

A LEARNING-BASED SCHEDULING SYSTEM WITH

CONTINUOUS CONTROL AND UPDATE STRUCTURE

A THESIS

SUBMITTED TO THE DEPARTMENT OF INDUSTRIAL ENGINEERING

AND THE INSTITUTE OF ENGINEERING AND SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By

Gökhan Metan

January, 2005

 ii

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope

and in quality, as a thesis for the degree of Master of Science.

 Prof. Dr. İhsan Sabuncuoğlu (Supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope

and in quality, as a thesis for the degree of Master of Science.

 Prof. Dr. Erdal Erel

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope

and in quality, as a thesis for the degree of Master of Science.

 Asst. Prof. Dr. Mehmet Taner

 Approved for the Institute of Engineering and Sciences:

 Prof. Dr. Mehmet Baray

 Director of the Institute of Engineering and Science

 iii

ABSTRACT

A LEARNING-BASED SCHEDULING SYSTEM WITH

CONTINUOUS CONTROL AND UPDATE STRUCTURE

Gökhan Metan

M.S. in Industrial Engineering

Supervisor: Prof. Dr. İhsan Sabuncuoğlu

January, 2005

In today’s highly competitive business environment, the product varieties of firms

tend to increase and the demand patterns of commodities change rapidly. Especially

for high tech industries, the product life cycles become very short and the customer

demand can change drastically due to the introduction of new technologies in the

market (i.e., introduction by the competitors). These factors increase the need for

more efficient scheduling strategies. In this thesis, a learning-based scheduling system

for a classical job shop problem with the average tardiness objective is developed.

The system learns on the manufacturing environment by constructing a learning tree

and selects a dispatching rule from the tree for each scheduling period to schedule the

operations. The system also utilizes the process control charts to monitor the

performance of the learning tree and the tree as well as the control charts is updated

when necessary. Therefore, the system adapts itself for the changes in the

manufacturing environment and survives in time. Also, extensive simulation

experiments are performed for the system parameters such as monitoring (MPL) and

scheduling period lengths (SPL). Our results indicate that the system performance is

significantly affected by the parameters (i.e., MPL and SPL). Moreover, simulation

results show that the performance of the proposed system is considerably better than

the simulation-based single-pass and multi-pass scheduling algorithms available in the

literature.

Keywords: Scheduling, Machine Learning, Data Mining, Control Charts, Job Shop

Scheduling, AI, Dispatching Rules.

 iv

ÖZET

SÜREKLİ KONTROL VE GÜNCELLEŞTİRME YAPILI

ÖĞRENME TEMELLİ ÇİZELGELEME SİSTEMİ

Gökhan Metan

Endüstri Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. İhsan Sabuncuoğlu

Ocak, 2005

Günümüzün rekabetçi iş dünyasında firmaların ürün çeşitleri artmakta ve malların

talep düzeni hızlı bir şekilde değişmektedir. Özellikle yüksek teknoloji endüstrilerinde

yeni teknolojilerin pazara tanıtımlarıyla ürün ömür çevrimleri kısalmakta ve müşteri

talebi şiddetli şekilde değişmektedir. Bu etmenler verimli çizelgeleme

gengüdümlerine olan ihtiyacı artırmaktadır. Bu tezde, geleneksel atelye problemine

ortalama gecikme amacına yönelik öğrenme temelli çizelgeleme sistemi

geliştirilmiştir. Önerilen sistem öğrenme ağacı kurmak yoluyla üretim ortamı üzerinde

öğrenmekte ve bu ağaçtan herbir çizelgeleme dönemi için dağıtım kuralı seçerek

işlemleri çizelgelemektedir. Sistem aynı zamanda süreç denetim çizeneklerinden

faydalanarak öğrenme ağacının başarımını gözetlemekte ve gerekli bulduğunda ağacı

ve denetim çizeneklerini güncellemektedir. Bu sayede, önerilen sistem kendi kendini

üretim ortamındaki değişikliklere uyarlamakta ve zaman içinde hayatta

kalabilmektedir. Bunun yanı sıra, çizelgeleme dönem uzunluğu ve gözetleme dönem

uzunlukları gibi sistem parametreleri üzerinde kapsamlı benzetim deneyleri

gerçekleştirilmiştir. Sonuçların gösterdiğine göre bu parametreler sistem başarımını

(ortalama gecikme) önemli şekilde etkilemektedir. Bundan başka, benzetim sonuçları

önerilen sistemin başarımının benzetim-temelli tek-geçişli ve çok-geçişli çizelgeleme

algoritmalarından daha iyi olduğunu göstermektedir.

Anahtar Sözcükler: Çizelgeleme, Makina Öğrenmesi, Veri Madenciliği, Denetim

Çizeneği, Atelye Çizelgelemesi, Yapay Zeka, Dağıtım Kuralları

 v

To my family and my wife...

 vi

Acknowledgement

 I would like to express my deepest gratitude to my supervisor Prof. Dr. İhsan

Sabuncuoğlu for his instructive comments in the supervision of the thesis and also for

all the encouragement and trust during my graduate study.

 I would like to express my special thanks and gratitude to Prof. Dr. Erdal Erel and

Asst. Prof. Dr. Mehmet Taner for showing keen interest to the subject matter, for their

remarks, recommendations and accepting to read and review the thesis.

 I would like to express my deepest thanks to Kürşad Derinkuyu, Emrah Zarifoğlu,

Ali Koç, M. Oğuz Atan, Halil Şekerci, Arda Alp and Mustafa R. Kılınç for all their

encouragements and supports.

 I would like to extend my sincere thanks to Orçun Ergün, Esra Büyüktahtakın and

Banu Yüksel for their endless morale support and friendship during all my desperate

times, makes me to face with all the troubles.

 I would also like expressing my greatest thanks to Şermin Kamberli, Şengül Deveci

and Uğur Deveci for being like my second family and showing all their supports.

 Finally, I would like to express my gratitude to my family and my wife for their

love, understanding, suggestions and their endless support. I owe so much to my

family and my wife. I love you both…

 vii

Contents

Abstract..iii

Özet... iv

Acknowledgement...vi

Contents ..vii

List of Figures... x

List of Tables ..xii

1 Introduction... 1

2 Literature Review... 5

3 Proposed System: Intelligent Scheduling with Machine Learning 14

 3.1 Definitions .. 15

 3.2 Proposed System... 16

 3.3 Scheduling Strategy.. 18

 3.3.1 How-to-schedule... 18

 3.3.2 When-to-schedule... 19

 3.4 Data Structures.. 23

 3.4.1 Performance Data (Realized System Performance) 24

 3.4.2 Instance Data .. 26

 3.4.3 Realized Scheduling Period Data... 27

 3.5 Proposed System - A Detailed Explanation .. 28

 3.5.1 Database.. 28

 viii

 3.5.2 Simulation Module ... 29

 3.5.3 Learning Module .. 29

 3.5.4 On-line Controller .. 33

 3.5.5 Process Controller .. 34

 3.6 System Attributes for Job Shop Scheduling System 41

 3.7 Dynamics of the Learning Algorithm.. 43

 3.8 Summary... 49

4 Experimental Design and Computational Results 50

 4.1 Motivation... 51

 4.2 Setting Due Date Tightness Levels and Utilization Levels................. 55

 4.3 Setting Appropriate Scheduling Period Length (SPL) 56

 4.4 The Effect of Monitoring Point (MP) and β-parameter Selection 65

 4.5 The Selection of System Attributes ... 70

 4.6 Job Shop Scheduling with a Static Learning Tree............................... 73

 4.7 Job Shop Scheduling with Dynamic Learning Structure 78

 4.8 Summary... 92

5 Conclusion and Future Research Directions... 94

 5.1 Contributions .. 94

 5.2 Future Research .. 97

Bibliography ... 99

Appendix... 101

 A1 Appendix A... 101

 A2 Appendix B ... 103

 ix

 A3 Appendix C ... 113

 A4 Appendix D... 120

 A5 Appendix E ... 126

 A6 Appendix F ... 137

 x

List of Figures

3.1 Proposed system – general structure.. .. 17

3.2 Representation of rule selection symptoms. .. 21

3.3 Rule selection symptoms.. 22

3.4 Types of performance data. .. 25

3.5 Instance data representation. .. 26

3.6 Realized scheduling period data... 28

3.7 Database of the proposed system. .. 30

3.8 Simulation module.. 31

3.9 Learning module... 32

3.10 On-line controller.. 35

3.11 Process controller module and its relationships with other modules. 37

3.12 Plotted data in the X chart. ... 38

3.13 Construction of the learning tree: first step.. 47

3.14 Construction of the learning tree: second step... 48

3.15 Construction of the learning tree: third step. ... 48

3.16 Final learning tree. .. 48

4.1 Performance measures.. 53

4.2 80% utilization, loose due dates with CDR set {MOD, SPT, MDD,

 ODD}. ... 58

4.3 90% utilization, loose due dates with CDR set {MOD, SPT, MDD,

 ODD}. ... 59

 xi

4.4 80% utilization, tight due dates with CDR set {MOD, SPT, MDD,

 ODD}. ... 60

4.5 90% utilization, tight due dates with CDR set {MOD, SPT, MDD,

 ODD}. ... 61

4.6 80% utilization, tight due dates with CDR set {SPT, MDD, ODD}. 63

4.7 90% utilization, tight due dates with CDR set {SPT, MDD, ODD}. 64

4.8 BestPerf for various MPL-β combinations when system utilization is

 80% .. 67

4.9 Comparison of best MPL-β pairs for 80% utilization. 68

4.10 BestPerf for various MPL-β combinations when system utilization is

 90% .. 69

4.11 Comparison of best MPL-β pairs for 90% utilization. 70

4.12 X chart.. 89

4.13 R chart. .. 90

 xii

List of Tables

3.1 Parameters of how-to-schedule. .. 19

3.2 New rule selection symptoms. .. 20

3.3 Update only learning tree rules.. ... 40

3.4 Update both the learning tree and the process control charts rules.. 41

3.5 Artificial training data set.. .. 45

3.6 Subset of initial data set for branch RUS=0.. ... 48

4.1 Simulation results for flow allowances... 56

4.2 Experimental design of scheduling period length.. 56

4.3 Parameter values considered for further experimentation...................... 63

4.4 Experimental design of monitoring period length and β-parameter.. 66

4.5 Experimental conditions for generated data sets.. 73

4.6 Summary of the experimental results on the attribute set selection....... 73

4.7 Experimental design of scheduling with a static learning tree............... 74

4.8 Summary of performance values for the rule set {SPT, MDD, ODD}..76

4.9 Summary of performance values for the rule set {SPT, MDD, ODD

 , MOD}.. .. 76

4.10 Average dispatching rule usage percentages.. .. 77

4.11 Experimental design of scheduling with dynamic learning structure.. .. 79

4.12 Summary of the experimental results for DR set {MDD, ODD, SPT}..82

 xiii

4.13 Summary of the experimental results for DR set {MDD, ODD, SPT,

 MOD}.. .. 83

4.14 Summary of the experimental results for DR set {MDD, ODD, SPT}

 (Percentage of deviation from the best).. .. 85

4.15 Summary of the experimental results for DR set {MDD, ODD, SPT,

 MOD} (Percentage of deviation from the best)...................................... 86

C.1 80% utilization, tight due dates replication mean tardiness values (DR

 set SPT, MDD, MOD, ODD)... 114

C.2 90% utilization, tight due dates replication mean tardiness values. (DR

 set SPT, MDD, MOD, ODD)... 115

C.3 80% utilization, loose due dates replication mean tardiness values. (DR

 set SPT, MDD, MOD, ODD)... 116

C.4 90% utilization, loose due dates replication mean tardiness values. (DR

 set SPT, MDD, MOD, ODD)... 117

C.5 80% utilization, tight due dates replication mean tardiness values. (DR

 set SPT, MDD, ODD). ... 118

C.6 90% utilization, tight due dates replication mean tardiness values. (DR

 set SPT, MDD, ODD). ... 119

D.1 80% utilization, for MPL = 250 replication mean tardiness values...... 121

D.2 80% utilization, for MPL = 500 replication mean tardiness values...... 122

D.3 90% utilization, for MPL = 500 replication mean tardiness values...... 123

D.4 90% utilization, for MPL = 2500 replication mean tardiness values.... 124

D.5 90% utilization, for MPL = 3750 replication mean tardiness values.... 125

 xiv

E.1 80% utilization, MPL = 250, β = 0.2, DR set {MDD, ODD, SPT}...... 127

E.2 80% utilization, MPL = 500, β = 1, DR set {MDD, ODD, SPT}......... 127

E.3 80% utilization, MPL = 1000, β = -, DR set {MDD, ODD, SPT}........ 127

E.4 90% utilization, MPL = 500, β = 0.2, DR set {MDD, ODD, SPT}...... 128

E.5 90% utilization, MPL = 2500, β = 1, DR set {MDD, ODD, SPT}....... 128

E.6 90% utilization, MPL = 7500, β = 1, DR set {MDD, ODD, SPT}....... 128

E.7 80% utilization, MPL = 250, β = 0.2, DR set {MOD, MDD, ODD,

 SPT}... 129

E.8 80% utilization, MPL = 500, β = 1, DR set {MOD, MDD, ODD,

 SPT}.. 129

E.9 80% utilization, MPL = 1000, β = -, DR set {MOD, MDD, ODD,

 SPT}... 129

E.10 90% utilization, MPL = 500, β = 0.2, DR set {MOD, MDD, ODD,

 SPT}... 130

E.11 90% utilization, MPL = 2500, β = 1, DR set {MOD, MDD, ODD,

 SPT}... 130

E.12 90% utilization, MPL = 7500, β = 1, DR set {MOD, MDD, ODD,

 SPT}... 130

E.13 80% utilization, MPL = 250, β = 0.2, DR set {MDD, ODD, SPT}...... 131

E.14 80% utilization, MPL = 500, β = 1, DR set {MDD, ODD, SPT}......... 132

E.15 80% utilization, MPL = 1000, β = -, DR set {MDD, ODD, SPT}........ 133

E.16 90% utilization, MPL = 500, β = 0.2, DR set {MDD, ODD, SPT}...... 134

 xv

E.17 90% utilization, MPL = 2500, β = 1, DR set {MDD, ODD, SPT}....... 135

E.18 90% utilization, MPL = 7500, β = 1, DR set {MDD, ODD, SPT}....... 136

F.1 Plotted data in the charts. .. 138

F.2 Number of updates for the learning tree and the charts for DR set {MOD,

 MDD, ODD, SPT}. .. 140

F.3 Number of updates for the learning tree and the charts for DR set {MDD,

 ODD, SPT}. .. 140

Chapter 1

Introduction

In today’s highly competitive business environment, customer satisfaction plays the

key role for the success of any firm. Customers not only care about the cost of a

product, but they also give special importance to the quality of the products and the

reliability of the manufacturers in terms of meeting their agreements such as the

promised due dates. Moreover, the product variety of a firm tends to increase due to

the demand for highly customized goods, which in turn increases the complexity of

operating a manufacturing system. In addition to these, the demand patterns of

commodities may also change too rapidly. Especially for high tech industries, the

product life cycles become very short and the customer demand can change

drastically due to the introduction of new technologies in the market (i.e., introduction

by the competitors). These factors increase the need for more efficient manufacturing

strategies and approaches.

 One of the key elements for the success of any manufacturing firm is

efficient scheduling of its limited resources. However, even for a small sized company

with a few number of equipments, it can become a very difficult problem to deal with.

1

 2

In addition to this, scheduling problems should be solved frequently since it is the

lowest level tactical decision for a firm. Therefore, development of efficient

scheduling algorithms is vitally important and there is a vast amount of literature on

this issue.

 When the scheduling problem is stochastic and dynamic (i.e., the jobs arrive

dynamically to the system and the arrival and processing times are stochastic) in

nature, scheduling via the dispatching rules are commonly preferred. Dispatching

rules are myopic decision rules that schedule the jobs on the machines one at a time

based on the simple calculations that utilizing the information such as processing

times, due dates etc. There are many such rules defined in the literature and we can

simply pick one of them and perform the scheduling activities. However, the problem

with these dispatching rules is that none of them is superior to the others in every

manufacturing condition. Therefore, the appropriate rule/s should be determined prior

to the use. In addition to that, even if a particular dispatching rule is found to perform

better for a specific manufacturing system, switching to the other rules in certain

periods may result in additional benefits. For this reason, there are also some

simulation-based scheduling approaches in the literature. For such studies see, for

example, Kim and Kim (1994), Jeong and Kim (1998), Kutanoglu and Sabuncuoglu

(2001). In this approach, simulation-based scheduling, a set of candidate dispatching

rules are simulated for a planning period and the rule with the best performance value

is used in that period. One of the shortcomings of this approach is that it requires too

much computer time to simulate the performance of each candidate dispatching rule.

Also, the procedure depends on the assumption that we know the probability

distribution functions and the parameters of the processing and arrival times.

However, this may not be the case if the demand patterns in the market and/or product

 3

types change rapidly, which is the situation for high tech industries. Also, the

processing times may change due to the machines’ depreciations in time. Hence, the

simulation models constructed to evaluate the performance of the rules might become

invalid after some time.

 In this research, we consider the stochastic and dynamic job shop scheduling

problem with the average tardiness (mean tardiness) objective and develop a system

to select the right dispatching rule among a set of candidate rules. The proposed

system utilizes the intelligent machine learning techniques from computer science

(i.e., data mining) as well as the process control charts from the statistical quality

control. The objective of our system is to learn about the characteristics of the

manufacturing system by constructing a learning tree and then selecting a dispatching

rule for a scheduling period from this tree on-line. Therefore, we eliminate the

extensive simulation experiments that should be carried out before every scheduling

period as it is in simulation-based scheduling approaches. Moreover, we use the

control charts to monitor the actual performance of the learning tree. If these charts

signal that the current learning tree begins to perform poorly, a new tree is constructed

based on the recent information gathered from the manufacturing system. The reason

for the current tree to have a poor performance might be a result of change in the

demand patterns, processing time distributions and so on. Thus, by updating the

current learning tree, we are targeting to capture these changes in the manufacturing

system and select the right dispatching rules for the future periods. In this sense, the

proposed system has the ability to survive in time. In other words, we propose a

system that corrects itself whenever necessary (without an external manipulation) and

continues to make the scheduling decisions (i.e., selecting the dispatching rules) as

long as the manufacturing system exists.

 4

 In this study, we also address two important questions and conduct extensive

experiments to answer them. One of these questions is “how frequently should we

update the dispatching rule used in the manufacturing system?” This is a critical

question since frequent selection of a new rule might result in system nervousness

and, on the other hand, infrequent update of the rules most probably result in the loss

of additional benefits that can be achieved by switching between the rules. The second

question is “how frequently should we monitor the performance of the manufacturing

system that operates under a rule and how should we decide to update or continue

with this rule at these monitoring points?” Both of these questions are also important

for the performance of our proposed system and experimented extensively.

 In the next chapter, a review of the relevant literature is presented. In Chapter

3, we propose the intelligent scheduling system and discuss its key features in detail.

Experimental designs and the results of these experiments are given in Chapter 4.

Finally, in Chapter 5, we present the conclusion of this study along with the

contributions and give future research directions.

CHAPTER 2

Literature Review

In the scheduling literature, there is a vast amount of studies that deal with various

issues in scheduling. In this section, we will briefly review the relevant studies that

employ iterative simulation and artificial intelligence (AI) concepts in manufacturing

systems. In addition, we consider some studies related to process control charts as we

use them as the tool in our research.

Wu and Wysk (1988) develop an expert system called multi-pass expert

control system (MPECS) for flexible manufacturing cells. This system takes

advantage of both expert system technology and discrete-event simulation. Simulation

is employed as a prediction mechanism and evaluates the performance of the

dispatching rules that are suggested by the expert system. Then, the dispatching rule

that results the best performance value in simulation runs is used to schedule the jobs.

This system also contains a simplified and restricted learning mechanism. This

learning module uses training instances that relate the dispatching rules, the

performance measures and the system characteristics together. By using this restricted

learning mechanism, the system provides the user a learning aid, which collects

information of the user interested factors (e.g., number of times a rule is selected, etc.)

5

 6

to help the user learn from the system and modify the knowledge base if possible. In

this sense, the system does not learn automatically by itself, but guides the user by

providing significantly found information about the manufacturing system.

In another study by Wu and Wysk (1989), a simulation-based scheduling

algorithm is proposed for flexible manufacturing system. In this research, a

dispatching rule among a set of candidate rules is selected for each short period via

simulation just before the implementation time occurs. The experiments on this

candidate rule set are carried out by deterministic simulation and performance of each

rule is estimated. Then the rule with the best performance estimate is used in that

short period of time to schedule the operations. Since all the candidate dispatching

rules are evaluated at each short scheduling period and the best performer is selected

to be used in that interval, the proposed scheduling approach is termed as a multi-pass

scheduling algorithm. Thus, in the long run, this process results in a combination of

different dispatching rules. Their results show that the multi-pass scheduling

algorithm performs better than the single-pass scheduling algorithm, which uses a

single dispatching rule for the entire manufacturing period.

Another simulation-based scheduling study is due to Ishii and Talavage

(1991). In this research, a transient-based real-time scheduling algorithm that selects a

dispatching rule dynamically for a next short time period to react to changes of system

state is proposed. In this study, as opposed to the work of Wu and Wysk (1989), the

scheduling interval length, where each candidate dispatching rule is evaluated, is not

held fixed and four different strategies are defined accordingly. In the first strategy,

the simulation window (length of time used to evaluate the performance of candidate

rules) is defined of equal length to the next scheduling interval as it is in the study of

Wu and Wysk (1989). In the second strategy, simulation window is defined from the

 7

current time to the time until all parts that exist in the system during the next

scheduling interval depart from the system. For the third strategy, they define

simulation window as from current time to the end of the entire manufacturing period.

Finally, the last strategy assumes simulation window as the two consecutive

scheduling intervals and selects the best rule for the first scheduling interval based on

the performances measured at the end of the second scheduling interval. In this sense,

the last strategy employs a single period look-ahead mechanism. It is reported in the

paper that in most of the experiments strategy 4 results in better schedules than the

other strategies as well as the single-pass scheduling algorithm.

The first study that applies machine learning techniques to the scheduling

problems is the work of Shaw et. al. (1992). In this paper machine learning

capabilities for an FMS scheduling problem is investigated. Their machine learning

approach is used to select the best dispatching rule based on a number of

manufacturing system characteristics (the overall system utilization, total buffer size

and number of machines). This selected rule is then used to schedule the jobs on the

machines, and the rule is never questioned again as long as the shop floor

configuration is stable (e.g., number of machines in the facility doesn’t change).

Therefore, the decision given in this study can be thought of as a strategic decision

rather than a tactical one. Training examples are generated for different attribute-value

combinations. These examples are supplied for the learning algorithm as a learning

data set after being tested via simulation. After the learning algorithm processes the

learning data, a learning tree is constructed. Whenever one or more of the system

characteristics changes (takes a different value than its current value), the algorithm

selects a new dispatching rule (DR) from the learning tree based on the new values of

the attributes. It does not implement the new DR immediately, but rather it makes a

 8

new decision about changing the current DR with this new one or not. This is because

of the fact that some attribute changes may be temporary and changing the DR of the

manufacturing system may be destructive when compared with the expected

performance of the current DR. This decision is done in such a way that if the

cumulative score (number of times a DR is favored to the others) of the new DR is

greater than the cumulative score of the current DR multiplied by a smoothing factor,

the new DR is selected for use. Otherwise, the system continues its operation with the

current DR. Here, the smoothing factor is a decision variable between 0 and 1. Also,

since smoothing factor is a decision variable, experimentation on this variable is

performed with different attribute values for three smoothing factor values (0, 0.7 and

1) and another learning tree is constructed for the selection of this variable. In other

words, the value of the smoothing factor is not a fixed value but its value is

determined based on the system attributes from the second learning tree whenever a

new DR is to be selected from the first learning tree. By using this machine learning

strategy, Shaw et. al. test their algorithm on different FMS problems. The results

indicate that the proposed approach outperforms the approach of using the single best

DR from a set of candidate DRs in most of the cases.

In another series of studies by Tayanithi, Manivannan, and Banks (1993a,

1993b), an integrated scheduling and control system that combines simulation and

knowledge-based concepts to perform an analysis of interruptions in the form of

machine breakdowns and rush orders in a flexible manufacturing system is proposed.

In this system, when a control decision cannot be obtained readily from the

knowledge base, the alternative actions are evaluated by using the simulation

mechanism.

 9

Cho and Wysk (1993) propose a neural network based scheduling algorithm

for FMS. Their system mainly composed of three parts: a preprocessor, a neural

network and a multi-pass simulator. Preprocessor generates input based on the current

workstation status and supplies it to the neural network. In turn, neural network

produces a set of promising part dispatching strategies (i.e., dispatching rules) to

guide the future scheduling activities. These strategies are then evaluated by the

multi-pass simulator and the best strategy to use is determined. Then the selected

strategy is used in the shop floor until a new rule update is required. The performance

of the algorithm is compared with the single-pass strategies and found to be superior.

Ishii and Talavage (1994) propose another simulation-based scheduling

system for flexible manufacturing systems. In this research, they develop a mixed

dispatching rule approach in which each individual machine in an FMS are allowed to

have a different dispatching rule to perform the scheduling of jobs. It is assumed in

the paper that the candidate dispatching rule set is predetermined and a search strategy

to select the best combination from these candidate rules is employed. The

effectiveness of the mixed dispatching rule approach is demonstrated by comparing

the experimental results with the conventional approach, where a single dispatching

rule is assigned for all machines in a system for a given scheduling interval.

One of the simulation-based studies for scheduling problems is due to Kim

and Kim (1994), there is a candidate DR set and the rules in this set are evaluated at

the beginning of each planning horizon by deterministic simulation. The best

performer is then selected for use for that planning horizon. There are also monitoring

points defined within the planning horizon and the actual performance of the DR

(based on the stochastic simulation which represents the real life situation) is

compared with the estimated one (from deterministic simulation at the beginning of

 10

the planning horizon). If this difference exceeds the limit then a new DR is selected

from the candidate set by the same procedure mentioned as above. In the follow up

study, Jeong and Kim (1998) have extended the previous study. The dispatching rule

selection approach is the same as the first study, where a set of candidate DRs are

evaluated via simulation and the best one is selected for implementation. The major

development in the later study is that the results from the different policies are defined

for the question of “when to select a new rule?” Specifically, four different alternative

policies are defined and compared in this study. The first policy is called as BEGIN

and only selects a new DR at the beginning of each planning horizon. The second

policy, MAJOR, considers selecting a new DR at the beginning of each planning

horizon and at times within the planning horizon whenever a major breakdown of a

machine occurs. The third one, MAJOR and PERIODIC (M&P), selects a new DR as

MAJOR and additionally at monitoring points. And the final policy, so called ALL,

selects a new DR at the beginning of each planning horizon, when a major breakdown

occurs and a minor breakdown occurs, as well. The concept of major and minor

breakdowns is a subjective issue and is defined by the authors in the paper with some

parameters. The results of the experiments in the paper show that M&P and ALL

perform best. Moreover, while evaluating the candidate DRs in the previous paper

(Kim and Kim, 1994), authors used deterministic simulation. In this paper, authors

also test the effect of using deterministic and stochastic simulations in the decision

phase, that is, the point where we will select the best performing DR via simulation.

Results show that the deterministic simulation, where the machine breakdowns are not

considered, resulted in better selections of DRs.

Pierreval and Mebarki (1997) propose a system by which dispatching rules are

selected dynamically. Their aim is to monitor the system continuously and select the

 11

most suitable dispatching rule for each work-center to optimize the system

performance. Actually, this research includes the following developments:

i- Allows for more than one performance criteria to be considered

simultaneously (both primary and a secondary criteria are considered at the

same time).

ii- Based on the specified performance criteria, dynamic selection of the DRs

seems to be a good policy for the operating conditions and current shop

status.

iii- The capability of tracking the triggering events such as new job arrivals,

resource availabilities etc.

In the light of these developments, a new heuristic technique called SFSR

(shift from standard rules) is proposed. This mechanism has a default dispatching

strategy based on the specified performance criteria. These default dispatching

strategies are called as the ‘Standard Rules’. For example, R1, which is defined as the

standard rule that applies whenever the primary objective is to reduce the mean flow

time of jobs dictates the system the SPT rule and it is active if there is no anomalies

(no triggering events) in the system. These standard rules are obtained from the

literature based on their performances in the previous studies. There is also a second

class of rules called as the ‘Diagnosis Rules’ that accounts for a major development.

These rules work according to the symptoms detected in the system by continuously

monitoring. A defined set of symptoms (new job arrivals, resource availability etc.)

and their corresponding actions, so called the Diagnosis rules, aim at achieving better

performances. However, the generation of these diagnosis rules is not based on a data

mining approach but rather they are common sense rules that are based on

experiences of humans. In this sense, this research cannot be classified as a machine

 12

learning approach to scheduling problems, but it can be classified as a scheduling by

using heuristic rules.

In another study by Kutanoglu and Sabuncuoglu (2001), an iterative

simulation-based approach for the dynamic and stochastic job shops is proposed. In

this study, at the beginning of each scheduling period, a set of DRs are tested via

simulation under the current system conditions and the forecasts. The best performing

DR is selected for the upcoming period and used until the next scheduling period. The

rolling horizon technique is also employed in this study since the simulation runs are

taken for longer time periods (more than one scheduling period).

 Suwa and Fujii (2003) use a machine learning technique (data mining) for

rule acquisition in a dynamic single machine scheduling problem. The training

examples to the learning module are generated via simulation and then the learning

tree is constructed. Afterwards, the learning tree is used for selecting the appropriate

DR to schedule the jobs in a rolling horizon basis. The attributes used in this study to

represent both the training examples and the conditions when selecting a new DR at

the beginning of a new period are based on some performance measure differences

between the current period and the last period. The learning tree is used forever after

once it is constructed and no revision or critique of the existing rule base is

performed.

A related study is the working paper by Huyet and Paris (2003). In this study,

an evolutionary optimization method is used with machine learning in order to set the

parameters of a Kanban system optimally. A population of 30 individuals is used in

each generation of GA and at every three iterations, the machine learning is used to

learn about the characteristics of promising solutions. Then a number of solutions

generated randomly, but which have the characteristics found to be important by the

 13

machine learning are embedded into the new generation and the process continues. In

this research, machine learning mainly accelerates the convergence of the individuals

and hence find the optimum (or near optimum) solutions more rapidly (approximately

half of the iterations are found to be sufficient for the same level of convergence when

compared with the GA used alone). This research is a good example to show the

power of the machine learning approaches when they are employed effectively.

Another two related studies that show the applicability and usefulness of one

of our tools in our proposed approach is the papers of Takahashi and Nakamura

(1999, 2002). In these two papers, a reactive Kanban system is proposed, where the

number of Kanban cards in the system is manipulated continuously as a response to

the system parameter, the unstable changes in demand (both mean and the variance of

the demand distribution is subject to change continuously). Since the demand

distribution is not stable, the optimal parameters of the Kanban system (number of

Kanban cards, Kanban container sizes etc.) change dynamically, as well. Therefore,

appropriate actions should be taken in order to operate optimally or at least near

optimally. In this paper, the Process Control Charts (EWMA) from quality control are

employed in order to monitor the unstable changes in demand parameters. The

demand distribution is assumed to be normally distributed and the appropriate actions

are taken whenever the chart signals a change in the mean and the variance of the

demand distribution.

In this chapter, we presented the relevant literature to our study. In the next

chapter, we present our learning-based scheduling approach in detail and give a

numeric example to illustrate the learning procedure.

 14

CHAPTER 3

Proposed System: Intelligent

Scheduling with Machine Learning

In this research, we propose a learning-based scheduling technique where the

dispatching rules (DRs) that are used to schedule the jobs on the machines are

selected by the learning tree. Moreover, the system adapts itself to the changes in

manufacturing conditions. To achieve this, the performance of the learning tree is

monitored against the considerable changes in manufacturing system parameter(s) via

the process control charts. Whenever the control charts signal out a change in the

manufacturing conditions, the learning algorithm uses the new available data gathered

from the system to re-learn about the characteristics of the manufacturing

environment to make better decisions in the future periods. Control charts are also

updated whenever necessary.

 In this Chapter, we discuss the structure of our learning-based scheduling

system. First, we will start our discussion by giving important definitions that are

frequently used in the rest of the Chapter. Then, we will present our proposed system

in general terms. After discussing the scheduling strategies and the data structures

employed, we will give a detailed explanation of our learning-based scheduling

 15

system. Following these, we will define our system attributes and explain the internal

dynamics of the learning procedure used and illustrate its steps with an example.

3.1. Definitions

Scheduling period is a time interval during which a selected DR is used to schedule

jobs. The rule can be changed before the end of the scheduling period if some changes

occur in system conditions. In such cases, this scheduling period is said to be

incomplete. Otherwise, it is of type complete.

Instance data is composed of a number of attributes and a class value, where

attributes take values of manufacturing conditions and class value corresponds to the

DR selected for a specific condition.

Realized scheduling period data represents the actual events that occur in a specific

scheduling period. It includes realized values of random variables such as the

processing times, interarrival times and system conditions at the beginning of the

scheduling period. This data set is stored in the database and is provided for the

simulation module when demanded.

System attributes are a predefined set of variables that carry information about the

state of the real manufacturing system such as queue length, total remaining

processing times, etc.

New rule selection symptoms are the triggering events that are defined in the

scheduling strategy to answer the question of “when-to-schedule”.

Scheduling strategy determines “when-to-schedule” and “how-to-schedule”

decisions (Sabuncuoglu and Goren, 2003).

Process control chart is a statistical chart used to monitor the quality of the decisions

given by the learning tree.

 16

3.2. Proposed System

The proposed scheduling system is an intelligent scheduling mechanism that employs

machine learning capabilities from AI as well as the process control chart concept

from quality control. The goal of the system is to select the best DR among Candidate

Dispatching Rules (CDRs) for a particular scheduling period. The general structure is

shown in Figure 3.1.

In the proposed system, there are five main subroutines, called modules. They

operate in harmony to achieve the goal of selecting the best performing dispatching

rule for each scheduling period. The operations of these five modules are as follows.

The database provides necessary data for both the learning module and the simulation

module. It holds the instance data for the learning algorithm to generate the learning

tree. The realized scheduling period data is also stored in the database for assessment

of DRs via simulation. Simulation module is used to measure the performances of the

candidate dispatching rules. The simulation module is invoked by the process

controller module whenever necessary. Simulation module’s outputs (instance data)

are sent to the database. These results are then used by the learning module to

generate the learning tree. Whenever a scheduling decision is to be made according to

the current scheduling strategy (e.g., hybrid approach), the learning tree selects a new

dispatching rule and this decision is implemented by on-line controller module (i.e., it

employs the selected DR in actual manufacturing conditions). It also supplies the

realized scheduling period data to the database and monitors the real system for new

rule selection symptoms. The process controller module monitors the performance of

the learning tree. It takes its inputs (realized average tardiness) from the on-line

controller module and monitors the performance of the learning tree. When the

performance of the current learning tree is found to be insufficient, it requests from

 17

 Signal for operation

Signal for continuing Signal for operation
operation or stopping
operation

 DR request

Figure 3.1: Proposed System – General Structure

Simulation Module
Database

instance
data

instance
data

realized scheduling
period data

realized system
performance

data

Learning Module On-line Controller

Selected DR for a
scheduling period

Process Controller

realized scheduling
period data

 18

the simulation module to provide new training data (instance data) for the learning

module and then sends a signal to the learning module to update the current learning

tree with this new data set. As a result, new dispatching rules are selected from this

updated learning tree and the process continues in this manner.

3.3. Scheduling Strategy

The scheduling strategy employed in this research is composed of two critical

decisions: how-to-schedule and when-to-schedule. They are explained below:

3.3.1. How-to-schedule

How-to-schedule decision determines the way in which the schedules are revised or

updated. As discussed in Sabuncuoglu and Goren (2003), there are mainly three

issues: scheduling scheme, amount of data used, and type of the response. The

scheduling scheme can be off-line, on-line, or a combination of the two (i.e., hybrid).

Off-line scheduling refers to scheduling all of available jobs for the entire scheduling

period before the execution of the schedule. On the other, hand on-line scheduling is

to take scheduling decisions one at a time during the execution of the schedule (e.g.

scheduling via priority dispatching rules). Between these two extremes, hybrid or

quasi-online scheduling lies. In quasi-online scheduling, a subset of the jobs is

scheduled off-line and the rest of the schedule is developed as time goes on. The

second issue is related to the amount of data used during the schedule generation

process. This can be full or partial, where all the forecasted data is used in the former

case whereas only a proportion of the available data is used in the partial case. The

third issue is the type of the response. This is related to the question of “what should

be done if the current schedule begins to perform worse”. One possibility can be

rescheduling, where a new schedule obtained from scratch. Another alternative can be

 19

to take no corrective action (i.e., letting the system recover itself from the negative

effects of disruptions). In addition, match-up scheduling or right/left shifting the

remaining jobs can also be used for a type of response.

Our implementation is based on the on-line scheduling scheme. Specifically,

DRs are selected by the learning tree and the scheduling decisions are made one at a

time using these selected rules (see Table 3.1). In terms of the amount of data, we

apply the “full” scheme, since all available information about the real manufacturing

system is utilized to select a DR for a scheduling period. As the type of the response,

we use “reschedule” option, as a new DR is selected at any time when the existing DR

is found to be poor.

Table 3.1: Parameters of how-to-schedule

Scheduling Scheme On-line

Amount of Data Full

Type of Response Reschedule

3.3.2. When-to-schedule

“When-to-schedule” determines the responsiveness of the system to various

kinds of disruptions. As discussed in Sabuncuoglu and Goren (2003), there are

different alternatives to decide on the timing of scheduling decisions. The first way is

to schedule the system periodically, which is called as periodic scheduling. In

periodic scheduling, the time intervals can be constant or variable. In the former case,

schedule revisions are made at the beginning of fixed time intervals. In the latter case,

revisions are made after a certain amount of schedule is realized. Another alternative,

which is called continuous scheduling, updates the schedule after a number of random

 20

events occur such as machine breakdowns, or a new job arrival, etc. In adaptive

scheduling, a scheduling decision is made after a predetermined amount of deviation

from the original schedule is observed. For example, a scheduling decision is

triggered when the difference in average tardiness between the initial and the realized

schedules exceeds a threshold value, say 10 minutes. There are also hybrid

approaches, which are combinations of the above strategies, and in this research such

a hybrid approach is employed for “when-to-schedule” decisions. In our hybrid

approach, two different triggering events, called as New Rule Selection Symptoms, are

defined for the time of selecting a new DR. These new rule selection symptoms and

their definitions are given in Table 3.2.

Table 3.2: New Rule Selection Symptoms

The length of a scheduling period (LSP) is a decision variable and a new DR is

selected at the beginning of each period to carry out the dispatching process until the

end of that scheduling period. As seen in Figure 3.2-a, the beginning of each

scheduling period is a triggering event for selecting a new DR. However, a selected

DR is not always used until the end of a scheduling period because of the existence

other symptoms, MP, that may occur in the scheduling process. In such cases, a new

DR is selected before the end of a scheduling period.

Abbreviation Name Description
BSP Beginning of each Scheduling

Period
Triggers the selection of a new DR
at the beginning of each new
scheduling period.

MP Monitoring Points Triggers the selection of a new DR
at the monitoring points whenever
necessary.

 21

 DR 1 DR 4 DR 12 DR 1

 LSP LSP LSP

 t1 1 t2 2 t3 3 t4

(a)

Scheduling Period 1 Scheduling Period 2

 LMP LSP LSP

 Monitoring Period

 MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8

 (Monitoring Point 1)

(b)

Figure 3.2: Representation of Rule Selection Symptoms. (a) New Rule Selection
Symptom (BSP). (b) Monitoring Period and Monitoring Point

As seen in Figure 3.2-a, the performance of the current DR is monitored

regularly at monitoring points and if it is found to be poor (i.e., the performance is

worse than a certain percentage of the desired level), a new DR is requested from the

learning tree. The length of a monitoring period (LMP) is usually a decision variable

(or policy variable) and a complete scheduling period contains a fixed number of

monitoring points. LMP=LSP/(k+1), where k is the number of monitoring points in a

complete scheduling period (Figure 3.2-b).

 22

 DR5 DR7 DR3

Scheduling Period 1 Scheduling Period 2 Scheduling Period 3

 LMP LSP < LSP

 t1 t2 t3 t4 t5 t6 t7

 Monitoring Period

 MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8 …

 f(MP1) < χ f(MP5) < χ (b)

f(MP2) < χ f(MP6) > χ

f(MP3) < χ

 f(MP4) < χ

(a)

Figure 3.3: Rule Selection Symptoms. (a) New Rule Selection Symptom (MP). (b) Representation of χ in control.

χ = βΧ

UCL

LCL

Χ

 23

As an example, consider the case in Figure 3.3, which displays the MP

symptom and the actions to be taken. At every monitoring point in a scheduling

interval, the current value of the performance measure is compared with a threshold

value. If it is worse than the threshold, a new DR is requested from the learning tree.

Otherwise, the system continues with the current DR. In Figure 3.3, in none of the

monitoring points of the scheduling period 1 there is a need for a change and hence

DR5 is used throughout the scheduling period 1 (i.e., type complete). At the

beginning of scheduling period 2 (at t6), DR7 is selected as a new rule by the learning

tree. At the monitoring point 6, its performance f(MP6) is found to be worse than the

threshold value χ, and a new DR is requested from the learning tree. Based on the

learning tree recommendation, DR3 is assigned as the new DR for the scheduling

period 3. Note that the scheduling period 2 is now of type incomplete, since its length

is less than LSP.

The function f(*) gives simply the average tardiness value of the completed

jobs from the beginning of the current scheduling period. For example, f(MP2) is the

average tardiness of all the jobs completed between the times t3 and t1, and f(MP5) is

the average tardiness of all the jobs completed between the times t7 and t6 (see Figure

3.3). As seen in Figure 3.3-b, the threshold value χ is a multiple of the expected

average tardiness (χ = βΧ , where the parameter β is 0<β and Χ is the long-run

expected average tardiness).

3.4. Data Structures

There are different data types used in the proposed scheduling system. These are

explained below.

 24

3.4.1. Performance Data (Realized System Performance)

Performance Data is the data type that represents the performance of a DR in a

specific scheduling period in terms of tardiness, average tardiness and the average of

average tardiness. These data are used for different purposes but in the following

formats. We define three different formats for performance data as: monitoring period

performance (Z), scheduling period performance (Y), and aggregated performance

(X). In Figure 3.4, each of these data structures are displayed in detail. Each wi value

is an individual tardiness value of a completed job. Monitoring period performance (Z

values) is the average tardiness of all the completed jobs between the last monitoring

point and the current monitoring point. For example, Z1=(w1 + w2 + w3 + w4) / 4 for

MP1, and Z2= (w5 + w6 + w7) / 3 for MP2. In other words, the Zi values are the

average tardiness realized in a monitoring period. Scheduling period performance (Y

values) is the average tardiness of all the completed jobs in a scheduling period. For

example, Y1= Z1, and Y4= 10/
26

17







∑
=i

iw . Note that scheduling period 1 is of type

incomplete and contains only one monitoring period whereas scheduling period 4 is of

type complete and consists of three monitoring periods (in this illustrative example a

complete scheduling period is assumed to contain three monitoring periods). In other

words, the Yi values are the average tardiness realized in a scheduling period.

Aggregated performances, Xi values, are samples of Yi values. In Figure 3.4, each Xi

value is defined as the average of three Yi values (the number of Yi values to be

grouped is a parameter) and therefore X1= (Y1+Y2+Y3)/3, X2=(Y4+Y5+Y6)/3, X3=

(Y7+Y8+Y9)/3. In other words, aggregated performance is the average tardiness

realized in a number of consecutive scheduling periods.

 25

MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8

 w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16 w17 w18 w19 w20 w21 w22 w23 w24 w25 w26

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8

 Y1 Y2 Y3 Y4

 X1 X2

Y1= Z1 ; Y2= 7/
11

5







∑
=i

iw ; Y3= 5/
16

12







∑
=i

iw ; Y4= 10/
26

17







∑
=i

iw

X1= (Y1+Y2+Y3)/3 ; X2= (Y4+Y5+Y6)/3 ; X3= (Y7+Y8+Y9)/3 .

Figure 3.4: Types of Performance Data

Scheduling Period 1 Scheduling Period 2 Scheduling Period 3 Scheduling Period 4

 26

Among these data structures, the Zi values are used for monitoring the

performance of the current DR at monitoring points. Yi values are used as the

performance value of the DR that is used in a specific scheduling period. It is also a

part of the realized scheduling period data, which is used by the simulation module.

Finally, the Xi values are used for the performance evaluation of the existing learning

tree and these are the data that are plotted on the Χ chart. Yi values are aggregated to

form Xi values because of the normality assumption requirement of the control chart.

Aggregating four to six data is sufficient for meeting this requirement.

3.4.2. Instance Data

Figure 3.5 shows the representation of instance data. Each row in this figure

corresponds to an individual data, which has a number of attributes, the class value

that indicates the best DR that works under these specific attribute-value

combinations and the performance value (scheduling period performance) of that DR.

Figure 3.5: Instance Data Representation

These data are created from the outputs of the simulation module and are used

for two important reasons in the system. First, it is used in the construction of the

learning tree, where these data are supplied to the learning algorithm to make

inferences about the characteristics of the manufacturing system based on the pre-

specified set of attributes. Second, it is used to construct the process control charts.

The column that stores the performance values is supplied to the process controller

module whenever the process control charts are to be updated. In the second usage of

Attribute-1 Attribute-2 … Attribute-n Performance Value Class Value
A-1 Value A-2 Value … A-n Value f(DR3) DR3
A-1 Value A-2 Value … A-n Value f(DR5) DR5
A-1 Value A-2 Value … A-n Value f(DR7) DR7

… … … … … …
A-1 Value A-2 Value … A-n Value f(DR1) DR1

 27

the instance data, only the performance value column is used. This column contains

the best performance values found by the simulation module under different DRs

based on the specified attribute values. These data points are represented as *
iX

indicating the best performances (average tardiness) found for specific system

conditions. Since, we monitor the performance of the learning tree relative to the best

performance; we employ *
iX values when constructing the process control charts (for

detailed information about f(DRj) see section 3.5.2. Simulation Module).

3.4.3. Realized Scheduling Period Data

In Figure 3.6, the realized scheduling period data structure is depicted. At the end of

any scheduling period, the on-line controller module sends all the relevant realized

manufacturing system data to the database. These data points include the values of the

system attributes at the beginning of the scheduling period (scheduling period k in our

case), the realized random events during that period as well as the average tardiness

value obtained under the current DR in use in that scheduling period. In the current

implementation, since we model actual manufacturing conditions in a simulation

model, we store the seed values of the random number generations for each stochastic

variable in this column. Thus, the entire history is easily generated using these seeds

when necessary. Hence, these data points are the result of the tracking of the system

by the on-line controller. The importance of this data type comes from the following

fact: when a DR is selected by the learning tree and used in a scheduling period, we

do not know whether it is actually the best DR for that scheduling period. The only

way to know it is to simulate the other DRs in the CDR set under exactly the same

system conditions. These data points provide an important feedback for the system to

 28

improve the quality of the learning tree whenever necessary (these issues will be

discussed later in the text).

 Scheduling Period Attribute-1 Attribute-2 … Attribute-n Realized Scheduling
Period Data

1 A-1 Value A-2 Value … A-n Value Realized Scheduling
Period-1 Data

2 A-1 Value A-2 Value … A-n Value Realized Scheduling
Period-2 Data

… … … … … …
k A-1 Value A-2 Value … A-n Value Realized Scheduling

Period-k Data

Figure 3.6: Realized Scheduling Period Data

3.5. Proposed System – A Detailed Explanation

General structure of the proposed system has been introduced in Section 3.2. We now

explain each module in detail.

3.5.1. Database

The database of the proposed system is composed of two layers, called as D1

and D2 (Figure 3.7). D1 stores the “realized scheduling period data” discussed in

Section 3.4.3. These data are supplied from the on-line controller to the simulation

module. D2 stores the instance data discussed in Section 3.4.2. These data are

supplied from the simulation module, and are used by the learning module to generate

the learning tree.

As stated earlier, D1 stores the input data for the simulation module and D2

stores the output data of the simulation module. Hence, whenever a row of data from

D1 is used in the simulation module, it is deleted from D1 and an associated row of

the output data is added to D2. For example, in Figure 3.7, row 2 of the table in D1 is

deleted from the table when it is used by the simulation module and the last row in the

table of D2 is created (as indicated by dashed lines).

 29

3.5.2. Simulation Module

The simulation module is activated upon the request by the process controller

module to measure the performance of all DRs for the past scheduling periods (using

the realized scheduling period data) and to generate new training sets for the learning

module. In this way, the quality of the DRs used for the past periods is also assessed.

In Figure 3.8, scheduling period-k (one of the past scheduling periods) is

simulated for all m DRs. Previous historical data stored in the D1 are used to generate

input to simulation experiments. All m DRs are simulated one by one and their

corresponding average tardiness values (f(DRj)) are measured. Then, the DR that

results in the minimum average tardiness value (DRj = DR[argmin{f(Dri), i =

1,2,3,…,m}]) is identified as the best DR for scheduling period-k. Note that this rule

may not be the same rule used previously for period-k. Running the simulation

module for past periods and collecting the performance data help us to create training

sets for the learning module. Hence, the best rule identified in the simulation

experiments and the corresponding manufacturing conditions are stored in D2 of the

database in the form of instance data (see Figure 3.8).

3.5.3. Learning Module

The learning module is mainly composed of two parts: “learning module-1”

and “learning module-2”. Their functionalities are given below:

Learning Module-1: This module contains the learning tree that is

constructed by the learning algorithm in learning module-2. Its responsibility is to

select a new DR from the existing learning tree based on the current values of the

system state attributes. The on-line controller module provides the current values of

these attributes to learning module-1 and requests a new DR. In response, module-1

recommends the best DR to the on-line controller (Figure 3.9).

 30

 Database

Figure 3.7: Database of the Proposed System

Scheduling
Period

Attribute-1 Attribute-2 … Attribute-n Realized Scheduling
Period Data

1 A-1 Value A-2 Value … A-n Value Realized Scheduling
Period-1 Data

2 A-1 Value A-2 Value … A-n Value Realized Scheduling
Period-2 Data

3 A-1 Value A-2 Value … A-n Value Realized Scheduling
Period-3 Data

… … … … … …
k A-1 Value A-2 Value … A-n Value Realized Scheduling

Period-k Data

Attribute-1 Attribute-2 … Attribute-n Class Value
A-1 Value A-2 Value … A-n Value DR3
A-1 Value A-2 Value … A-n Value DR5
A-1 Value A-2 Value … A-n Value DR7

… … … … …
A-1 Value A-2 Value … A-n Value DR1

D2

D1

Simulation Module

 31

Attribute-1 Attribute-2 … Attribute-n Realized Scheduling Period Data
A-1 Value A-2 Value … A-n Value Realized Scheduling Period-k Data

Figure 3.8: Simulation Module

Attribute-1 Attribute-2 … Attribute-n Performance Value Class Value
A-1 Value A-2 Value … A-n Value f(DRj) DRj

DR1

DR2

DRm

f(DR1)

f(DR2)

f(DRm)

From D1 of the database

To D2 of the database

Simulation Module

 32

 DRj

Figure 3.9: Learning Module

Attribute-1 Attribute-2 … Attribute-n Class Value
A-1 Value A-2 Value … A-n Value DR3
A-1 Value A-2 Value … A-n Value DR5
A-1 Value A-2 Value … A-n Value DR7

… … … … …
A-1 Value A-2 Value … A-n Value DR1 Attribute-1 Attribute-2 … Attribute-n

A-1 Value A-2 Value … A-n Value

CURRENT Learning Tree
C4.5 Learning
Algorithm

D2 Database

D1 Database

Learning
Module-1

Learning
Module-2

On-line Controller

New Tree

 33

Learning Module-2: This module contains the learning algorithm that is used

to generate the learning tree in learning module-1. As seen in Figure 3.9, the

algorithm is invoked by the process controller module and the necessary data

(instance data) is retrieved from the D2 database. C4.5 algorithms (Quinlan, 1993) are

used to create the learning tree (see Figure 3.9).

3.5.4. On-line Controller

As discussed in Section 3.2, there are mainly two responsibilities of the on-

line controller. These are as follows:

i) Handling the realization of a scheduling decision

Realization of a scheduling period is accomplished by the implementation of a

scheduling decision (i.e., implementation of a dispatching rule) in either a real

manufacturing system or a simulated environment. In this study, we use the second

approach and run the internal simulation engine (see Figure 3.10). To get a realization

of a scheduling period, on-line controller requests a DR from the learning module and

implements it. The results of implementation in the form of realized scheduling period

data is sent to D1 of the database.

ii) Monitoring the real system for new rule selection symptoms

Detecting new rule selection symptoms (see Table 3.2 on page 20) and taking

the appropriate actions in response to the existence of these symptoms is another

functionality of the on-line controller module. As discussed in Section 3.3.2 (Figures

3.2 and 3.3 in particular), there are two new rule selection symptoms (BSP and MP).

Whenever the on-line controller module detects any one of these two symptoms

during the realization of a scheduling period, it pauses the execution process and

requests a new DR from the learning module. Upon the new DR supplied by the

 34

learning module-1, on-line controller resumes the execution process with this new DR

(see Figure 3.10).

3.5.5. Process Controller

Process controller coordinates the operations of the other modules. It takes its

necessary inputs from the on-line controller and activates the other three modules

appropriately. It has three sub-modules: process control chart constructor, process

control chart, and logical controllers (see Figure 3.11). These are explained in detail

as follows:

i) Process Control Chart Constructor

The purpose of this sub-module is to update the process control charts

(and RΧ charts), which are responsible from the control of the learning tree. The

construction of the process control charts requires data (*
iX) from D2 (the

construction methods of these two charts are given in Appendix A).

The Χ chart is used to detect the shifts in the mean performance of the decisions

(selected DRs) given by the learning tree. Averages of the average tardiness values

are plotted in this chart. R chart is used to detect the shifts in the variance of the

performance of the decisions of the learning tree (see DeVor et al., 1992). In other

words, standard deviations of the average tardiness values of the realized scheduling

periods are plotted in this chart.

ii) Process Control Chart Sub-module

This module contains the process control charts, which are created by the

process control chart constructor module (Figure 3.11). The purpose of this module is

to handle the monitoring operation of the learning tree by using these two charts

(and RΧ charts).

 35

 On-line Controller

Figure 3.10: On-line Controller

Simulator

Learning Module

D2 Database

D1 Database

Realized Scheduling
Period Data

Logical Subroutines

DR

 36

One of the distinguishing features of the proposed scheduling system from the

previous studies (Suwa et. al., 2003 and Shaw et. al., 1992) is the mechanism that

continuously updates the learning tree. This continuous update is important since the

manufacturing system often undergoes various types of changes in time. In this

context, the process control charts act as a regulator of the learning tree. Moreover,

the process control charts may also need to be updated due to changes in

manufacturing conditions. Hence, as the proposed system evolves over time, two

important decisions need to be made:

Decision-1: Is it necessary to update the existing learning tree at current time t?

Decision-2: Is it necessary to update the existing process control charts at current time

t?

These two questions are to be answered every time when a new data point is

plotted in the process control charts (and RΧ charts) and the decisions are made by

the rules defined in the logical controllers of the process controller module. These

rules are defined in the next section. In this section, however, we focus only on the

data plotted on the process control charts. Recall that the data plotted on the

 and RΧ charts are obtained from the on-line controller (the iΧ data) but the data

used to update the charts are supplied from the D2 database.

In Figure 3.12, we illustrate the data points plotted on the Χ chart. The

horizontal axis represents the time and the vertical axis is the average tardiness (i.e.,

performance measure). When the system continues, the Yi values (average tardiness

per scheduling period) are collected by the on-line controller at the end of each

scheduling period. These observations are then grouped in size 5 to create iX ’s

(average of average tardiness).

 37

 Provides Scheduling Period Data

 Provides Instance Data

Invoke when it is necessary

 Invoke when it is signaled

 Realized system performance data

Figure 3.11: Process Controller Module and Its Relationships with Other Modules

Process
Control
Chart

Constructor Process
Control
Chart

Logical
Controllers

Simulation Module

D2 Database

D1 Database

Learning
Module-1

Learning
Module-2

On-line Controller

 38

 Y1 Y2 Y3 Y4 Y5 Y6Y7Y8 Y9Y10Y11Y12Y13Y14Y15Y16Y17Y18Y19Y20Y21Y22……… Y66

 Sample mean

 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 X20
 +

 + + + +
 A + +
 +
 +

 3σ B + + +
 +
 C +
 + + +
 Χ +
 C +
 +
 +
 3σ B

 A +

 Change the learning tree Change the learning tree Change the learning tree

Change the process control chart

Figure 3.12: Plotted Data in the ΧChart

 39

5
2112 ++−− ++++

= iiiii
i

YYYYY
X

This is the same as the R chart in which the following Ri values are plotted:

()arg arg 2 1 1 2 where , , , , ,i l est smallest l est smallest i i i i iR Y Y Y Y Y Y Y Y Y− − + += − ∈

There are two reasons for grouping five Yi values to generate iX and Ri

values for the and RΧ charts, respectively. First of all, the and RΧ charts require the

normality assumption. As discussed in DeVor, Chang, Sutherland (1992, pp. 197-

198), we satisfy the normality assumption for iΧ ’s by grouping observations (a group

of size 4-6 is usually recommended in the literature). Another reason for plotting

every five observations is to give the current learning tree a chance for survival. In

other words, the performance of the learning tree is judged in a reasonable time period

without leading to nervousness.

iii) Logical Controllers

This part of the system contains predefined logical rules used for updating the

learning tree and control charts. These decisions normally affect the entire system by

triggering the other modules (i.e., simulation module, learning engine etc.). These

rules are as follows:

Rule set 1: Update Only Learning Tree Rules

The first set of rules is used to update the existing learning tree. As discussed

earlier, the current learning tree may loose its validity in time as its performance is

monitored by the process control charts (and RΧ charts). Three rules, called as

“update only learning tree rules”, are given in Table 3.3. These rules are applied to the

control charts (and RΧ charts) and when any of these three signals is detected, the

existing learning tree is updated. These rules are provided in most of the statistical

quality books to interpret the and RΧ charts (see for example DeVor et. al., 1992).

 40

In Figure 3.12, at iX =X4 an “extreme points” signal is detected and the

current learning tree is updated at this point. Also, “zone-A signal” is detected at iX =

X12 and the learning tree is updated at this point again.

Rule set-2: Update “Both the Learning Tree and the Process Control Charts”

Rules

The second set of rules defined in this module is used to give the update

decision of the process control charts as well as the learning tree. As discussed

previously, the process control charts may lose their validity in time since the

manufacturing system conditions may change.

Table 3.3: Update ONLY Learning Tree Rules

Signal Definition Apply to Action
Extreme
Points

iΧ or Ri points that fall beyond
the control limits of the

 and RΧ charts, respectively.

 and RΧ charts UPDATE the
current learning tree

Zone-A
signal

Two out of three iΧ points in
Zone-A (between 2σ and 3σ) or
beyond.

Χ chart only UPDATE the
current learning tree

Zone-B
signal

Four out of five iΧ points in
Zone-B (between σ and 2σ) or
beyond.

Χ chart only UPDATE the
current learning tree

In Table 3.4, two rules are defined to update both the learning tree and the

process control charts. Whenever one of these two rules in Table 3.4 applies, a new

learning tree is created and the process control charts (and RΧ charts) are updated.

For example, in Figure 3.12, iX =X14 is captured by the second rule in Table 3.4, and

therefore the learning tree as well as the control charts are updated at this point. The

new control chart shifts upwards in terms of its centerline and control limits (see

Figure 3.12).

 41

The first rule in Table 3.4 is adapted from the literature (see DeVor et. al.,

1992) and the second one is developed in this research. Both of the two rules indicate

a shift in the mean and/or variance of the process (manufacturing system).

Table 3.4: Update Both the Learning Tree and the Process Control Charts Rules

Signal Definition Apply to Action
8 successive
points

8 or more successive points
strictly above or below the
centerline

 and RΧ charts Update both the
learning tree and
the process control
charts

2 successive
signal from
Rule Set-1

Two successive occurring of
“Update Only Learning Tree
Signals”

 and RΧ charts Update both the
learning tree and
the process control
charts

3.6. System Attributes for Job Shop Scheduling System

The learning module of the system generates a learning tree that relies on the

manufacturing system characteristics. Decisions on selecting dispatching rules are

given by the existing learning tree on-line. In such a system, the learning algorithm

requires a number of attributes that can provide valuable information about the current

manufacturing system conditions. These attributes, therefore, play a key role in the

performance of the proposed system, since they impact the quality of the tree in the

construction phase as well as in the decision phase (i.e., selection of the right DRs

from the learning tree for a scheduling period). Hence, appropriate attributes should

be defined and used in such a way that they can represent a variety of important

manufacturing system characteristics. In this section, the attributes defined for a job

shop manufacturing environment are discussed. Detailed definitions of the proposed

attributes are provided in Appendix B. Hence, our discussion in the rest of this section

 42

will focus on the guidelines that we follow when defining those attributes rather than

getting into the details of individual attributes.

First of all, we are faced with two critical and dependent questions (i.e.,

second question depends the first one). The first question is about defining high

quality attributes, which are capable of capturing the important characteristics

(information) of the manufacturing system. On the other hand, the second question is

about deciding on a subset of these predefined attributes, which are to be embodied

into our system. This subset of attributes should be selected in such a way that they

should work in harmony and each individual attribute should capture some portion of

the important information about the manufacturing system. In the following

paragraphs, we address the first question and present our approach to that question.

We leave the discussion and the results of the second one to the next chapter.

At the very first step of defining the candidate attributes, we realize that it is

important to define attributes so that their values can be calculated easily. This is

because of the fact that our proposed system is an on-line scheduling system, and

hence the time required to select a new dispatching rule should be negligible.

Moreover, when setting the values of the attributes at any time t, all we can use is the

available information at that time such as the number of jobs in the system, processing

times and due dates of the jobs, the realized performance of the system in the last

scheduling period etc. Based on these observations, we define a number of attributes

such as total remaining processing time, maximum queue length at time t, average

remaining time until due dates and so on. In addition to the above observations, we

also take into account the characteristics and dynamics of the candidate dispatching

rules and try to figure out under what conditions a specific rule performs well and in

what other conditions performs poorly. In light of this idea, we define a number of

 43

attributes for each dispatching rule that might be helpful to differentiate that rule from

the others. For instance, Attribute-12 (NumLongPT), which is the number of jobs

with higher processing times than the average processing time of all jobs, is defined to

distinguish SPT rule from the others. The idea behind this is as follows: if there are so

many jobs with high processing time requirements, then the probability that the new

arriving jobs with less processing time requirement than these jobs will be higher.

This implies that these jobs, which have long processing times, will most probably be

scheduled too late under SPT, resulting with a high average tardiness value. Second

half of the attributes given in Appendix B (i.e., Attribute-12 and the rest) are defined

in a similar fashion as we just discussed.

3.7. Dynamics of the Learning Algorithm

In Section 3.5.3, when we discuss the learning module, we say that the module is

composed of two parts. One of these parts, which we call module-1, contains the

learning tree and selects a new DR from this learning tree based on the current values

of the system state attributes. This learning tree, on the other hand, is created by the

second part, which we call as module-2. In this section, we present the internal

dynamics of module-2. Also, to illustrate the concepts, we will give a simple example

and show the construction of a learning tree step by step.

As we already mentioned, module-2 employs the C4.5 algorithms developed

by Quinlan (1993) to create the learning tree. The fundamental feature of the

algorithm is that it uses divide-and-conquer approach. That is, it divides the data set

on the attributes’ values at each branching and deals with the subsets of data. The

main steps of the algorithm are as follows:

 44

Step 0. (Initialization) Let the training data set be C.

Step1. If all the instances in C belong to the same class, then create a node

with that class value and halt. Otherwise, go to Step 2.

Step 2. Select an attribute, A with values {v1, v2, v3, …, vn} and create a

decision node.

Step 3. Partition the training instances in C into subsets C1, C2, …, Cn

according to the values of A.

Step 4. Apply the algorithm recursively to each of the sets Ci.

The algorithm stops when all the instances are perfectly classified or when

there is no remaining attribute for further branching. Since a previously used attribute,

for branching at a particular node, is not used for further branching for the successor

nodes, termination of the algorithm is guaranteed.

The most challenging part of the algorithm is how to decide (or pick) the

attribute to partition the instance data at some node. For example, let the data set in

Table 3.5 is given. Note that, the definitions of the attributes used in this artificial data

set are given in Appendix B. When the algorithm starts, it should pick an attribute

among the four attributes for the first branching. But how does C4.5 decide which

attribute is the best for branching at a given node? A statistical property, called

information gain is used by C4.5. Gain measures how well a given attribute separates

training examples into targeted classes. The one with the highest information

(information being the most useful for classification) is selected. In order to define the

gain function, an idea from information theory, which is called as entropy (or

information), is used. Entropy of a set is the average amount of information needed to

identify the class of an instance in that set. The entropy is calculated as the following:

 45

Let S be a set of instances and let C be the set of possible class values. In our

example, C={SPT,ODD}. Then,

Entropy(S) = Info(S) = ∑
∈

−
Cc

cc

S
S

S
S

)(log2 , where cS is the set of instances that

belongs to class c, Cc∈ and * is the cardinality of the set *.

Table 3.5: Artificial training data set

Attributes Class

Discrete type Continuous type Continuous type Discrete type
RUS NumCust PCompPT NumLongPT DR

0 75 70 1 SPT
0 80 90 1 ODD
0 85 85 2 ODD
0 72 95 2 ODD
0 69 70 2 SPT
1 72 90 1 SPT
1 83 78 2 SPT
1 64 65 1 SPT
1 81 75 2 SPT
2 71 80 1 ODD
2 65 70 1 ODD
2 75 80 2 SPT
2 68 80 2 SPT
2 70 96 2 SPT

For example, if S is the data set given in Table 3.5, then the Entropy(S) is:

Entropy(S) =)
14
9(log

14
9)

14
5(log

14
5

22 −− = 0.940

 Then, Gain(S,A) is the information gain of set S if it is partitioned on attribute

A. The following formulation assumes that attribute A has discrete values. That is,

there is a set V of possible values that A can take. We also explain the case of

continuous valued attributes just after the following discussions.

Let V={v1, v2, …, vn} is the set of all possible values of attribute A.

 46

Gain(S,A) = Entropy(S) ∑
∈

−
Vv

v
v SEntropy

S
S

)(, where vS is the subset of S for which

attribute A has a value v.

 For example, let S is the data set given in Table 3.5 and we want to find the

gain for the attribute RUS. Note that, the attribute RUS is a discrete type attribute,

which can take only three values: 0, 1 and 2. Then, the gain of set S if it is partitioned

on the attribute RUS will be:

 Gain(S,RUS)= 0.940 










 −−−)

5
3(log

5
3)

5
2(log

5
2

14
5

22






 −−+)

4
0(log

4
0)

4
4(log

4
4

14
4

22

 










 −−+)

5
2(log

5
2)

5
3(log

5
3

14
5

22 = 0.940 – 0.694 = 0.246

 It might seem that tests on continuous attributes would be more complicated,

since they contain arbitrary thresholds. However, this is not the case. The following

algorithm solves the problem for continuous attributes and is used in C4.5 and most of

the other learning algorithms. The algorithm is the following: the instances in the

training data set are first sorted on the values of the continuous attribute, say A. Let’s

denote the sorted values as {v1, v2, v3, …, vn}. Any threshold value between vi and vi+1

will have the same effect of dividing the cases into those whose value of the attribute

A lies in {v1, v2, …, vi} and those whose value is in {vi+1, vi+2, …, vn}. Thus, there are

n-1 possible splits on A. For each split, the gain function is calculated and the

maximum of these n-1 gain values is taken as the gain on that attribute with its

associated threshold value.

 Now, let’s return to our example and construct the learning tree by using the

algorithm we discussed. We will choose the first attribute to partition the initial data

set. For this, we calculate gain values for each of the attributes by using the above

formulas. Gain values of each attribute are as follows:

 47

Gain(S,RUS) = 0.246

Gain(S,NumCust) = 0.113

Gain(S,PCompPT) = 0.102

Gain(S,NumLongPT) = 0.048

Since we get the maximum gain value from the attribute RUS, we divide our

initial data set on RUS and we get the partial tree in Figure 3.13. For the first branch,

RUS = 0, we have a subset of instances, say S1, which is shown in Table 3.6. We

calculate gain for the other three attributes on this data set. The gain values are found

to be:

Figure 3.13: Construction of the learning tree: first step

Gain(S1,NumCust) = 0.419

Gain(S1,PCompPT) = 0.970

Gain(S1,NumLongPT) = 0.019

Therefore, the second division attribute is PCompPT with a threshold value of

70 and the next partial tree is shown in Figure 3.14. For the second branch, RUS = 1,

the subset obtained is perfectly classified and therefore both gain values are found to

be zero. Thus, we create a leaf node with associated class value (Figure3.15). If we

continue to proceed with the algorithm until it stops, we will get the final learning tree

as shown in Figure 3.16. This tree perfectly classifies all the instances and therefore

the algorithm stops without attempting to divide the sets on the remaining unused

attribute NumCust.

RUS

= 0 = 1 = 2

 48

Table 3.6: Subset of initial data set for branch RUS = 0

RUS NumCust PCompPT NumLongPT Dispatching Rule
0 75 70 1 SPT
0 80 90 1 ODD
0 85 85 2 ODD
0 72 95 2 ODD
0 69 70 2 SPT

Figure 3.14: Construction of the learning tree: second step

Figure 3.15: Construction of the learning tree: third step

Figure 3.16: Final learning tree

 RUS

= 0 = 1 = 2

PCompPT
≤ 70 > 70

 RUS

= 0 = 1 = 2

PCompPT
≤ 70 > 70 SPT

 RUS

= 0 = 1 = 2

PCompPT
≤ 70 > 70 SPT NumLongPT

ODD SPT

= 2 = 1

SPT ODD

 49

 The procedure for constructing the final learning tree is not limited by the

above discussion. After the construction of the tree is completed, it is pruned by a

pruning algorithm, which is also a part of the C4.5 algorithms. Simply, pruning

algorithm eliminates the nodes of the tree that are not found to be significantly

important. The details of the pruning procedure are not presented here but it can be

found in Quinlan (1993).

3.8. Summary

In this chapter, we presented the parts of the learning-based scheduling system and

explained the dynamics of the learning algorithm. This scheduling technique uses the

dispatching rules where the rules are selected by the learning tree on-line. Also, to

monitor changes in system parameters, process control charts are employed.

Whenever the control chart signals a change in the system, the machine learning

algorithm uses the new available data from the system in order to re-learn about the

characteristics of the manufacturing environment in order to give better decisions in

the future.

In the next section, we will present the experimental designs to answer various

questions. Some of these experiments will aim to fine-tune up the system parameters

as well as to provide valuable insights into the job shop scheduling problem. We will

also test the performance of the proposed system under different experimental

conditions.

 50

CHAPTER 4

Experimental Design and

Computational Results

In this chapter, we discuss the experimental conditions and present simulation results

to measure the performance of the proposed system. In the first section, we give the

underlying ideas behind the motivation required to explain the experimental results

clearly. In Section 4.2, we set the utilization and due date tightness levels. In Section

4.3, we conduct experiments for the selection of scheduling period length and use the

results in Section 4.4 to set the monitoring period length. In Section 4.5, we

experiment on our predefined system attributes (see Appendix B) to select an

appropriate subset among them, which is to be used in the proposed system. The

results of experiments on the learning-based system are organized in two consecutive

sections. In Section 4.6, we test the system with a static learning tree, where the

learning takes place only at the beginning of the execution and the tree is not updated

again in time. The proposed system as a whole is tested in Section 4.7. We end this

chapter with a brief summary.

 51

4.1. Motivation

In this section, we define our problem, list the assumptions and give important

definitions. In general, the following assumptions are valid throughout the thesis

unless otherwise stated:

1. The problem considered in this thesis is a classical job shop problem with four

machines given by Baker (1984).

2. There is no machine breakdown in the system.

3. There is a set of candidate dispatching rules (CDR) that can be used (i.e.,

shortest processing time (SPT), modified due date (MDD), modified operation

due date (MOD) and operation due date (ODD)).

In the literature, when a dispatching rule is used for an entire planning

horizon, it is called single-pass scheduling. On the other hand, the best dispatching

rule (among a candidate rule set) can be determined (via simulation) and used for each

relatively short scheduling interval in a planning horizon. This second approach is

called multi-pass scheduling.

When explaining the experimental results, we use three performance

measures, called as Multi-pass Performance (MultiPass), Best Performance

(BestPerf) and the Learning Performance (LearnPerf). They are all measured in terms

of average tardiness and defined in the following paragraphs.

Assume that we have two simulation models of the same manufacturing

system, called as SM1 and SM2. SM1 will represent the real life and SM2 will

represent the simulation environment, which is the imitation of SM1. Note that, SM1

is the simulation model used in the on-line controller and SM2 is the multi-pass

scheduling simulator, which is used to compare the performance of our proposed

system with the performance of multi-pass scheduling. Since, random events occurred

 52

in real life differs from the simulated environment, these two models operate under

different random number seeds. Say, SM1 uses random number seed-1 and SM2 uses

seed-2. Also, assume a third simulation model, SM3, which also uses the seed-1. We

can think of SM3 as the playback of the realized events occurred in SM1 in a

scheduling period n. Therefore, SM3 can be run for scheduling period-j only if the

realization of period-j in SM1 (real life) is completed. These three simulation models

help us to measure the three performances we need.

Figure 4.1-a shows how we measure the MultiPass for scheduling period-j. At

the beginning of period-j, the system state of SM2 is set equal to the system state of

SM1. Then SM2 is run for each candidate dispatching rule (i.e., SPT, MDD, ODD,

MOD) and the one resulting with the minimum average tardiness value, say SPT, is

selected to be used in scheduling period-j. SPT is passed to the SM1 to realize its

actual performance. At the end of scheduling period-j, the realized average tardiness

value is our MultiPass value for scheduling period-j. In this sense, MultiPass is the

average tardiness value achieved by the decisions of a multi-pass scheduling

simulator.

BestPerf is the minimum average tardiness value that can ever be achieved for

a scheduling period, say period-j, by using any rule given in the candidate rule set. In

other words, it is the best average tardiness value that we can achieve in period-j

subject to the parameter values of the system, such as the scheduling and monitoring

period lengths, the candidate dispatching rules and so on. We can calculate this value

for a scheduling period-j, if the realization of period-j is already completed by SM1.

Then we can impose the same realization of the random events on SM3 to answer the

question: what would have been the average tardiness values if we had used

dispatching rule SPT (or MDD or ODD or MOD) in period-j? Then we simply set the

 53

(a)

(b)

Figure 4.1: Performance measures. (a) Determination of Multi-pass performance
(MultiPass). (b) Determination of Best Performance (BestPerf). (c) Determination of
the Learning Performance (LearnPerf).

Scheduling Period-j

Random
number
seed-2

Random
number
seed-1

SPT
MDD
ODD
MOD

Choose
the best

performer,
say SPT.

SPT

Realized performance of the
decision (SPT) given by
multi-pass simulator (in
terms of Average Tardiness)

Exactly
same initial
conditions

Random
number
seed-2

SPT
MDD
ODD
MOD

Scheduling Period-n Best performance that can ever
be achieved in the realization of
scheduling period-n (in terms
of Average Tardiness)

SM2

SM1

SM3

 54

(c)

Figure 4.1: (Cont’d)

value of BestPerf to the minimum of those tardiness values (see Figure 4.1-b). We

measure this performance value to see how far our proposed system’s performance

(LearnPerf) and multi-pass scheduling simulator performance (MultiPass) are away

from the ideal.

Finally, the learning performance in period-j, LearnPerf, is the realized

average tardiness value of the rule selected by the learning tree (see Figure 4.1-c).

That is, we request a dispatching rule from the learning tree at the beginning of

scheduling period-j based on the current values of the system attributes. This rule is

used during period-j and the average tardiness value is computed. Since this is the real

CURRENT Learning Tree

Attribute
values based
on the initial
conditions

Random
number
seed-2

Selected
rule, say
MDD.

Scheduling Period-n
Realized performance of the
decision (MDD) given by
Learning Tree (in terms of
Average Tardiness)

SM1

 55

performance of the dispatching rule selected by the tree, realization of the rule is

carried out by SM1. In the experiments LearnPerf represents the performance of our

proposed system.

 From these definitions, it is clear that both LearnPerf and MultiPass should be

worse than the BestPerf. That is because of the fact that BestPerf is the average

tardiness value that can be achieved if and only if we know the realization of the

random events before selecting the dispatching rules at each scheduling period

throughout the planning horizon. Hence, BestPerf gives a lower bound for the other

two performance functions.

4.2. Setting Due Date Tightness Levels and Utilization Levels

In the simulation experiments, two levels of utilization (i.e., low and high) and two

levels of due date tightness (i.e., loose and tight) are considered. The two levels of

utilization are 80% and 90%. Due dates are set by using the TWK due date

assignment rule. The high and low levels are set in such a way that percent of tardy

(PT) jobs is approximately as 10% and 40% under the FCFS rule for the loose and

tight due date cases, respectively. Table 4.1 summarizes the results of simulation

experiments to set the flow allowances. As can be seen in Table 4.1, due date of a job

is equal its release time plus 5.5 times its total processing time for 80% utilization and

tight due dates case. Note that, the required allowance is almost double when

utilization is 90%.

 56

Table 4.1: Simulation results for flow allowances

Utilization Tight Loose
Flow Allowance (k) 5.5 13
Mean Tardiness (MT) 4.47 0.86

80%

Percent Tardy (PT) 41% 9.6%
Flow Allowance (k) 11 26
Mean Tardiness (MT) 9.03 1.76

90%

Percent Tardy (PT) 42% 10%

4.3. Setting Appropriate Scheduling Period Length (SPL)

In this section, our purpose is to properly set the scheduling period length for the

proposed system. We consider the following additional assumptions in the

experiments:

1. Every scheduling period is of type complete (i.e., no monitoring).

2. Once a rule is selected for a scheduling period, it cannot be changed until the

end of that period.

3. The appropriate scheduling period length is determined by looking at the

minimum BestPerf value.

As can be seen in Table 4.2, 11 different levels of scheduling period length are

tested in the experiments for four due date and utilization level combinations. The

simulation results are taken in steady state with 20 replications each with 200000

minutes of a planning horizon. To find BestPerf, scheduling rules are compared under

the same experimental conditions using the common random number (CRN) scheme.

Table 4.2: Experimental design of scheduling period length

Factors Levels
Scheduling period length 50, 100, 200, 500, 1000, 2000, 5000, 7500, 10000,

12500 and 15000

 57

The results for loose due date case are given in Figures 4.2 and 4.3. In these

figures, single-pass performances of each dispatching rule are also displayed in

addition to BestPerf. In both figures, single-pass performance of SPT is found

significantly worse than the other rules. The single-pass performances of MOD, ODD

and MDD are almost equal. Also, BestPerf displays an exponential decay behavior as

a function of SPL. It is interesting to note that for short scheduling period length

selections, BestPerf is found to be significantly worse than the single-pass

performances of the three dispatching rules (MOD, ODD and MDD). This is due to

the fact that as SPL decreases, even though the selected rules seem to be the best for

these short scheduling periods, the system switches to different rules so frequently

that the performance of the system in the long run deteriorates. When we increase

SPL, BestPerf begins to improve and converges to the single-pass performance of the

rules MOD, ODD and MDD. Since the performances of the individual dispatching

rules (MDD, ODD and MOD) are very close to each other in the long run for loose

due-dates (as also stated by Baker, 1984), switching between these rules doesn’t

provide any benefit. Therefore, BestPerf converges to a limit (single-pass

performance of the rules) showing a behavior of exponential decay function.

For the tight due dates, the experimental results show different behavior to

some extend (see Figures 4.4 and 4.5). In both figures, single-pass performances of

each dispatching rule are also displayed in addition to BestPerf. It is shown in the

figures that the single-pass performances of the four dispatching rules are

significantly different than each other and MOD performs at least twice better than

the other rules. In addition, BestPerf displays an exponential decay behavior as we

increase SPL, but having a minimum value at some point. For example in Figure 4.4,

BestPerf reaches its minimum value at point A (i.e., SPL equals to 1000 minutes) and

 58

0

0.02

0.04

0.06

0.08
0.1

0.12

0.14

0.16

0.18

0 5000 10000 15000 20000

SPL

A
ve

ra
ge

 T
ar

di
ne

ss

BestPerf
MOD, ODD, MDD
SPT

(a)

0
0.005

0.01
0.015

0.02
0.025

0.03
0.035

0.04
0.045

0.05

0 5000 10000 15000

SPL

A
ve

ra
ge

 T
ar

di
ne

ss

BestPerf
MOD, ODD, MDD

(b)

Figure 4.2: 80% utilization, loose due-dates with CDR set {MOD, SPT, MDD,
ODD}. (a) Complete display of the results. (b) Zoom-in version.

 59

0
0.1

0.2
0.3
0.4

0.5
0.6
0.7

0.8
0.9

0 2000 4000 6000 8000 10000 12000 14000 16000

SPL

A
ve

ra
ge

 T
ar

di
ne

ss

BestPerf
MOD, ODD, MDD
SPT

Figure 4.3: 90% utilization, loose due-dates with CDR set {MOD, SPT, MDD,

ODD}.

then it begins to deteriorate and converges to a limiting value when we further

increase the scheduling period length. We explain this interesting behavior as follows:

choosing a shorter scheduling period length results in misdetection of the best

dispatching rule for the sake of better long-run performance of the system (i.e., system

switches between rules frequently). When we increase the scheduling period length,

system begins to select the best rule combination and BestPerf reaches its minimum.

But, when we continue to increase the scheduling period length further, performance

deteriorates and converges to a higher value than the minimum. This higher value is

close to the long-run performance of the most dominant dispatching rule, because

system begins to choose that rule most of the time. Thus, this significant increase in

system performance is attributable to the loss of the improvements that can be

achieved by switching to different rules during those long scheduling periods.

We also check whether the minimum points achieved in the tight due date case

are statistically significant or not. Figure 4.6-b shows the magnified portion of Figure

4.3-a around the minimum point. We say that the point A is statistically smaller than

 60

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000

SPL

A
ve

ra
ge

 T
ar

di
ne

ss BestPerf
MOD
ODD
SPT
MDD

(a)

0.375
0.38

0.385
0.39

0.395
0.4

0.405
0.41

0.415
0.42

0.425

0 500 1000 1500 2000 2500

SPL

A
ve

ra
ge

 T
ar

di
ne

ss

BestPerf

A

B

C

(b)

Figure 4.4: 80% utilization, tight due-dates with CDR set {MOD, SPT, MDD,
ODD}. (a) Complete display of the results. (b) Zoom-in version around point A.

 61

0

0.5

1

1.5

2

2.5

0 5000 10000 15000 20000

SPL

A
ve

ra
ge

 T
ar

di
ne

ss BestPerf
MOD
ODD
SPT
MDD

(a)

0.555
0.56

0.565
0.57

0.575
0.58

0.585
0.59

0.595
0.6

0.605

4000 6000 8000 10000 12000

SPL

A
ve

ra
ge

 T
ar

di
ne

ss

BestPerf

(b)

Figure 4.5: 90% utilization, tight due-dates with CDR set {MOD, SPT, MDD,
ODD}. (a) Complete display of the results. (b) Zoom-in version around SPL 7500.

 62

the two neighboring points (i.e., points B and C). This is testified by the paired-t test

applied to difference of points AB and AC. For example, when the Confidence

Interval is constructed on the difference between A and C, it is

2 2 2 2
1 2

1 2 1 / 2,2 2
0.03 0.030.40 0.38 2,021 (0.001,0.039)

20n
S SY Y t

nα− −

− +
− ± = − ± =

 Since it does not include 0, we say that it is statistically smaller on 0.95

confidence level.

From Figures 4.4 and 4.5, we realize that the performances of the three

dispatching rules (i.e., SPT, MDD and ODD) are close to each other when compared

to MOD. Therefore, we repeat the same analyses for the set of dispatching rules SPT,

MDD and ODD for tight due date case. Our objective is to see the behavior of

BestPerf when the candidate dispatching rules have close performance to each other.

Figures 4.6 and 4.7 show the corresponding simulation results. The behavior of

BestPerf is still same as the previous results. Moreover, the minimum value achieved

is more apparent in this case. Also, for 80% utilization case, BestPerf is better than

any single-pass dispatching rule for every choice of SPL (Figure 4.6-a). These results

clearly show that even if the long-run performances of the candidate dispatching rules

are relatively close to each other, significant improvements can be achieved by

selecting appropriate scheduling period length and the dispatching rule combination

for the entire planning horizon.

The detailed simulation results can be found in Appendix C. Based on the

experimental results of this section we decide to use the following parameters in the

rest of the experiments (Table 4.3).

 63

Table 4.3: Parameter values considered for further experimentation

Utilization
Levels

Due date
Tightness

Scheduling Period
Length (SPL)

Candidate Dispatching
Rule Set

80 % 1000
90 % tight 7500

{SPT, MDD, ODD}
{SPT, MDD, ODD, MOD}

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5000 10000 15000 20000

SPL

A
ve

ra
ge

 T
ar

di
ne

ss

BetPerf
SPT
MDD
ODD

(a)

0.67
0.68
0.69
0.7

0.71
0.72
0.73
0.74
0.75
0.76
0.77

0 1000 2000 3000 4000 5000 6000

SPL

A
ve

ra
ge

 T
ar

di
ne

ss

BetPerf

(b)

Figure 4.6: 80% utilization, tight due-dates with CDR set {SPT, MDD, ODD}. (a)
Complete display of the experiments. (b) Zoom-in version around the minimum.

 64

0

0.5

1

1.5

2

2.5

0 5000 10000 15000 20000

SPL

A
ve

ra
ge

 T
ar

di
ne

ss

BestPerf
SPT
MDD
ODD

(a)

1.15

1.2

1.25

1.3

1.35

1.4

0 2000 4000 6000 8000 10000 12000 14000 16000

SPL

A
ve

ra
ge

 T
ar

di
ne

ss

BestPerf

(b)

Figure 4.7: 90% utilization, tight due-dates CDR set {SPT, MDD, ODD}. (a)
Complete display of the results. (b) Zoom-in version around the minimum.

 65

4.4. The Effect of Monitoring Point (MP) and β-parameter Selection

As mentioned in Section 3.3.2, one of the criteria for when-to-schedule decision is

monitoring point (MP) symptom. In the previous section, we experimented for

selecting the appropriate scheduling period length when there is no monitoring on the

system performance. In this section we address the questions of how far these

monitoring points should be apart from each other and what should be the value of β-

parameter (see 3.3.2 for definition of β, χ and Χ). The following additional

assumptions are also used in this section:

1. At the beginning of each scheduling period a dispatching rule is selected

among the candidate rules. This rule may be used until the end of that

scheduling period or may be changed at some monitoring point within the

scheduling period.

2. At any monitoring point, the decision to change the existing rule or continue

with it (until the next monitoring point or end of the scheduling period) is

given by the procedure defined in Section 3.3.2.

3. The appropriate monitoring period length is determined by looking at the

minimum BestPerf value.

Experimental design is given in Table 4.4. This is a nested experimental design, in

which the factor monitoring period length (MPL) is nested inside the factor

scheduling period length (SPL). The reason for this kind of a design requirement is

that selecting a monitoring period length of 2500 makes nonsense when the

scheduling period length is 1000. Hence, the factor levels of MPL depend on the level

of SPL and therefore nested in factor SPL. For SPL value of 1000, three levels of

monitoring period lengths are considered, whereas four levels of MPLs are tested for

SPL of 7500. Note that, MPL of 1000 for SPL being 1000 corresponds to the case of

 66

no monitoring at all, since they are equal. This is also the case for MPL of 7500 for

SPL being 7500. 12 levels of β parameter are used in the experiments. The value of

Χ is taken to be 0.6795 and 1.195 for 80% and 90% utilizations, respectively. These

values are the BestPerf values for 80% and 90% utilizations with respective SPLs

(i.e., SPL=1000 for 80%, SPL=7500 for 90% utilization), which we found in the

previous section.

Table 4.4: Experimental design of monitoring period length and β-parameter

Factors Levels
Due date tightness Tight
Dispatching rule set {SPT, MDD, ODD}
β 0.2, 0.5, 0.8, 1, 1.4, 1.8, 2.2, 2.4, 2.6
Utilization 80% 90%
SPL 1000 7500
MPL 250 500 1000 500 2500 3750 7500

Again, the simulation runs are taken in steady state with 20 replications and

each replication with 200000 minutes of a planning horizon for each factor

combination. Also, common random numbers are used when deciding which

dispatching rule to use in a scheduling period. All of the simulation results are

tabulated in Appendix D.

The results for 80% utilization case are shown in Figure 4.8. In Figure 4.8-a,

for monitoring period length of 250, best mean tardiness value is achieved with a β

value of 0.2, and for MPL of 500 a β value of 1 yields the best (Figure 4.8-b). These

points are statistically smaller than the others on 0.95 confidence, which is also tested

by paired-t test. We also compare the performances of best MPL-β pairs with each

other, which is also shown in Figure 4.9. These points are also statistically different

 67

0.64
0.645

0.65
0.655

0.66

0.665
0.67

0.675
0.68

0.685

0 0.5 1 1.5 2 2.5 3

β

M
ea

n
Ta

rd
in

es
s

(a)

0.65

0.655

0.66

0.665

0.67

0.675

0.68

0.685

0.69

0 0.5 1 1.5 2 2.5 3

β

M
ea

n
Ta

rd
in

es
s

(b)

Figure 4.8: BestPerf for various MPL-β combinations when system utilization is 80%.
(a) MPL = 250. (b) MPL = 500.

 68

0.64
0.645

0.65
0.655

0.66
0.665

0.67
0.675

0.68
0.685

0 100 200 300 400 500 600 700 800 900 1000 1100

MPL

M
ea

n
Ta

rd
in

es
s

Figure 4.9: Comparison of best MPL-β pairs for 80% utilization

than each other on 0.95 confidence level. Hence, our results indicate that monitoring

the system performance improves our performance measure (i.e., average tardiness).

In addition to that, imposing frequent monitoring points on the system with a small β

value further improves the system performance.

For 90% utilization case, the results of the experiments are shown in Figure

4.10. In Figure 4.10-a, for monitoring period length of 500, best mean tardiness value

is achieved with a β value of 0.2, and for MPLs of 2500 and 3750, β value of 1 yields

the best (Figures 4.10-b and 4.10-c). These points are statistically smaller than the

others on 0.95 confidence level. We compare the performances of best MPL-β pairs

with each other, which is also shown in Figure 4.11. The results are both similar in

80% and 90% cases, where system performance deteriorates when we increase MPL

(Figures 4.9 and 4.11). Also, these points in Figure 4.11 are statistically different than

each other on the 0.90 confidence level.

In summary, for both 80% and 90% utilizations, monitoring the system

performance in discrete points in time improves our objective function (i.e., average

 69

1.1

1.12

1.14

1.16

1.18

1.2

1.22

1.24

0 0.5 1 1.5 2 2.5 3

β

M
ea

n
Ta

rd
in

es
s

(a)

1.12
1.14
1.16
1.18

1.2

1.22
1.24
1.26
1.28

1.3

0 0.5 1 1.5 2 2.5 3

β

M
ea

n
Ta

rd
in

es
s

(b)

1.16

1.18

1.2

1.22

1.24

1.26

1.28

1.3

0 0.5 1 1.5 2 2.5 3

β

M
ea

n
Ta

rd
in

es
s

(c)

Figure 4.10: BestPerf for various MPL-β combinations when system utilization is
90%. (a) MPL = 500. (b) MPL = 2500. (c) MPL = 3750.

 70

1.1
1.11
1.12
1.13
1.14
1.15
1.16
1.17
1.18
1.19

1.2

0 1000 2000 3000 4000 5000 6000 7000 8000

MPL

M
ea

n
Ta

rd
in

es
s

Figure 4.11: Comparison of best MPL-β pairs for 90% utilization.

tardiness). Also, experiments show that it is vitally important to select not only the

right monitoring period length, but also the right β parameter for that MPL. For

example, for 90% utilization case, a MPL of 2500 with a β value other than 1 result in

worse performance measures than no monitoring case (i.e., mean tardiness values

greater than 1.195). Moreover, for both 80% and 90% utilizations, system

performance improves with small monitoring period lengths. In addition to that, for

small monitoring period lengths, small β values work better. For example, for 80%

utilization, it is best to choose β=0.2 when MPL=250 whereas β=1 when MPL=500.

4.5. The Selection of System Attributes

As we defined in Section 3.1, the system attributes carry information about the state

of the manufacturing system. These attributes take its place as the fundamental

structure in the representation of instance data (see Figure 3.5 for instance). Learning

module of our proposed system utilizes the information in these instance data to learn

about the characteristics of the manufacturing system. After the learning algorithm

 71

processes these data, we end up with a learning tree by which we will select

dispatching rules to be used in future scheduling periods. At the beginning of each

forthcoming scheduling period, the system attributes’ values are set by looking at the

state of the manufacturing system. Then, a dispatching rule is selected from the

learning tree by branching on the tree based on the values of these attributes. The

selected rule is used until the end of the scheduling period and a new dispatching rule

is selected for the next scheduling period by following the same procedure.

It is evident from the above discussion that it is extremely vital to use the right

set of attributes not only to construct a representative learning tree but also to branch

correctly on the constructed tree to end up with the right dispatching rule to use. Since

we don’t have a given set of attributes to use, we have to decide the set of attributes to

use among our candidate rules, which are given in Appendix B. In this section, we

decide the set of attributes that will be used in our system to generate high quality

learning trees. Before attacking the question, we first try to get insights about the

problem. For this, we create a number of attribute sets and test the performance of the

learning trees, which are created upon these attribute sets. From these initial tries, we

observe the following:

1. Increasing the number of attributes in the set does not necessarily improve the

quality of the learning tree.

2. The effect of each attribute in the set on the performance of the generated

learning tree depends on the other attributes in the set.

3. Performance of the generated tree deteriorates when the attribute set contain

Attribute-2 and Attribute-3 of Appendix B.

Based on these observations we disregard the Attributes 2 and 3 in Appendix

B from further consideration. However, we still have 24 attributes to consider for

 72

selection and considering every combination of these attributes requires testing of 224

attribute sets, which is impractical. Therefore, we ignore the 2nd observation above

and assume that the effect of each attribute on the quality of the learning tree is

independent of the other attributes in that set. Then we use the following heuristic

algorithm to select the attributes among the candidates:

Step 0. (Initialization) Define C as the set of all candidate attributes. D1 is the set

of training data and D2 is the set of test data. Construct the tree on D1 set with

attributes in C and test the performance of the tree on D2 set. Let this performance

denoted by P(C).

Step 1. Discard attribute-i from C and construct the tree on D1 set with attributes

in C\{i} and test the performance of the tree (P(C\{i})) on D2 set. Repeat this step for

all i є C.

Step 2. Let new C be C\{i} for i, where }}){\(max{arg CjjCPi ∈= . Continue

with the next step if C=Ø, otherwise return Step 2.

Step 3. Select the attribute set that result in the maximum performance among all

tested.

In this algorithm, the performance function P(*) is defined as the percentage

of correctly classified instances in the test data set, D2. By using this algorithm we

experiment for the right attribute set that should be used by the learning tree for two

cases: when we have sufficiently large data to learn on and when the data is scarce.

For sufficiently large data and scarce data cases, we use 2000 and 200 training data,

respectively. The size of the test data set is taken to be 2000 in both cases. Data sets,

D1 and D2, are generated under the experimental conditions given in Table 4.5.

 73

Table 4.5: Experimental conditions for generated data sets

Utilization Level Due date tightness SPL MPL β Dispatching Rules
80 % Tight 1000 250 0.2 SPT, MDD, ODD

 For both scarce and sufficiently large data set cases, the algorithm found that

the attribute set that result in the best learning tree contains all the attributes in the

initial set C. In other words, we should use all the attributes defined in Appendix B

other than the second and third attributes. The performance values of the learning

trees in each case with all attributes used are provided in Table 4.6. Interestingly, the

performance of the tree is found to be better in the scarce data case than the large data

case but the difference is not significantly high.

Table 4.6: Summary of the experimental results on the attribute set selection

Cases Performance of the Tree

Sufficiently large data 80.7 %
Scarce data 81.55 %

Based on the experimental results of this section, we embodied all the

attributes defined in Appendix B (not including the second and third attributes) into

our system. In the rest of the experiments where learning take place, the learning tree

is constructed upon this attribute set.

4.6. Job Shop Scheduling with a Static Learning Tree

In the previous sections of this chapter, we experimented with the important system

parameters. Now in this section, we use our learning based scheduling system in a job

shop environment. First we measure the performance of the proposed system when

the tree is constructed only once. That is, the learning tree is not updated over time.

For that reason, we call this application as scheduling with a static learning tree.

 74

For the experiments we again use a nested experimental design (Table 4.7). In

this design, MPL factor is nested inside the SPL factor, as it is in the previous section,

and the β factor is nested inside the MPL factor. The reason for nesting the β factor

inside the MPL factor is due to the fact that we take the best level of β factor for each

MPL . Two different dispatching rule sets are also considered in the experiments,

where one of the sets contains MOD and the other set does not.

Table 4.7: Experimental design of scheduling with a static learning tree

Factors Levels
Due date tightness Tight
Dispatching rule set {SPT, MDD, ODD}, {SPT, MDD, ODD, MOD}
Utilization 80% 90%
SPL 1000 7500
MPL 250 500 1000 500 2500 7500
β 0.2 1 - 0.2 1 -

In the simulation experiments, we take 20 replications for each experimental

condition and each replication is composed of two phases: the Warm-up Phase and

the Testing Phase. In the warm-up phase we generate the necessary instance data for

our learning algorithm to construct the learning tree. This phase is composed of 2000

scheduling periods (for the 80% utilization settings), which provides us a training data

set that contains 2000 instance data (i.e., each scheduling period provides one instance

data). At the end of this warm-up phase, a learning tree is constructed by using this

training data set and the second phase starts. In the second phase, the dispatching rules

for each scheduling period are selected from the learning tree. This phase also

contains 2000 scheduling periods for each replication in the 80% utilization case and

the statistics are collected in this phase (i.e., BestPerf, LearnPerf and MultiPass). As

before, the common random numbers (CRN) scheme is used in the experiments. In

the 90% utilization case, each replication is composed of only 1000 scheduling

 75

periods for both phases due to the high memory requirement in the high utilization

case.

We are interested in the following questions:

1. Does the learning based system give better average tardiness values than the

simulation-based multi-pass algorithms (i.e., can we get LearnPerf <

MultiPass?)

2. What are the percentage differences between BestPerf-LearnPerf and

BestPerf-MultiPass?

3. What are the percentage use of dispatching rules for BestPerf, LearnPerf and

MultiPass?

The results of the experiments are given in Appendix E and Tables 4.8 through

4.10 summarizes these results. As it is expected BestPerf gives the lower bounds for

both MultiPass and LearnPerf. In both of the experimental conditions, our learning-

based scheduling system performs better than the simulation-based scheduling (see

Table 4.8 and 4.9). However, LearnPerf approaches to MultiPass as we increase the

monitoring period length. At the extreme, when there is no monitoring at all, the

performances of learning-based and simulation-based scheduling approaches become

almost equal. This result is consistent with our findings in Section 4.3, in which

smaller values for MPL results better average tardiness values for BestPerf.

Therefore, it is vital to set the appropriate SPL, MPL and β values to get the

maximum efficiency from the learning-based system.

For the small values of MPL, 250 for 80% and 500 for 90% utilizations, the

percentage of the gap between the LearnPerf and the BestPerf are considerably

smaller (at least the half) than the gap between MultiPass and BestPerf. Also, the

percentage of the gap between the LearnPerf and the BestPerf found to be better in

 76

the high utilization cases (i.e., 90% utilization) when compared with the low

utilization case. This shows that our proposed system works much better when the

utilization increases. Also, based on the paired-t test results we show that these

performance values are statistically different than each other on a 0.95 confidence

interval.

Also, when we compare the results given in Table 4.8 with the results of Table

4.9, we observe that when we add a very competitive dispatching rule, such as MOD,

to the dispatching rule set, all the performance metrics (BestPerf, LearnPerf and

MultiPass) improve significantly (almost 50% better results). Moreover, LearnPerf

and MultiPass get closer to BestPerf (small ∆1 and ∆2 values in Table 4.9 than in

Table 4.8) when the MOD is added to the rule set. Alternatively, we expect that

Table 4.8: Summary of performance values for the rule set {SPT, MDD, ODD}

Utilization MPL BestPerf LearnPerf MultiPass Single-pass ∆1� ∆2�

250 0.648 0.799 0.894 0.905 23.3% 37.96%
500 0.655 0.876 0.896 0.905 33.74% 36.79% 80%

1000 0.679 0.891 0.895 0.905 31.22% 31.81%
500 1.1 1.383 1.494 1.545 25.72% 35.81%

2500 1.139 1.487 1.532 1.545 30.55% 34.5% 90%
7500 1.196 1.51 1.514 1.545 26.25% 26.58%

Table 4.9: Summary of performance values for the rule set {SPT,MDD,ODD,MOD}

Utilization MPL BestPerf LearnPerf MultiPass Single-pass ∆1� ∆2�
250 0.359 0.415 0.492 0.52 15.59% 37.04%
500 0.374 0.428 0.44 0.52 14.43% 17.64% 80%

1000 0.383 0.435 0.44 0.52 13.57% 14.88%
500 0.52 0.568 0.684 0.704 9.23% 31.53%

2500 0.539 0.587 0.632 0.704 8.9% 17.25% 90%
7500 0.559 0.591 0.595 0.704 5.72% 6.44%

� ()

BestPerf
BestPerfLearnPerf −

×=∆ 1001
, ()

BestPerf
BestPerfLearnPerf −

×=∆ 1002

(MultiPass-BestPerf)

 77

LearnPerf and MultiPass to move away from BestPerf when a low-quality DR is

added to the candidate dispatching rule set.

We also keep track of the dispatching rule usage percentages in the

experiments for both MultiPass, LearnPerf and BestPerf. Table 4.10 summarizes

these percentages and the detailed values are given in Appendix E. Note that the

values don’t add up to 100 because of the rounding. As it is clear from Table 4.10, for

the low values of MPLs, learning-based scheduling system uses dispatching rules as

close to their best dispatching rule combinations. On the other hand, simulation-based

scheduling gives much different values than the best combinations for small MPLs.

For high values of MPL, percentage usage of the dispatching rules for each system

converge to each other as expected.

Table 4.10: Average dispatching rule usage percentages

 80% Utilization 90% Utilization

Dispatching Rule
Percentages Rules

MPL=
250

MPL=
500

MPL=
1000

MPL=
500

MPL=
2500

MPL=
7500

Multi-pass SPT 13% 14% 14% 2% 2% 2%
 MDD 34% 34% 34% 58% 58% 58%
 ODD 52% 51% 51% 38% 39% 39%

Learning SPT 10% 14% 14% 2% 4% 2%

 MDD 54% 38% 32% 84% 63% 58%
 ODD 34% 46% 53% 12% 32% 38%

Best SPT 9% 13% 14% 2% 3% 2%

 MDD 54% 39% 33% 82% 63% 58%
 ODD 36% 47% 52% 14% 33% 38%

 In summary, our learning-based scheduling system performs better than the

simulation-based scheduling approach in all the experiments. The results also show

the importance of setting for the SPL, MPL and β parameters. When they are fine

tuned up, the proposed system can provide significant improvements on the system

 78

performance. Also, we expect further improvements when proposed learning tree is

updated in time and we will analyze this in the next section.

 4.7. Job Shop Scheduling with Dynamic Learning Structure

In previous sections, we focused on important issues such as the selection of

scheduling period and monitoring period, attributes and so on. We also tested our

learning-based scheduling system with a static learning tree. In this section, we test

our learning-based scheduling system with a dynamic learning tree (i.e., all of its

modules discussed in Chapter 3 are activated). In other words, we now continuously

monitor the quality of the learning tree by the control charts and update it whenever

necessary. Thus, we call this experiment as the scheduling with a dynamic learning

structure.

 In the simulation experiments, we consider a manufacturing system in which

its internal parameters change in time (i.e., arrival rate, due date tightness levels). The

details of the experimental design are given in Table 4.11. Note that, we take 5

planning horizons, where each horizon contains 1000 scheduling periods. At the

beginning of each horizon, we change some of the parameters of the manufacturing

system. For example, in Table 4.11, the factor “parameter sequence for arrival rate”

represents the value of the arrival rate of the jobs during each horizon. Specifically, in

horizons 1, 2, 3, 4 and 5, jobs arrive exponentially with parameters 0.8, 0.9, 0.7, 0.9

and 0.8, respectively. For the construction of the learning tree, we consider two

different strategies, which are represented by the factor “Training Data Set” in Table

4.11. When this factor is at its level Full, the learning tree is constructed based on all

the accumulated data points since the beginning of the experiment. On the other hand,

 79

if its level is set to Partial, the most recent 200 data points (1/5 of a horizon length)

are used each time when the learning tree is updated.

Table 4.11: Experimental Design for scheduling with dynamic learning structure

Factors Levels
DR set {MOD, MDD, ODD, SPT}, {MDD, ODD, SPT}
Sequence for arrival rate parameter {0.8, 0.9, 0.7, 0.9, 0.8}
Horizon lengths (number of SPs) 1000
Training Data Set Full, Partial (1/5 of horizon length)
SM2 type Reactive, non-reactive, partially reactive
Due date tightness Adjusted, not adjusted
(SPL, MPL, β) {(1000, 250, 0.2), (7500, 500, 0.2)}

The next factor, SM2 type, represents the characteristics of the simulation

module 2 (see Figure 4.1). Recall that the SM2 is responsible for assessment of the

decisions if they are given via the simulation runs rather than the learning tree (i.e.,

multi-pass). We consider three levels for the SM2 type: reactive, non-reactive and

partially reactive. When SM2 type is reactive, SM2 model is updated immediately

when there is any parameter change in the actual manufacturing environment. In other

words, if the arrival rate of the jobs changes in real world, this information is made

available for simulation model 2, which is used for simulation-based scheduling,

immediately. Intuitively, this is impossible in the real world implementation, because

when any parameter of the manufacturing system changes it can be made available to

the simulation model of the system after a period of time. This delay is inevitable

since detecting the shift in the parameters requires data collection and statistical

analysis. For this reason, we also consider the partially reactive level for SM2 type.

When the type is partially reactive, SM2 is updated for the arrival rate changes, but

with some time delay and an accuracy level. Specifically, arrival rate in SM2 is

updated with a delay of 200 scheduling periods (1/5 of a horizon length) after the

 80

actual change in the real world takes place and set to the values in the sequence {0.8,

0.875, 0.725, 0.875, 0.8} for each horizon 1 through 5, respectively. The time delay

for the update in SM2 represents the passage of time for collecting sufficient data,

which is necessary to statistically determine the new arrival rate. As another extreme,

we consider SM2 type as non-reactive. In this case the model, SM2, is not updated for

any changes in the manufacturing environment. For example, when arrival rate

changes from 0.8 to 0.9 in real world, simulation-based scheduling (SM2) continues

to operate under the initial arrival rate, which is 0.8.

Another factor considered in the experiments is due date tightness and it has

two levels, adjusted and not adjusted. For the adjusted case, we set the allowance

factor k for setting the due dates such that percent tardy is always 40% under the

FCFS rule. In Section 4.2, we found k equal to 5.5 and 11 for the arrival rates 0.8 and

0.9 to achieve 40% of percent tardy jobs, respectively. We also look for the arrival

rate of 0.7 and k being 3.75 results in 40% tardy. Therefore, for the adjusted case,

flow allowance factor k is set to 3.75, 5.5 and 11 for arrival rates of 0.7, 0.8 and 0.9,

respectively, for all simulation models SM1, SM2 and SM3 (these models are

discussed in Section 4.1). For the not adjusted case, flow allowance factor is always at

the level 5.5 for all arrival rates. Therefore, the first case corresponds to a policy such

that the manufacturing firm adjusts its due date setting policy when the arrival rate of

the jobs changes and in the second case no action is taken for setting the due dates of

the jobs when the utilization of the shop floor changes.

The last factor that we consider in the experiments is the choice of scheduling

and monitoring period lengths along with the β value. For the levels of this factor, we

simply consider the best combinations that we previously determined for 80% and

 81

90% utilization levels. Therefore, the two levels, (1000, 250, 0.2) and (7500, 500,

0.2), are considered for this factor.

With these factors and their associated levels, we end up with 48 experimental

conditions. At the beginning of each experiment, there is a warm up period with a

length of 200 scheduling periods to provide necessary initial data to the system to

construct the first learning tree and the control charts. System statistics are initialized

after the warm up period and each experimental condition is run for 5 consecutive

horizons (5000 scheduling periods) as it is given in Table 4.11. The results of the

experiments, MultiPass, LearnPerf and BestPerf, are summarized in Table 4.12 and

4.13. Note that, BestPerf provides the lower bound values for both MultiPass and the

LearnPerf.

From these results, our first observation is that our learning-based scheduling

system outperforms the simulation-based scheduling approach (MultiPass) in 38

experimental conditions out of 48. In these cases, LearnPerf is closer to BestPerf

more than MultiPass in a range of 2.34% to 40.87%. In 2 cases, both MultiPass and

LearnPerf is found as equal. In the remaining 8 cases simulation-based scheduling

(MultiPass) perform slightly better than LearnPerf (i.e., between 1.68% and 7.83%

better). However, in these cases SM2 type is reactive, which is difficult to achieve

such conditions in the real world.

When we compare LearnPerf for full and partial training data set cases, we see

that using all available data always results better performances (see Tables 4.12 and

4.13). At first glance, this seems to be counter intuitive because when parameters of

the manufacturing system change, learning with the most recent data is expected to

yield better performance. However, the results show that our learning algorithm gets

benefit from the past data as well as the recent data. Note that, BestPerf and MultiPass

 82

Table 4.12: Summary of the experimental results for DR set {MDD, ODD, SPT}

 Training data set: Full Partial
 (SPL, MPL, β): (1000, 250, 0.2) (7500, 500, 0.2) (1000, 250, 0.2) (7500, 500, 0.2)

Due date tightness: SM2 type:
MultiPass 1.18 1.25 1.18 1.25
LearnPerf 1.1 1.11 1.13 1.2 Reactive
BestPerf 0.98 1.02 0.98 1.02

MultiPass 1.37 1.52 1.37 1.52
LearnPerf 1.1 1.11 1.13 1.2 Non-reactive
BestPerf 0.98 1.02 0.98 1.02

MultiPass 1.25 1.32 1.25 1.32
LearnPerf 1.1 1.11 1.13 1.20

Adjusted

Partially Reactive
BestPerf 0.98 1.02 0.98 1.02

MultiPass 2.38 1.79 2.38 1.79
LearnPerf 2.3 1.75 2.42 1.9 Reactive
BestPerf 2.15 1.71 2.15 1.71

MultiPass 2.59 2.26 2.59 2.26
LearnPerf 2.3 1.75 2.42 1.9 Non-reactive
BestPerf 2.15 1.71 2.15 1.71

MultiPass 2.49 2.02 2.49 2.02
LearnPerf 2.3 1.75 2.42 1.9

Not Adjusted

Partially Reactive
BestPerf 2.15 1.71 2.15 1.71

 83

Table 4.13: Summary of the experimental results for DR set {MDD, ODD, SPT, MOD}

 Training data set: Full Partial
 (SPL, MPL, β): (1000, 250, 0.2) (7500, 500, 0.2) (1000, 250, 0.2) (7500, 500, 0.2)

Due date tightness: SM2 type:
MultiPass 0.81 0.65 0.81 0.65
LearnPerf 0.81 0.65 0.82 0.68 Reactive
BestPerf 0.71 0.6 0.71 0.6

MultiPass 0.96 0.73 0.96 0.73
LearnPerf 0.81 0.65 0.82 0.68 Nonreactive
BestPerf 0.71 0.6 0.71 0.6

MultiPass 0.87 0.69 0.87 0.69
LearnPerf 0.81 0.65 0.82 0.68

Adjusted

Partially Reactive
BestPerf 0.71 0.6 0.71 0.6

MultiPass 1.52 1.2 1.52 1.2
LearnPerf 1.2 1.15 1.61 1.27 Reactive
BestPerf 1.15 1.1 1.15 1.1

MultiPass 1.67 1.35 1.67 1.35
LearnPerf 1.2 1.15 1.61 1.27 Nonreactive
BestPerf 1.15 1.1 1.15 1.1

MultiPass 1.6 1.26 1.6 1.26
LearnPerf 1.2 1.15 1.61 1.27

Not Adjusted

Partially Reactive
BestPerf 1.15 1.1 1.15 1.1

 84

are not affected from this parameter, since the training data set characteristic only influences

the learning tree and have not any influence on these performances.

The third observation is related with the selection of SPL, MPL and β values. For the

rule set of {MOD, MDD, ODD, SPT}, the combination (7500, 500, 0.2) gives always better

results for LearnPerf than the combination (1000, 250, 0.2) (Table 4.13) regardless of partial

or full data sets being used. The reason why the combination (7500, 500, 0.2) yields better

results when MOD is in the rule set is that the performance of MOD dominates the

performance of other rules when it is used for a long period of time. Thus, the combination

(7500, 500, 0.2) yields better results than the combination (1000, 250, 0.2). For the rule set

{MDD, ODD, SPT}, the best choice of (SPL, MPL, β) combination depends on the

parameter “due date tightness”. When the due date tightness factor is at its level not adjusted,

the choices of (7500, 500, 0.2) results in again the improved performance than (1000, 250,

0.2) regardless of the partial or full data sets being used. But, when it is at the adjusted level,

(7500, 500, 0.2) and (1000, 250, 0.2) results in better for the full and partial training data sets,

respectively, (Table 4.12). These results stress us the importance of the appropriate selection

of SPL, MPL and β values once more.

 As stated before, partially reactive SM2 is a more realistic case for the simulation-

based scheduling approach. In this case, the simulation model used for the scheduling

decisions of multi-pass approach is updated with some time delay and inaccuracy that may

exist in detecting the parameter changes in the actual manufacturing environment. Therefore,

the comparison of the learning-based (LearnPerf) and the simulation-based (MultiPass)

systems for this factor level is of special importance. When the SM2 type is partially reactive,

LearnPerf is better than MultiPass in 14 cases out of 16. That is, LearnPerf is closer to

BestPerf more than MultiPass in a range of 3.26% to 34.79% in these 14 cases. In the

 85

Table 4.14: Summary of the experimental results for DR set {MDD, ODD, SPT} (Percentage of deviation from the best)

 Training data set: Full Partial
 (SPL, MPL, β): (1000, 250, 0.2) (7500, 500, 0.2) (1000, 250, 0.2) (7500, 500, 0.2)

Due date tightness: SM2 type:
100×

−
BestPerf

BestPerfMultiPass 20.40% 22.55% 20.40% 22.55%
Reactive

100×
−

BestPerf
BestPerfLearnPerf 12.24% 8.82% 15.30% 17.64%

100×
−

BestPerf
BestPerfMultiPass 39.79% 49.01% 39.79% 49.01%

Non-reactive
100×

−
BestPerf

BestPerfLearnPerf 12.24% 8.82% 15.30% 17.64%

100×
−

BestPerf
BestPerfMultiPass 27.55% 29.41% 27.55% 29.41%

Adjusted

Partially Reactive
100×

−
BestPerf

BestPerfLearnPerf 12.24% 8.82% 15.30% 17.64%

100×
−

BestPerf
BestPerfMultiPass 10.69% 4.67% 10.69% 4.67%

Reactive
100×

−
BestPerf

BestPerfLearnPerf 6.97% 2.33% 12.55% 11.11%

100×
−

BestPerf
BestPerfMultiPass 20.46% 32.16% 20.46% 32.16%

Non-reactive
100×

−
BestPerf

BestPerfLearnPerf 6.97% 2.33% 12.55% 11.11%

100×
−

BestPerf
BestPerfMultiPass 15.81% 18.12% 15.81% 18.12%

Not Adjusted

Partially Reactive
100×

−
BestPerf

BestPerfLearnPerf 6.97% 2.33% 12.55% 11.11%

 86

Table 4.15: Summary of the experimental results for DR set {MOD, MDD, ODD, SPT} (Percentage of deviation from the best)

 Training data set: Full Partial
 (SPL, MPL, β): (1000, 250, 0.2) (7500, 500, 0.2) (1000, 250, 0.2) (7500, 500, 0.2)

Due date tightness: SM2 type:

100×
−

BestPerf
BestPerfMultiPass 14.08% 8.33% 14.08% 8.33%

Reactive
100×

−
BestPerf

BestPerfLearnPerf 14.08% 8.33% 15.49% 13.33%

100×
−

BestPerf
BestPerfMultiPass 35.21% 21.66% 35.21% 21.66%

Non-reactive
100×

−
BestPerf

BestPerfLearnPerf 14.08% 8.33% 15.49% 13.33%

100×
−

BestPerf
BestPerfMultiPass 22.53% 15% 22.53% 15%

Adjusted

Partially Reactive
100×

−
BestPerf

BestPerfLearnPerf 14.08% 8.33% 15.49% 13.33%

100×
−

BestPerf
BestPerfMultiPass 32.17% 9.09% 32.17% 9.09%

Reactive
100×

−
BestPerf

BestPerfLearnPerf 4.34% 4.54% 40% 15.45%

100×
−

BestPerf
BestPerfMultiPass 45.21% 22.72% 45.21% 22.72%

Non-reactive
100×

−
BestPerf

BestPerfLearnPerf 4.34% 4.54% 40% 15.45%

100×
−

BestPerf
BestPerfMultiPass 39.13% 14.54% 39.13% 14.54%

Not Adjusted

Partially Reactive
100×

−
BestPerf

BestPerfLearnPerf 4.34% 4.54% 40% 15.45%

 88

remaining 2 cases, MultiPass is closer to BestPerf more than LearnPerf only 0.9%, which

means they are almost equal.

In the experiments, we also keep track of the statistics about the number of updates of

learning trees and control charts. Tables F.2 and F.3 in the appendix summarizes these

statistics. Furthermore, we analyze the detailed output reports about the exact timing of these

updates of the learning tree and the control charts. From these reports, we observe that when

the parameters in the actual manufacturing environment changes, the reconstruction process

of the learning tree and the control charts accelerates. This continues for a while until the new

charts and the learning tree stabilizes. Therefore, the total number of updates for both the

learning tree and the control charts increase.

 To illustrate the operations of the control charts, update signals of the learning tree

and the control charts, we plot a portion of the control charts in Figure 4.12 and 4.13. The

plotted data is taken from the experiment with the following conditions: training data set full;

SM2 type reactive; due date tightness adjusted; (SPL, MPL, β) is (7500 , 500, 0.2); DR set is

{MDD, ODD, SPT}. The actual data points are given in Appendix F.

In these figures, the extreme points (i.e., the points outside the chart limits) are

designated by the signals, which trigger the need for the learning tree update. In addition, at

R-signal 4 the control charts are also updated because at that point two successive learning

tree update signal is received (i.e., learning tree is updated just in the previous point and at

that point). Furthermore, at the same time we receive X-signal 4 and R-signal 6, where both

the learning tree and the control charts are updated. Note that, each plotted data point in the

charts come from the aggregation of the data points (average tardiness values observed) of

five scheduling periods. Thus, when X-signal 1 and R-signal 1 signal the first update of the

learning tree at point 12, we have 12*5=60 new instance data points available for the

 89

-1

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35 40 45 50 55 60

Figure 4.12: X chart

X

UCL

LCL

2σ

σ

-2σ

-σ

X-signal 1

X-signal 2

X-signal 3

X-signal 4

X-signal 5

 90

-1

1

3

5

7

9

11

0 5 10 15 20 25 30 35 40 45 50 55 60

Figure 4.13: R chart

R-signal 1

R-signal 2

R-signal 3

R-signal 4

R-signal 5

R-signal 6
R-signal 7

 91

construction of the new learning tree. Hence, the first update of the learning tree takes place

after 60 scheduling periods since the system is initiated.

From these charts, we can see how our system adapts itself to the changes in time.

Signal types used in the proposed system are based on the statistical principles in which the

probability of each signal is very low if there is no change in the actual manufacturing

environment. Hence, detecting any of these signals is due to the changes occurred in the

actual manufacturing environment and hence the appropriate actions (i.e., updating the

learning tree and the control charts) are taken. For example, detecting two consecutive

learning tree update signals have a very low probability when there isn’t any change in the

actual manufacturing system. Therefore, detecting such a signal triggers the reconstruction of

the control charts, since the reason of such a signal can most probably be the lost of validity

of the existing charts. Also, as it is understand from the example, our system considers

updating the learning tree in the first place, which is a direct result of the definitions of the

signal types (see Chapter 3). If updating the learning tree doesn’t bring the process under

control, then updating the control charts takes place. This is due to the fact that when

updating the learning tree, we provide new training instances to the learning algorithm and

expect to have a new tree that performs within the limits of the existing control charts.

However, if updating the learning tree is not sufficient for being within the limits of the

control, then it is concluded that the process parameters have shifted and the charts are need

to be updated. Our system survives in time by the help of this capability and yields very

promising results.

 To sum up, the proposed learning-based scheduling system performs well in the

experiments. It also outperforms the simulation-based scheduling significantly in most of the

cases. Monitoring the performance of the learning tree by the control charts not only improve

 92

the performance of the system but also let the system to survive in time without any external

manipulations. However, the simulation-based scheduling requires external manipulations

such as data collection, statistical analysis of data and modifying the existing simulation

model when the SM2 type is reactive or partially reactive.

4.8. Summary

We begin this chapter with the experiments on important parameters of the scheduling

problem such as the scheduling and monitoring period lengths. In these experiments, we

show the importance of selecting the appropriate values for these parameters. After these

experiments, we also restrict our dispatching rule set with the rules that have close single-

pass performances and perform the rest of the experiments with this restricted rule set (i.e.,

{MDD, ODD, SPT}) as well as the original rule set (i.e., {MOD, MDD, ODD, SPT}). Before

experimenting on our proposed system with these DR sets, we perform experiments on

selecting the system attributes to embody into our learning-based scheduling system. For this,

we follow a heuristic approach and determine the system attributes. After that point, we begin

to experiment on our proposed system. As a first step, we consider the learning tree as static.

In other words, once the learning tree is constructed, it is never updated again. In these

experiments, we assume that the manufacturing system does not undergo any changes such as

a change in the arrival rate or the service rate. The results of the experiments are compared

with the best performance values that can be achieved as well as the simulation-based

scheduling performances. Results show that the learning-based scheduling outperforms the

simulation-based scheduling approach. Furthermore, the performance values achieved are not

larger than the best values. Also, LearnPerf is always found to be better than the single-pass

performances of individual dispatching rules.

 93

In the last section of this chapter, we finally experiment on our proposed system as it

is presented in Chapter 3. We employ the control charts and update the learning tree as well

as the charts’ themselves whenever it is signaled. In these experiments, we assume that the

conditions of the manufacturing system change from one horizon to another. In the

experiments we only consider a change in the arrival rate. Results show that the proposed

system outperforms the simulation-based scheduling approach and provide significantly close

values to the best performances that can be achieved.

 94

Chapter 5

Conclusion and Future Research

Directions

In this thesis, we presented a learning-based scheduling system for a classical job shop

problem. C4.5 algorithms, which are developed by Quinlan (1993), are used for the learning

process to construct the learning tree. Process control charts are also employed in the

proposed system to continuously monitor the performance of the system so that it adapts

itself to the changes in the manufacturing environment (without any external manipulations).

In the next section, we discuss our contributions and in Section 5.2, we give some future

research directions.

 95

5.1. Contributions

In Chapter 4, we conducted extensive computational experiments to fine tune up the

parameters (e.g., monitoring period, scheduling period length) and to understand their

impacts on the system performance (i.e., average tardiness). Our results indicate that

scheduling period length plays a critical role as it significantly affects the system

performance. Specifically, the system performance is worst when short SPLs are used. This is

due to the fact that for small SPL, even though the selected rules seem to be the best for these

short scheduling periods, the system switches back and forth between different rules so

frequently that the performance of the system is never stabilized and it deteriorates in the

long run.

Moreover, for the loose due dates, the system performance does not differ much for

different scheduling period lengths that are larger than a threshold value. That is, the

performance of the system converges to the performance of the single-pass dispatching rules

for large value of SPL when the due dates are loose. This is due to the fact that the

performances of the individual dispatching rules (MDD, ODD and MOD) are very close to

each other in the long run for loose due-dates (as also stated by Baker, 1984), switching

between these rules doesn’t provide any benefit. Therefore, BestPerf converges to a limit

(single-pass performance of the rules) showing a behavior of exponential decay function.

In the other case of tight due dates, BestPerf displays an exponential decay behavior

as we increase SPL, but it reaches a minimum value at some point. At the minimum, the

system selects the best rule combination and BestPerf reaches to its minimum. But, when we

continue to increase the SPL further, the system performance deteriorates and converges to a

higher value than the minimum. This higher value is again close to the long-run performance

of the most dominant dispatching rule, because system begins to choose this particular rule

 96

most of the time. Note that this increase in tardiness after the minimum point is attributable to

the loss of the improvements that can be achieved by switching to different rules during the

long scheduling periods.

Our second set of experiments is conducted on the monitoring policy (i.e., MPL and β

parameters). In general, monitoring improves the system performance. For short monitoring

intervals, best performance is achieved with very small β values. This suggests that we

should use a small threshold value (χ) for small monitoring intervals. This also implies that

we impose more restriction on the system performance. When we increase the MPL, we

observe that the best performance value is achieved with larger β values. This means that,

when we allow the system to have higher performance values at the monitoring points, we get

better performance values.

In summary, it is very important to select the appropriate values for SPL, MPL and β.

For poorly selected parameters, performance of multi-pass methods can be worse than the

single-pass performances of the individual dispatching rules.

After all these preliminary analyses of the system parameters, we measured the

performance of the proposed system in two stages. First we used a static learning tree, (i.e.,

the learning tree is not updated in time). In this set of experiments, our proposed system first

constructs the learning tree at the beginning of a planning horizon and it is used throughout

the planning horizon for selecting the dispatching rules. The results indicated that the

proposed system performs better than the simulation-based multi-pass scheduling and the

single-pass scheduling. But for very large values of monitoring intervals, the performance of

the proposed system deteriorates to the level of the performance of the multi-pass scheduling

system. Hence, at this point we conclude that the monitoring process is really essential for

our learning based algorithm. Moreover, when we add a competitive dispatching rule (i.e.,

 97

MOD) to our rule set, the performance of the proposed system as well as the MultiPass

further improves (gets closer to BestPerf). Hence, deciding the rules in the candidate

dispatching rule set is also important for our learning based algorithm. Alternatively, we

expect that the gap between LearnPerf and BestPerf as well as the gap between MultiPass

and BestPerf increase when we add low-quality DR to the candidate dispatching rule set.

In the second stage, we conduct experiments with the proposed system with a

dynamic learning structure. In this experimental setting, the control charts are used to monitor

the performance of the learning tree and the tree is updated whenever necessary. In these

simulation experiments, we consider the system in which the parameters of the

manufacturing system (e.g., arrival rate) change in time (as in the case of real life). The

results show that significant improvements are achieved by our proposed system when the

manufacturing system parameters change from one planning horizon to other.

In such a realistic environment, even though the simulator of multi-pass scheduler is

updated for these parameter changes, our proposed system still gives better results. Since our

system adapts itself to the parameter changes automatically, we eliminate the external work

required such as data collection and statistical analyses of the collected data. However, this

external works are required for the multi-pass scheduling algorithm to update the simulation

model. Furthermore, we showed that when the candidate dispatching rule set contains a

competitive dispatching rule such as MOD, both our system and the multi-pass algorithm

resulted in closer values to the best performance. Therefore, it is vital to select high quality

dispatching rules and set the system parameters (i.e., SPL, MPL and β) appropriately to attain

better performance. Finally, since our system selects dispatching rules from the learning tree

automatically (i.e., on-line), we also eliminated the extensive simulation experiments that

should be required for simulation-based multi-pass scheduling approach.

 98

5.2. Future Research

In today’s highly competitive business environment, product variety of a firm tends to

increase due to the demand for highly customized goods, which in turn increases the

complexity of operating a manufacturing system. In addition to these, the demand patterns of

commodities may also change too rapidly. Especially for high tech industries, the product life

cycles become very short and the customer demand can change drastically due to the

introduction of new technologies in the market (i.e., introduction by the competitors). In this

research, we developed a scheduling system that survives in time and handles the scheduling

operations in such a changing manufacturing environment. We tested our proposed system

when the arrival rate parameter changes in time. One possible future research topic can be to

test the proposed system for other parameter changes, such as the shifts in processing time

parameter. Moreover, it can be tested in a manufacturing system with machine breakdowns.

Also, the behavior of the system performance as a function of SPL and MPL can be further

analyzed by considering machine breakdowns.

 Another research direction could be to combine the capabilities of multi-pass

scheduling and the proposed learning-based system. For example, the decisions of the

learning-based system can also be tested via simulation prior to use and some corrective

actions can be applied (i.e., altering the recommendation of the learning tree).

Another possible research area may be to develop a more sophisticated learning

system. For example, a second, high-level learning can be developed upon the proposed

learning structure. In the current implementation, we update our learning tree each time it is

signaled and the old tree is trashed. However, a high-level learning that also learns on the

characteristics of the constructed learning trees may provide further insights to the problem.

 99

In other words, such a system may detect the general patterns behind all the constructed

learning trees and provide valuable information about the problem.

Finally, in some manufacturing systems there might be a high implementation cost for

switching between the rules frequently. Another research direction can be to incorporate this

cost factor into the objective function.

 100

Bibliography

Cho, H. and Wysk, R.A., 1993, A robust adaptive scheduler for an intelligent workstation
controller. International Journal of Production Research, 31(4), 771-789.

DeVor, R. E., Chang, T-h., Sutherland, J. W., Statistical Quality Design and Control,
Prentice Hall, New Jersey, 1992.

Duncan, A. J., Quality Control and Industrial Statistics, Irwin, Illinois, 1986.

Huyet, A.L., Paris, J.L., 2003, Synergy between evolutionary optimization and induction
graphs learning for simulated manufacturing systems, Working Paper.

Ishii, N. and Talavage, J.J., 1994, A mixed dispatching rule approach in FMS scheduling.
International Journal of Flexible Manufacturing Systems, 2(6), 69-87.

Ishii, N. and Talavage, J.J., 1991, A transient-based real-time scheduling algorithm in FMS.
International Journal of Production Research, 29(12), 2501-2520.

Jeong, K. –C. and Kim, Y.-D., 1998, A real-time scheduling mechanism for a flexile
manufacturing system: using simulation and dispatching rules. International Journal of
Production Research, 36, 2609-2626.

Kim, M. H., Kim, Y.-D, 1994, Simulation-based real-time scheduling in a flexible
manufacturing system. Journal of Manufacturing Systems, 13, 85-93.

 101

Kutanoglu, E., Sabuncuoglu, I., 2001, Experimental investigation f iterative simulation-based
scheduling in a dynamic and stochastic job shop. Journal of Manufacturing Systems, 20, 264-
279.

Pierreval, H., Mebarki, N., 1997, Dynamic selection of dispatching rules for manufacturing
system scheduling. International Journal of Production Research, 35, 1575-1591.

Quinlan, J.R., C4.5 Programs for Machine Learning, Morgan Kaufmann, California, 1993.

Sabuncuoglu, I., Goren, S., 2003, A review of reactive scheduling research: proactive
scheduling and new robustness and stability measures. Technical working paper, Department
of Industrial Engineering, Bilkent University.

Shaw, M.J., Park, S., Raman, N., 1992, Intelligent scheduling with machine learning
capabilities: the induction of scheduling knowledge. IIE Transactions, 24, 156-168.

Suwa, H., Fujii, Susumu, 2003, Rule acquisition for rolling horizon heuristics in single
machine dynamic scheduling, _____________.

Takahashi, K., Nakamura, N., 1999, Reacting JIT ordering systems to the unstable changes in
demand. International Journal of Production Research, 37, 2293-2313.

Takahashi, K., Nakamura, N., 2002, Decentralized reactive Kanban system. Eurapean
Journal of Operational Research, 139, 262-276.

Tayanithi, P., Minivannan, S., Banks, J., 1993a, A knowledge-based simulation architecture
to analyze interruptions in a flexible manufacturing system. Journal of Manufacturing
Systems, 11(3), 195-214.

Tayanithi, P., Minivannan, S., Banks, J., 1993b, Complexity reduction during interruption
analysis in a flexible manufacturing system using knowledge-based on-line simulation.
Journal of Manufacturing Systems, 12(2), 153-169.

Wu, S.D. and Wysk, R.A., 1988, Multi-pass expert control system – a control/scheduling
structure for flexible manufacturing cells. Journal of Manufacturing Systems, 7(2), 107-120.

Wu, S.D. and Wysk, R.A., 1989, An application of discrete-event simulation to on-line
control and scheduling in flexible manufacturing. International Journal of Production
Research, 27(9), 1603-1623.

 102

APPENDIX A

Construction Methods of Control

Charts

 103

1

*

For samples where each sample has size :
1. For each sample, an average is calculated:

, where are from Performance Value column of Figure-6 and

 where j represents any Realise

m

kj
j

k kj

kj i

n m

m
X

=

Χ
Χ = Χ

Χ =

∑

*

arg arg

d Scheduling Period for which is obtained.

2. The spread or dispertion within the k sample is measured by the range :

 where ,

3. The Grand Av

i

th
k

th
k l est smallest l est smallest

X

R

R k sample= Χ −Χ Χ Χ ∈

1

1

erage, , is an estimate of the process mean and becomes the
centerline of the chart:

4. The average of the sample ranges :

5. The true range of samples of size is related to the

n

k
k

n

i
k

n
R

R
R

n
m

=

=

Χ

Χ

Χ
Χ =

=

∑

∑

2

2

2

 standard deviation of the
population (process) by the formula:

()

where is a function of the sample size under an assumed normal distribution of
's. For values of for varying sample sizes

X

k

R d

d
d

σ
Ε

=

Χ

2

2 2

4 3

3 4

 (see for example DeVor et. al.,1992)
6. Control Limits for chart:

ˆ

3 3

7. Control Limits for chart:

where values of and

m

m
R

d m
R RUCL LCL

d m d m
R

UCL D R LCL D R
D D

σ
σ

σ

Χ
Χ

Χ

Χ

=

=

= Χ + = Χ −

= × = ×

can be found in most of the quality books
(see for example DeVor et. al.,1992)

 104

APPENDIX B

Notation and Definition of the System

Attributes

 105

Notation

M : set of machines, M = {1, 2, 3, 4}.

m : number of machines in the manufacturing system, which is equal to cardinality of M,

M .

Q : set of queues in front of the machines, Q = {1, 2, 3, 4}.

Iq : set of jobs in the queue q at time t, q є Q.

Om : set of operations of all jobs in the system that is to be processed on machine m, m є

M.

It : set of jobs in the system at time t.

n : cardinality of It, that is the number of jobs in the system at time t.

Ji : set of all operations of job i, i є I.

iĴ : set of all remaining operations of job i, i є I, Ĵ • J.

ri : release time of job i, i є I.

pij : processing time of operation j of job i, i є I, j є J.

pi,cur : processing time of job i at the machine just after its current queue, i є I, j є J.

i<j> : machinery location of jth operation of job i, i є I, j є J.

di : due date of job i, i є I.

dij : due date of operation j of job i, i є I, j є J.

oi : number of operations of job i, i є I.

k : flow allowance factor.

SPL : Scheduling period length

MPL : Monitoring period length

 106

Definition of the System Attributes

Attribute-1) Number of Customers in the System (NumCust)

This attribute stores the number of customer in the system at time t. Hence, its value is equal

to cardinality of It, which is n.

Attribute-2) Percentage of Maximum Relative Machine Workload (PMaxRMW)

This attribute is calculated as the following: for each machine, we find the total processing

times of the operations that will be performed on that machine. Then we take the maximum

of these values and divide it to total remaining processing time and multiply by 100.

100
}{

ˆ

,

×=
∑∑

∑

∈ ∈

∈
∈

t

q

Ii Jj
ij

Ii
curiQq

p

pMax
PMaxRMW

Attribute-3) Percentage of Completed Processing Times (PCompPT)

This attribute is calculated by dividing the total completed processing time to the total

processing time and multiplying by 100.

100
ˆ

×=
∑∑

∑ ∑

∈ ∈

∈ −∈

t

t

Ii Jj
ij

Ii JJj
ij

p

p
PCompPT

Attribute-4) Relative Tightness Ratio (RTR)

This attribute is simply the ratio of average flow allowance to the average remaining

processing times of the jobs. RTR is calculated as follows:

 107

n

p
p

n

td
dwhere

p
d

RTR

tt Ii Jj
ij

Ii
i

t

t

∑∑∑
∈ ∈∈ =

−
=

=

ˆ
},

)(
,0max{,

,

Attribute-5) Rule Updating Signal (RUS)

In Section 3.3.2, new rule selection symptoms for updating the current DRs are discussed.

Whenever one of these symptoms is detected, a new DR is requested from the learning

module to continue the scheduling operations. Hence, it may be a good idea to provide this

information to the learning module as an attribute. RUS is a discrete type attribute and takes

its values as follows:





=
MP is signal theif 1
BSP is signal theif 0

RUS

Attribute-6) Total Remaining Processing Time (TotRemPT)

This attribute, as it is clear from its name, stores the total remaining processing time of the

jobs that are in the system at time t.

∑∑
∈ ∈

=
tIi Jj

ijpmPTTot
ˆ

Re

Attribute-7) Average Remaining Processing Time (AvRemPT)

This attribute is equal to the total remaining processing time divided by the number of jobs in

the system and calculated as follows:

n

p

n
mPTTotmPTAv tIi Jj

ij∑∑
∈ ∈==

ˆReRe

 108

Attribute-8) Total Slack Time (AverageSlackT)

This attribute stores the value of total slack times minus the total remaining processing time

of all the jobs in the system divided by the number of jobs. Mathematical formulation is as

follows:

n

ptd
ckTAverageSla Ii Ii Jj

iji∑ ∑∑
∈ ∈ ∈

−−
=

ˆ
)(

Attribute-9) Average Period Queue Length (AvPerQL)

This attribute stores the average queue length of all queues in the last scheduling period. That

is, if the current time is t and),(tSPLtQTq − is the total queue time of the jobs in queue q 0

Q between time t-SPL and t, then:

SPLQ

tSPLtQT
AvPerQL Qq

×

−
=
∑
∈

),(

Attribute-10) Maximum Queue Length at Time t (MaxQL-t)

This attribute stores the information about the number of jobs waiting in the longest queue in

the system. That is,

}{max qQq ItMaxQL ∈=− , where qI is the cardinality of set Iq.

Attribute-11) Average Remaining Time Until Due Dates (AvRemTDd)

Store the average of remaining time of all jobs until their due dates. Mathematical

representation is as follows:

 109

n

td
mTDdAv Ii

i∑
∈

−
=

)(
Re

Attribute-12) Number of Jobs with Long Processing Time (NumLongPT)

This attribute especially defined to separate SPT rule from the other rules. It stores the

number of jobs that have a processing time greater than the average processing time of all

jobs in the system. The mathematical representation is the following:

L.set the

ofy cardinalit theis and where},,{such that L
n

p
pIippiLLNumLongPT Ii Jj

ij

ti

∑∑
∈ ∈=∈≥==

Attribute-13) Percentage of Jobs with Long Processing Times (PercentLongPT)

It is calculated by dividing NumLongPT to the number of jobs in the system and multiplying

by 100. That is,

100×=
n

NumLongPTgPTPercentLon

Attribute-14) Difference between Maximum and Average Processing Times

(Max_AvPT)

It stores the difference between the maximum processing time and the average processing

time of the jobs at time t. That is,

n

p
pppAvPTMax Ii Jj

ij

Jj
ijIi

∑∑
∑ ∈ ∈

∈
∈ =−= where,}{max_

 110

Attribute-15) Percentage of Difference between Maximum and Average Processing

Times (PercentMax_AvPT)

It is the percentage of Max_AvPT and calculated by dividing Max_AvPT by average

processing time and multiplied by 100. That is,

100__ ×=
p
AvPTMaxAvPTPercentMax

Attribute-16) Maximum Due Date (MaxDue)

This attribute stores the value of maximum due date of the jobs minus the current time t. In

other words, it is the difference between the current time t and the maximum due date of the

jobs in the system at time t.

}}{max,0max{ tdMaxDue iIi −= ∈

Attribute-17) Number of Jobs with Long Due Dates (NumberLongDD)

This attribute especially defined to separate EDD rule from the other rules. It stores the

number of jobs that have due dates greater than the average due date of all jobs in the system.

The mathematical representation is the following:

S. ofy cardinalit theis and ,},{ where, S
n

d
dIiddiSSDDNumberLong Ii

i

i

∑
∈=∈≥==

Attribute-18) Percentage of Jobs with Long Due Dates (PercentLongDD)

It stores the percentage of jobs that have due dates greater than the average due date of all

jobs in the system. The mathematical representation is the following:

 ,},{ where100,
n

d
dIiddiS

n
S

DDPerentLong Ii
i

i

∑
∈=∈≥=×= and S is the cardinality of

S.

 111

Attribute-19) Maximum Coefficient of Variation of Processing Times of Machines

(MaxCV_PT_Machines)

To set the value of this attribute at any time t, we first form a set for each machine, which is

composed of the operations that should be performed on that machine. Then, for each set, we

calculate the coefficient of variation of processing times of the operations in the set. Then we

set the attribute value to the maximum of these coefficient of variations. That is,

 where,}{max__ mMm cvMachinesPTMaxCV ∈=

1

)(
,,

2

−

−
===
∑ ∑∑ ∑
∈ ∈∈ ∈

m

Ii
m

Oj
ij

m
m

Ii Oj
ij

m
m

m
m O

pp

O

p
p

p
cv mm σ

σ

Attribute-20) Average of Coefficient of Variations of the Job Processing Times

(Mean_CVPT)

To set the value of this attribute at time t, we calculate the coefficient of variation of

operation processing times of each individual job in the system. Then we take the average of

these cvi values and set it as the value of our attribute. The mathematical formulation is the

following:

n

cv
CVPTMean Ii

i∑
∈=_ where,

1

)(
,,

2

−

−
===
∑∑

i

i
j

ij

i
i

j
ij

i
i

i
i o

pp

o

p
p

p
cv σ

σ

 112

Attribute-21) Average of Variances of the Job Processing Times (Mean_VarPT)

It is quite similar to attribute-20, but instead of taking the average of coefficient of variations,

we take the average of the variances. That is,

n
VarPTMean Ii

i∑
∈=

2

_
σ

 where,

i

j
ij

i
i

i
j

ij

i o

p
p

o

pp ∑∑
=

−

−
= ,

1

)(2

2σ

Attribute-22) Maximum of Coefficient of Variations of the Job Processing Times

(Max_CVPT)

As it is in the calculations of Attribute-20, we calculate the coefficient of variation of

operation processing times of each individual job in the system and set Max_CVPT to the

maximum of these values.

}{max_ iIi cvCVPTMax ∈= where,

1

)(
,,

2

−

−
===
∑∑

i

i
j

ij

i
i

j
ij

i
i

i
i o

pp

o

p
p

p
cv σ

σ

Attribute-23) Difference between Maximum and Average of Coefficient of Variations of

the Job Processing Times (Diff_Max/Mean_CVPT)

This attribute is simply the difference of Attribute-22 and Attribute-20. That is,

n

cv
cvCVPTMeanCVPTMaxCVPTMeanMaxDiff Ii

i

iIi

∑
∈

∈ −=−= }{max)_()_(_/_

 113

Attribute-24) Number of Jobs Already Tardy (Num_AlreadyTardy)

If the total remaining processing time of any job plus the current time t exceeds the due date

of that job, we are certain that this job will be tardy. The number of such jobs at time t is set

as the value of that attribute. Hence,

SdyAlreadyTarNum =_ where,

},{
ˆ

ti
Jj

ij IitdpiS ∈−>= ∑
∈

and S is the cardinality of set S.

Attribute-25) Average Remaining Processing Time of Already Tardy Jobs

(AveragePT_AlreadyTardy)

Referring to the discussion of the previous attribute, we calculate the average remaining

processing time of the jobs that we certainly know as tardy and record this value to this

attribute. Hence, mathematically,

S

p
dyAlreadyTarAveragePT Si Jj

ij∑∑
∈ ∈=

ˆ
_ where,

},{
ˆ

ti
Jj

ij IitdpiS ∈−>= ∑
∈

 and S is the cardinality of set S.

Attribute-26) Last Period’s Average Tardiness Value (MeanTardiness)

The value of this attribute at time t is set to the mean tardiness (our performance measure) of

the last scheduling period, which was just ended at time t. We define this attribute, because

the realized system performance at the last scheduling period may carry some information

about the most appropriate dispatching rule for the next scheduling period.

 114

APPENDIX C

Results for Scheduling Period Length

 115

Table C.1: 80% utilization, tight due-dates replication mean tardiness values (Ri: replication i, SPL: scheduling period length,
DR set: SPT, MDD, MOD, ODD)

SPL R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11
50 0.649 0.708 0.62 0.581 0.667 0.641 0.579 0.645 0.569 0.709 0.712

100 0.589 0.599 0.536 0.493 0.575 0.622 0.577 0.608 0.466 0.548 0.563
200 0.435 0.575 0.532 0.461 0.542 0.486 0.583 0.525 0.551 0.47 0.455
500 0.438 0.399 0.44 0.447 0.418 0.5 0.379 0.414 0.409 0.378 0.355
1000 0.42 0.37 0.385 0.394 0.425 0.382 0.46 0.32 0.365 0.338 0.436
2000 0.384 0.36 0.391 0.434 0.441 0.42 0.385 0.372 0.414 0.396 0.356
5000 0.405 0.376 0.343 0.441 0.344 0.451 0.406 0.364 0.451 0.421 0.351
7500 0.378 0.436 0.374 0.424 0.38 0.362 0.386 0.426 0.466 0.377 0.499

10000 0.396 0.456 0.376 0.36 0.39 0.379 0.377 0.448 0.435 0.374 0.442
12500 0.388 0.361 0.404 0.408 0.436 0.332 0.399 0.383 0.439 0.406 0.456
15000 0.388 0.403 0.412 0.338 0.451 0.324 0.388 0.377 0.439 0.424 0.366

SPL R12 R13 R14 R15 R16 R17 R18 R19 R20 MEAN STD. DEV
50 0.543 0.634 0.756 0.705 0.692 0.565 0.621 0.633 0.631 0.643 0.057954

100 0.555 0.666 0.505 0.604 0.548 0.582 0.58 0.628 0.545 0.56945 0.047788
200 0.465 0.524 0.496 0.522 0.466 0.543 0.57 0.485 0.433 0.50595 0.046796
500 0.407 0.431 0.42 0.466 0.391 0.45 0.399 0.411 0.39 0.4171 0.033659
1000 0.416 0.368 0.333 0.423 0.358 0.403 0.362 0.336 0.382 0.3838 0.038087
2000 0.422 0.431 0.413 0.393 0.422 0.341 0.412 0.447 0.378 0.4006 0.029726
5000 0.38 0.409 0.464 0.372 0.511 0.348 0.4 0.379 0.42 0.4018 0.045425
7500 0.397 0.393 0.361 0.4 0.381 0.371 0.393 0.425 0.398 0.40135 0.035435

10000 0.39 0.417 0.389 0.405 0.357 0.41 0.452 0.392 0.427 0.4036 0.030855
12500 0.41 0.379 0.393 0.371 0.459 0.451 0.435 0.374 0.357 0.40205 0.035413
15000 0.415 0.426 0.366 0.389 0.429 0.435 0.444 0.362 0.394 0.3985 0.035585

 116

Table C.2: 90% utilization, tight due-dates replication mean tardiness values (Ri: replication i, SPL: scheduling period length,
DR set: SPT, MDD, MOD, ODD)

SPL R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11
50 1.978 2.425 2.348 1.766 2.362 2.067 1.97 2.309 1.76 2.32 2.572

100 1.599 1.651 1.584 1.314 1.39 1.758 1.471 1.427 1.161 1.431 1.357
200 1.255 1.457 1.585 1.036 1.501 0.911 1.812 1.351 1.38 1.115 1.082
500 1.071 0.922 1.09 0.995 0.953 1.346 0.913 0.988 0.909 0.815 0.75
1000 0.919 0.754 0.812 0.947 0.815 0.633 0.824 1.105 0.912 0.605 1.225
2000 0.656 0.477 0.521 0.662 0.666 0.754 0.493 0.688 0.729 0.704 0.547
5000 0.65 0.587 0.591 0.69 0.46 0.519 0.58 0.567 0.654 0.49 0.55
7500 0.504 0.433 0.569 0.504 0.602 0.471 0.569 0.478 0.635 0.529 0.586

10000 0.592 0.776 0.42 0.5 0.445 0.499 0.584 0.697 0.794 0.76 0.716
12500 0.523 0.612 0.443 0.374 0.79 0.71 0.761 0.604 0.65 0.517 0.561
15000 0.561 0.621 0.696 0.534 0.922 0.772 0.506 0.406 0.495 0.632 0.441

SPL R12 R13 R14 R15 R16 R17 R18 R19 R20 MEAN STD. DEV
50 1.518 2.33 2.017 2.197 1.999 1.678 1.81 1.879 2.23 2.07675 0.285243

100 1.456 2.11 1.288 1.73 1.729 1.511 1.4 1.883 1.334 1.5292 0.228364
200 1.123 1.489 1.331 1.186 0.974 1.113 1.668 1.103 1.069 1.27705 0.24725
500 0.854 1.151 0.943 1.317 0.748 1.009 1.418 0.839 0.801 0.9916 0.192514
1000 0.807 0.673 0.852 0.706 0.73 0.755 0.615 0.763 0.796 0.8124 0.155278
2000 0.727 0.509 0.592 0.618 0.634 0.553 0.697 0.779 0.525 0.62655 0.093758
5000 0.783 0.562 0.554 0.86 0.537 0.492 0.691 0.731 0.497 0.60225 0.105693
7500 0.679 0.629 0.553 0.502 0.79 0.618 0.659 0.526 0.543 0.56895 0.084129

10000 0.621 0.582 0.534 0.568 0.48 0.451 0.621 0.498 0.588 0.5863 0.113324
12500 0.749 0.745 0.651 0.407 0.631 0.54 0.472 0.577 0.499 0.5908 0.121374
15000 0.744 0.525 0.52 0.549 0.731 0.569 0.718 0.782 0.633 0.61785 0.13136

 117

Table C.3: 80% utilization, loose due-dates replication mean tardiness values (Ri: replication i, SPL: scheduling period length,
DR set: SPT, MDD, MOD, ODD)

SPL R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11
50 0.031 0.054 0.041 0.048 0.035 0.037 0.047 0.04 0.036 0.066 0.043

100 0.018 0.019 0.014 0.015 0.014 0.027 0.025 0.02 0.012 0.014 0.024
200 0.023 0.014 0.018 0.012 0.018 0.022 0.016 0.012 0.023 0.015 0.011
500 0.006 0.006 0.009 0.008 0.004 0.004 0.003 0.007 0.007 0.003 0.003
1000 0.005 0.005 0.003 0.002 0.015 0.003 0.003 0.008 0.004 0.002 0.003
2000 0.005 0.004 0.003 0.004 0.004 0.003 0.004 0.003 0.003 0.003 0.003
5000 0.003 0.004 0.003 0.005 0.003 0.004 0.012 0.003 0.004 0.004 0.004
7500 0.004 0.004 0.003 0.013 0.004 0.004 0.005 0.003 0.003 0.004 0.005

10000 0.004 0.004 0.004 0.005 0.004 0.004 0.004 0.005 0.004 0.003 0.005
12500 0.005 0.005 0.006 0.012 0.008 0.004 0.005 0.004 0.003 0.005 0.004
15000 0.004 0.004 0.004 0.004 0.005 0.004 0.004 0.004 0.008 0.004 0.004

SPL R12 R13 R14 R15 R16 R17 R18 R19 R20 MEAN STD. DEV
50 0.033 0.038 0.065 0.037 0.038 0.052 0.032 0.049 0.049 0.04355 0.010092

100 0.029 0.027 0.022 0.024 0.022 0.019 0.026 0.019 0.02 0.0205 0.005021
200 0.013 0.02 0.014 0.014 0.012 0.019 0.017 0.016 0.01 0.01595 0.003967
500 0.004 0.005 0.005 0.005 0.003 0.005 0.004 0.006 0.005 0.0051 0.001714
1000 0.006 0.002 0.002 0.007 0.004 0.003 0.006 0.004 0.004 0.00455 0.003
2000 0.003 0.003 0.007 0.004 0.003 0.003 0.004 0.005 0.006 0.00385 0.001137
5000 0.004 0.004 0.003 0.004 0.006 0.005 0.004 0.004 0.006 0.00445 0.001986
7500 0.004 0.003 0.007 0.012 0.003 0.004 0.004 0.004 0.004 0.00485 0.002777

10000 0.003 0.008 0.005 0.004 0.004 0.003 0.007 0.004 0.004 0.0044 0.001231
12500 0.005 0.004 0.004 0.006 0.004 0.004 0.005 0.004 0.004 0.00505 0.001959
15000 0.004 0.004 0.004 0.008 0.004 0.006 0.004 0.004 0.008 0.00475 0.001482

 118

Table C.4: 90% utilization, loose due-dates replication mean tardiness values (Ri: replication i, SPL: scheduling period length,
DR set: SPT, MDD, MOD, ODD)

SPL R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11
50 0.604 0.628 0.758 0.564 0.676 0.728 0.664 0.609 0.419 0.888 0.782

100 0.139 0.217 0.344 0.14 0.148 0.126 0.302 0.18 0.158 0.217 0.131
200 0.056 0.146 0.07 0.124 0.061 0.084 0.07 0.035 0.058 0.064 0.047
500 0.06 0.03 0.04 0.06 0.037 0.033 0.153 0.03 0.053 0.035 0.058
1000 0.014 0.006 0.01 0.017 0.004 0.01 0.013 0.031 0.001 0.009 0.019
2000 0.001 0.013 0.0006 0.0005 0.001 0.001 0.0007 0.007 0.002 0.002 0.008
5000 0.0009 0.0008 0.001 0.0007 0.0008 0.001 0.001 0.001 0.0009 0.0007 0.0008
7500 0.0008 0.0009 0.0008 0.0006 0.017 0.0008 0.002 0.016 0.0008 0.008 0.001

10000 0.003 0.0006 0.014 0.0007 0.001 0.006 0.001 0.0009 0.0009 0.006 0.002
12500 0.001 0.02 0.0008 0.002 0.0007 0.0009 0.0009 0.0006 0.0008 0.065 0.001
15000 0.001 0.0008 0.001 0.0008 0.001 0.001 0.001 0.0009 0.001 0.0009 0.002

SPL

R12 R13 R14 R15 R16 R17 R18 R19 R20 MEAN STD. DEV
50 0.353 0.692 0.689 0.688 0.534 0.392 0.47 0.449 0.629 0.6108 0.140149

100 0.226 0.527 0.188 0.178 0.18 0.271 0.214 0.296 0.138 0.216 0.096233
200 0.284 0.047 0.06 0.11 0.051 0.049 0.078 0.057 0.084 0.08175 0.055057
500 0.024 0.033 0.031 0.042 0.052 0.033 0.027 0.018 0.021 0.0435 0.028743
1000 0.015 0.007 0.002 0.013 0.004 0.007 0.012 0.01 0.014 0.0109 0.006828
2000 0.0007 0.0006 0.0007 0.007 0.001 0.006 0.0008 0.0006 0.002 0.00281 0.003468
5000 0.003 0.001 0.001 0.035 0.001 0.0009 0.001 0.0008 0.0008 0.002705 0.007617
7500 0.028 0.008 0.001 0.0008 0.001 0.0009 0.0009 0.0008 0.0009 0.00455 0.00746

10000 0.005 0.002 0.0007 0.0009 0.001 0.0009 0.008 0.005 0.0008 0.00302 0.00344
12500 0.018 0.003 0.001 0.0008 0.001 0.0009 0.002 0.0009 0.0009 0.00611 0.014921
15000 0.001 0.008 0.0008 0.0009 0.001 0.004 0.0008 0.001 0.003 0.001595 0.001718

 119

Table C.5: 80% utilization, tight due-dates replication mean tardiness values (Ri: replication i, SPL: scheduling period length,
DR set: SPT, MDD, ODD)

SPL
REP1 REP2 REP3 REP4 REP5 REP6 REP7 REP8 REP9 REP10 REP11

50 0.75 0.84 0.73 0.69 0.76 0.74 0.68 0.75 0.67 0.84 0.83
100 0.8 0.74 0.68 0.64 0.71 0.79 0.75 0.77 0.58 0.69 0.73
200 0.63 0.83 0.79 0.7 0.77 0.69 0.82 0.76 0.76 0.67 0.66
500 0.69 0.64 0.7 0.71 0.64 0.8 0.66 0.68 0.64 0.63 0.61

1000 0.64 0.72 0.64 0.75 0.64 0.6 0.64 0.74 0.78 0.62 0.86
2000 0.68 0.64 0.74 0.77 0.8 0.74 0.69 0.68 0.75 0.73 0.66
5000 0.78 0.71 0.67 0.84 0.67 0.85 0.76 0.7 0.86 0.8 0.69
10000 0.8 0.9 0.75 0.71 0.79 0.76 0.75 0.86 0.87 0.77 0.89
12500 0.79 0.73 0.82 0.8 0.84 0.69 0.8 0.78 0.87 0.84 0.9
15000 0.82 0.83 0.83 0.69 0.89 0.66 0.78 0.78 0.88 0.88 0.75
20000 0.78 0.69 0.74 0.79 0.82 0.89 0.88 0.8 0.86 0.88 0.79
25000 0.84 0.84 0.88 0.75 0.89 0.77 0.85 0.89 0.86 0.85 0.84

SPL

REP12 REP13 REP14 REP15 REP16 REP17 REP18 REP19 REP20 Average
Std.
Dev.

50 0.62 0.74 0.87 0.81 0.83 0.67 0.71 0.73 0.75 0.7505 0.068015
100 0.7 0.82 0.65 0.8 0.72 0.72 0.73 0.8 0.7 0.726 0.061422
200 0.66 0.79 0.7 0.74 0.67 0.75 0.78 0.71 0.62 0.725 0.06245
500 0.66 0.71 0.68 0.76 0.66 0.7 0.63 0.7 0.64 0.677 0.046578
1000 0.67 0.65 0.65 0.67 0.65 0.62 0.68 0.73 0.64 0.6795 0.064683
2000 0.75 0.76 0.73 0.68 0.74 0.6 0.76 0.78 0.69 0.7185 0.051224
5000 0.74 0.73 0.79 0.88 0.7 0.92 0.72 0.78 0.7 0.7645 0.074231

10000 0.77 0.82 0.77 0.79 0.72 0.84 0.89 0.76 0.86 0.8035 0.058784
12500 0.84 0.76 0.81 0.74 0.91 0.89 0.84 0.79 0.73 0.8085 0.059936
15000 0.82 0.85 0.77 0.8 0.85 0.87 0.9 0.75 0.79 0.8095 0.064927
20000 0.85 0.81 0.86 0.69 0.79 0.92 0.93 0.87 0.93 0.8285 0.07125
25000 0.78 0.88 0.98 0.88 0.8 0.82 0.75 0.8 0.93 0.844 0.058974

 120

Table C.6: 90% utilization, tight due-dates replication mean tardiness values (Ri: replication i, SPL: scheduling period length,
DR set: SPT, MDD, ODD)

SPL REP#1 REP#2 REP#3 REP#4 REP#5 REP#6 REP#7 REP#8 REP#9 REP#10 REP#11
50 2.02 2.53 2.41 1.86 2.38 2.18 2.01 2.26 1.74 2.51 2.61
100 1.68 1.7 1.62 1.41 1.45 1.9 1.58 1.61 1.23 1.47 1.52
200 1.52 1.09 1.04 1.57 1.59 1.08 1.01 0.97 1.68 1.13 1.19
500 1.47 0.78 1.37 1.44 1.11 1.11 2.15 1.16 1.39 1.18 1.56

1000 1.26 0.82 1.38 1.25 1.47 1.36 1.17 1.04 1.04 1.51 1.43
2000 1.07 1.45 1.68 1.42 1.03 1.06 0.97 1.54 1.54 1.45 1.3
7500 1.13 1.26 1.28 0.93 1.38 1.34 1.27 0.85 1.18 1.26 1.28
10000 1.41 0.76 1.41 1.23 1.1 1.6 0.92 1.19 1.13 1.2 0.74
15000 1.44 1.66 1.52 1.25 1.46 1.13 1.32 1.57 1.56 1.57 1.17
20000 0.99 1.34 1.55 1.16 1.28 1.12 1.31 1.35 1.7 1.65 1.27
25000 1 1.09 0.95 1.15 1.47 2.03 1.34 1.25 1.18 1.93 1.17

SPL REP#12 REP#13 REP#14 REP#15 REP#16 REP#17 REP#18 REP#19 REP#20 Average
Std.
Dev.

50 1.57 2.21 2.09 2.23 2.04 1.68 1.8 1.93 2.3 2.118 0.295913
100 1.66 2.26 1.46 1.83 1.9 1.56 1.58 1.97 1.34 1.6365 0.241449
200 1.9 1.77 1.5 1.69 1.32 1.14 1.22 1.03 1.43 1.3435 0.290304
500 1.34 1.35 1.68 1.08 1.28 1.6 1.17 1.44 1.15 1.3405 0.284854
1000 1.85 1.19 1.47 0.91 1.34 1.44 1.27 1.35 1.6 1.3075 0.240129
2000 1 1.69 1.42 1.28 1.28 0.79 1.35 1.44 0.99 1.2875 0.255855
7500 1.06 1.05 1.1 0.73 1.31 1.44 1.26 1.39 1.4 1.195 0.191874

10000 1.4 1.01 1.82 1.4 1.37 1.07 1.22 1.17 0.78 1.1965 0.278289
15000 1.1 1.42 1.24 1.47 2.02 1.38 1.19 0.95 1.15 1.3785 0.243965
20000 1.22 1.96 1.56 1.24 1.21 0.97 1.35 1.14 1.28 1.3325 0.244538
25000 1.48 1.48 1.95 0.96 1.12 0.99 1.23 1.25 1.35 1.3185 0.325063

 121

APPENDIX D

Results for Monitoring Period Length

and β-parameter

 122

Table D.1: 80% utilization, for MPL = 250 replication mean tardiness values (Ri: replication i, MPL: monitoring period length)

β R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11
0.2 0.61 0.64 0.64 0.68 0.68 0.66 0.65 0.56 0.58 0.6 0.71
0.5 0.63 0.63 0.61 0.6 0.67 0.63 0.6 0.67 0.62 0.75 0.68
0.8 0.67 0.7 0.6 0.72 0.69 0.61 0.56 0.56 0.58 0.61 0.68
1 0.61 0.66 0.54 0.7 0.7 0.74 0.67 0.62 0.63 0.7 0.66

1.4 0.69 0.55 0.79 0.64 0.6 0.74 0.67 0.72 0.65 0.54 0.67
1.8 0.69 0.58 0.65 0.63 0.69 0.62 0.69 0.69 0.71 0.66 0.7
2.4 0.67 0.7 0.62 0.66 0.75 0.57 0.67 0.73 0.7 0.68 0.62
2.6 0.67 0.76 0.7 0.64 0.67 0.71 0.65 0.68 0.59 0.67 0.73

β R12 R13 R14 R15 R16 R17 R18 R19 R20 Mean
Std.
Dev.

0.2 0.59 0.7 0.69 0.66 0.63 0.66 0.63 0.7 0.58 0.6425 0.044589
0.5 0.58 0.67 0.67 0.76 0.59 0.7 0.54 0.75 0.62 0.6485 0.059496
0.8 0.63 0.7 0.67 0.62 0.66 0.72 0.66 0.71 0.67 0.651 0.051493
1 0.62 0.77 0.59 0.6 0.61 0.68 0.71 0.62 0.57 0.65 0.058938

1.4 0.57 0.57 0.64 0.67 0.67 0.64 0.71 0.73 0.62 0.654 0.066523
1.8 0.58 0.72 0.66 0.76 0.72 0.59 0.75 0.65 0.58 0.666 0.055763
2.4 0.67 0.59 0.76 0.6 0.79 0.69 0.63 0.71 0.71 0.676 0.058616
2.6 0.71 0.66 0.69 0.68 0.7 0.63 0.65 0.62 0.79 0.68 0.047016

 123

Table D.2: 80% utilization, for MPL = 500 replication mean tardiness values (Ri: replication i, MPL: monitoring period length)

β R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11
0.2 0.74 0.7 0.57 0.7 0.75 0.76 0.71 0.57 0.63 0.6 0.74
0.5 0.74 0.7 0.68 0.7 0.69 0.61 0.74 0.7 0.74 0.67 0.69
0.8 0.6 0.68 0.71 0.64 0.73 0.74 0.65 0.62 0.68 0.61 0.69
1 0.73 0.63 0.61 0.7 0.66 0.64 0.69 0.59 0.6 0.64 0.67

1.4 0.71 0.74 0.72 0.7 0.61 0.71 0.69 0.69 0.66 0.7 0.69
1.8 0.75 0.63 0.62 0.64 0.66 0.66 0.68 0.65 0.71 0.64 0.74
2.4 0.61 0.73 0.66 0.66 0.73 0.73 0.6 0.74 0.7 0.59 0.65
2.6 0.65 0.63 0.81 0.69 0.69 0.57 0.61 0.61 0.75 0.67 0.66

β R12 R13 R14 R15 R16 R17 R18 R19 R20 Mean
Std.
Dev.

0.2 0.61 0.78 0.73 0.66 0.69 0.63 0.73 0.73 0.69 0.686 0.064105
0.5 0.6 0.69 0.59 0.64 0.62 0.67 0.63 0.7 0.72 0.676 0.046611
0.8 0.79 0.63 0.61 0.76 0.57 0.61 0.67 0.68 0.63 0.665 0.058714
1 0.55 0.71 0.65 0.68 0.66 0.66 0.7 0.7 0.62 0.6545 0.045593

1.4 0.66 0.69 0.58 0.68 0.69 0.71 0.64 0.74 0.6 0.6805 0.043827
1.8 0.61 0.65 0.65 0.66 0.72 0.71 0.68 0.66 0.7 0.671 0.039189
2.4 0.69 0.73 0.62 0.64 0.73 0.65 0.56 0.7 0.68 0.67 0.05458
2.6 0.83 0.65 0.63 0.72 0.66 0.75 0.71 0.66 0.74 0.6845 0.066923

 124

Table D.3: 90% utilization, for MPL = 500 replication mean tardiness values (Ri: replication i, MPL: monitoring period length)

β R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11
0.2 0.73 1.45 1.03 0.93 1.53 0.89 1.08 1.19 0.96 0.81 1.2
0.5 0.96 1.35 1.38 1.12 1.23 1.01 1.1 0.89 0.77 1.28 1.02
0.8 1.36 1.07 1.34 1.41 1.53 0.9 1.11 1 1 1.14 1.36
1 1.09 1.65 0.89 1.03 1.24 1.18 1.12 1.34 0.88 1.4 1.49

1.4 0.8 1.39 1.44 1.02 1.04 1.17 1.04 1.18 1.12 1.63 1.61
1.8 1.08 1.03 1.03 1.13 0.66 1.21 1.42 0.91 1.61 1.03 1.08
2.4 1.2 1.4 1.41 1 1.02 1.3 0.92 1.22 1.55 1.28 1.32
2.6 1.07 1.29 1.09 0.78 1.06 1.4 1.3 1.19 1.34 1.21 1.24

β R12 R13 R14 R15 R16 R17 R18 R19 R20 MEAN
Std.
Dev.

0.2 1.84 1.12 0.97 1.2 1.38 0.88 1.19 1.05 0.74 1.1085 0.279554
0.5 1.05 0.92 1.21 1.36 1.22 1.06 1.36 0.85 1.29 1.1215 0.187119
0.8 0.62 0.98 1.08 1.32 0.8 1.27 1.31 1.05 0.88 1.1265 0.232815
1 1.1 1.44 1.31 1.16 1.38 1.43 1.07 1.21 1.09 1.225 0.202264

1.4 1.31 1.02 1.03 1.16 1.6 1.04 1.58 1.34 1.13 1.2325 0.241309
1.8 1.14 1.18 1.43 1.83 0.83 1.05 1.17 0.98 1.44 1.162 0.271828
2.4 1.07 0.9 1.06 0.89 1.23 1.22 1.69 0.83 1.1 1.1805 0.228484
2.6 1.24 1 1.33 1.2 1.34 1.23 1.12 1.05 1.04 1.176 0.149821

 125

Table D.4: 90% utilization, for MPL = 2500 replication mean tardiness values (Ri: replication i, MPL: monitoring period length)

β R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11
0.2 0.99 0.82 1.69 1.46 1.18 1.38 1.13 1.48 1.43 1.48 1.4
0.5 0.85 1.34 1.09 0.91 1.21 0.97 1.8 1.18 1.49 1.34 1.48
0.8 1.15 1.58 1.16 1.56 1.05 0.91 1.5 1.42 0.96 0.96 1.36
1 0.933 0.84 0.83 1.32 1.09 1.49 0.91 1.4 1.19 1.17 1.16

1.4 1.16 1.16 1.1 1.04 1.8 1.17 1.45 1.32 1.43 1.44 1
1.8 1.44 0.99 1.32 1.04 1.14 1.4 1.5 1.15 1.31 1.08 1.29
2.4 1.44 0.87 1.21 0.86 1.38 1.5 1.39 1.2 1.28 1.28 1.4
2.6 1.77 1.16 1.45 1.27 1.2 1.18 1.25 1.28 1.42 1.04 1.61

β R12 R13 R14 R15 R16 R17 R18 R19 R20 MEAN
Std.
Dev.

0.2 1.41 1.42 1.06 1.35 1.13 1.23 0.95 1.29 1.06 1.267 0.220576
0.5 0.79 1.64 1.26 1.19 0.91 1.53 1.22 1.62 1.34 1.258 0.282965
0.8 1.32 1.13 1.05 1.44 0.89 0.9 1.6 0.9 1.66 1.225 0.271303
1 1.17 0.95 1.4 1.3 1.39 0.77 0.99 1.09 1.26 1.13265 0.215036

1.4 1.02 1.3 1.15 1.44 1.1 1.4 1.39 1.08 1.3 1.2625 0.20026
1.8 1 1.4 0.77 1.32 1.26 1.26 1.47 1.37 1.2 1.2355 0.188553
2.4 1.5 1.24 0.85 1.48 1.33 1.33 1.08 1.45 1.44 1.2755 0.2103
2.6 1.31 1.17 0.96 1.27 1.23 1.24 1.05 1.24 0.99 1.2545 0.196294

 126

Table D.5: 90% utilization, for MPL = 3750 replication mean tardiness values (Ri: replication i, MPL: monitoring period length)

β R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11
0.2 1.13 1.02 1.13 1.29 1.46 1.17 1.06 1.14 1.29 1.06 1.3
0.5 1.27 1.21 1.42 0.86 1.17 1.04 1.28 0.67 1.23 1.47 0.94
0.8 1.26 1.27 1.52 1.06 1.02 1.27 1.24 1.22 1.23 1.57 1.25
1 1.41 1.09 1.42 0.91 1.18 1.26 1.04 1.14 1.55 1.07 0.78

1.4 1.56 1.11 1.02 1 1.5 1.2 1.54 1.11 1.25 1.32 1.11
1.8 1.44 0.79 0.79 1.28 0.94 0.97 1.39 1.53 1.51 1.48 1.44
2.4 0.94 1.46 1.05 1.35 1.48 1.17 1.1 1.48 1.66 1.35 1.29

2.6 1.22 1.06 1.57 1.23 1.39 1.2 1.02 1.49 1.41 0.94 1.22

β R12 R13 R14 R15 R16 R17 R18 R19 R20 MEAN
Std.
Dev.

0.2 1.2 1.18 1.49 1.45 1.26 1.37 1.01 1.2 1.2 1.2205 0.142699
0.5 0.78 1.2 0.87 1.53 1.51 1.54 1.62 1.64 1.39 1.232 0.291613
0.8 1.39 1.41 1.59 1.35 1.2 1.41 0.94 1.22 1.45 1.2935 0.172391
1 1.31 1.45 0.98 1.36 1.34 0.89 0.76 1.25 1.25 1.172 0.227679

1.4 1.22 1.28 0.95 1.47 1.08 1.17 1.25 1.26 1.42 1.241 0.181685
1.8 1.65 1.51 1.48 0.75 1.65 1.31 1.28 0.87 1.29 1.2675 0.301241
2.4 1.44 1.38 0.92 1.09 1.53 1.36 1.49 0.78 1.37 1.2845 0.235271
2.6 1.27 1.24 1.52 1.45 1.17 1.48 1.35 1.25 1.23 1.2855 0.170586

 127

APPENDIX E

Results for Scheduling with a Static

Learning Tree

 128

Table E.1: 80% Utilization, MPL=250, β=0.2, DR set {MDD, ODD, SPT}

Performances R# 1 R# 2 R# 3 R# 4 R# 5 R# 6 R# 7 R# 8 R# 9 R# 10 R# 11 R# 12
MultiPass 0.87 0.88 0.9 0.86 0.9 0.86 0.88 0.84 0.89 0.93 0.94 0.99
LearnPerf 0.81 0.78 0.82 0.89 0.81 0.81 0.8 0.76 0.75 0.83 0.83 0.84
BestPerf 0.63 0.66 0.65 0.66 0.62 0.64 0.65 0.6 0.67 0.71 0.63 0.66

Performances R# 13 R# 14 R# 15 R# 16 R# 17 R# 18 R# 19 R# 20 Average Std. Dev.
MultiPass 0.94 0.84 0.99 0.82 0.95 0.82 0.89 0.9 0.8945 0.049891989
LearnPerf 0.83 0.81 0.81 0.75 0.81 0.73 0.79 0.73 0.7995 0.039930861
BestPerf 0.71 0.63 0.67 0.63 0.69 0.56 0.63 0.66 0.648 0.035183728

Table E.2: 80% Utilization, MPL=500, β=1, DR set {MDD, ODD, SPT}

Performances R# 1 R# 2 R# 3 R# 4 R# 5 R# 6 R# 7 R# 8 R# 9 R# 10 R# 11 R# 12
MultiPass 0.89 0.88 0.89 0.95 0.9 0.88 0.91 0.89 0.94 0.92 0.92 0.9
LearnPerf 0.86 0.86 0.89 0.9 0.88 0.88 0.83 0.83 0.91 0.9 0.87 0.89
BestPerf 0.64 0.66 0.66 0.67 0.67 0.66 0.68 0.66 0.67 0.686 0.676 0.656

Performances R# 13 R# 14 R# 15 R# 16 R# 17 R# 18 R# 19 R# 20 Average Std. Dev.
MultiPass 0.97 0.93 0.89 0.89 0.94 0.81 0.79 0.83 0.896 0.045002924
LearnPerf 0.92 0.89 0.89 0.85 0.92 0.81 0.9 0.84 0.876 0.031355349
BestPerf 0.666 0.656 0.636 0.646 0.686 0.596 0.646 0.616 0.655 0.021980853

Table E.3: 80% Utilization, MPL=1000, β= -, DR set {MDD, ODD, SPT}

Performances R# 1 R# 2 R# 3 R# 4 R# 5 R# 6 R# 7 R# 8 R# 9 R# 10 R# 11 R# 12
MultiPass 0.89 0.87 0.89 0.93 0.91 0.89 0.92 0.89 0.92 0.92 0.9 0.89
LearnPerf 0.88 0.88 0.89 0.91 0.88 0.88 0.91 0.89 0.92 0.92 0.89 0.89
BestPerf 0.67 0.66 0.68 0.68 0.68 0.67 0.7 0.67 0.7 0.71 0.68 0.68

Performances R# 13 R# 14 R# 15 R# 16 R# 17 R# 18 R# 19 R# 20 Average Std. Dev.
MultiPass 0.93 0.88 0.92 0.88 0.92 0.84 0.87 0.85 0.8955 0.02584875
LearnPerf 0.93 0.88 0.92 0.88 0.91 0.83 0.88 0.86 0.8915 0.023680994
BestPerf 0.7 0.67 0.7 0.68 0.7 0.63 0.67 0.66 0.6795 0.018771479

 129

Table E.4: 90% Utilization, MPL=500, β=0.2, DR set {MDD, ODD, SPT}

Performances R# 1 R# 2 R# 3 R# 4 R# 5 R# 6 R# 7 R# 8 R# 9 R# 10 R# 11 R# 12
MultiPass 1.59 1.14 1.54 1.65 1.71 1.4 1.37 1.77 1.53 1.66 1.7 1.14
LearnPerf 1.35 1.37 1.28 1.34 1.47 1.29 1.35 1.63 1.63 1.53 1.38 1.17
BestPerf 1.08 1.11 1.01 1.05 1.18 1.01 1.1 1.36 1.23 1.19 1.07 0.9

Performances R# 13 R# 14 R# 15 R# 16 R# 17 R# 18 R# 19 R# 20 Average Std. Dev.
MultiPass 1.4 1.52 1.31 1.34 1.54 1.72 1.34 1.52 1.4945 0.184860545
LearnPerf 1.32 1.39 1.14 1.39 1.56 1.42 1.22 1.43 1.383 0.134677002
BestPerf 1.06 1.12 0.8 1.13 1.29 1.13 1.06 1.12 1.1 0.123756977

Table E.5: 90% Utilization, MPL=2500, β=1, DR set {MDD, ODD, SPT}

Performances R# 1 R# 2 R# 3 R# 4 R# 5 R# 6 R# 7 R# 8 R# 9 R# 10 R# 11 R# 12
MultiPass 1.43 1.59 1.35 1.39 1.64 1.86 1.58 1.53 1.36 1.6 1.56 1.3
LearnPerf 1.49 1.44 1.37 1.43 1.64 1.58 1.42 1.51 1.45 1.56 1.56 1.48
BestPerf 1.15 1.1 1.02 1.08 1.2 1.19 1.11 1.17 1.12 1.17 1.17 1.1

Performances R# 13 R# 14 R# 15 R# 16 R# 17 R# 18 R# 19 R# 20 Average Std. Dev.
MultiPass 1.4 1.39 1.88 1.4 1.57 1.55 1.66 1.61 1.5325 0.158575069
LearnPerf 1.45 1.47 1.48 1.53 1.3 1.45 1.51 1.63 1.4875 0.082454134
BestPerf 1.1 1.15 1.16 1.15 1.18 1.11 1.15 1.21 1.1395 0.046506932

Table E.6: 90% Utilization, MPL=7500, β= -, DR set {MDD, ODD, SPT}

Performances R# 1 R# 2 R# 3 R# 4 R# 5 R# 6 R# 7 R# 8 R# 9 R# 10 R# 11 R# 12
MultiPass 1.5 1.5 1.4 1.46 1.52 1.62 1.44 1.51 1.52 1.54 1.55 1.48
LearnPerf 1.51 1.48 1.42 1.44 1.52 1.62 1.42 1.49 1.54 1.53 1.52 1.47
BestPerf 1.18 1.18 1.11 1.18 1.22 1.25 1.14 1.2 1.2 1.21 1.21 1.17

Performances R# 13 R# 14 R# 15 R# 16 R# 17 R# 18 R# 19 R# 20 Average Std. Dev.
MultiPass 1.53 1.55 1.56 1.57 1.57 1.45 1.48 1.54 1.5145 0.052362602
LearnPerf 1.51 1.57 1.52 1.58 1.57 1.47 1.51 1.52 1.5105 0.052060188
BestPerf 1.17 1.23 1.23 1.21 1.23 1.18 1.2 1.22 1.196 0.033308763

 130

Table E.7: 80% Utilization, MPL=250, β=0.2, DR set {MOD, MDD, ODD, SPT}

Performances R# 1 R# 2 R# 3 R# 4 R# 5 R# 6 R# 7 R# 8 R# 9 R# 10 R# 11 R# 12
MultiPass 0.47 0.49 0.52 0.48 0.49 0.47 0.48 0.51 0.51 0.53 0.48 0.5
LearnPerf 0.41 0.41 0.43 0.44 0.41 0.39 0.4 0.42 0.43 0.44 0.41 0.42
BestPerf 0.36 0.35 0.38 0.38 0.32 0.35 0.35 0.28 0.35 0.41 0.37 0.39

Performances R# 13 R# 14 R# 15 R# 16 R# 17 R# 18 R# 19 R# 20 Average Std. Dev.
MultiPass 0.51 0.48 0.52 0.49 0.51 0.46 0.47 0.48 0.4925 0.029464519
LearnPerf 0.43 0.43 0.43 0.41 0.43 0.38 0.39 0.4 0.4155 0.019967078
BestPerf 0.39 0.37 0.35 0.33 0.4 0.35 0.36 0.35 0.3595 0.01731291

Table E.8: 80% Utilization, MPL=500, β=1, DR set {MOD, MDD, ODD, SPT}

Performances R# 1 R# 2 R# 3 R# 4 R# 5 R# 6 R# 7 R# 8 R# 9 R# 10 R# 11 R# 12
MultiPass 0.43 0.42 0.45 0.45 0.42 0.44 0.46 0.44 0.45 0.44 0.45 0.42
LearnPerf 0.4 0.44 0.45 0.45 0.44 0.42 0.41 0.4 0.46 0.45 0.44 0.41
BestPerf 0.35 0.37 0.38 0.38 0.37 0.37 0.38 0.36 0.39 0.39 0.38 0.37

Performances R# 13 R# 14 R# 15 R# 16 R# 17 R# 18 R# 19 R# 20 Average Std. Dev.
MultiPass 0.48 0.44 0.44 0.43 0.47 0.41 0.44 0.42 0.44 0.017770466
LearnPerf 0.45 0.44 0.44 0.43 0.43 0.38 0.43 0.4 0.4285 0.021830688
BestPerf 0.39 0.37 0.38 0.37 0.4 0.35 0.37 0.36 0.374 0.013138934

Table E.9: 80% Utilization, MPL=1000, β= -, DR set {MOD, MDD, ODD, SPT}

Performances R# 1 R# 2 R# 3 R# 4 R# 5 R# 6 R# 7 R# 8 R# 9 R# 10 R# 11 R# 12
MultiPass 0.43 0.42 0.44 0.47 0.44 0.44 0.45 0.43 0.46 0.45 0.44 0.43
LearnPerf 0.43 0.42 0.44 0.44 0.44 0.42 0.45 0.42 0.45 0.44 0.44 0.43
BestPerf 0.38 0.37 0.38 0.4 0.38 0.38 0.4 0.38 0.4 0.39 0.39 0.38

Performances R# 13 R# 14 R# 15 R# 16 R# 17 R# 18 R# 19 R# 20 Average Std. Dev.
MultiPass 0.44 0.42 0.46 0.43 0.46 0.42 0.43 0.45 0.4405 0.014680815
LearnPerf 0.45 0.42 0.46 0.43 0.45 0.4 0.42 0.45 0.435 0.015043796
BestPerf 0.39 0.37 0.39 0.37 0.4 0.36 0.38 0.37 0.383 0.011742859

 131

Table E.10: 90% Utilization, MPL=500, β=0.2, DR set {MOD, MDD, ODD, SPT}

Performances R# 1 R# 2 R# 3 R# 4 R# 5 R# 6 R# 7 R# 8 R# 9 R# 10 R# 11 R# 12
MultiPass 0.81 0.64 0.67 0.59 0.74 0.66 0.77 0.79 0.67 0.89 0.6 0.65
LearnPerf 0.67 0.53 0.54 0.48 0.61 0.54 0.65 0.65 0.54 0.76 0.49 0.55
BestPerf 0.56 0.6 0.67 0.48 0.51 0.67 0.52 0.62 0.58 0.54 0.63 0.44

Performances R# 13 R# 14 R# 15 R# 16 R# 17 R# 18 R# 19 R# 20 Average Std. Dev.
MultiPass 0.61 0.64 0.54 0.69 0.7 0.67 0.67 0.68 0.684 0.082359929
LearnPerf 0.5 0.54 0.45 0.58 0.58 0.56 0.56 0.58 0.568 0.072663608
BestPerf 0.47 0.48 0.34 0.46 0.52 0.43 0.44 0.44 0.52 0.088317609

Table E.11: 90% Utilization, MPL=2500, β=1, DR set {MOD, MDD, ODD, SPT}

Performances R# 1 R# 2 R# 3 R# 4 R# 5 R# 6 R# 7 R# 8 R# 9 R# 10 R# 11 R# 12
MultiPass 0.6 0.62 0.45 0.57 0.74 0.78 0.68 0.63 0.66 0.7 0.66 0.5
LearnPerf 0.59 0.54 0.47 0.53 0.74 0.68 0.52 0.61 0.55 0.66 0.66 0.58
BestPerf 0.55 0.5 0.42 0.48 0.6 0.59 0.51 0.57 0.52 0.57 0.57 0.5

Performances R# 13 R# 14 R# 15 R# 16 R# 17 R# 18 R# 19 R# 20 Average Std. Dev.
MultiPass 0.5 0.59 0.68 0.6 0.57 0.65 0.71 0.76 0.6325 0.087891979
LearnPerf 0.55 0.57 0.58 0.63 0.4 0.55 0.61 0.73 0.5875 0.082454134
BestPerf 0.5 0.55 0.56 0.55 0.58 0.51 0.55 0.61 0.5395 0.046506932

Table E.12: 90% Utilization, MPL=7500, β= -, DR set {MOD, MDD, ODD, SPT}

Performances R# 1 R# 2 R# 3 R# 4 R# 5 R# 6 R# 7 R# 8 R# 9 R# 10 R# 11 R# 12
MultiPass 0.58 0.58 0.58 0.56 0.6 0.63 0.57 0.59 0.6 0.6 0.59 0.58
LearnPerf 0.58 0.58 0.57 0.57 0.6 0.62 0.56 0.58 0.6 0.6 0.6 0.57
BestPerf 0.56 0.54 0.54 0.53 0.57 0.59 0.54 0.55 0.56 0.57 0.56 0.54

Performances R# 13 R# 14 R# 15 R# 16 R# 17 R# 18 R# 19 R# 20 Average Std. Dev.
MultiPass 0.59 0.63 0.62 0.61 0.61 0.58 0.59 0.61 0.595 0.019056702
LearnPerf 0.59 0.61 0.61 0.61 0.6 0.58 0.59 0.61 0.5915 0.016944181
BestPerf 0.56 0.58 0.58 0.58 0.57 0.55 0.55 0.57 0.5595 0.016693838

 132

Table E.13: 80% Utilization, MPL=250, β=0.2, DR set {MDD, ODD, SPT}

Dispatching Rule Percentages Rules R# 1 R# 2 R# 3 R# 4 R# 5 R# 6 R# 7 R# 8 R# 9 R# 10 R# 11
SPT 15% 12% 14% 11% 14% 11% 14% 13% 14% 14% 14%

MDD 33% 35% 36% 33% 33% 35% 31% 33% 32% 34% 35% Multi-pass
ODD 51% 52% 49% 54% 52% 52% 53% 52% 53% 51% 50%

SPT 10% 13% 11% 11% 11% 9% 12% 10% 10% 10% 11%

MDD 52% 54% 55% 54% 52% 57% 53% 50% 55% 58% 55% Learning
ODD 37% 32% 32% 34% 36% 33% 33% 40% 34% 32% 33%

SPT 8% 9% 9% 9% 10% 9% 9% 9% 9% 11% 9%

MDD 52% 55% 55% 57% 51% 53% 53% 55% 54% 55% 55% Best
ODD 38% 35% 34% 33% 38% 37% 36% 35% 36% 33% 35%

Dispatching Rule Percentages Rules R# 12 R# 13 R# 14 R# 15 R# 16 R# 17 R# 18 R# 19 R# 20 Average

SPT 13% 13% 13% 14% 13% 13% 14% 13% 14% 13%
MDD 34% 33% 33% 33% 34% 35% 34% 34% 32% 34% Multi-pass
ODD 51% 53% 52% 52% 52% 50% 51% 52% 53% 52%

SPT 10% 10% 11% 9% 9% 9% 10% 8% 10% 10%

MDD 52% 54% 52% 57% 57% 56% 50% 55% 57% 54% Learning
ODD 37% 34% 35% 33% 33% 33% 38% 36% 31% 34%

SPT 10% 10% 9% 9% 9% 10% 8% 9% 9% 9% Best

MDD 52% 52% 53% 53% 55% 55% 51% 54% 55% 54%
ODD 36% 37% 37% 37% 35% 34% 40% 36% 35% 36%

 133

Table E.14: 80% Utilization, MPL=500, β=1, DR set {MDD, ODD, SPT}

Dispatching Rule Percentages Rules R# 1 R# 2 R# 3 R# 4 R# 5 R# 6 R# 7 R# 8 R# 9 R# 10 R# 11
SPT 14% 13% 13% 13% 15% 12% 14% 13% 14% 14% 14%

MDD 35% 34% 36% 33% 33% 36% 31% 34% 33% 34% 35% Multi-pass
ODD 50% 52% 49% 53% 51% 51% 54% 52% 51% 50% 49%

SPT 14% 14% 18% 14% 15% 13% 15% 13% 15% 13% 16%

MDD 38% 39% 37% 39% 39% 43% 38% 40% 43% 37% 39% Learning
ODD 47% 46% 44% 46% 44% 42% 45% 45% 40% 48% 44%

SPT 13% 13% 14% 13% 14% 13% 14% 14% 14% 15% 14%

MDD 36% 39% 40% 40% 37% 39% 37% 40% 39% 39% 39% Best
ODD 49% 46% 45% 45% 47% 46% 48% 45% 46% 45% 45%

Dispatching Rule Percentages Rules R# 12 R# 13 R# 14 R# 15 R# 16 R# 17 R# 18 R# 19 R# 20 Average

SPT 13% 13% 14% 14% 14% 14% 13% 13% 15% 14%
MDD 34% 34% 33% 32% 36% 35% 33% 34% 32% 34% Multi-pass
ODD 52% 52% 51% 53% 49% 50% 53% 51% 52% 51%

SPT 15% 15% 13% 14% 14% 12% 14% 14% 13% 14%

MDD 35% 36% 38% 31% 40% 43% 36% 38% 34% 38% Learning
ODD 48% 48% 48% 53% 45% 43% 49% 46% 52% 46%

SPT 14% 13% 12% 13% 13% 13% 11% 14% 12% 13%

MDD 39% 37% 39% 37% 39% 40% 37% 38% 39% 39% Best
ODD 46% 48% 47% 48% 46% 46% 51% 47% 48% 47%

 134

Table E.15: 80% Utilization, MPL=1000, β= -, DR set {MDD, ODD, SPT}

Dispatching Rule Percentages Rules R# 1 R# 2 R# 3 R# 4 R# 5 R# 6 R# 7 R# 8 R# 9 R# 10 R# 11
SPT 14% 13% 14% 12% 15% 12% 15% 13% 14% 14% 14%

MDD 32% 34% 35% 34% 32% 35% 31% 36% 34% 35% 34% Multi-pass
ODD 52% 52% 49% 53% 52% 51% 53% 50% 51% 50% 51%

SPT 13% 11% 14% 15% 16% 14% 13% 16% 12% 12% 14%

MDD 25% 33% 31% 29% 30% 33% 31% 29% 37% 31% 26% Learning
ODD 61% 54% 53% 54% 52% 52% 54% 53% 49% 56% 59%

SPT 13% 13% 14% 13% 14% 14% 14% 14% 15% 14% 13%

MDD 31% 34% 34% 36% 32% 32% 33% 34% 33% 34% 34% Best
ODD 55% 52% 51% 50% 52% 53% 51% 51% 51% 50% 51%

Dispatching Rule Percentages Rules R# 12 R# 13 R# 14 R# 15 R# 16 R# 17 R# 18 R# 19 R# 20 Average

SPT 13% 13% 13% 14% 14% 14% 14% 14% 13% 14%
MDD 33% 35% 33% 33% 34% 34% 34% 34% 33% 34% Multi-pass
ODD 52% 51% 52% 51% 51% 51% 51% 51% 52% 51%

SPT 16% 16% 13% 16% 14% 15% 14% 12% 14% 14%

MDD 35% 31% 34% 35% 34% 29% 31% 32% 35% 32% Learning
ODD 48% 51% 52% 47% 51% 54% 54% 55% 50% 53%

SPT 13% 14% 13% 14% 14% 14% 11% 13% 13% 14%

MDD 34% 33% 33% 33% 34% 34% 33% 34% 33% 33% Best
ODD 51% 52% 52% 52% 50% 50% 55% 51% 53% 52%

 135

Table E.16: 90% Utilization, MPL=500, β=0.2, DR set {MDD, ODD, SPT}

Dispatching Rule Percentages Rules R# 1 R# 2 R# 3 R# 4 R# 5 R# 6 R# 7 R# 8 R# 9 R# 10 R# 11
SPT 3% 3% 3% 2% 2% 3% 1% 2% 2% 2% 3%

MDD 60% 56% 57% 62% 58% 57% 58% 58% 58% 58% 60% Multi-pass
ODD 35% 40% 39% 35% 39% 39% 39% 39% 38% 38% 36%

SPT 2% 2% 2% 2% 2% 1% 4% 3% 4% 3% 3%

MDD 82% 86% 83% 86% 85% 82% 85% 86% 82% 82% 81% Learning
ODD 15% 11% 14% 10% 12% 16% 9% 9% 12% 14% 14%

SPT 3% 2% 2% 1% 2% 3% 2% 2% 3% 3% 2%

MDD 82% 83% 79% 83% 83% 82% 84% 82% 82% 80% 83% Best
ODD 14% 13% 18% 15% 14% 14% 13% 14% 14% 16% 14%

Dispatching Rule Percentages Rules R# 12 R# 13 R# 14 R# 15 R# 16 R# 17 R# 18 R# 19 R# 20 Average

SPT 2% 2% 2% 3% 2% 3% 2% 2% 3% 2%
MDD 56% 59% 57% 58% 56% 56% 57% 58% 59% 58% Multi-pass
ODD 40% 38% 39% 38% 40% 40% 40% 39% 37% 38%

SPT 1% 3% 2% 5% 3% 2% 2% 0% 2% 2%

MDD 82% 86% 84% 82% 84% 84% 83% 86% 87% 84% Learning
ODD 16% 10% 13% 12% 12% 13% 14% 12% 9% 12%

SPT 2% 3% 2% 3% 2% 3% 4% 1% 2% 2%

MDD 83% 82% 82% 82% 83% 83% 81% 82% 83% 82% Best
ODD 14% 13% 14% 14% 14% 13% 13% 15% 14% 14%

 136

Table E.17: 90% Utilization, MPL=2500, β=1, DR set {MDD, ODD, SPT}

Dispatching Rule Percentages Rules R# 1 R# 2 R# 3 R# 4 R# 5 R# 6 R# 7 R# 8 R# 9 R# 10 R# 11
SPT 3% 2% 3% 2% 2% 3% 2% 2% 2% 3% 3%
MDD 59% 56% 55% 58% 57% 59% 58% 57% 58% 55% 58% Multi-pass
ODD 36% 41% 41% 38% 39% 37% 39% 39% 38% 41% 37%

SPT 4% 3% 7% 1% 6% 2% 6% 2% 3% 5% 6%

MDD 63% 65% 61% 65% 59% 63% 66% 64% 64% 60% 63% Learning
ODD 32% 31% 31% 32% 34% 34% 27% 32% 32% 33% 30%

SPT 3% 3% 2% 3% 4% 3% 2% 3% 3% 2% 3%

MDD 63% 62% 60% 61% 66% 63% 64% 63% 62% 63% 61% Best
ODD 33% 34% 36% 35% 29% 33% 33% 33% 34% 33% 34%

Dispatching Rule Percentages Rules R# 12 R# 13 R# 14 R# 15 R# 16 R# 17 R# 18 R# 19 R# 20 Average

SPT 3% 3% 2% 2% 2% 3% 2% 2% 3% 2%
MDD 57% 59% 58% 63% 54% 54% 58% 60% 59% 58% Multi-pass
ODD 39% 36% 38% 34% 42% 42% 39% 37% 37% 39%

SPT 2% 3% 1% 2% 3% 2% 4% 5% 5% 4%

MDD 63% 67% 67% 66% 62% 66% 63% 62% 58% 63% Learning
ODD 33% 29% 30% 31% 33% 31% 32% 33% 36% 32%

SPT 2% 3% 3% 3% 2% 3% 2% 4% 4% 3%

MDD 63% 64% 62% 64% 61% 65% 63% 60% 64% 63% Best
ODD 33% 31% 34% 31% 35% 31% 33% 34% 31% 33%

 137

Table E.18: 90% Utilization, MPL=7500, β= -, DR set {MDD, ODD, SPT}

Dispatching Rule Percentages Rules R# 1 R# 2 R# 3 R# 4 R# 5 R# 6 R# 7 R# 8 R# 9 R# 10 R# 11
SPT 3% 2% 3% 2% 2% 3% 1% 2% 2% 2% 3%

MDD 59% 55% 56% 60% 57% 58% 56% 57% 59% 56% 58% Multi-pass
ODD 36% 42% 40% 37% 39% 37% 41% 40% 38% 40% 37%

SPT 3% 3% 1% 2% 2% 3% 3% 3% 2% 2% 3%

MDD 51% 53% 57% 76% 52% 61% 60% 65% 50% 55% 56% Learning
ODD 44% 43% 40% 21% 44% 35% 35% 30% 47% 42% 40%

SPT 3% 3% 1% 3% 2% 3% 2% 2% 1% 2% 3%

MDD 60% 58% 58% 58% 59% 58% 59% 57% 59% 57% 58% Best
ODD 36% 38% 39% 38% 38% 38% 38% 39% 38% 40% 38%

Dispatching Rule Percentages Rules R# 12 R# 13 R# 14 R# 15 R# 16 R# 17 R# 18 R# 19 R# 20 Average

SPT 2% 2% 2% 3% 2% 3% 1% 1% 2% 2%
MDD 59% 57% 59% 59% 56% 54% 57% 60% 59% 58% Multi-pass
ODD 37% 39% 38% 37% 41% 41% 40% 37% 38% 39%

SPT 1% 1% 4% 2% 2% 4% 2% 4% 2% 2%

MDD 59% 56% 55% 70% 54% 57% 59% 60% 61% 58% Learning
ODD 38% 42% 40% 26% 43% 38% 38% 34% 35% 38%

SPT 2% 2% 2% 3% 2% 2% 2% 3% 3% 2%

MDD 59% 57% 58% 59% 58% 57% 57% 56% 58% 58% Best
ODD 37% 40% 39% 37% 39% 39% 40% 40% 38% 38%

 138

APPENDIX F

Results for Scheduling with Dynamic

Learning Tree

 139

Table F.1: Plotted data in the charts

Data X X-Bar X-Lower X-Upper Sigma 2-Sigma -Sigma -2-Sigma R R-Bar R-Lower R-Upper
1 0.639 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 1.193 2.236 0 4.729
2 0.507 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 1.915 2.236 0 4.729
3 1.123 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 1.94 2.236 0 4.729
4 0.3 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 0.718 2.236 0 4.729
5 0.454 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 0.876 2.236 0 4.729
6 0.867 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 0.983 2.236 0 4.729
7 1.175 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 2.939 2.236 0 4.729
8 1.533 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 4.266 2.236 0 4.729
9 0.617 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 0.907 2.236 0 4.729

10 1.256 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 2.961 2.236 0 4.729
11 0.426 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 0.707 2.236 0 4.729
12 4.407 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 8.675 2.236 0 4.729
13 0.625 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 1.013 2.236 0 4.729
14 0.678 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 1.184 2.236 0 4.729
15 1.416 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 3.812 2.236 0 4.729
16 1.092 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 3.81 2.236 0 4.729
17 1.085 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 2.464 2.236 0 4.729
18 0.712 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 2.165 2.236 0 4.729
19 1.313 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 2.016 2.236 0 4.729
20 0.368 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 0.437 2.236 0 4.729
21 0.474 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 0.937 2.236 0 4.729
22 0.572 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 1.605 2.236 0 4.729
23 0.706 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 2.249 2.236 0 4.729
24 0.54 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 1.127 2.236 0 4.729
25 1.507 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 3.814 2.236 0 4.729
26 0.33 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 0.432 2.236 0 4.729
27 2.064 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 4.516 2.236 0 4.729
28 3.085 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 6.048 2.236 0 4.729
29 0.982 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 3.142 2.236 0 4.729
30 3.578 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 6.169 2.236 0 4.729

 140

31 1.482 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 5.258 2.236 0 4.729
32 2.1 0.929 -0.43 2.229 1.382 1.835 0.476 0.023 4.171 2.359 0 4.989
33 1.061 0.929 -0.43 2.229 1.382 1.835 0.476 0.023 3.067 2.359 0 4.989
34 1.848 0.929 -0.43 2.229 1.382 1.835 0.476 0.023 7.571 2.359 0 4.989
35 0.507 0.929 -0.43 2.229 1.382 1.835 0.476 0.023 1.963 2.359 0 4.989
36 5.799 0.929 -0.43 2.229 1.382 1.835 0.476 0.023 10.67 2.359 0 4.989
37 1.762 1.046 -0.498 2.59 1.56 2.074 0.532 0.018 2.325 2.677 0 5.662
38 0.741 1.046 -0.498 2.59 1.56 2.074 0.532 0.018 1.158 2.677 0 5.662
39 0.262 1.046 -0.498 2.59 1.56 2.074 0.532 0.018 0.423 2.677 0 5.662
40 2.044 1.046 -0.498 2.59 1.56 2.074 0.532 0.018 5.089 2.677 0 5.662
41 1.359 1.046 -0.498 2.59 1.56 2.074 0.532 0.018 2.698 2.677 0 5.662
42 0.388 1.046 -0.498 2.59 1.56 2.074 0.532 0.018 0.224 2.677 0 5.662
43 3.011 1.046 -0.498 2.59 1.56 2.074 0.532 0.018 9.757 2.677 0 5.662
44 1.377 1.046 -0.498 2.59 1.56 2.074 0.532 0.018 3.957 2.677 0 5.662
45 0.447 1.046 -0.498 2.59 1.56 2.074 0.532 0.018 1.672 2.677 0 5.662
46 1.087 1.046 -0.498 2.59 1.56 2.074 0.532 0.018 3.022 2.677 0 5.662
47 0.599 1.046 -0.498 2.59 1.56 2.074 0.532 0.018 1.626 2.677 0 5.662
48 0.685 1.046 -0.498 2.59 1.56 2.074 0.532 0.018 1.371 2.677 0 5.662
49 1.211 1.046 -0.498 2.59 1.56 2.074 0.532 0.018 2.451 2.677 0 5.662
50 0.697 1.046 -0.498 2.59 1.56 2.074 0.532 0.018 1.326 2.677 0 5.662
51 0.879 1.046 -0.498 2.59 1.56 2.074 0.532 0.018 1.141 2.677 0 5.662
52 0.653 1.046 -0.498 2.59 1.56 2.074 0.532 0.018 0.772 2.677 0 5.662
53 0.967 1.046 -0.498 2.59 1.56 2.074 0.532 0.018 1.164 2.677 0 5.662
54 0.594 1.046 -0.498 2.59 1.56 2.074 0.532 0.018 0.601 2.677 0 5.662

 141

Table F.2: Number of updates for the learning tree and the charts for DR set {MOD, MDD, ODD, SPT}

 Training data set: Full Partial
 (SPL, MPL, β): (1000, 250, 0.2) (7500, 500, 0.2) (1000, 250, 0.2) (7500, 500, 0.2)
Due date tightness:

Learning tree updates 313 315 255 239
Adjusted Control chart updates 157 163 131 117

Learning tree updates 503 504 252 254
Not Adjusted Control chart updates 242 252 125 127

Table F.3: Number of updates for the learning tree and the charts for DR set {MDD, ODD, SPT}

 Training data set: Full Partial
 (SPL, MPL, β): (1000, 250, 0.2) (7500, 500, 0.2) (1000, 250, 0.2) (7500, 500, 0.2)
Due date tightness:

Learning tree updates 308 318 258 255
Adjusted Control chart updates 147 164 125 123

Learning tree updates 537 537 269 284
Not Adjusted Control chart updates 266 268 134 137

