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Abstract— We consider a coupled Kuramoto system com-
posed of agents that anticipate the future states of their neigh-
bors based on past data and try to align their states accordingly.
We show that this anticipatory behavior results in multiple
synchronized solutions at different collective frequencies and
different stability characteristics. We derive an exact condition
for the stability of the synchronized states. We show that
the system can exhibit multistability, converging to different
synchronized solutions depending on the initial conditions.

I. INTRODUCTION

Coupled oscillator models are frequently used to study
interacting periodic processes or oscillatory systems. Among
these is the celebrated Kuramoto model [1], [2]

θ̇i(t) = ωi +
K

n

n∑
j=1

sin(θj(t)− θi(t)) (1)

representing a system of n oscillators, where θi(t) ∈ S1,
i = 1, . . . , n, is the phase of oscillator i having intrinsic
frequency ωi and K is the coupling strength. If the oscillators
are identical, ωi = ω ∀i. In (1) every oscillator is coupled
to every other, that is, the coupling is global. One can also
consider local coupling of identical oscillators:

θ̇i(t) = ω +
K

di

n∑
j=1

aij sin(θj(t)− θi(t)) (2)

where aij = 1 if oscillator i is connected to j and
zero otherwise, and di =

∑n
j=1 aij is the number of

connections (neighbors) of oscillator i. More generally, an
existing connection can be given a weight by allowing aij
to assume a positive value; di is then the sum of the weights
of connection to oscillator i. In (2), the oscillators try to
align their phases with the phases of their neighbors, the
differences acting as a forcing to the system, and the sine
function accounting for the fact that the phase differences
are on the circle S1. This extra forcing disappears when the
system synchronizes, that is, all phases are identical, θi = θj
∀i, j. It follows that the synchronized state satisfies

θi(t) = ωt+ ϕ, ∀i = 1, . . . , n (3)

for some ϕ, that is, the oscillators exhibit periodic behavior
at their intrinsic frequency ω. Moreover, it is easy to show
that this synchronized state is locally stable (up to a shift ϕ)
whenever the network is connected and K > 0.
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In this paper, we consider (2) with identical oscillators
who anticipate the future states of their neighbors and align
themselves accordingly. In other words,

θ̇i(t) = ω +
K

di

n∑
j=1

aij sin(θ̂j(t+ τ)− θi(t)) (4)

where θ̂j(t + τ) represents the predicted future state of
oscillator j at time t + τ , τ > 0. This model is motivated
by the anticipatory consensus algorithm introduced in [3] to
speed up convergence to consensus. There, the prediction of
the future is done by a first-order linear approximation from
the past and the present states:

θ̂j(t+ τ) = θj(t) +
θj(t)− θj(t− τ)

τ
τ

= 2θj(t)− θj(t− τ),

obtained by approximating the derivative at time t with a
finite difference. Using this estimate in (4), we arrive at

θ̇i = ω +
K

di

n∑
j=1

aij sin(2θj(t)− θj(t− τ)− θi(t)), (5)

which will the object of study in this paper. The system (5)
is a set of coupled delay-differential equations, where the
delay parameter τ is interpreted as the prediction horizon of
the anticipatory agents.

In the following sections, we study model (5) and and
investigate the effects of anticipation on synchronization.
Specifically, we show that anticipation leads to multiple
synchronized solutions at frequencies different from the
intrinsic frequency ω, with different stability characteristics.
We derive exact conditions for the local stability of the
synchronized solutions in an undirected network. The stabil-
ity condition turns out to be independent of the connection
topology in an undirected connected network.

II. PRELIMINARIES FROM GRAPH THEORY

We briefly review some relevant notions and notations
from graph theory. For details, the reader is referred to
standard texts such as [4] or [5].

A graph G = (V,E) consists of a finite set V of vertices
and a set of edges E ⊂ V × V consisting of unordered
pairs of vertices. Two vertices i and j are called neighbors
if (i, j) ∈ E. We consider simple, non-trivial, and undirected
graphs without self-loops or multiple edges. We denote by
A = [aij ] the (weighted) adjacency matrix of the graph,
where aij = aji > 0 if i and j are neighbors, and aij =
0 otherwise. The degree di of node i is defined as di =∑n

j=1 aij , i.e., the sum of the elements of the ith row of A,
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and D = diag(d1, . . . , dn) denotes the diagonal matrix of
vertex degrees.

The normalized Laplacian matrix is defined as

L = In −D−1A, (6)

where n is the number of nodes in the network and In is the
identity matrix of size n. The normalized Laplacian naturally
arises in a class of important problems, in particular in
random walks on networks, for which D−1A is the transition
matrix for probability distributions arising from such walks.
Although L need not be symmetric, it is similar to a real
symmetric matrix, namely,

D
1
2LD− 1

2 = D
1
2 (In −D−1A)D− 1

2

= D
1
2 InD

− 1
2 −D

1
2D−1AD− 1

2

= In −D− 1
2AD− 1

2 .

Therefore, the eigenvectors of L form a complete set that
spans Rn, and the eigenvalues λi are real and can be ordered
as

0 = λ1 ≤ λ2 ≤ · · · ≤ λn ≤ 2, (7)

where the bounds follow from an application of Gershgorin’s
theorem [6]. In particular, the upper and lower bounds imply
that

|1− λi| ≤ 1, i = 1, 2, . . . , n. (8)

The first eigenvalue λ1 is always zero and corresponds to
the eigenvector v1 = (1, 1, . . . , 1)⊤. The second eigenvalue
λ2, also called the spectral gap, is positive if and only if
the graph is connected. In fact, the multiplicity of the zero
eigenvalue equals the number of connected components of
the graph.

III. SYNCHRONIZED SOLUTIONS

Based on (3), we seek synchronized solutions of the form

θi = Ωt+ ϕ, ∀i = 1, . . . , n. (9)

Substituting (9) into (5), it is seen that the collective syn-
chronized frequency Ω satisfies the algebraic equation

Ω = ω +K sin(Ωτ) (10)

We first show that this equation always has a solution.
Lemma 3.1: Equation (10) has at least one solution Ω.

Proof: The statement is clear for K = 0. For K ̸= 0,
we rewrite (10) as

Ω− ω

K
− sin(Ωτ) = 0 (11)

Consider the continuous and bijective function g : R → R
defined by g(Ω) = Ω−ω

K . For a fixed nonzero τ , the function
h(Ω) := sin(Ωτ) is continuous with range [−1, 1]. Since h is
bounded, there exists number a and b such that g(a)−h(a) >
0 and g(b)−h(b) < 0. By Intermediate Value Theorem there
exist an Ω∗ ∈ (a, b) such that g(Ω∗) − h(Ω∗) = Ω∗−ω

K −
sin(Ω∗τ) = 0.

Unlike the standard Kuramoto model (2), system (5) with
anticipating agents can have more than one synchronized

Fig. 1. Graphical solution to equation (10) for K > 0. The intersection
points of the two curves, indicated by black dots, correspond to equilibrium
solutions.

solution. Indeed, (11) can have multiple solutions for the
common frequency Ω since its right hand side is oscillatory
but the left hand side is monotone in Ω, as illustrated in
Figure 1. This situation may cause the existence of more than
one stable solution, i.e. multistability for the system, where
different initial states converge to different synchronized
solutions. The stability of these solutions is investigated in
the next section.

IV. STABILITY OF SYNCHRONIZED SOLUTIONS

We give an exact condition for the stability of synchro-
nized solutions (9) at frequency Ω.

Theorem 4.1: Consider system (5) on an undirected and
connected network. Then the synchronized state (9), with a
frequency Ω that satisfies (10), is locally exponentially stable
if and only if

0 < τK cos(Ωτ) < 1. (12)
Proof: Consider perturbations ui(t) around the syn-

chronized state (9), that is,

θi(t) = Ωt+ ϕ+ ui(t).

Substituting into (4) and neglecting higher order terms give
the linear variational equation for small perturbations ui(t):

u̇i =
β

di

n∑
j=1

aij(2uj(t)− uj(t− τ)− ui(t)),

where β = K cos(Ωτ). In matrix form,

u̇ = β[D−1A(2u(t)− u(t− τ))− u(t)] (13)

with u = (u1, u2, . . . , un)
⊤. Since L = I−D−1A has a full

set of eigenvectors vi that span Rn, u can be written as a
linear combination,

u(t) =

n∑
i=1

αi(t)vi (14)

where Lvi = λivi and αi = ⟨ui, u⟩, with ui being the left
eigenvectors of L [6], [7]. As a result, (13) transforms into
n decoupled scalar differential equations

α̇i(t) = β[(1− 2λi)αi(t)− (1− λi)αi(t− τ)] (15)

for which the characteristic equation is

ψi(s) := s− β[(1− 2λi)− (1− λi)e
−sτ ] = 0.
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Thus, the characteristic equation for the system (13) can be
written as the product

Ψ(s) :=

N∏
i=1

ψi(s) =

N∏
i=1

[s−β[(1−2λi)−(1−λi)e−sτ ] = 0.

The local stability of the synchronized solution is thus
equivalent to all roots of Ψ having negative real parts,
except for a simple root at zero, corresponding to neutral
perturbations along the synchronization subspace spanned
by v1 = (1, 1, . . . , 1)⊤. We will show that the condition
0 < τK cos(Ωτ) < 1 is necessary and sufficient for Ψ
to have a single root at zero, corresponding to the zero
Laplacian eigenvalue, and all other roots with negative real
parts.

The first factor in Ψ, related to λ1 = 0, is

ψ1(s) = s− β(1− e−sτ ).

One can observe that ψ1(0) = 0 and ψ′
1(0) = 1 − βτ ̸= 0

provided βτ ̸= 1. By a change of variable s′ = sτ , the
stability of ψ1 is equivalent to the stability of

ψ̄1(s
′) = s′ − βτ(1− e−s′).

By a classical result due to Hayes [8], the function s− a1−
a2e

−s has a simple root at s = 0 and all other roots have
negative real parts if and only if coefficients satisfy −a2 =
a1 < 1. Therefore, ψ̄1(s

′), and thus ψ1, has a simple root at
0 and all other roots have negative real parts if and only if
βτ < 1. In particular, βτ < 1 is a necessary condition for
the stability of Ψ.

The remaining roots come from the rest of the char-
acteristic equation given by

∏N
i=2 ψi(s) = 0. Hence, the

characteristic roots satisfy

s− β[(1− 2λi)− (1− λi)e
−sτ ] = 0, i = 2, . . . , n. (16)

We next show that βτ > 0 is a necessary condition for the
roots of (16) to have negative real parts. Indeed, since the
Laplacian eigenvalues λi are nonnegative, we have

(1− 2λi) ≤ (1− λi).

The condition βτ ≤ 0 would thus imply

τβ(1− 2λi) ≥ τβ(1− λi),

and by [8, Theorem 1], (16) would then have a solution s
with Re(s) ≥ 0. Therefore, βτ > 0 is necessary for stability.

Having established the necessary conditions βτ < 1 and
βτ > 0, it remains to show that all roots of (16) have negative
real parts under the condition 0 < βτ < 1. Now observe that
if τ = 0, then (16) gives

s = −βλi < 0, i = 2, . . . , n; (17)

therefore, in the absence of delays, all roots are negative.
Since roots change continuously with the parameter τ , we
look at possible loss of stability by imaginary axis crossing

Fig. 2. Cyclic network on 10 vertices.

of roots for τ > 0. Hence, putting s = iγ for some γ ∈ R
into (16) and considering the imaginary parts gives

γ = Im(β(1− 2λi)− β(1− λi)e
−iγτ )

= β(1− λi) sin(γτ)

Therefore,
|γ| ≤ |β(1− λi)γτ |. (18)

since | sinx| ≤ |x| ∀x ∈ R. Note that γ ̸= 0 since otherwise
s = 0 would be a solution of (16), which is not possible
since λi > 0 for i ≥ 2 and β > 0. Hence we can divide (18)
by |γ| and use (8) to obtain

1 ≤ |τβ(1− λi)| ≤ |τβ| = τβ

as the condition for the existence of a purely imaginary root.
Therefore, if βτ < 1, then the characteristic roots cannot
cross the imaginary axis, and so they all have negative real
parts. This completes the proof of the theorem.

V. NUMERICAL ILLUSTRATIONS

A. Stable and unstable synchronized solutions

For numerical simulations, we take the intrinsic frequency
of the oscillators to be ω = 1 and coupling strength K = 1.
To illustrate Theorem 4.1, we consider (5) on a cyclic
network with 10 vertices, as shown in Figure 2. For τ = 1.2,
equation (10) has a unique solution Ω ≈ 1.8187. By Theorem
4.1, the corresponding synchronized solution is unstable.
Figure 3 shows that the phases of diverge from one another
with time even though the initial phases are chosen to be
very close. On the other hand, for τ = 0.3 the system has a
synchronous solution with frequency Ω ≈ 1.4107, and Theo-
rem 4.1 implies that this solution is stable. Simulation results
in Figure 4 show that even under significant perturbations,
the agents converge to a common solution.

B. Multistability

For numerical calculations we use a complete undirected
graph with n = 4 vertices, as shown in Figure 5.

We set τ = 0.7, the intrinsic frequency ω = 0.2, and
coupling strength K = 2. With this choice of parameters,
there are three synchronized solutions in the form (9). The
solutions of the (10) giving the collective frequencies Ω are
depicted in Figure 6. Using Theorem 4.1, we find that two
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Fig. 3. Time evolution the oscillators phases and frequency with τ = 1.2,
showing that the system does not synchronize.

Fig. 4. Time evolution of the oscillators’ phases, showing convergence to
a synchronized solution at frequency Ω ≈ 1.4107.

of the synchronized solutions are stable and one solution is
unstable. For different initial conditions, solutions converge
to different stable states, as shown in Figure 7.

VI. SYNCHRONIZATION VERSUS CONSENSUS

If the sine function in (5) is replaced by the identity
function and the parameters are chosen as ω = 0 and
K = 1, then one obtains the anticipatory consensus problem
considered in [3], namely

θ̇i =
1

di

n∑
j=1

aij(2θj(t)− θj(t− τ)− θi(t)). (19)

Consensus in (19) refers to the agents’ states converging
to a common value ϕ. In this sense, consensus can be
identified with a synchronized solution in (5) of the form
(9) with Ω = 0. Theorem 4.1 then gives the synchronization

Fig. 5. Complete network on 4 vertices.

Fig. 6. Three solutions for the collective frequency Ω. Black dots
correspond to stable solutions at Ω ≈ −1.6005 and Ω ≈ 2.1990. The
white dot corresponds to an unstable synchronized solution.

condition as 0 < τ < 1, which is the same as the consensus
condition given by Theorem 3 in [3]. However, at different
parameter values, the stability conditions are not identical,
and the oscillator system (5) may admit a stable synchronized
solution whereas the consensus solution is unstable in (19).

To illustrate, we take τ = 1.5. Since τ > 1, the consensus
state in (19) is unstable [3, Theorem 3]. However, with
K = 1 and ω = 0.1, the oscillator system (5) has a stable
synchronized solution at frequency Ω ≈ −0.8614, as calcu-
lated from (10). The situation is illustrated in simulations in
Figure 8 for an all-to-all coupled network of size n = 10.

One can understand the mechanism of the difference by
comparing the respective stability conditions in the two sys-
tems. Indeed, the stability condition (12) for the synchronized
solution from Theorem 4.1 now reads

0 < τ cos(Ωτ) < 1 (20)

as opposed to the consensus condition

τ < 1 (21)

Due to the presence of the cosine factor in (20), which can
be smaller than one, it may be possible to satisfy condition
(20) even when (21) fails. In other words, it may be possible
to obtain synchronization in the nonlinear system (5) for
values of τ that are too large for the linear system (19) to
converge to a common consensus value. Considered together
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Fig. 7. Multistability of synchronized states starting from different initial
conditions. In the first simulation (top two plots) the oscillators converge to
a common frequency Ω ≈ −1.6005. In the second simulation (bottom two
plots), starting from different initial conditions, the oscillators converge to
a common frequency Ω ≈ 2.1990. The values of the frequencies are the
same as shown in Figure 6.

with the possibility of multiple synchronized solutions and
multistability, as seen in the previous sections, the Kuramoto
oscillator model (5) of anticipatory agents offers a much
richer source of dynamical behavior.

VII. CONCLUSION

We have considered a coupled system of identical Ku-
ramoto oscillators where oscillators anticipate the future
states of their neighbors and try to align their phases to
the estimated future. We have shown that such anticipatory
behavior can result in the birth of multiple synchronized
states at different collective frequencies and having different
stability properties. We have given an exact condition for the
local asymptotic stability of the synchronized state. Stability
depends on the various parameters of the system, including
the prediction horizon τ and the collective frequency, but
does not depend on the network structure. We have presented

Fig. 8. Time evolution of the consensus model (19) and the Kuramoto
model (5), both of anticipatory agents, starting from the same initial
conditions. Although the consensus problem diverges (top figure), the
Kuramoto system synchronizes (bottom figure).

numerical simulations supporting the theoretical results and
exhibiting new phenomena such as multistability and empha-
sized the differences with the linear consensus problem.

In closing, we note that the stability condition presented
in Theorem 4.1 of this paper pertains to undirected networks
and does not necessarily apply to directed networks. In
particular, for directed networks, the stability of the syn-
chronized state may depend on the network topology in
a significant way. This was also observed for the original
anticipatory consensus problem previously [9].
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