senescence- and
immortality-related gene expression changes during hepatocellular
carcinogenesis, genes differentially expressed in the model of cellular
senescence and immortality were identified and the evolution of their
expression profiles in pre-neoplastic and neoplastic liver lesions were
examined. Finally, a 15-gene senescence-based signature was generat-
ed using a training set of cirrhosis and HCC samples, and validated
using independently generated test datasets.
doi:10.1371/journal.pone.0064016.g001
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genases, four members of alcohol dehydrogenases, NADP(H)-
dependent retinol dehydrogenase/reductase (DHRS4) and b-
carotene 15,159-monooxygenase 1 (BCMO1), which are all
involved in the synthesis of retinal, the immediate precursor of
retinoic acid. Two genes involved in the synthesis of storage retinyl
esters, namely lecithin:retinol acyltransferase (LRAT) and patatin-
like phospholipase-4 (PNPLA4) were also down-regulated in HCC
cells (Fig. 5).

A Senescence-to-immortality Switch between Dysplasia
and Hepatocellular Carcinoma

Hepatocellular carcinogenesis is a multi-step process that is
usually manifested by progressive histological changes in the liver
from the cirrhosis stage to dysplasia followed by HCC [47]. Based
on close association of cirrhosis with senescence and that of HCC
with immortality, we hypothesized that the relative expression of
senescence- and immortality-associated genes in different liver
lesions may serve as a powerful means to dissect the timing of
transition from a senescent state to an immortal phenotype during
hepatocellular carcinogenesis. With this aim, we first generated a
list of ‘‘senescence-related genes’’ by comparing differential gene
expression between senescent and immortal Huh7 clones. Then,
we analyzed the expression patterns of these ‘‘senescence-related
genes’’ in a spectrum of hepatic lesions representing different steps
of HCC development. The list of senescence-related genes was
established by class comparison analysis of in vitro gene expression
data. Multivariate permutation tests identified 1220 genes
represented by 1813 probe sets with statistically significant
expression changes between senescent and immortal clones (P-
values,1027; fold-changes between senescent and immortal clones:
.2.0). The selected probe sets were then tested against a publicly
available gene expression dataset for tissues at different histological
stages of HCC development in HCV patients [35]. The tissue set
was composed of 10 normal liver samples, 13 cirrhotic tissues, 17
dysplastic lesions (originally described low- and high-grade
dysplasia cases combined), 17 early HCCs (originally described
very early and early HCC cases combined) and 18 advanced
HCCs (originally described advanced and very advanced cases
combined). Unsupervised clustering analysis applied to compare
these hepatic tissue samples (n = 75 in total) generated two major
clusters. Cluster 1 grouped together 39 out of the 40 non-HCC
samples (97.5%) and 1 out of the 35 (3%) HCC samples.
Conversely, cluster 2 was composed of 34 out of the 35 HCCs
(97%) and one of 40 (2.5%) of the non-HCC samples (Fig. 6).
Dysplastic lesions together with a subset of cirrhosis tissues formed
a homogenous subgroup under cluster 1, while normal liver

samples shared similarities with either cirrhotic or dysplastic tissue.
HCC samples formed several minor clusters, with a tendency of
early and advanced tumors to form distinct sub-clusters. The most
interesting finding of this analysis was the clustering of dysplastic
liver lesions together with cirrhosis samples that are in a senescent-
like state rather than with HCC samples assigned to an immortal-
like state.

Fifteen-gene Hepatocellular Immortality Signature for
Diagnosis of Hepatocellular Carcinoma

Based on remarkable clustering of tumor and non-tumor
tissues by the 1220 senescence-related genes, we then asked
whether we could select a smaller subset for discrimination of
HCC from cirrhosis. We used expression data from 35 HCC
and 13 cirrhosis samples from Wurmbach et al. [35] as a
‘‘training set’’. A PAM analysis using ‘‘nearest shrunken
centroid method’’ [34] identified 18 classifiers, composed of
six immortality-associated probe sets (representing five genes)
up-regulated in HCC tissues, ten senescence-associated probe
sets up-regulated in cirrhosis samples, and two senescence-
associated probe sets up-regulated in HCC (Fig. 7a). Fisher’s
exact test demonstrated a strong association of cirrhosis with
senescence and HCC with immortal phenotypes (P = 0.0015).
Then, we selected ten ‘‘cirrhosis- and senescence- associated’’
and five ‘‘HCC- and immortality-associated’’ genes (16 probe
sets in total) to construct a ‘‘hepatocellular immortality signature
set’’ (Table S2). Next, we tested the diagnostic value of the
signature genes using a ‘‘test set’’ composed of 45 tissue
samples, including 30 Turkish patient samples reported here
and 15 Japanese patient samples with publicly available
expression data [37]. Based on Nearest Template Prediction
method [36], the signature set was able to predict 100% (20/20)
of cirrhotic tissues with high confidence (FDR,0.05). Five of 25
HCC samples (20%) were unpredictable (FDR.0.05). Of the
remaining 20 HCC samples, 19 (95%) were predicted correctly
(Fig. 7b). Overall, the signature set provided high confidence
prediction (FDR,0.05) in 89% (40/45) of patients with 97.5%
(39/40) accuracy.

Association of ATAD2 RNA and Protein Expressions with
HCC and Cellular Immortality

The ATAD2, one of the fifteen hepatocellular immortality
signature genes, was of particular interest warranting further
investigation. The ATAD2 gene is mapped to chromosome 8q24
and codes for a predicted protein of 1,391 amino acids that
contains a double AAA ATPase domain and a bromodomain [48].

Figure 2. Gene expression profile analysis by gene set enrichment analysis assay (GSEA) established that senescent and immortal
Huh7 clones displayed differential expression of previously identified senescence- and immortality-associated gene sets
respectively, as well as those regulating telomere maintenance. (a) Heat map representation of the top 100 deregulated genes in immortal
Huh7 clones (Immortal) versus senescent Huh7 (Senescent) clones. Red: up-regulated; blue: down-regulated; arrow indicates TERT gene whose
expression is down-regulated in senescent clones. Previously identified gene sets (available at molecular signature database (MSigDB; www.
broadinstitute.org/gsea/) were screened to identify those that are differentially enriched in senescent or immortal Huh7 clones by the analysis of their
relative expression levels using GSEA method. (b) Gene set enrichment plots showing the up-regulated expression of two previously known
senescence-associated gene sets in senescent Huh7 clones, including genes that are commonly up-regulated in senescent cells (‘‘FRIDMAN_SE-
NESCENCE_UP’’) [10] and p53-responsive genes up-regulated during replicative senescence arrest (‘‘TANG_SENESCENCE_TP53_TARGERTS_UP’’) [41].
In addition, genes known to be down-regulated during immortalization in general (‘‘FRIDMAN_IMMORTALIZATION_DN’’) [10], and by human
papillomavirus 31 (‘‘CHANG_IMMORTALIZED_BY_HPV_DN’’) [42] were also up-regulated in senescent Huh7 clones. (c) Genes known to be down-
regulated by TERT-mediated immortalization (‘‘KANG_IMMORTALIZED_BY_TERT_DN’’) [43] and TERT-repressed target genes (‘‘SMITH_TERT_TAR-
GETS_DN’’) [44] were also enriched in senescent Huh7 clones. (d) Genes involved in telomere end packaging (‘‘REACTOME_PACKAGING_OF_TE-
LOMERE_ENDS’’; www.reactome.org) were upregulated in senescent Huh7 clones. (e) In contrast, genes involved in telomere extension
(‘‘REACTOME_EXTENSION_OF_TELOMERES’’; www.reactome.org) were enriched in immortal Huh7 clones. Enrichment scores (ES) are shown on the y-
axis. Positive and negative ES indicate enrichment in immortal and senescent Huh7 clones, respectively. X-axis bars represent individual genes of the
indicated gene sets. FDR: False discovery rate, p: nominal p-value. Three biological replicates from each clone were analyzed for genome-wide gene
expression using Affymetrix 54 K microarrays and normalized data were used for gene set enrichment analysis (GSEA).
doi:10.1371/journal.pone.0064016.g002
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The 8q24 locus displays frequent copy number gains in HCC [49],
and many other cancers [50]. Therefore, we selected ATAD2 as a
representative of our hepatocellular immortality signature to
validate its immortality- and HCC-associated expression by
additional experiments (Fig. 8). Freshly isolated normal adult

human hepatocytes and MRC-5 normal human fetal lung
fibroblasts (at PD44) were used as non-immortal control cells that
enter replicative senescence at around PD65 [30]. When
compared to normal hepatocytes, most HCC cell lines (n = 12/
14; 86%) displayed between two- and 20-fold higher ATAD2
mRNA expression. ATAD2 expression was less in MRC-5 cells
than hepatocytes (Fig. 8a). In order to further investigate ATAD2
expression, we tested its protein levels using a polyclonal rabbit
anti-ATAD2 antibody that recognized a single major band in
Hep3B HCC cells (Fig. 8b line Hep3B). The knock-down of
ATAD2 by siRNA1 [39] in these cells resulted in the loss of an
anti-ATAD2 immunoreactive band (Fig. 8b line Hep3B-si),
demonstrating the specificity of this antibody. ATAD2 protein
was undetectable in normal hepatocytes, but highly abundant in
six out of nine HCC cell lines, and easily detectable in the
remaining three (Fig. 8b). In order to further investigate
immortality-associated expression of ATAD2 in HCC cells, we
induced senescence arrest in Huh7 cells by 0.1 mM Adriamycin
treatment (Fig. 8c) as previously described [40], and compared
ATAD2 expression between Adriamycin-treated and control
Huh7 cells by western blot assay. We observed a drop in the
levels of ATAD2 proteins in senescence-arrested cells, as
compared to immortal Huh7 cells (Fig. 8d).

Discussion

Cellular senescence, considered for a long time to be an in vitro
phenomenon, emerged in recent years as a critical mechanism that
may play key roles in tissue aging as well as in the development of
different tumor types [1]. Here, we used a unique in vitro
hepatocellular senescence model to map senescence-related events
associated with in vivo HCC development. Our in vitro model
displayed a gene expression pattern compatible with replicative
senescence and TERT-induced cellular immortalization, in
conformation of our previously published observations [28]. We
were fortunate to find a high number of differentially expressed
genes between senescent and immortal clones that served as an
investigational tool to examine senescence-related transcriptional
events occurring during hepatocellular carcinogenesis. Based on
this, we provide here transcription-based evidence that cirrhosis
and HCC represent two opposite cellular phenotypes, senescence
and immortality, respectively. One of the major features of this
phenotypic opposition was the status of telomere maintenance
genes both between senescence and immortality, and cirrhosis and
HCC (Figs. 2, 3). The activation of TERT and telomere end
extension genes in immortal and HCC phenotypes is of particular
interest. Accelerated shortening of telomeres associated with a lack
of telomerase activity and high cell turnover during chronic
hepatitis has been recognized as a hallmark of cirrhosis several
years ago [16,21,51]. More recently, constitutional ‘‘loss-of-
function’’ type of telomerase (TERT or TERC genes) mutations
have been identified as a risk factor for cirrhosis [52,53]. In

Figure 3. Gene expression profile analysis by gene set enrichment analysis (GSEA) revealed the overexpression of senescence-
upregulated genes in cirrhosis, but over-expression of senescence-downregulated genes and telomere extension genes in HCC
tissues. (a) Heat map representation of the top 100 deregulated genes in hepatocellular carcinoma (HCC) versus cirrhosis samples. Red: up-
regulated; blue: down-regulated. Previously identified gene sets (available at molecular signature database (MSigDB; www.broadinstitute.org/gsea/)
were screened to identify those that are up-regulated in cirrhosis or HCC tissues by the analysis of their relative expression levels using GSEA method.
(b) Enrichment plot of p53-responsive genes up-regulated during replicative senescence arrest (‘‘TANG_SENESCENCE_TP53_TARGERTS_UP’’) [41]
showing over-expression in cirrhosis. (b) In contrast, p53-responsive genes down-regulated during replicative senescence arrest (‘‘TANG_SENES-
CENCE_TP53_TARGERTS_DN’’) [41] and those involved in telomere extension (‘‘REACTOME_EXTENSION_OF_TELOMERES’’; www.reactome.org) were
overexpressed in HCC tumors. Enrichment scores (ES) are shown on the y-axis. Positive and negative ES indicate enrichment in HCC and cirrhosis
samples, respectively. X-axis bars represent individual genes of the indicated gene sets. FDR: False discovery rate, p: nominal p-value. Fifteen cirrhosis
and fifteen HCC samples were analyzed for genome-wide gene expression using Affymetrix 54 K microarrays and normalized data were used for gene
set enrichment analysis (GSEA).
doi:10.1371/journal.pone.0064016.g003

Figure 4. Comparative analysis of gene sets enriched in Huh7
clones and diseased liver tissues associated cirrhosis with
senescence and HCC with immortality phenotypes, respective-
ly. (a). This analysis revealed also that cirrhosis/senescence- and HCC/
immortality-associated gene sets implicated distinct biological features
specific to each phenotype (b). (a) Scatter plot compares enrichment
scores of 74 gene sets commonly enriched in Huh7 clones (senescent or
immortal) and diseased liver tissues (cirrhosis or HCC) with a P value less
than 0.05. Thirty-nine gene sets (53%) were significantly enriched in
both HCC and immortal samples whereas 34 (46%) gene sets were
significantly enriched in both cirrhosis and senescent samples
(correlation value r = 0.97, p = 2610243). Only one gene set (1%) was
enriched in both HCC and senescent clones. (b) Distribution of
biological features defined by different gene sets in cirrhosis/
senescence (blue columns) and HCC/immortality (red columns)
phenotypes, respectively.
doi:10.1371/journal.pone.0064016.g004
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contrast to cirrhosis, HCC is known to reactivate TERT
expression [54], display high telomerase activity [24] and stabilize
telomeres [24,55]. Based on our present data supported by these
earlier reports, we propose that the activation of telomerase
activity is a key event for the gain of immortalized phenotype by
HCC cells. While working on this manuscript, recurrent and
activating TERT promoter mutations have been reported for
HCC cell lines [56], in strong support of our hypothesis.

The transition from a senescent state to an immortal state
coincided with early HCC lesions while dysplastic lesions

remained associated with cirrhosis and normal liver sample groups
indicating a non-immortal state. This pattern correlates with
malignant transformation in other tissues where pre-neoplastic
lesions display a senescent state from which neoplastic transfor-
mation emerges with a gain of phenotypic and molecular features
that are linked to an immortal state [57].

Co-enrichment of a high number of gene sets in cirrhotic tissues and
senescent cells as well as in HCCs and immortal cells was highly
interesting. This finding further emphasized the biological evidence for
a gain of immortal phenotype in human HCC. Among the gene sets

Figure 5. Comparative analysis of core enriched gene sets in Huh7 clones (senescent versus immortal) and diseased liver tissues
(cirrhosis versus HCC) indicated that retinoid metabolism genes (‘‘KEGG_RETINOL_METABOLISM’’) undergo systematic changes in
immortal cells and HCC, when compared to senescent cells and cirrhosis, respectively. (a) Heat map of core enriched retinoid metabolism
genes in Huh7 clones (left) and diseased liver tissues (right). Red: up-regulated; blue: down-regulated. Genes commonly deregulated in both Huh7
clones and diseased liver tissues are indicated with a dot. (b) A simplified view of retinoid metabolism. Enzyme-encoding genes down-regulated in
HCC are shown in blue. LRAT: lechitin retinol acetyl transferase, PNPLA4: patatin-like phospholipase domain containing-4, RDHs: retinol
dehydrogenases; ADHs: alcohol dehydrogenases; DHRS4: dehydrogenase/reductase (SDR family) member-4; BCMO1: beta-carotene 15,159-
monooxygenase-1; CYPs: Cytochrome P-450 family proteins; UGTs: UDP glucoronosyltransferases.
doi:10.1371/journal.pone.0064016.g005
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co-enriched in HCC and immortal cells, cell cycle and DNA repair
gene sets were at the top of the list (Fig. 4b). Up-regulation of cell cycle
and DNA repair genes in HCC is already known [35,58]; and the
overexpression of cell cycle genes in immortal cells is expected. The up-
regulation of DNA repair genes may serve as a mechanism to escape
from DNA damage-induced senescence arrest by increasing DNA
repair capacity of immortal or HCC cells.

Another interesting outcome of co-enrichment analysis was the
differential association of metabolism regulatory gene sets with
cirrhosis/senescence and HCC/immortality phenotypes. Co-enrich-
ment patterns revealed that genes involved in glycolysis as well as those
regulating drug, lipid and retinol metabolisms were down-regulated in
both immortal cells and HCC tumors. Down-regulation of genes
encoding the enzymes necessary for retinoic acid biosynthesis and
intracellular retinoid storage in HCC is of particular interest. Retinoic
acid, which is the active metabolite of retinoids, regulates a wide range
of biological processes including development, differentiation, prolifer-
ation, and apoptosis [59]. Normal hepatocytes together with hepatic
stellate cells play an indispensable role in the availability of retionic acid
and the storage of dietary retinoids [46]. Deregulated expression of

retinoid metabolism genes in HCC is expected to cause a deficit in the
synthesis of retinoic acid as well as in the storage of its metabolic
precursors (Fig. 5). Accordingly, reduced retinoid content has been
reported for HCC [46,60,61]. A deficit in cellular retinoic acid levels in
HCC cells, due to the expression changes reported here, may cause
severe perturbations in a multitude of cellular processes governed by
retinoic acid [59] by conferring a survival advantage to immortalized
HCC cells. Thus the restoration of retinoic acid availability in HCC
cells may adversely affect their survival. In favor of this hypothesis,
treatment with a synthetic analog of retinoic acid successfully prevented
second primary tumors in post-surgical HCC patients [62]. Thus, a
deficit in the availability of endogenous retinoic acid might facilitate
malignant transformation and tumor progression.

The most important risk factor for HCC is cirrhosis that is
present in 80 to 90% of patients with HCC. The patients with
cirrhosis develop HCC with a rate of 1.4–3.3% per year [27].
Therefore, the screening of cirrhotic patients by ultrasonography
of the liver combined with measurement of serum alpha-
fetoprotein levels every 6 to 12 months for HCC development is
recommended. However, the strength of the evidence supporting

Figure 6. Hierarchical clustering of 75 non-malignant and malignant liver tissue samples using 1813 senescence-associated gene
probe sets. Hepatocellular carcinoma and non-tumor liver tissues formed two distinct clusters (1 and 2) with the exception of one dysplasia and two
early HCC samples. The rows and columns represent genes and samples, respectively on the cluster map. Tissue samples are normal liver (pink),
cirrhosis (blue), dysplasia (yellow), early HCC (gray), and advanced HCC (black). Red: over-expressed, green: under-expressed probe set in the heat
map.
doi:10.1371/journal.pone.0064016.g006
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Figure 7. Generation and validation of a senescence-based gene classifier for differential diagnosis of cirrhosis and HCC. (a) Scatter
plot graphic compares relative expression levels (Log2 ratios) of 18 classifier probe sets representing 17 genes in Huh7 clones (immortal versus
senescent) and diseased liver tissues (HCC versus cirrhosis). Expression ratios of classifier genes showed a linear correlation (correlation value r = 0.7,
p = 0.0017) with ratios observed in Huh7 clones (immortal/senescent) and diseased liver tissues (HCC/cirrhosis). The classifier set was identified by
PAM analysis of 1813 senescence-associated probe sets using a training tissue set composed of cirrhosis (n = 13) and HCC (n = 35) samples described
by Wurmbach et al. [35]. Two probe sets which did not show expression patterns compatible with our in vivo senescence model were discarded to
define a final signature set composed of 16 probe sets representing 15 genes. (b) Validation of molecular prediction of HCC and cirrhosis by 15-
classifier gene set. Using the nearest template prediction method [36], we compared expression levels of sixteen probe sets representing 15 classifier
genes in a test tissue set composed of 20 cirrhosis and 25 HCC samples originating from Turkish (TR) patients described in this report, and Japanese
(JP) patients described elsewhere [37]. BH FDR (Benjamini-Hochberg false discovery rates) values (top), clinical versus predicted phenotypes (middle)
and heatmaps of classifier gene expression levels (bottom) are shown. The test provided a diagnostic result for 40 out of 45 samples (89%) with 97.5%
(39/40) accuracy.
doi:10.1371/journal.pone.0064016.g007
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the efficacy of surveillance is modest [63]. To overcome the lack of
efficacy, molecular HCC diagnosis techniques have been proposed
[64]. Previously reported molecular techniques used either
candidate genes [65] or genome-wide expression data
[35,54,66,67] to discriminate HCC from cirrhosis or dysplasia.
None of these molecular tests have yet to enter into surveillance
recommendations [64], probably because their prediction strength
did not reach the required level and/or they require simultaneous

analysis of dozens, even hundreds, of genes. Here, we provide a
highly promising hepatocellular immortality signature test for
HCC diagnosis. This novel molecular test requires the expression
profiles of only 15 genes. Moreover, this is a functional test based
on the analysis of senescence- and immortality-associated genes in
tissue samples. The test was able to correctly predict 100% of
cirrhosis cases. Twenty percent of HCCs displayed a borderline
gene expression pattern, so that the classifier was not able to

Figure 8. Association of ATAD2 RNA and protein expressions with HCC and cellular immortality. (a) Amplified expression of ATAD2 RNA
in HCC cell lines, as compared to normal hepatocytes and MRC-5 fibroblasts. Total RNAs were extracted from freshly isolated adult human
hepatocytes (Hepatocytes), MRC-5 human embryonic lung fibroblast cells (PD44) and 14 HCC cell lines; reverse transcribed into cDNA; and ATAD2
RNA was quantified by quantitative real-time PCR using specific primers. ATAD2 expression values for each sample were normalized with
housekeeping gene GAPDH RNA values. Relative expression of ATAD2 in MRC-5 and HCC cell lines was expressed in reference to its expression in
hepatocytes. Averages of three measurements. Error bars: SD. (b) Amplified expression of ATAD2 protein in HCC cells, as compared to normal
hepatocytes. Total proteins were extracted from freshly isolated adult human hepatocytes (Hepatocytes), untreated (Hep3B) and ATAD2 siRNA1-
treated (Hep3B-si) Hep3B and eight other HCC cell lines, and ATAD2 protein levels were tested by western blot analysis using a specific anti-ATAD2
antibody (ATAD2). Western blot analysis of calnexin protein from the same blots was used for loading control (Calnexin). (c, d) Comparative analysis
by western blotting demonstrated that ATAD2 protein is overexpressed in immortal Huh7 cells as compared to senescence-arrested Huh7 cells. (c)
Huh7 cells were treated with Adriamycin (0.1 mM) or DMSO (Control) for three days and subjected to senescence assay by SA-b-Gal staining (blue).
Cells were counterstained with fast red (red). (d) Total protein was extracted from control and Adriamycin-treated Huh7 cells, and ATAD2 and
Calnexin proteins were tested as described in (b).
doi:10.1371/journal.pone.0064016.g008
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categorize them as HCC or cirrhosis. However, the test was able
to predict the remaining HCC patients with 97.5% accuracy.

One of the hepatocellular immortality signature genes is
ATAD2. By using techniques independent of microarray tools,
we demonstrated in vitro that ATAD2 RNA and protein that are
weakly present or not expressed in normal hepatocytes and
fibroblasts are highly expressed in HCC cell lines. We also showed
that ATAD2 protein levels go down in association with
Adriamycin-induced senescence arrest in otherwise immortal
Huh7 cells. ATAD2 protein is likely to be a chromatin modifier
[48]. Its exact cellular function is unknown, but its overexpression
in immortal cells, and in many cancer types [39,68] is in favor of
an essential role in tumor malignancy. Finally, our preliminary
findings suggest that hepatocellular immortality signature genes
such as ATAD2 may serve as promising HCC biomarkers.
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Hepatocellular carcinoma (HCC) represents a major form of primary liver cancer in adults. Chronic
infections with hepatitis B (HBV) and C (HCV) viruses and alcohol abuse are the major factors leading to
HCC. This deadly cancer affects more than 500,000 people worldwide and it is quite resistant to
conventional chemo- and radiotherapy. Genetic and epigenetic studies on HCC may help to understand
better its mechanisms and provide new tools for early diagnosis and therapy. Recent literature on whole
genome analysis of HCC indicated a high number of mutated genes in addition to well-known genes such
as TP53, CTNNB1, AXIN1 and CDKN2A, but their frequencies are much lower. Apart from CTNNB1
mutations, most of the other mutations appear to result in loss-of-function. Thus, HCC-associated
mutations cannot be easily targeted for therapy. Epigenetic aberrations that appear to occur quite
frequently may serve as new targets. Global DNA hypomethylation, promoter methylation, aberrant
expression of non-coding RNAs and dysregulated expression of other epigenetic regulatory genes such as
EZH2 are the best-known epigenetic abnormalities. Future research in this direction may help to identify
novel biomarkers and therapeutic targets for HCC.

Introduction
The most frequent primary liver cancers are hepatocellular carci-

noma (HCC) and cholangiocarcinoma in adults, and hepatoblas-

toma in children. More than 80% of liver tumours are HCCs [1]. This

review will focus primarily on HCC, one of the most frequent

cancers worldwide with more than 500,000 new cases observed

each year. Almost the same number of deaths is observed because

of this cancer could not be easily treated. The most efficient treat-

ment for HCC is liver transplantation, provided that it is detected

early enough. Surgical removal and chemo-embolisation of tumour

nodules are other alternatives. These tumours are usually resistant to

chemo- or radiotherapy [1–3]. Targeted therapy of HCC is in its

infancy. The only clinically relevant drug is a kinase inhibitor,

Sorafenib, has only a modest effect on patient survival [4].

The aetiology of HCC is well known. Chronic liver injury asso-

ciated primarily with hepatitis B (HBV) and C (HCV) virus infection

constitutes the most important cause of HCC. Other factors, such as

alcohol abuse and dietary exposure to aflatoxins, are also established

causes, but their contribution to the disease aetiology is much less

than the contributions of viral agents. The unprecedented increase

in obesity rates in both developed and developing countries is a

rising concern for HCC risk that may account for the unexpected

increase in HCC incidence in the Western world [1].

Molecular mechanisms of hepatocellular carcinogenesis remain

ill-defined, mainly due to disease heterogeneity. The heterogene-

ity of agents that cause chronic liver injury (HBV, HCV, aflatoxins

and alcohol) and the ways they interact with the host DNA and

epigenetic players are the most probable parameters contributing

to HCC heterogeneity.

Chromosomal aberrations and hepatitis B virus
integration into the host genome
Chromosomal aberrations such as deletions and copy number

gains are frequent in HCC. Initial studies identified that HCC
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harbours multiple chromosomal abnormalities, predominantly

losses, with increased chromosomal instability in tumours asso-

ciated with HBV infection. Common alterations include gain of

chromosomes 1q, 8q and 17q, and loss of 4q [5]. Recently, data

from whole genome analysis techniques showed that chromo-

somes 1q, 5, 6p, 7, 8q, 17q and 20 display chromosomal gains,

while 1p, 4q, 6q, 8p, 13q, 16, 17p and 21 exhibit losses in HCC [6].

In addition, HBV DNA is often integrated into the host genome

in patients with HBV-related HCCs [7]. This integration may have

cis and trans effects. Viral DNA integration into or near gene

sequences may alter gene expression as well as gene integrity.

In addition, integrated viral DNA may encode wild-type or trun-

cated viral proteins acting in trans on the host genome, either by

deregulating gene expression or by interacting with host proteins

[8]. Recently reported whole genome studies indicated that the

viral integration is associated with breakpoints within the HBV

genome that primarily localised to the downstream region of the

HBX gene. HBV genome integration was observed within or

upstream of the TERT (telomerase reverse transcriptase) gene in

four HBV-related HCCs. However, HBV integration sites within the

same or different tumours did not show specific patterns, suggest-

ing that the virus does not target specific host sequences. [9]. Based

on these findings, it is highly probable that landscape changes in

the structural integrity of chromosomes, as well as random but

multiple integrations of HBV genomes into host genomes, cause

high levels of instability in the chromosomal integrity of HCC.

Some of these aberrations may hit crucial genes such as TERT,

which may directly contribute to tumour development by inap-

propriate activation or inactivation of the genes themselves. In

addition, the integration of viral enhancer sequences in the vici-

nity of crucial genes may lead to aberrant gene expression in HCC.

Gene mutations
Since the discovery of TP53 as the first mutated gene in HCC over 20

years ago [10] and until very recently, only four genes were known to

display frequent alterations in liver cancers. While TP53, CTNNB1

(encoding b-catenin) and AXIN1 genes usually display point muta-

tions and small deletions, CDKN2A (encoding p16INK4a) undergoes

homozygous deletions and epigenetic silencing [11,12].

During the past two years, the first reports of whole-genome or

exome sequencing data for HCC have appeared [6,9,13]. This is the

beginning of a new era of HCC genetics, because of the fact that

these new techniques will allow the visualisation of the muta-

tional landscape of HCC. Figure 1 shows a summary of primary

findings gathered by ourselves from two recently published reports

[6,9]. Each study first analysed a small set of tumours (n = 20–25)

for a genome-wide search of somatically mutated genes; signifi-

cantly mutated genes were then further tested for mutations using

a larger set of tumours (n > 100).

A close examination of the data of Fig. 1 indicates that TP53 and

CTNNB1 represent the two most frequently mutated genes. A

second group of genes (AXIN1 and ARID1A) was found to present

less frequent mutations, but still present in more than 10% of HCC

samples studied. The third group is the largest with 22 genes dis-

playing recurrent mutations in less than 10% of tumours. Guichard

et al. [6] reported that Wnt/b-catenin, p53, PI3K/Ras signalling,

oxidative, endoplasmic reticulum stress pathways and chromatin

remodelling were frequently affected by these mutations.

Whole genome sequencing allowed the detection of recurrent

somatic mutations in several genes annotated as associated with

chromatin regulation, such as ARID1A, ARID1B, ARID2, MLL,

MLL3, BAZ2B, BRD8, BPTF, BRE and HIST1H4B. Notably, 14 out

of the 27 tumours (52%) had either somatic point mutations or

indels in at least one of these chromatin regulators. In both sets of

experiments (whole genome sequencing and the validation sets),

the number of indels in chromatin regulator genes was signifi-

cantly higher than those in genes belonging to the other cate-

gories. This suggests that loss-of-function mutations are enriched

in these chromatin-regulator genes in HCC genomes [9].

As shown in Table 1, the frequent mutations that identified so

far in HCC are likely to result in loss of function with the notable

exception of CTNNB1 mutations. It will be interesting to study

why loss of function rather than gain of function of crucial genes is

associated with HCC. By contrast, this pattern of mutation does

not offer a broad spectrum of therapeutic intervention applica-

tions. Cancer cells can easily be targeted by blocking genes that are

aberrantly overactive in these cells. The restoration of a lost gene

activity to achieve a therapeutic intervention is difficult to

achieve. Thus, although the genome-wide analyses have been very

helpful in establishing the list of a large set of mutated genes in

HCC, this will most probably serve diagnostic needs while the

chance of their therapeutic use is more limited.

Epigenetic deregulation
Epigenetic regulation of gene expression involves DNA methyla-

tion, post-translational histone modifications, chromatin changes

and non-coding RNAs that are often affected in cancer cells [14,15].

The role of epigenetic deregulation in HCC is being increasingly

recognised [16]. In addition to changes in DNA methylation, micro-

RNA expression, mutations affecting epigenetic regulatory genes

have recently been discovered in HCC [6,9,13].

HCC cells display global hypomethylation as well as promoter

hypermethylation of a large set of genes [17]. Promoter hyper-

methylation appears to affect mainly tumour suppressor and anti-

proliferative genes resulting in downregulation of gene expression

(Fig. 2). Aberrations in microRNA expression have also been

observed with several of them being linked to metabolic and

phenotypic changes in HCC cells [14,18–20].
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Most frequently mutated genes in hepatocellular carcinoma.
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Several genes encoding epigenetic regulatory proteins are

involved in hepatocellular malignancy. The EZH2 (KMT6) encodes

the catalytic component of the Polycomb Repressive Complex 2

(PRC2), creating the transcriptionally repressive H2K27Me3 his-

tone mark which results in transcriptional silencing [21]. EZH2 is

over-expressed in HCC and mostly associated with the progression

and aggressive biological behaviour of HCC [22,23]. EZH2 protein

silences Wnt pathway antagonists and constitutively activates

Wnt/b-catenin signalling causing cell proliferation in HCC cells

[24]. EZH2 also exerts a prometastatic function through epigenetic

silencing of multiple tumour suppressor miRNAs including miR-

139-5p, miR-125b, miR-101, let-7c and miR-200b [25]. Yang et al.

identified an lncRNA called lncRNA-HEIH (High Expression in

HCC) that associates with EZH2 to repress EZH2 target genes such

as p16Ink4a and p21Cip1 in HBV-related HCC [26]. BMI1 is another

PRC2 member overexpressed in HCC. Effendi et al. determined

that BMI1 is upregulated in early and well-differentiated HCC and

this expression correlates with ABCB1 expression [27].

Expression of histone deacetylases (HDACs) is deregulated in

different cancers [28], and some of them are also deregulated in

HCC. HDACs-1, -2 and -3 are over-expressed in HCC [29,30].

LC3B-II-induced inactivation of HDAC1 caused regression of

HCC cell proliferation and triggered caspase independent autop-

hagy. p21Cip1 and p2Kip1 were selectively induced while cyclin D1

and CDK2 were suppressed by inactivation of HDAC1. As a result,

HDAC1 inactivation resulted in hypophosphorylation of pRb in the

G1/S checkpoint to inactivate E2F/DP1 transcriptional activity.

Also, p21(WAF1/Cip1) transcriptional activity was suppressed by

New Biotechnology !Volume 30, Number 4 !May 2013 RESEARCH PAPER

TABLE 1

Most frequent gene mutations in hepatocellular carcinoma are predicted to lead to a loss-of-function

Genes % mutation rates Protein function Known/expected outcome

TP53 35 DNA damage response, other Loss-of-function

CTNNB1 19 Positive regulator of Wnt signalling Gain-of-function

AXIN1 13 Negative regulator of Wnt signalling Loss-of-function

ARID1A 12 Chromatin remodelling Loss-of-function

WWP1 9 E3 ubiquitin ligase Loss-of-function?

RPS6KA3 8 Ribosomal protein S6 kinase ?

ATM 8 DNA damage response Loss-of-function?

ARID1B 7 Chromatin remodelling Loss-of-function?

CDKN2A 6 Positive regulator of senescence Loss-of-function

NFE2L2 5 Redox homeostasis? ?

IGSF10 5 ? Loss-of-function

ERRFI1 5 EGFR/ERB2 kinase inhibitor Loss-of-function

ARID2 5 Chromatin remodelling Loss-of-function?
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The frequency of promoter methylation in hepatocellular carcinoma.

www.elsevier.com/locate/nbt 383

Re
se
ar
ch

Pa
p
er



HDAC1by interaction with an Sp1-binding site in the p21(WAF1/Cip1)

promoter [31]. HDAC4 also suppresses the promoter activity of miR-

200a and its expression and interacts with Sp1 in the miR-200a

promoter to attenuate histone H3 acetylation levels. miR-200a

represses HDAC4 expression through targeting the 30-untranslated

region of messenger RNA of HDAC4. In this respect, miR-200a has

an ability to induce its own transcription and increase the levels of

histone H3 acetylation at its promoter. Furthermore, miR-200a

induces up-regulation of the levels of total acetyl-histone H3 and

histone H3 acetylation in the p21Cip1 promoter [32].

DNA methylating enzymes DNMT1, DNMT3A and DNMT3B are

over-expressed in HCC compared to noncancerous liver samples

[33,34]. Finally, CENPA expression was found to be significantly

elevated in HCC tissues, and a positive correlation exists between

CENP-A expression and HBx COOH mutations in HCC tissues.

HBx mutant increases the expression of CENPA mRNA [35].

Future perspectives
Recent advances in genome sequencing technologies will change

radically our capabilities for fine mapping of hepatocellular cancer

genomes. It is expected that patient tumours will be fully analysed

in a short time at a moderate cost. Therefore, the genomic and

epigenomic status of the patient’s own tumour will be a crucial

element for decision making in terms of disease prognosis, ther-

apeutic choices and prediction of patient survival. However, most

of the known mutations observed in HCC are associated with a loss

of function. Apparently, targetable genes found in other cancers

such as growth factor receptors and intracellular protein kinases

are not mutated at significant levels in HCC. Therefore, we need to

find other targets for the treatment of liver cancers. Epigenetic

characterisation of HCC has allowed the discovery of many epi-

genetic players in this disease. However, these studies are far from

being complete. The rarity of targetable mutations in HCC justifies

a systematic study of epigenetic changes to identify new targets for

the therapy of this disease.
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(DPT-KANİLTEK Project), Turkish Academy of Sciences, Institut

National de Cancer and La Ligue Nationale Contre le Cancer in

France (Equipe labelisée). C.O., G.Y. and D.C. received fellowships

from Turkish Academy of Sciences (C.O.), TÜBİTAK (G.Y., D.C.)
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