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System in the Breakup Regime
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Sharp-energy S-matrix elements have been successfully extracted from a wave-packet description of
three-boson and quartet-spin, neutron-deuteron scattering at energies well above the breakup threshold.
Essential to the success of this procedure is use of an expansion basis comprising functions from each of
the three two-cluster arrangements.

PACS numbers: 03.65.Nk, 25. 10.+s

Although the time-dependent Schrodinger equation
provides the most natural framework for describing
quantal collision phenomena, its use in numerical
analysis has lagged well behind that of time-independent
methods. Two factors underlie this. One is a belief that
the time-dependent (TD) approach is too computational-

ly expressive due to the required time integration. The
other is the conviction —still widespread at least in the
light-ion and few-nucleon nuclear physics community
despite the work, e.g. , of Ref. 2—that sharp energy or
momentum values of collision amplitudes cannot be ex-
tracted numerically because of the averaging used in

defining the relevant wave packets. Recent develop-
ments, however, have made it clear that there is no
longer any foundation for these beliefs.

One of these developments is a significant advance in

computational technology and the attendant numerical
strategies and algorithms. This has made TD methods
not only computationally feasible, but also competitive
with time-independent (TI) methods in some cases. The
other development, largely the effort of workers in the
area of atom-molecule reactive collisions, has been the
demonstration that via a scattering-theoretic result, '

sharp-energy and momentum values of S-matrix ele-
ments can be extracted directly from a time-dependent
Schrodinger equation analysis.

Relatively few of these latter computations have yet
been carried out, and almost all are for energies below
the threshold for breakup of an initial two-body collision
system into final states containing three (or more) bo-
dies. Thus, the influence of breakup on the extraction of
sharp S-matrix elements in the TD wave-packet ap-
proach has not been studied in any detail. As a result,
the most interesting sector of the three-nucleon collision
system has not been investigated from this most funda-
mental of descriptions. In work begun several years ago
and recently completed, however, we have closed this
particular gap; the present Letter describes some of our
procedures, results, and conclusions.

Numerical solution of the TD problem means that one
uses an approximation space, defined, e.g. , by specifying
a set of basis functions, or equivalently but somewhat

implicitly, by introducing a finite domain for the spatial
variables (positions or momenta) and then discretizing
this domain, as in the finite-difference, fast-Fourier-
transform, or finite-element methods. We worked in

momentum space, so that potentials became integral
operators; this was easier for us to handle than the dif-
ferential operators occurring in a coordinate representa-
tion. In addition, the support of the momentum-space
wave packets is constant: The packets do not spread.
The momentum-space domain was partitioned into finite

elements and piecewise quadratics were used as the basis
functions.

Because rearrangement and breakup can occur in a
three-particle system, the problem of different sets of
coordinates and the existence of various asymptotic
Hamiltonians made the choice of approximation space
very nontrivial. That is, a limited set of basis functions
in the Jacobi momenta of one arrangement cannot accu-
rately describe configurations involving other arrange-
ments. In order to avoid excessively large bases yet still
achieve stable, converged results, it was absolutely essen-
tial that our approximation space was constructed as the
union of the arrangement-channel approximation spaces.
Hence, our expansion basis is nonorthogonal, consisting
of functions that depend on each of the three sets of
two-fragment Jacobi momenta. This is akin to the cou-
pled reaction channel (CRC) Ansatz familiar from the
TI approach. Our procedure differs from the conven-
tional finite-element method in that discretization was

not done in a single set of variables.
The Hamiltonian of our three-particle system is

H =Ho+ Vl2+ Vl3+ V23, where Ho is the sum of the two
kinetic-energy operators and Vp, —= V, is the (short-
ranged) interaction between the pair of particles Py. Ho
can be expressed as Ho=k, +E„a=1,2, 3, with k, be-
ing the relative motion kinetic-energy operator for the
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pair Py and K, being the kinetic-energy operator for the
motion of particle a relative to the c.m. of the pair Py.
In terms of the Jacobi momenta q, and p„ the eigen-
states of K, and k, are denoted I q, ) and I p, ), respec-
tively; their energies are Eq and Ep. The full H can be
decomposed into three diAerent asymptotic or
arrangement-channel Hamiltonians H, and correspond-
ing channel interactions V: H, =K,+k, + V„V'=V~
+V„a=1,2, 3. Here, h, =k, +V, is the barycentric
Hamiltonian for the pair Py and is assured to support at
least one bound state

I y,„), i.e., h, I y„)=E,„ I y,„).
Hence the (non-normalizable) asymptotic states in chan-

nel a are the products I y,„q,) with energy E,„q =E,„
+Eq We also define the TD channel states via

I y,„(t)q,(t)) =exp( —i&,t) I y,„q,)
=

I y.„q,)exp( iE.-„q.t) .

where

If,~,(t)) =fd q, Aq, (q, ) I q, )exp( —iEv t ) .

Although standard choices of Aq, (q, ) allow I 4,„(t)) to
be evaluated analytically, we need and work with the nu-

merically propagated free wave packet I b,„(l))
=

I pan(t)) I fv, (t)), the tilde indicating the numerical
time evolution.

The exact and numerical solutions to the TD
Schrodinger equation that evolve from I 4,„(0)) are
denoted

I O(t)) and
I
4'(t)), respectively. A fundamen-

tal result of TD scattering theory is that'

lim {Pp I
e'(t)) =PpSp, I @,(t))[, (2)

where Sp, is the Pa element of the usual scattering or S
operator and Pp is the projector onto the asymptotic
states of channel P, viz. ,

Pp =2 „d'qp I vp. qp&&vp. qp I

Finally, the position vectors conjugate to p, and q, are
denoted x, and y„respectively.

To describe the collision generated by a incident on
the pair Py, we take the initial (t =0) wave packet to be

I@..(0)&=
I y,„)If q &,

where I f,q,) =f d q, Aq, (q, ) Iq, ), with Aq, (q, ) chosen
so that I f,q,) is a packet with average momentum qo and
average position y, . The initial position yo is chosen well

outside the range of V'. The exact time evolution of
I4,„(0))is given by

where T))0 and
I fr,„(T)) is the numerically propagat-

ed bound state, used to construct Pp(T), now necessarily
time dependent.

Equation (3) implies an integration over momenta.
To extract a sharp-energy S-matrix element, first the
energy-conserving property of Sp, is used, viz. ,

& vpm qp I Spa I wan qn &

=Spman(, qp qa&E)&(Epm+Ertp Ean Eqa) ~

E =E,„+Eq„and then an angular momentum decompo-
sition is made so that the angular integration in (3) can
also be carried out. Equation (3) then becomes, in
schematic form,

iVpa [Spm, an (E)]partial wave

[&yp (T)qp(T) I +(T))]p,„i,i „,„,
[&q.(T) I f.q, (T))]p.. ..i ....

where N~, is a kinematic factor depending only on the
masses of the particles and "partial wave" refers to the
total angular momentum representation.

It has already been established that (4) yields reliable
results for energies below the breakup threshold. In our
test of (4) above the breakup threshold, we have taken
the pair interactions to be separable S-wave potentials
with standard Yamaguchi form factors, e.g. ,
&p. I v. I p'& =&«p.

I x.&&g. I p.'&, &p. I g.& =(p.'i p.')
Two versions of our model were used: three identical,
spinless bosons and the quartet neutron-deuteron system.
Each is an example of the Amado-Mitra model. Only
S-wave (L =0) states of relative motion between each
particle a and the concomitant pair Py were considered,
since higher L values add complexity but not a better
test of the basic method. Aq, (q, ) was chosen to be a
Gaussian.

To form the approximation space, cutolI' values q,
and p, ,„were chosen, based on the behavior of the V,
and the value of qo. For each a, the finite intervals
[O, q, ,„] and [O,p, ,„] were divided into subintervals
(finite elements). Based on this discretization, local in-

terpolation bases {u„(p,)];-'i and {v,i(q, )[~-'i were in-

troduced for each a. The direct products of piecewise
quadratics I u„t;., ) form the finite-element basis for ar-
rangement a. The full approximation space is spanned

by the union of the three arrangement bases, an entity
that was essential to our achieving successful results.

The full wave packet was thus expanded as

3

I
4 (t)& = g g cp&(t) I up; vpl&;

this leads to

Pp(T) I +(T)& =Pp(T)Sp. I P..(T)f.q, (T)&, (3)

(Note that Pp could be made time dependent. ) Numeri-
cally, (2) is replaced by

S -'HC(t) =ie(t), (5)

in matrix notation in which S is the overlap matrix of
basis functions, H is the Hamiltonian matrix, and C is
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C(t„+()=C(t„)) 2idtS —'HC(t„), (6)

where ht is the time interval and t„=nht. Equation (6)
is probably the simplest conditionally stable, explicit
propagation scheme and is especially well suited for im-

plementation on vector computers since the basic steps
are repeated matrix-vector operations followed by vec-
tor-vector addition. More sophisticated algorithms could
be used, but time propagation was never a problem in

our computations, especially with use of the numerically
propagated free wave packets: Any inaccuracies intro-
duced by numerical treatment of the H, dynamics are
canceled when (4) is used to extract S-matrix elements.
That is, @,(t)/4, (t) yielded accurate S-matrix elements
even though 4,(t) and 4, (t) differed in phase (but only
very slightly in magnitude).

The restrictions p, ~ p, ,„and q, ~ q, ,„and the in-

troduction of a finite basis over the truncated domains
means that in coordinate space the system is effectively
enclosed in a box as well as represented by a finite basis.
The support of the coordinate representation is deter-
mined by the size of the basis or the fineness of the
discretization in momentum space. Care must be (and
was) taken to ensure avoidance of spurious effects result-

ing from reflections at the (implicit) coordinate-space
boundaries. In this respect, low-energy collisions can
lead to problems because the fast-moving components in

the wave packet may reach the boundaries before the
slow-moving components leave the interaction region.
As qp decreases and passage times increase, more
momentum-space basis functions or equivalently finer
meshes are needed. Using 20- to 45-point discretization
in q, and p„ the smallest qp for our model which gave
reliable results was qp=1.0 fm ', corresponding to a
bombarding energy of about 30 MeV. The basis sizes

the column vector of unknown coefficients. A similar re-

sult describes the propagation of the free wave packet in

each arrangement a.
One might consider solving (5) directly via C(t)

=exp) —iS 'Ht)C(0) or even constructing the 5 ma-

trix directly from

Sii, =exp)iSp 'HiiTjexpI —iS 'HT),

where Sii and Hp are the channel P analogs of S and H.
We did not do so for several reasons. First, exponentia-
tion of (especially non-Hermitian) matrices is quite non-

trivial. Second, how to extract the energy-conserving 8
function is not apparent. Third, choosing the value of T
in the Sp, formula is problematic, since the formula is

equivalent to using N initial conditions such that the ini-

tial wave packets are the j
~
u„v„)]. But these basis

functions are standing, not purely incoming, waves. This
gives rise to severe boundary reflection problems.

In order to avoid these difficulties, we proceeded in-

stead by using the small-time, finite-difference approxi-
mation to (5), viz. ,

TABLE 1. Selected S,~(q) values, quartet n+d case; qo= 1

fm . EP denotes probability that elastic scattering occurs
and %P denotes wave packet.

0.8

1.0

1.6

Re S,)

Im S,)

EP
Re S,)

Im S,)

EP
ReS„)
Im S,)

EP
Re S,)

Irn S,)

EP

Exact

—0.234
0.881
0.834
0.153
0.869
0.778
0.441
0.762
0.775
0.768
0.502
0.842

WP, T=18
—0.240

0.912
0.889
0.157
0.849
0.746
0.436
0.759
0.766
0.785
0.498
0.865

WP, T=45
—0.233

0.897
0.859
0.158
0.872
0.785
0.434
0.785
0.779
0.753
0.499
0.815

used (see below) were small compared, e.g. , to the num-

ber of mesh points used in coordinate-space fast-
Fourier-transform methods, typically 256. And, to
stress this point once more, it is the CRC-type expansion
Ansatz that allo~ed us to achieve success for qp as low

as 1.0 fm while keeping the matrix dimensions reason-
able (around 2600 for qu =1.0 fm ').

Some results for the lowest qu value (1 fm ') in the
model of quartet-spin, neutron-deuteron scattering are
shown in Table I, which lists ReS,~, ImS, ~, and the
probability that elastic scattering occurs for various q in

the wave packet and for sufficiently large sampling times
T that the packet is outside the interaction region and

outgoing. The average values of y, in the projected wave

packet, P,(T)
~
4 (T)), are 20.3 fm for T=18, and 58.8

fm for T =45. T=45 in the present case is nearly maxi-
mal: Not much beyond it, reflections begin to occur.
The exact results in Table I were obtained by numerical-

ly solving the Faddeev integral equations using a solution
method based on the Schwinger variational principle, '

and are accurate to at least three significant figures.
Since the pair potentials each support only one bound

state (at 2.2 MeV), the spin-isospin structure of this sys-
tem leads to the following elastic S-matrix element:
S,(

=5
( )

—0.5(Sp)+S3/ ) ~ The numbers were obtained
using 17 p-mesh points ranging from 0 to 7.6 fm ' (31
basis functions) and 44 q-mesh points ranging from 0 to
5.6 fm ' (85 basis functions), and are reliable to 1 part
in 10'. The values At =0.003 and t,„=48.6. time units
were used (6 =M~ =1). All wave-packet normalizations
were found to differ from unity by less than 0.01 at all T
sampled in the program. The accuracy of these results
for qu =1 fm ' (= 30 MeV) is typical of those obtained
at higher qu. In addition, equally good results have
been obtained in the identical boson case.

We have established in this Letter that sharp-momen-
tum and -energy values of 5-matrix elements can be ex-
tracted from a time-dependent, wave-packet analysis of
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three-particle collisions for energies well above the
breakup threshold. The best accuracy achieved so far
for the lower range of q values with respect to qo is an
error of about 1%, these can probably be improved some-
what by one or more of more careful placing of the
nodes, using other propagation methods, or using
higher-order interpolates. Study of these and application
of the method to other systems is currently in progress.
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