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ABSTRACT 

 
A LEARNING-BASED SCHEDULING SYSTEM WITH 

CONTINUOUS CONTROL AND UPDATE STRUCTURE 
 

Gökhan Metan 

M.S. in Industrial Engineering 

Supervisor: Prof. Dr. İhsan Sabuncuoğlu 

January, 2005 

 

In today’s highly competitive business environment, the product varieties of firms 

tend to increase and the demand patterns of commodities change rapidly. Especially 

for high tech industries, the product life cycles become very short and the customer 

demand can change drastically due to the introduction of new technologies in the 

market (i.e., introduction by the competitors). These factors increase the need for 

more efficient scheduling strategies. In this thesis, a learning-based scheduling system 

for a classical job shop problem with the average tardiness objective is developed. 

The system learns on the manufacturing environment by constructing a learning tree 

and selects a dispatching rule from the tree for each scheduling period to schedule the 

operations. The system also utilizes the process control charts to monitor the 

performance of the learning tree and the tree as well as the control charts is updated 

when necessary. Therefore, the system adapts itself for the changes in the 

manufacturing environment and survives in time. Also, extensive simulation 

experiments are performed for the system parameters such as monitoring (MPL) and 

scheduling period lengths (SPL). Our results indicate that the system performance is 

significantly affected by the parameters (i.e., MPL and SPL). Moreover, simulation 

results show that the performance of the proposed system is considerably better than 

the simulation-based single-pass and multi-pass scheduling algorithms available in the 

literature. 

 

 

Keywords: Scheduling, Machine Learning, Data Mining, Control Charts, Job Shop 

Scheduling, AI, Dispatching Rules. 
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ÖZET 

 
SÜREKLİ KONTROL VE GÜNCELLEŞTİRME YAPILI 

ÖĞRENME TEMELLİ ÇİZELGELEME SİSTEMİ 
 

Gökhan Metan 

Endüstri Mühendisliği, Yüksek Lisans 

Tez Yöneticisi: Prof. Dr. İhsan Sabuncuoğlu 

Ocak, 2005 
 
 
Günümüzün rekabetçi iş dünyasında firmaların ürün çeşitleri artmakta ve malların 

talep düzeni hızlı bir şekilde değişmektedir. Özellikle yüksek teknoloji endüstrilerinde 

yeni teknolojilerin pazara tanıtımlarıyla ürün ömür çevrimleri kısalmakta ve müşteri 

talebi şiddetli şekilde değişmektedir. Bu etmenler verimli çizelgeleme 

gengüdümlerine olan ihtiyacı artırmaktadır. Bu tezde, geleneksel atelye problemine 

ortalama gecikme amacına yönelik öğrenme temelli çizelgeleme sistemi 

geliştirilmiştir. Önerilen sistem öğrenme ağacı kurmak yoluyla üretim ortamı üzerinde 

öğrenmekte ve bu ağaçtan herbir çizelgeleme dönemi için dağıtım kuralı seçerek 

işlemleri çizelgelemektedir. Sistem aynı zamanda süreç denetim çizeneklerinden 

faydalanarak öğrenme ağacının başarımını gözetlemekte ve gerekli bulduğunda ağacı 

ve denetim çizeneklerini güncellemektedir. Bu sayede, önerilen sistem kendi kendini 

üretim ortamındaki değişikliklere uyarlamakta ve zaman içinde hayatta 

kalabilmektedir. Bunun yanı sıra, çizelgeleme dönem uzunluğu ve gözetleme dönem 

uzunlukları gibi sistem parametreleri üzerinde  kapsamlı benzetim deneyleri 

gerçekleştirilmiştir. Sonuçların gösterdiğine göre bu parametreler sistem başarımını 

(ortalama gecikme) önemli şekilde etkilemektedir. Bundan başka, benzetim sonuçları 

önerilen sistemin başarımının benzetim-temelli tek-geçişli ve çok-geçişli çizelgeleme 

algoritmalarından daha iyi olduğunu göstermektedir. 

 

 

 

Anahtar Sözcükler: Çizelgeleme, Makina Öğrenmesi, Veri Madenciliği, Denetim 

Çizeneği, Atelye Çizelgelemesi, Yapay Zeka, Dağıtım Kuralları 
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Chapter 1 
 
 

Introduction 
 
 

 

In today’s highly competitive business environment, customer satisfaction plays the 

key role for the success of any firm. Customers not only care about the cost of a 

product, but they also give special importance to the quality of the products and the 

reliability of the manufacturers in terms of meeting their agreements such as the 

promised due dates. Moreover, the product variety of a firm tends to increase due to 

the demand for highly customized goods, which in turn increases the complexity of 

operating a manufacturing system. In addition to these, the demand patterns of 

commodities may also change too rapidly. Especially for high tech industries, the 

product life cycles become very short and the customer demand can change 

drastically due to the introduction of new technologies in the market (i.e., introduction 

by the competitors). These factors increase the need for more efficient manufacturing 

strategies and approaches. 

   One of the key elements for the success of any manufacturing firm is 

efficient scheduling of its limited resources. However, even for a small sized company 

with a few number of equipments, it can become a very difficult problem to deal with. 
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In addition to this, scheduling problems should be solved frequently since it is the 

lowest level tactical decision for a firm. Therefore, development of efficient 

scheduling algorithms is vitally important and there is a vast amount of literature on 

this issue. 

 When the scheduling problem is stochastic and dynamic (i.e., the jobs arrive 

dynamically to the system and the arrival and processing times are stochastic) in 

nature, scheduling via the dispatching rules are commonly preferred. Dispatching 

rules are myopic decision rules that schedule the jobs on the machines one at a time 

based on the simple calculations that utilizing the information such as processing 

times, due dates etc. There are many such rules defined in the literature and we can 

simply pick one of them and perform the scheduling activities. However, the problem 

with these dispatching rules is that none of them is superior to the others in every 

manufacturing condition. Therefore, the appropriate rule/s should be determined prior 

to the use. In addition to that, even if a particular dispatching rule is found to perform 

better for a specific manufacturing system, switching to the other rules in certain 

periods may result in additional benefits. For this reason, there are also some 

simulation-based scheduling approaches in the literature. For such studies see, for 

example, Kim and Kim (1994), Jeong and Kim (1998), Kutanoglu and Sabuncuoglu 

(2001). In this approach, simulation-based scheduling, a set of candidate dispatching 

rules are simulated for a planning period and the rule with the best performance value 

is used in that period. One of the shortcomings of this approach is that it requires too 

much computer time to simulate the performance of each candidate dispatching rule. 

Also, the procedure depends on the assumption that we know the probability 

distribution functions and the parameters of the processing and arrival times. 

However, this may not be the case if the demand patterns in the market and/or product 
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types change rapidly, which is the situation for high tech industries. Also, the 

processing times may change due to the machines’ depreciations in time. Hence, the 

simulation models constructed to evaluate the performance of the rules might become 

invalid after some time. 

 In this research, we consider the stochastic and dynamic job shop scheduling 

problem with the average tardiness (mean tardiness) objective and develop a system 

to select the right dispatching rule among a set of candidate rules. The proposed 

system utilizes the intelligent machine learning techniques from computer science 

(i.e., data mining) as well as the process control charts from the statistical quality 

control. The objective of our system is to learn about the characteristics of the 

manufacturing system by constructing a learning tree and then selecting a dispatching 

rule for a scheduling period from this tree on-line. Therefore, we eliminate the 

extensive simulation experiments that should be carried out before every scheduling 

period as it is in simulation-based scheduling approaches. Moreover, we use the 

control charts to monitor the actual performance of the learning tree. If these charts 

signal that the current learning tree begins to perform poorly, a new tree is constructed 

based on the recent information gathered from the manufacturing system. The reason 

for the current tree to have a poor performance might be a result of change in the 

demand patterns, processing time distributions and so on. Thus, by updating the 

current learning tree, we are targeting to capture these changes in the manufacturing 

system and select the right dispatching rules for the future periods. In this sense, the 

proposed system has the ability to survive in time. In other words, we propose a 

system that corrects itself whenever necessary (without an external manipulation) and 

continues to make the scheduling decisions (i.e., selecting the dispatching rules) as 

long as the manufacturing system exists. 
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 In this study, we also address two important questions and conduct extensive 

experiments to answer them. One of these questions is “how frequently should we 

update the dispatching rule used in the manufacturing system?” This is a critical 

question since frequent selection of a new rule might result in system nervousness 

and, on the other hand, infrequent update of the rules most probably result in the loss 

of additional benefits that can be achieved by switching between the rules. The second 

question is “how frequently should we monitor the performance of the manufacturing 

system that operates under a rule and how should we decide to update or continue 

with this rule at these monitoring points?” Both of these questions are also important 

for the performance of our proposed system and experimented extensively. 

 In the next chapter, a review of the relevant literature is presented. In Chapter 

3, we propose the intelligent scheduling system and discuss its key features in detail.  

Experimental designs and the results of these experiments are given in Chapter 4. 

Finally, in Chapter 5, we present the conclusion of this study along with the 

contributions and give future research directions. 



 

 

 

 

CHAPTER 2 
 
 

Literature Review 
 

 

In the scheduling literature, there is a vast amount of studies that deal with various 

issues in scheduling. In this section, we will briefly review the relevant studies that 

employ iterative simulation and artificial intelligence (AI) concepts in manufacturing 

systems. In addition, we consider some studies related to process control charts as we 

use them as the tool in our research. 

Wu and Wysk (1988) develop an expert system called multi-pass expert 

control system (MPECS) for flexible manufacturing cells. This system takes 

advantage of both expert system technology and discrete-event simulation. Simulation 

is employed as a prediction mechanism and evaluates the performance of the 

dispatching rules that are suggested by the expert system. Then, the dispatching rule 

that results the best performance value in simulation runs is used to schedule the jobs. 

This system also contains a simplified and restricted learning mechanism. This 

learning module uses training instances that relate the dispatching rules, the 

performance measures and the system characteristics together. By using this restricted 

learning mechanism, the system provides the user a learning aid, which collects 

information of the user interested factors (e.g., number of times a rule is selected, etc.) 
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to help the user learn from the system and modify the knowledge base if possible. In 

this sense, the system does not learn automatically by itself, but guides the user by 

providing significantly found information about the manufacturing system.  

In another study by Wu and Wysk (1989), a simulation-based scheduling 

algorithm is proposed for flexible manufacturing system. In this research, a 

dispatching rule among a set of candidate rules is selected for each short period via 

simulation just before the implementation time occurs. The experiments on this 

candidate rule set are carried out by deterministic simulation and performance of each 

rule is estimated. Then the rule with the best performance estimate is used in that 

short period of time to schedule the operations. Since all the candidate dispatching 

rules are evaluated at each short scheduling period and the best performer is selected 

to be used in that interval, the proposed scheduling approach is termed as a multi-pass 

scheduling algorithm. Thus, in the long run, this process results in a combination of 

different dispatching rules. Their results show that the multi-pass scheduling 

algorithm performs better than the single-pass scheduling algorithm, which uses a 

single dispatching rule for the entire manufacturing period. 

Another simulation-based scheduling study is due to Ishii and Talavage 

(1991). In this research, a transient-based real-time scheduling algorithm that selects a 

dispatching rule dynamically for a next short time period to react to changes of system 

state is proposed. In this study, as opposed to the work of Wu and Wysk (1989), the 

scheduling interval length, where each candidate dispatching rule is evaluated, is not 

held fixed and four different strategies are defined accordingly. In the first strategy, 

the simulation window (length of time used to evaluate the performance of candidate 

rules) is defined of equal length to the next scheduling interval as it is in the study of 

Wu and Wysk (1989). In the second strategy, simulation window is defined from the 



 

 7 

current time to the time until all parts that exist in the system during the next 

scheduling interval depart from the system. For the third strategy, they define 

simulation window as from current time to the end of the entire manufacturing period. 

Finally, the last strategy assumes simulation window as the two consecutive 

scheduling intervals and selects the best rule for the first scheduling interval based on 

the performances measured at the end of the second scheduling interval. In this sense, 

the last strategy employs a single period look-ahead mechanism. It is reported in the 

paper that in most of the experiments strategy 4 results in better schedules than the 

other strategies as well as the single-pass scheduling algorithm. 

The first study that applies machine learning techniques to the scheduling 

problems is the work of Shaw et. al. (1992). In this paper machine learning 

capabilities for an FMS scheduling problem is investigated. Their machine learning 

approach is used to select the best dispatching rule based on a number of 

manufacturing system characteristics (the overall system utilization, total buffer size 

and number of machines). This selected rule is then used to schedule the jobs on the 

machines, and the rule is never questioned again as long as the shop floor 

configuration is stable (e.g., number of machines in the facility doesn’t change). 

Therefore, the decision given in this study can be thought of as a strategic decision 

rather than a tactical one. Training examples are generated for different attribute-value 

combinations. These examples are supplied for the learning algorithm as a learning 

data set after being tested via simulation. After the learning algorithm processes the 

learning data, a learning tree is constructed. Whenever one or more of the system 

characteristics changes (takes a different value than its current value), the algorithm 

selects a new dispatching rule (DR) from the learning tree based on the new values of 

the attributes. It does not implement the new DR immediately, but rather it makes a 
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new decision about changing the current DR with this new one or not. This is because 

of the fact that some attribute changes may be temporary and changing the DR of the 

manufacturing system may be destructive when compared with the expected 

performance of the current DR. This decision is done in such a way that if the 

cumulative score (number of times a DR is favored to the others) of the new DR is 

greater than the cumulative score of the current DR multiplied by a smoothing factor, 

the new DR is selected for use. Otherwise, the system continues its operation with the 

current DR. Here, the smoothing factor is a decision variable between 0 and 1. Also, 

since smoothing factor is a decision variable, experimentation on this variable is 

performed with different attribute values for three smoothing factor values (0, 0.7 and 

1) and another learning tree is constructed for the selection of this variable. In other 

words, the value of the smoothing factor is not a fixed value but its value is 

determined based on the system attributes from the second learning tree whenever a 

new DR is to be selected from the first learning tree. By using this machine learning 

strategy, Shaw et. al. test their algorithm on different FMS problems. The results 

indicate that the proposed approach outperforms the approach of using the single best 

DR from a set of candidate DRs in most of the cases. 

In another series of studies by Tayanithi, Manivannan, and Banks (1993a, 

1993b), an integrated scheduling and control system that combines simulation and 

knowledge-based concepts to perform an analysis of interruptions in the form of 

machine breakdowns and rush orders in a flexible manufacturing system is proposed. 

In this system, when a control decision cannot be obtained readily from the 

knowledge base, the alternative actions are evaluated by using the simulation 

mechanism. 
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Cho and Wysk (1993) propose a neural network based scheduling algorithm 

for FMS. Their system mainly composed of three parts: a preprocessor, a neural 

network and a multi-pass simulator. Preprocessor generates input based on the current 

workstation status and supplies it to the neural network. In turn, neural network 

produces a set of promising part dispatching strategies (i.e., dispatching rules) to 

guide the future scheduling activities. These strategies are then evaluated by the 

multi-pass simulator and the best strategy to use is determined. Then the selected 

strategy is used in the shop floor until a new rule update is required. The performance 

of the algorithm is compared with the single-pass strategies and found to be superior.   

Ishii and Talavage (1994) propose another simulation-based scheduling 

system for flexible manufacturing systems. In this research, they develop a mixed 

dispatching rule approach in which each individual machine in an FMS are allowed to 

have a different dispatching rule to perform the scheduling of jobs. It is assumed in 

the paper that the candidate dispatching rule set is predetermined and a search strategy 

to select the best combination from these candidate rules is employed. The 

effectiveness of the mixed dispatching rule approach is demonstrated by comparing 

the experimental results with the conventional approach, where a single dispatching 

rule is assigned for all machines in a system for a given scheduling interval. 

One of the simulation-based studies for scheduling problems is due to Kim 

and Kim (1994), there is a candidate DR set and the rules in this set are evaluated at 

the beginning of each planning horizon by deterministic simulation. The best 

performer is then selected for use for that planning horizon. There are also monitoring 

points defined within the planning horizon and the actual performance of the DR 

(based on the stochastic simulation which represents the real life situation) is 

compared with the estimated one (from deterministic simulation at the beginning of 
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the planning horizon). If this difference exceeds the limit then a new DR is selected 

from the candidate set by the same procedure mentioned as above. In the follow up 

study, Jeong and Kim (1998) have extended the previous study. The dispatching rule 

selection approach is the same as the first study, where a set of candidate DRs are 

evaluated via simulation and the best one is selected for implementation. The major 

development in the later study is that the results from the different policies are defined 

for the question of “when to select a new rule?” Specifically, four different alternative 

policies are defined and compared in this study. The first policy is called as BEGIN 

and only selects a new DR at the beginning of each planning horizon. The second 

policy, MAJOR, considers selecting a new DR at the beginning of each planning 

horizon and at times within the planning horizon whenever a major breakdown of a 

machine occurs. The third one, MAJOR and PERIODIC (M&P), selects a new DR as 

MAJOR and additionally at monitoring points. And the final policy, so called ALL, 

selects a new DR at the beginning of each planning horizon, when a major breakdown 

occurs and a minor breakdown occurs, as well. The concept of major and minor 

breakdowns is a subjective issue and is defined by the authors in the paper with some 

parameters. The results of the experiments in the paper show that M&P and ALL 

perform best. Moreover, while evaluating the candidate DRs in the previous paper 

(Kim and Kim, 1994), authors used deterministic simulation. In this paper, authors 

also test the effect of using deterministic and stochastic simulations in the decision 

phase, that is, the point where we will select the best performing DR via simulation. 

Results show that the deterministic simulation, where the machine breakdowns are not 

considered, resulted in better selections of DRs. 

Pierreval and Mebarki (1997) propose a system by which dispatching rules are 

selected dynamically. Their aim is to monitor the system continuously and select the 
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most suitable dispatching rule for each work-center to optimize the system 

performance. Actually, this research includes the following developments: 

i- Allows for more than one performance criteria to be considered 

simultaneously (both primary and a secondary criteria are considered at the 

same time). 

ii- Based on the specified performance criteria, dynamic selection of the DRs 

seems to be a good policy for the operating conditions and current shop 

status. 

iii- The capability of tracking the triggering events such as new job arrivals, 

resource availabilities etc. 

In the light of these developments, a new heuristic technique called SFSR 

(shift from standard rules) is proposed. This mechanism has a default dispatching 

strategy based on the specified performance criteria. These default dispatching 

strategies are called as the ‘Standard Rules’. For example, R1, which is defined as the 

standard rule that applies whenever the primary objective is to reduce the mean flow 

time of jobs dictates the system the SPT rule and it is active if there is no anomalies 

(no triggering events) in the system. These standard rules are obtained from the 

literature based on their performances in the previous studies. There is also a second 

class of rules called as the ‘Diagnosis Rules’ that accounts for a major development. 

These rules work according to the symptoms detected in the system by continuously 

monitoring. A defined set of symptoms (new job arrivals, resource availability etc.) 

and their corresponding actions, so called the Diagnosis rules, aim at achieving better 

performances. However, the generation of these diagnosis rules is not based on a data 

mining approach but rather they are common sense rules that are based on 

experiences of humans. In this sense, this research cannot be classified as a machine 
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learning approach to scheduling problems, but it can be classified as a scheduling by 

using heuristic rules. 

In another study by Kutanoglu and Sabuncuoglu (2001), an iterative 

simulation-based approach for the dynamic and stochastic job shops is proposed. In 

this study, at the beginning of each scheduling period, a set of DRs are tested via 

simulation under the current system conditions and the forecasts. The best performing 

DR is selected for the upcoming period and used until the next scheduling period. The 

rolling horizon technique is also employed in this study since the simulation runs are 

taken for longer time periods (more than one scheduling period). 

 Suwa and Fujii (2003) use a machine learning technique (data mining) for 

rule acquisition in a dynamic single machine scheduling problem. The training 

examples to the learning module are generated via simulation and then the learning 

tree is constructed. Afterwards, the learning tree is used for selecting the appropriate 

DR to schedule the jobs in a rolling horizon basis. The attributes used in this study to 

represent both the training examples and the conditions when selecting a new DR at 

the beginning of a new period are based on some performance measure differences 

between the current period and the last period. The learning tree is used forever after 

once it is constructed and no revision or critique of the existing rule base is 

performed. 

A related study is the working paper by Huyet and Paris (2003). In this study, 

an evolutionary optimization method is used with machine learning in order to set the 

parameters of a Kanban system optimally. A population of 30 individuals is used in 

each generation of GA and at every three iterations, the machine learning is used to 

learn about the characteristics of promising solutions. Then a number of solutions 

generated randomly, but which have the characteristics found to be important by the 
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machine learning are embedded into the new generation and the process continues. In 

this research, machine learning mainly accelerates the convergence of the individuals 

and hence find the optimum (or near optimum) solutions more rapidly (approximately 

half of the iterations are found to be sufficient for the same level of convergence when 

compared with the GA used alone). This research is a good example to show the 

power of the machine learning approaches when they are employed effectively.  

Another two related studies that show the applicability and usefulness of one 

of our tools in our proposed approach is the papers of Takahashi and Nakamura 

(1999, 2002). In these two papers, a reactive Kanban system is proposed, where the 

number of Kanban cards in the system is manipulated continuously as a response to 

the system parameter, the unstable changes in demand (both mean and the variance of 

the demand distribution is subject to change continuously). Since the demand 

distribution is not stable, the optimal parameters of the Kanban system (number of 

Kanban cards, Kanban container sizes etc.) change dynamically, as well. Therefore, 

appropriate actions should be taken in order to operate optimally or at least near 

optimally. In this paper, the Process Control Charts (EWMA) from quality control are 

employed in order to monitor the unstable changes in demand parameters. The 

demand distribution is assumed to be normally distributed and the appropriate actions 

are taken whenever the chart signals a change in the mean and the variance of the 

demand distribution. 

In this chapter, we presented the relevant literature to our study. In the next 

chapter, we present our learning-based scheduling approach in detail and give a 

numeric example to illustrate the learning procedure. 
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CHAPTER 3 

Proposed System: Intelligent 

Scheduling with Machine Learning 
 

In this research, we propose a learning-based scheduling technique where the 

dispatching rules (DRs) that are used to schedule the jobs on the machines are 

selected by the learning tree. Moreover, the system adapts itself to the changes in 

manufacturing conditions. To achieve this, the performance of the learning tree is 

monitored against the considerable changes in manufacturing system parameter(s) via 

the process control charts. Whenever the control charts signal out a change in the 

manufacturing conditions, the learning algorithm uses the new available data gathered 

from the system to re-learn about the characteristics of the manufacturing 

environment to make better decisions in the future periods. Control charts are also 

updated whenever necessary.  

 In this Chapter, we discuss the structure of our learning-based scheduling 

system. First, we will start our discussion by giving important definitions that are 

frequently used in the rest of the Chapter. Then, we will present our proposed system 

in general terms. After discussing the scheduling strategies and the data structures 

employed, we will give a detailed explanation of our learning-based scheduling 
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system. Following these, we will define our system attributes and explain the internal 

dynamics of the learning procedure used and illustrate its steps with an example.  

 

3.1. Definitions 

Scheduling period is a time interval during which a selected DR is used to schedule 

jobs. The rule can be changed before the end of the scheduling period if some changes 

occur in system conditions. In such cases, this scheduling period is said to be 

incomplete. Otherwise, it is of type complete. 

Instance data is composed of a number of attributes and a class value, where 

attributes take values of manufacturing conditions and class value corresponds to the 

DR selected for a specific condition. 

Realized scheduling period data represents the actual events that occur in a specific 

scheduling period. It includes realized values of random variables such as the 

processing times, interarrival times and system conditions at the beginning of the 

scheduling period. This data set is stored in the database and is provided for the 

simulation module when demanded. 

System attributes are a predefined set of variables that carry information about the 

state of the real manufacturing system such as queue length, total remaining 

processing times, etc. 

New rule selection symptoms are the triggering events that are defined in the 

scheduling strategy to answer the question of “when-to-schedule”. 

Scheduling strategy determines “when-to-schedule” and “how-to-schedule” 

decisions (Sabuncuoglu and Goren, 2003).  

Process control chart is a statistical chart used to monitor the quality of the decisions 

given by the learning tree. 
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3.2. Proposed System 

The proposed scheduling system is an intelligent scheduling mechanism that employs 

machine learning capabilities from AI as well as the process control chart concept 

from quality control. The goal of the system is to select the best DR among Candidate 

Dispatching Rules (CDRs) for a particular scheduling period. The general structure is 

shown in Figure 3.1.  

In the proposed system, there are five main subroutines, called modules. They 

operate in harmony to achieve the goal of selecting the best performing dispatching 

rule for each scheduling period. The operations of these five modules are as follows. 

The database provides necessary data for both the learning module and the simulation 

module. It holds the instance data for the learning algorithm to generate the learning 

tree. The realized scheduling period data is also stored in the database for assessment 

of DRs via simulation. Simulation module is used to measure the performances of the 

candidate dispatching rules. The simulation module is invoked by the process 

controller module whenever necessary. Simulation module’s outputs (instance data) 

are sent to the database. These results are then used by the learning module to 

generate the learning tree. Whenever a scheduling decision is to be made according to 

the current scheduling strategy (e.g., hybrid approach), the learning tree selects a new 

dispatching rule and this decision is implemented by on-line controller module (i.e., it 

employs the selected DR in actual manufacturing conditions). It also supplies the 

realized scheduling period data to the database and monitors the real system for new 

rule selection symptoms. The process controller module monitors the performance of 

the learning tree. It takes its inputs (realized average tardiness) from the on-line 

controller module and monitors the performance of the learning tree. When the 

performance of the current learning tree is found to be insufficient, it requests from 
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Figure 3.1:  Proposed System – General Structure
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the simulation module to provide new training data (instance data) for the learning 

module and then sends a signal to the learning module to update the current learning 

tree with this new data set. As a result, new dispatching rules are selected from this 

updated learning tree and the process continues in this manner. 

 

3.3. Scheduling Strategy 

The scheduling strategy employed in this research is composed of two critical 

decisions: how-to-schedule and when-to-schedule. They are explained below: 

3.3.1. How-to-schedule 

How-to-schedule decision determines the way in which the schedules are revised or 

updated. As discussed in Sabuncuoglu and Goren (2003), there are mainly three 

issues: scheduling scheme, amount of data used, and type of the response. The 

scheduling scheme can be off-line, on-line, or a combination of the two (i.e., hybrid). 

Off-line scheduling refers to scheduling all of available jobs for the entire scheduling 

period before the execution of the schedule. On the other, hand on-line scheduling is 

to take scheduling decisions one at a time during the execution of the schedule (e.g. 

scheduling via priority dispatching rules). Between these two extremes, hybrid or 

quasi-online scheduling lies. In quasi-online scheduling, a subset of the jobs is 

scheduled off-line and the rest of the schedule is developed as time goes on. The 

second issue is related to the amount of data used during the schedule generation 

process. This can be full or partial, where all the forecasted data is used in the former 

case whereas only a proportion of the available data is used in the partial case. The 

third issue is the type of the response. This is related to the question of “what should 

be done if the current schedule begins to perform worse”. One possibility can be 

rescheduling, where a new schedule obtained from scratch. Another alternative can be 
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to take no corrective action (i.e., letting the system recover itself from the negative 

effects of disruptions). In addition, match-up scheduling or right/left shifting the 

remaining jobs can also be used for a type of response. 

Our implementation is based on the on-line scheduling scheme. Specifically, 

DRs are selected by the learning tree and the scheduling decisions are made one at a 

time using these selected rules (see Table 3.1). In terms of the amount of data, we 

apply the “full” scheme, since all available information about the real manufacturing 

system is utilized to select a DR for a scheduling period. As the type of the response, 

we use “reschedule” option, as a new DR is selected at any time when the existing DR 

is found to be poor. 

 

Table 3.1: Parameters of how-to-schedule 

Scheduling Scheme On-line 

Amount of Data Full 

Type of Response Reschedule 

 

3.3.2. When-to-schedule 

“When-to-schedule” determines the responsiveness of the system to various 

kinds of disruptions. As discussed in Sabuncuoglu and Goren (2003), there are 

different alternatives to decide on the timing of scheduling decisions. The first way is 

to schedule the system periodically, which is called as periodic scheduling. In 

periodic scheduling, the time intervals can be constant or variable. In the former case, 

schedule revisions are made at the beginning of fixed time intervals. In the latter case, 

revisions are made after a certain amount of schedule is realized. Another alternative, 

which is called continuous scheduling, updates the schedule after a number of random 
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events occur such as machine breakdowns, or a new job arrival, etc. In adaptive 

scheduling, a scheduling decision is made after a predetermined amount of deviation 

from the original schedule is observed. For example, a scheduling decision is 

triggered when the difference in average tardiness between the initial and the realized 

schedules exceeds a threshold value, say 10 minutes. There are also hybrid 

approaches, which are combinations of the above strategies, and in this research such 

a hybrid approach is employed for “when-to-schedule” decisions. In our hybrid 

approach, two different triggering events, called as New Rule Selection Symptoms, are 

defined for the time of selecting a new DR. These new rule selection symptoms and 

their definitions are given in Table 3.2. 

 

Table 3.2: New Rule Selection Symptoms 

 

The length of a scheduling period (LSP) is a decision variable and a new DR is 

selected at the beginning of each period to carry out the dispatching process until the 

end of that scheduling period. As seen in Figure 3.2-a, the beginning of each 

scheduling period is a triggering event for selecting a new DR. However, a selected 

DR is not always used until the end of a scheduling period because of the existence 

other symptoms, MP, that may occur in the scheduling process. In such cases, a new 

DR is selected before the end of a scheduling period. 

 

 

Abbreviation Name Description 
BSP Beginning of each Scheduling 

Period 
Triggers the selection of a new DR 
at the beginning of each new 
scheduling period. 

MP Monitoring Points Triggers the selection of a new DR 
at the monitoring points whenever 
necessary. 
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         DR 1        DR 4              DR 12     DR 1 

        LSP        LSP       LSP 

 

     t1             1              t2         2              t3              3              t4  

(a) 

 

Scheduling Period 1   Scheduling Period 2 

   LMP      LSP            LSP 

 

 

     Monitoring Period 

        MP1     MP2    MP3    MP4               MP5      MP6    MP7    MP8 

        (Monitoring Point 1) 

(b) 

Figure 3.2: Representation of Rule Selection Symptoms. (a) New Rule Selection 
Symptom (BSP). (b) Monitoring Period and Monitoring Point 
 

 

As seen in Figure 3.2-a, the performance of the current DR is monitored 

regularly at monitoring points and if it is found to be poor (i.e., the performance is 

worse than a certain percentage of the desired level), a new DR is requested from the 

learning tree. The length of a monitoring period (LMP) is usually a decision variable 

(or policy variable) and a complete scheduling period contains a fixed number of 

monitoring points. LMP=LSP/(k+1), where k is the number of monitoring points in a 

complete scheduling period (Figure 3.2-b). 
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   LMP      LSP           < LSP 
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        f(MP1) < χ    f(MP5) < χ                (b) 

f(MP2) < χ     f(MP6) > χ  
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(a)  

 

Figure 3.3: Rule Selection  Symptoms. (a) New Rule Selection Symptom (MP). (b)  Representation of χ in control.
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As an example, consider the case in Figure 3.3, which displays the MP 

symptom and the actions to be taken. At every monitoring point in a scheduling 

interval, the current value of the performance measure is compared with a threshold 

value. If it is worse than the threshold, a new DR is requested from the learning tree. 

Otherwise, the system continues with the current DR. In Figure 3.3, in none of the 

monitoring points of the scheduling period 1 there is a need for a change and hence 

DR5 is used throughout the scheduling period 1 (i.e., type complete). At the 

beginning of scheduling period 2 (at t6), DR7 is selected as a new rule by the learning 

tree. At the monitoring point 6, its performance f(MP6) is found to be worse than the 

threshold value χ, and a new DR is requested from the learning tree. Based on the 

learning tree recommendation, DR3 is assigned as the new DR for the scheduling 

period 3. Note that the scheduling period 2 is now of type incomplete, since its length 

is less than LSP.  

The function f(*) gives simply the average tardiness value of the completed 

jobs from the beginning of the current scheduling period. For example, f(MP2) is the 

average tardiness of all the jobs completed between the times t3 and t1, and f(MP5) is 

the average tardiness of all the jobs completed between the times t7 and t6 (see Figure 

3.3). As seen in Figure 3.3-b, the threshold value χ is a multiple of the expected 

average tardiness (χ = βΧ , where the parameter β is 0<β and Χ is the long-run 

expected average tardiness).  

 

3.4. Data Structures 

There are different data types used in the proposed scheduling system. These are 

explained below. 
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3.4.1. Performance Data (Realized System Performance) 

Performance Data is the data type that represents the performance of a DR in a 

specific scheduling period in terms of tardiness, average tardiness and the average of 

average tardiness. These data are used for different purposes but in the following 

formats. We define three different formats for performance data as: monitoring period 

performance (Z), scheduling period performance (Y), and aggregated performance 

(X). In Figure 3.4, each of these data structures are displayed in detail. Each wi value 

is an individual tardiness value of a completed job. Monitoring period performance (Z 

values) is the average tardiness of all the completed jobs between the last monitoring 

point and the current monitoring point. For example, Z1=(w1 + w2 + w3 + w4) / 4 for 

MP1, and Z2= (w5 + w6 + w7) / 3 for MP2. In other words, the Zi values are the 

average tardiness realized in a monitoring period. Scheduling period performance (Y 

values) is the average tardiness of all the completed jobs in a scheduling period. For 

example, Y1= Z1, and Y4= 10/
26

17







∑
=i

iw . Note that scheduling period 1 is of type 

incomplete and contains only one monitoring period whereas scheduling period 4 is of 

type complete and consists of three monitoring periods (in this illustrative example a 

complete scheduling period is assumed to contain three monitoring periods). In other 

words, the Yi values are the average tardiness realized in a scheduling period. 

Aggregated performances, Xi values, are samples of Yi values. In Figure 3.4, each Xi 

value is defined as the average of three Yi values (the number of Yi values to be 

grouped is a parameter) and therefore X1= (Y1+Y2+Y3)/3, X2=(Y4+Y5+Y6)/3, X3= 

(Y7+Y8+Y9)/3. In other words, aggregated performance is the average tardiness 

realized in a number of consecutive scheduling periods. 
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X1= (Y1+Y2+Y3)/3 ; X2= (Y4+Y5+Y6)/3 ; X3= (Y7+Y8+Y9)/3 . 

 

Figure 3.4: Types of Performance Data

Scheduling Period 1 Scheduling Period 2 Scheduling Period 3 Scheduling Period 4 
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Among these data structures, the Zi values are used for monitoring the 

performance of the current DR at monitoring points. Yi values are used as the 

performance value of the DR that is used in a specific scheduling period. It is also a 

part of the realized scheduling period data, which is used by the simulation module. 

Finally, the Xi values are used for the performance evaluation of the existing learning 

tree and these are the data that are plotted on the Χ chart. Yi values are aggregated to 

form Xi values because of the normality assumption requirement of the control chart. 

Aggregating four to six data is sufficient for meeting this requirement. 

3.4.2. Instance Data 

Figure 3.5 shows the representation of instance data. Each row in this figure 

corresponds to an individual data, which has a number of attributes, the class value 

that indicates the best DR that works under these specific attribute-value 

combinations and the performance value (scheduling period performance) of that DR.  

 

 
Figure 3.5: Instance Data Representation 

 

These data are created from the outputs of the simulation module and are used 

for two important reasons in the system. First, it is used in the construction of the 

learning tree, where these data are supplied to the learning algorithm to make 

inferences about the characteristics of the manufacturing system based on the pre-

specified set of attributes. Second, it is used to construct the process control charts. 

The column that stores the performance values is supplied to the process controller 

module whenever the process control charts are to be updated. In the second usage of 

Attribute-1 Attribute-2 … Attribute-n Performance Value Class Value 
A-1 Value A-2 Value … A-n Value f(DR3) DR3 
A-1 Value A-2 Value … A-n Value f(DR5) DR5 
A-1 Value A-2 Value … A-n Value f(DR7) DR7 

… … … … … … 
A-1 Value A-2 Value … A-n Value f(DR1) DR1 
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the instance data, only the performance value column is used. This column contains 

the best performance values found by the simulation module under different DRs 

based on the specified attribute values. These data points are represented as *
iX  

indicating the best performances (average tardiness) found for specific system 

conditions. Since, we monitor the performance of the learning tree relative to the best 

performance; we employ *
iX values when constructing the process control charts (for 

detailed information about f(DRj) see section 3.5.2. Simulation Module). 

 
3.4.3. Realized Scheduling Period Data 

In Figure 3.6, the realized scheduling period data structure is depicted. At the end of 

any scheduling period, the on-line controller module sends all the relevant realized 

manufacturing system data to the database. These data points include the values of the 

system attributes at the beginning of the scheduling period (scheduling period k in our 

case), the realized random events during that period as well as the average tardiness 

value obtained under the current DR in use in that scheduling period. In the current 

implementation, since we model actual manufacturing conditions in a simulation 

model, we store the seed values of the random number generations for each stochastic 

variable in this column. Thus, the entire history is easily generated using these seeds 

when necessary. Hence, these data points are the result of the tracking of the system 

by the on-line controller. The importance of this data type comes from the following 

fact: when a DR is selected by the learning tree and used in a scheduling period, we 

do not know whether it is actually the best DR for that scheduling period. The only 

way to know it is to simulate the other DRs in the CDR set under exactly the same 

system conditions. These data points provide an important feedback for the system to 
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improve the quality of the learning tree whenever necessary (these issues will be 

discussed later in the text). 

 

 Scheduling Period Attribute-1 Attribute-2 … Attribute-n Realized Scheduling 
Period Data 

1 A-1 Value A-2 Value … A-n Value Realized Scheduling 
Period-1 Data 

2 A-1 Value A-2 Value … A-n Value Realized Scheduling 
Period-2 Data 

… … … … … … 
k A-1 Value A-2 Value … A-n Value Realized Scheduling 

Period-k Data 
 

Figure 3.6: Realized Scheduling Period Data 
 
 

3.5. Proposed System – A Detailed Explanation 

General structure of the proposed system has been introduced in Section 3.2. We now 

explain each module in detail.  

3.5.1. Database 

The database of the proposed system is composed of two layers, called as D1 

and D2 (Figure 3.7). D1 stores the “realized scheduling period data” discussed in 

Section 3.4.3. These data are supplied from the on-line controller to the simulation 

module. D2 stores the instance data discussed in Section 3.4.2. These data are 

supplied from the simulation module, and are used by the learning module to generate 

the learning tree.  

As stated earlier, D1 stores the input data for the simulation module and D2 

stores the output data of the simulation module. Hence, whenever a row of data from 

D1 is used in the simulation module, it is deleted from D1 and an associated row of 

the output data is added to D2. For example, in Figure 3.7, row 2 of the table in D1 is 

deleted from the table when it is used by the simulation module and the last row in the 

table of D2 is created (as indicated by dashed lines). 
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3.5.2. Simulation Module 

The simulation module is activated upon the request by the process controller 

module to measure the performance of all DRs for the past scheduling periods (using 

the realized scheduling period data) and to generate new training sets for the learning 

module. In this way, the quality of the DRs used for the past periods is also assessed. 

In Figure 3.8, scheduling period-k (one of the past scheduling periods) is 

simulated for all m DRs. Previous historical data stored in the D1 are used to generate 

input to simulation experiments. All m DRs are simulated one by one and their 

corresponding average tardiness values (f(DRj)) are measured. Then, the DR that 

results in the minimum average tardiness value (DRj = DR[argmin{f(Dri), i = 

1,2,3,…,m}]) is identified as the best DR for scheduling period-k. Note that this rule 

may not be the same rule used previously for period-k. Running the simulation 

module for past periods and collecting the performance data help us to create training 

sets for the learning module. Hence, the best rule identified in the simulation 

experiments and the corresponding manufacturing conditions are stored in D2 of the 

database in the form of instance data (see Figure 3.8). 

3.5.3. Learning Module 

The learning module is mainly composed of two parts: “learning module-1” 

and “learning module-2”. Their functionalities are given below: 

Learning Module-1: This module contains the learning tree that is 

constructed by the learning algorithm in learning module-2. Its responsibility is to 

select a new DR from the existing learning tree based on the current values of the 

system state attributes. The on-line controller module provides the current values of 

these attributes to learning module-1 and requests a new DR. In response, module-1 

recommends the best DR to the on-line controller (Figure 3.9). 
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Figure 3.7: Database of the Proposed System 
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Figure 3.8: Simulation Module
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Figure 3.9: Learning Module 
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Learning Module-2: This module contains the learning algorithm that is used 

to generate the learning tree in learning module-1. As seen in Figure 3.9, the 

algorithm is invoked by the process controller module and the necessary data 

(instance data) is retrieved from the D2 database. C4.5 algorithms (Quinlan, 1993) are 

used to create the learning tree (see Figure 3.9).  

3.5.4. On-line Controller 

As discussed in Section 3.2, there are mainly two responsibilities of the on-

line controller. These are as follows: 

i) Handling the realization of a scheduling decision 

Realization of a scheduling period is accomplished by the implementation of a 

scheduling decision (i.e., implementation of a dispatching rule) in either a real 

manufacturing system or a simulated environment. In this study, we use the second 

approach and run the internal simulation engine (see Figure 3.10). To get a realization 

of a scheduling period, on-line controller requests a DR from the learning module and 

implements it. The results of implementation in the form of realized scheduling period 

data is sent to D1 of the database. 

ii) Monitoring the real system for new rule selection symptoms 

Detecting new rule selection symptoms (see Table 3.2 on page 20) and taking 

the appropriate actions in response to the existence of these symptoms is another 

functionality of the on-line controller module. As discussed in Section 3.3.2 (Figures 

3.2 and 3.3 in particular), there are two new rule selection symptoms (BSP and MP). 

Whenever the on-line controller module detects any one of these two symptoms 

during the realization of a scheduling period, it pauses the execution process and 

requests a new DR from the learning module. Upon the new DR supplied by the 
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learning module-1, on-line controller resumes the execution process with this new DR 

(see Figure 3.10).  

3.5.5. Process Controller 

Process controller coordinates the operations of the other modules. It takes its 

necessary inputs from the on-line controller and activates the other three modules 

appropriately. It has three sub-modules: process control chart constructor, process 

control chart, and logical controllers (see Figure 3.11). These are explained in detail 

as follows: 

i) Process Control Chart Constructor 

The purpose of this sub-module is to update the process control charts 

(  and RΧ  charts), which are responsible from the control of the learning tree. The 

construction of the process control charts requires data ( *
iX ) from D2 (the 

construction methods of these two charts are given in Appendix A).  

The Χ chart is used to detect the shifts in the mean performance of the decisions 

(selected DRs) given by the learning tree. Averages of the average tardiness values 

are plotted in this chart. R chart is used to detect the shifts in the variance of the 

performance of the decisions of the learning tree (see DeVor et al., 1992). In other 

words, standard deviations of the average tardiness values of the realized scheduling 

periods are plotted in this chart. 

ii) Process Control Chart Sub-module 

This module contains the process control charts, which are created by the 

process control chart constructor module (Figure 3.11). The purpose of this module is 

to handle the monitoring operation of the learning tree by using these two charts 

(  and RΧ  charts). 
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Figure 3.10: On-line Controller
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One of the distinguishing features of the proposed scheduling system from the 

previous studies (Suwa et. al., 2003 and Shaw et. al., 1992) is the mechanism that 

continuously updates the learning tree. This continuous update is important since the 

manufacturing system often undergoes various types of changes in time. In this 

context, the process control charts act as a regulator of the learning tree. Moreover, 

the process control charts may also need to be updated due to changes in 

manufacturing conditions. Hence, as the proposed system evolves over time, two 

important decisions need to be made: 

Decision-1: Is it necessary to update the existing learning tree at current time t? 

Decision-2: Is it necessary to update the existing process control charts at current time 

t? 

These two questions are to be answered every time when a new data point is 

plotted in the process control charts (  and RΧ  charts) and the decisions are made by 

the rules defined in the logical controllers of the process controller module. These 

rules are defined in the next section. In this section, however, we focus only on the 

data plotted on the process control charts. Recall that the data plotted on the 

 and RΧ charts are obtained from the on-line controller (the iΧ  data) but the data 

used to update the charts are supplied from the D2 database. 

In Figure 3.12, we illustrate the data points plotted on the Χ chart. The 

horizontal axis represents the time and the vertical axis is the average tardiness (i.e., 

performance measure). When the system continues, the Yi values (average tardiness 

per scheduling period) are collected by the on-line controller at the end of each 

scheduling period. These observations are then grouped in size 5 to create iX ’s 

(average of average tardiness). 
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Figure 3.11: Process Controller Module and Its Relationships with Other Modules 
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This is the same as the R chart in which the following Ri values are plotted: 

( )arg arg 2 1 1 2    where ,  , , , ,i l est smallest l est smallest i i i i iR Y Y Y Y Y Y Y Y Y− − + += − ∈  

There are two reasons for grouping five Yi values to generate iX  and Ri 

values for the  and RΧ charts, respectively. First of all, the  and RΧ charts require the 

normality assumption. As discussed in DeVor, Chang, Sutherland (1992, pp. 197-

198), we satisfy the normality assumption for iΧ ’s by grouping observations (a group 

of size 4-6 is usually recommended in the literature). Another reason for plotting 

every five observations is to give the current learning tree a chance for survival. In 

other words, the performance of the learning tree is judged in a reasonable time period 

without leading to nervousness. 

iii) Logical Controllers 

This part of the system contains predefined logical rules used for updating the 

learning tree and control charts. These decisions normally affect the entire system by 

triggering the other modules (i.e., simulation module, learning engine etc.). These 

rules are as follows: 

Rule set 1: Update Only Learning Tree Rules 

The first set of rules is used to update the existing learning tree. As discussed 

earlier, the current learning tree may loose its validity in time as its performance is 

monitored by the process control charts (  and RΧ charts). Three rules, called as 

“update only learning tree rules”, are given in Table 3.3. These rules are applied to the 

control charts (  and RΧ charts) and when any of these three signals is detected, the 

existing learning tree is updated. These rules are provided in most of the statistical 

quality books to interpret the  and RΧ charts (see for example DeVor et. al., 1992).  
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In Figure 3.12, at iX =X4 an “extreme points” signal is detected and the 

current learning tree is updated at this point. Also, “zone-A signal” is detected at iX = 

X12 and the learning tree is updated at this point again. 

Rule set-2: Update “Both the Learning Tree and the Process Control Charts” 

Rules 

The second set of rules defined in this module is used to give the update 

decision of the process control charts as well as the learning tree. As discussed 

previously, the process control charts may lose their validity in time since the 

manufacturing system conditions may change. 

 

Table 3.3: Update ONLY Learning Tree Rules 

Signal Definition Apply to Action 
Extreme 
Points 

iΧ  or Ri points that fall beyond 
the control limits of the 

 and RΧ charts, respectively. 

 and RΧ charts UPDATE the 
current learning tree 

Zone-A 
signal 

Two out of three iΧ  points in 
Zone-A (between 2σ and 3σ) or 
beyond.  

Χ chart only UPDATE the 
current learning tree 

Zone-B 
signal 

Four out of five iΧ  points in 
Zone-B (between σ and 2σ) or 
beyond. 

Χ chart only UPDATE the 
current learning tree 

 

In Table 3.4, two rules are defined to update both the learning tree and the 

process control charts. Whenever one of these two rules in Table 3.4 applies, a new 

learning tree is created and the process control charts (  and RΧ charts) are updated. 

For example, in Figure 3.12, iX =X14 is captured by the second rule in Table 3.4, and 

therefore the learning tree as well as the control charts are updated at this point. The 

new control chart shifts upwards in terms of its centerline and control limits (see 

Figure 3.12). 
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The first rule in Table 3.4 is adapted from the literature (see DeVor et. al., 

1992) and the second one is developed in this research. Both of the two rules indicate 

a shift in the mean and/or variance of the process (manufacturing system). 

 

Table 3.4: Update Both the Learning Tree and the Process Control Charts Rules 

Signal Definition Apply to Action 
8 successive 
points 

8 or more successive points 
strictly above or below the 
centerline 

 and RΧ charts Update both the 
learning tree and 
the process control 
charts 

2 successive 
signal from 
Rule Set-1 

Two successive occurring of 
“Update Only Learning Tree 
Signals” 

 and RΧ charts Update both the 
learning tree and 
the process control 
charts 

 

 

3.6. System Attributes for Job Shop Scheduling System 

The learning module of the system generates a learning tree that relies on the 

manufacturing system characteristics. Decisions on selecting dispatching rules are 

given by the existing learning tree on-line. In such a system, the learning algorithm 

requires a number of attributes that can provide valuable information about the current 

manufacturing system conditions. These attributes, therefore, play a key role in the 

performance of the proposed system, since they impact the quality of the tree in the 

construction phase as well as in the decision phase (i.e., selection of the right DRs 

from the learning tree for a scheduling period). Hence, appropriate attributes should 

be defined and used in such a way that they can represent a variety of important 

manufacturing system characteristics. In this section, the attributes defined for a job 

shop manufacturing environment are discussed. Detailed definitions of the proposed 

attributes are provided in Appendix B. Hence, our discussion in the rest of this section 
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will focus on the guidelines that we follow when defining those attributes rather than 

getting into the details of individual attributes. 

First of all, we are faced with two critical and dependent questions (i.e., 

second question depends the first one). The first question is about defining high 

quality attributes, which are capable of capturing the important characteristics 

(information) of the manufacturing system. On the other hand, the second question is 

about deciding on a subset of these predefined attributes, which are to be embodied 

into our system. This subset of attributes should be selected in such a way that they 

should work in harmony and each individual attribute should capture some portion of 

the important information about the manufacturing system. In the following 

paragraphs, we address the first question and present our approach to that question. 

We leave the discussion and the results of the second one to the next chapter. 

At the very first step of defining the candidate attributes, we realize that it is 

important to define attributes so that their values can be calculated easily. This is 

because of the fact that our proposed system is an on-line scheduling system, and 

hence the time required to select a new dispatching rule should be negligible. 

Moreover, when setting the values of the attributes at any time t, all we can use is the 

available information at that time such as the number of jobs in the system, processing 

times and due dates of the jobs, the realized performance of the system in the last 

scheduling period etc. Based on these observations, we define a number of attributes 

such as total remaining processing time, maximum queue length at time t, average 

remaining time until due dates and so on. In addition to the above observations, we 

also take into account the characteristics and dynamics of the candidate dispatching 

rules and try to figure out under what conditions a specific rule performs well and in 

what other conditions performs poorly. In light of this idea, we define a number of 
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attributes for each dispatching rule that might be helpful to differentiate that rule from 

the others. For instance, Attribute-12 (NumLongPT), which is the number of jobs 

with higher processing times than the average processing time of all jobs, is defined to 

distinguish SPT rule from the others. The idea behind this is as follows: if there are so 

many jobs with high processing time requirements, then the probability that the new 

arriving jobs with less processing time requirement than these jobs will be higher. 

This implies that these jobs, which have long processing times, will most probably be 

scheduled too late under SPT, resulting with a high average tardiness value. Second 

half of the attributes given in Appendix B (i.e., Attribute-12 and the rest) are defined 

in a similar fashion as we just discussed. 

 

3.7. Dynamics of the Learning Algorithm 

In Section 3.5.3, when we discuss the learning module, we say that the module is 

composed of two parts. One of these parts, which we call module-1, contains the 

learning tree and selects a new DR from this learning tree based on the current values 

of the system state attributes. This learning tree, on the other hand, is created by the 

second part, which we call as module-2. In this section, we present the internal 

dynamics of module-2. Also, to illustrate the concepts, we will give a simple example 

and show the construction of a learning tree step by step. 

As we already mentioned, module-2 employs the C4.5 algorithms developed 

by Quinlan (1993) to create the learning tree. The fundamental feature of the 

algorithm is that it uses divide-and-conquer approach. That is, it divides the data set 

on the attributes’ values at each branching and deals with the subsets of data. The 

main steps of the algorithm are as follows: 
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Step 0. (Initialization) Let the training data set be C.  

Step1. If all the instances in C belong to the same class, then create a node 

with that class value and halt. Otherwise, go to Step 2. 

Step 2. Select an attribute, A with values {v1, v2, v3, …, vn} and create a 

decision node. 

Step 3. Partition the training instances in C into subsets C1, C2, …, Cn 

according to the values of A. 

Step 4. Apply the algorithm recursively to each of the sets Ci. 

 
The algorithm stops when all the instances are perfectly classified or when 

there is no remaining attribute for further branching. Since a previously used attribute, 

for branching at a particular node, is not used for further branching for the successor 

nodes, termination of the algorithm is guaranteed. 

The most challenging part of the algorithm is how to decide (or pick) the 

attribute to partition the instance data at some node. For example, let the data set in 

Table 3.5 is given. Note that, the definitions of the attributes used in this artificial data 

set are given in Appendix B. When the algorithm starts, it should pick an attribute 

among the four attributes for the first branching. But how does C4.5 decide which 

attribute is the best for branching at a given node? A statistical property, called 

information gain is used by C4.5. Gain measures how well a given attribute separates 

training examples into targeted classes. The one with the highest information 

(information being the most useful for classification) is selected. In order to define the 

gain function, an idea from information theory, which is called as entropy (or 

information), is used. Entropy of a set is the average amount of information needed to 

identify the class of an instance in that set. The entropy is calculated as the following: 
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Let S be a set of instances and let C be the set of possible class values. In our 

example, C={SPT,ODD}. Then, 

Entropy(S) = Info(S) = ∑
∈

−
Cc

cc

S
S

S
S

)(log2  , where cS  is the set of instances that 

belongs to class c, Cc∈  and *  is the cardinality of the set *. 

 
Table 3.5: Artificial training data set 

 
Attributes Class 

Discrete type Continuous type Continuous type Discrete type  
RUS NumCust PCompPT NumLongPT DR 

0 75 70 1 SPT 
0 80 90 1 ODD 
0 85 85 2 ODD 
0 72 95 2 ODD 
0 69 70 2 SPT 
1 72 90 1 SPT 
1 83 78 2 SPT 
1 64 65 1 SPT 
1 81 75 2 SPT 
2 71 80 1 ODD 
2 65 70 1 ODD 
2 75 80 2 SPT 
2 68 80 2 SPT 
2 70 96 2 SPT 

 

For example, if S is the data set given in Table 3.5, then the Entropy(S) is: 

Entropy(S) = )
14
9(log

14
9)

14
5(log

14
5

22 −−  = 0.940 

 Then, Gain(S,A) is the information gain of set S if it is partitioned on attribute 

A. The following formulation assumes that attribute A has discrete values. That is, 

there is a set V of possible values that A can take. We also explain the case of 

continuous valued attributes just after the following discussions. 

Let V={v1, v2, …, vn} is the set of all possible values of attribute A. 
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Gain(S,A) = Entropy(S) ∑
∈

−
Vv

v
v SEntropy

S
S

)( , where vS  is the subset of S for which 

attribute A has a value v. 

 For example, let S is the data set given in Table 3.5 and we want to find the 

gain for the attribute RUS. Note that, the attribute RUS is a discrete type attribute, 

which can take only three values: 0, 1 and 2. Then, the gain of set S if it is partitioned 

on the attribute RUS will be: 

 Gain(S,RUS)= 0.940 










 −−− )

5
3(log

5
3)

5
2(log

5
2

14
5

22






 −−+ )

4
0(log

4
0)

4
4(log

4
4

14
4

22  

                                        










 −−+ )

5
2(log

5
2)

5
3(log

5
3

14
5

22  = 0.940 – 0.694 = 0.246 

 It might seem that tests on continuous attributes would be more complicated, 

since they contain arbitrary thresholds. However, this is not the case. The following 

algorithm solves the problem for continuous attributes and is used in C4.5 and most of 

the other learning algorithms. The algorithm is the following: the instances in the 

training data set are first sorted on the values of the continuous attribute, say A. Let’s 

denote the sorted values as {v1, v2, v3, …, vn}. Any threshold value between vi and vi+1 

will have the same effect of dividing the cases into those whose value of the attribute 

A lies in {v1, v2, …, vi} and those whose value is in {vi+1, vi+2, …, vn}. Thus, there are 

n-1 possible splits on A. For each split, the gain function is calculated and the 

maximum of these n-1 gain values is taken as the gain on that attribute with its 

associated threshold value. 

 Now, let’s return to our example and construct the learning tree by using the 

algorithm we discussed. We will choose the first attribute to partition the initial data 

set. For this, we calculate gain values for each of the attributes by using the above 

formulas. Gain values of each attribute are as follows: 
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Gain(S,RUS) = 0.246 

Gain(S,NumCust) = 0.113 

Gain(S,PCompPT) = 0.102 

Gain(S,NumLongPT) = 0.048 

Since we get the maximum gain value from the attribute RUS, we divide our 

initial data set on RUS and we get the partial tree in Figure 3.13. For the first branch, 

RUS = 0, we have a subset of instances, say S1, which is shown in Table 3.6. We 

calculate gain for the other three attributes on this data set. The gain values are found 

to be:  

 

 

 

Figure 3.13: Construction of the learning tree: first step 

 
Gain(S1,NumCust) = 0.419 

Gain(S1,PCompPT) = 0.970 

Gain(S1,NumLongPT) = 0.019 

Therefore, the second division attribute is PCompPT with a threshold value of 

70 and the next partial tree is shown in Figure 3.14. For the second branch, RUS = 1, 

the subset obtained is perfectly classified and therefore both gain values are found to 

be zero. Thus, we create a leaf node with associated class value (Figure3.15). If we 

continue to proceed with the algorithm until it stops, we will get the final learning tree 

as shown in Figure 3.16. This tree perfectly classifies all the instances and therefore 

the algorithm stops without attempting to divide the sets on the remaining unused 

attribute NumCust. 

 

RUS 

= 0 = 1 = 2 
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Table 3.6: Subset of initial data set for branch RUS = 0 
 

RUS NumCust PCompPT NumLongPT Dispatching Rule 
0 75 70 1 SPT 
0 80 90 1 ODD 
0 85 85 2 ODD 
0 72 95 2 ODD 
0 69 70 2 SPT 

 

 

 

 

 

 

Figure 3.14: Construction of the learning tree: second step 

 

 

 

 

 

Figure 3.15: Construction of the learning tree: third step 

 

 

 

 

 

 

 

Figure 3.16: Final learning tree 
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 The procedure for constructing the final learning tree is not limited by the 

above discussion. After the construction of the tree is completed, it is pruned by a 

pruning algorithm, which is also a part of the C4.5 algorithms. Simply, pruning 

algorithm eliminates the nodes of the tree that are not found to be significantly 

important. The details of the pruning procedure are not presented here but it can be 

found in Quinlan (1993). 

 

3.8. Summary 

In this chapter, we presented the parts of the learning-based scheduling system and 

explained the dynamics of the learning algorithm. This scheduling technique uses the 

dispatching rules where the rules are selected by the learning tree on-line. Also, to 

monitor changes in system parameters, process control charts are employed. 

Whenever the control chart signals a change in the system, the machine learning 

algorithm uses the new available data from the system in order to re-learn about the 

characteristics of the manufacturing environment in order to give better decisions in 

the future. 

In the next section, we will present the experimental designs to answer various 

questions. Some of these experiments will aim to fine-tune up the system parameters 

as well as to provide valuable insights into the job shop scheduling problem. We will 

also test the performance of the proposed system under different experimental 

conditions. 

 

 

 

 



 

 50 

 
 
 
 
 

 

CHAPTER 4 

Experimental Design and 

Computational Results 

 
 
 
 
In this chapter, we discuss the experimental conditions and present simulation results 

to measure the performance of the proposed system. In the first section, we give the 

underlying ideas behind the motivation required to explain the experimental results 

clearly. In Section 4.2, we set the utilization and due date tightness levels. In Section 

4.3, we conduct experiments for the selection of scheduling period length and use the 

results in Section 4.4 to set the monitoring period length. In Section 4.5, we 

experiment on our predefined system attributes (see Appendix B) to select an 

appropriate subset among them, which is to be used in the proposed system. The 

results of experiments on the learning-based system are organized in two consecutive 

sections. In Section 4.6, we test the system with a static learning tree, where the 

learning takes place only at the beginning of the execution and the tree is not updated 

again in time. The proposed system as a whole is tested in Section 4.7. We end this 

chapter with a brief summary. 
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4.1. Motivation 

In this section, we define our problem, list the assumptions and give important 

definitions. In general, the following assumptions are valid throughout the thesis 

unless otherwise stated: 

1. The problem considered in this thesis is a classical job shop problem with four 

machines given by Baker (1984). 

2. There is no machine breakdown in the system. 

3. There is a set of candidate dispatching rules (CDR) that can be used (i.e., 

shortest processing time (SPT), modified due date (MDD), modified operation 

due date (MOD) and operation due date (ODD)). 

In the literature, when a dispatching rule is used for an entire planning 

horizon, it is called single-pass scheduling. On the other hand, the best dispatching 

rule (among a candidate rule set) can be determined (via simulation) and used for each 

relatively short scheduling interval in a planning horizon. This second approach is 

called multi-pass scheduling. 

When explaining the experimental results, we use three performance 

measures, called as Multi-pass Performance (MultiPass), Best Performance 

(BestPerf) and the Learning Performance (LearnPerf). They are all measured in terms 

of average tardiness and defined in the following paragraphs.  

Assume that we have two simulation models of the same manufacturing 

system, called as SM1 and SM2. SM1 will represent the real life and SM2 will 

represent the simulation environment, which is the imitation of SM1. Note that, SM1 

is the simulation model used in the on-line controller and SM2 is the multi-pass 

scheduling simulator, which is used to compare the performance of our proposed 

system with the performance of multi-pass scheduling. Since, random events occurred 
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in real life differs from the simulated environment, these two models operate under 

different random number seeds. Say, SM1 uses random number seed-1 and SM2 uses 

seed-2. Also, assume a third simulation model, SM3, which also uses the seed-1. We 

can think of SM3 as the playback of the realized events occurred in SM1 in a 

scheduling period n. Therefore, SM3 can be run for scheduling period-j only if the 

realization of period-j in SM1 (real life) is completed. These three simulation models 

help us to measure the three performances we need. 

Figure 4.1-a shows how we measure the MultiPass for scheduling period-j. At 

the beginning of period-j, the system state of SM2 is set equal to the system state of 

SM1. Then SM2 is run for each candidate dispatching rule (i.e., SPT, MDD, ODD, 

MOD) and the one resulting with the minimum average tardiness value, say SPT, is 

selected to be used in scheduling period-j. SPT is passed to the SM1 to realize its 

actual performance. At the end of scheduling period-j, the realized average tardiness 

value is our MultiPass value for scheduling period-j. In this sense, MultiPass is the 

average tardiness value achieved by the decisions of a multi-pass scheduling 

simulator. 

BestPerf is the minimum average tardiness value that can ever be achieved for 

a scheduling period, say period-j, by using any rule given in the candidate rule set. In 

other words, it is the best average tardiness value that we can achieve in period-j 

subject to the parameter values of the system, such as the scheduling and monitoring 

period lengths, the candidate dispatching rules and so on. We can calculate this value 

for a scheduling period-j, if the realization of period-j is already completed by SM1. 

Then we can impose the same realization of the random events on SM3 to answer the 

question: what would have been the average tardiness values if we had used 

dispatching rule SPT (or MDD or ODD or MOD) in period-j? Then we simply set the  
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Figure 4.1: Performance measures. (a) Determination of Multi-pass performance 
(MultiPass). (b) Determination of Best Performance (BestPerf). (c) Determination of 
the Learning Performance (LearnPerf). 
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value of BestPerf to the minimum of those tardiness values (see Figure 4.1-b). We 

measure this performance value to see how far our proposed system’s performance 

(LearnPerf) and multi-pass scheduling simulator performance (MultiPass) are away 

from the ideal. 

Finally, the learning performance in period-j, LearnPerf, is the realized 

average tardiness value of the rule selected by the learning tree (see Figure 4.1-c). 

That is, we request a dispatching rule from the learning tree at the beginning of 

scheduling period-j based on the current values of the system attributes. This rule is 

used during period-j and the average tardiness value is computed. Since this is the real 
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performance of the dispatching rule selected by the tree, realization of the rule is 

carried out by SM1. In the experiments LearnPerf represents the performance of our 

proposed system. 

 From these definitions, it is clear that both LearnPerf and MultiPass should be 

worse than the BestPerf. That is because of the fact that BestPerf is the average 

tardiness value that can be achieved if and only if we know the realization of the 

random events before selecting the dispatching rules at each scheduling period 

throughout the planning horizon. Hence, BestPerf gives a lower bound for the other 

two performance functions. 

 

4.2. Setting Due Date Tightness Levels and Utilization Levels 

In the simulation experiments, two levels of utilization (i.e., low and high) and two 

levels of due date tightness (i.e., loose and tight) are considered. The two levels of 

utilization are 80% and 90%. Due dates are set by using the TWK due date 

assignment rule. The high and low levels are set in such a way that percent of tardy 

(PT) jobs is approximately as 10% and 40% under the FCFS rule for the loose and 

tight due date cases, respectively. Table 4.1 summarizes the results of simulation 

experiments to set the flow allowances. As can be seen in Table 4.1, due date of a job 

is equal its release time plus 5.5 times its total processing time for 80% utilization and 

tight due dates case. Note that, the required allowance is almost double when 

utilization is 90%.  
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Table 4.1: Simulation results for flow allowances 
 

Utilization  Tight Loose 
Flow Allowance (k) 5.5 13 
Mean Tardiness (MT) 4.47 0.86 

80% 

Percent Tardy (PT) 41% 9.6% 
Flow Allowance (k) 11 26 
Mean Tardiness (MT) 9.03 1.76 

90% 

Percent Tardy (PT) 42% 10% 
 

4.3. Setting Appropriate Scheduling Period Length (SPL) 

In this section, our purpose is to properly set the scheduling period length for the 

proposed system. We consider the following additional assumptions in the 

experiments: 

1. Every scheduling period is of type complete (i.e., no monitoring). 

2. Once a rule is selected for a scheduling period, it cannot be changed until the 

end of that period. 

3. The appropriate scheduling period length is determined by looking at the 

minimum BestPerf value. 

As can be seen in Table 4.2, 11 different levels of scheduling period length are 

tested in the experiments for four due date and utilization level combinations. The 

simulation results are taken in steady state with 20 replications each with 200000 

minutes of a planning horizon. To find BestPerf, scheduling rules are compared under 

the same experimental conditions using the common random number (CRN) scheme. 

 
Table 4.2: Experimental design of scheduling period length 

 
Factors Levels 
Scheduling period length 50, 100, 200, 500, 1000, 2000, 5000, 7500, 10000, 

12500 and 15000 
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The results for loose due date case are given in Figures 4.2 and 4.3. In these 

figures, single-pass performances of each dispatching rule are also displayed in 

addition to BestPerf. In both figures, single-pass performance of SPT is found 

significantly worse than the other rules. The single-pass performances of MOD, ODD 

and MDD are almost equal. Also, BestPerf displays an exponential decay behavior as 

a function of SPL. It is interesting to note that for short scheduling period length 

selections, BestPerf is found to be significantly worse than the single-pass 

performances of the three dispatching rules (MOD, ODD and MDD). This is due to 

the fact that as SPL decreases, even though the selected rules seem to be the best for 

these short scheduling periods, the system switches to different rules so frequently 

that the performance of the system in the long run deteriorates. When we increase 

SPL, BestPerf begins to improve and converges to the single-pass performance of the 

rules MOD, ODD and MDD. Since the performances of the individual dispatching 

rules (MDD, ODD and MOD) are very close to each other in the long run for loose 

due-dates (as also stated by Baker, 1984), switching between these rules doesn’t 

provide any benefit. Therefore, BestPerf converges to a limit (single-pass 

performance of the rules) showing a behavior of exponential decay function. 

For the tight due dates, the experimental results show different behavior to 

some extend (see Figures 4.4 and 4.5). In both figures, single-pass performances of 

each dispatching rule are also displayed in addition to BestPerf. It is shown in the 

figures that the single-pass performances of the four dispatching rules are 

significantly different than each other and MOD performs at least twice better than 

the other rules. In addition, BestPerf displays an exponential decay behavior as we 

increase SPL, but having a minimum value at some point. For example in Figure 4.4, 

BestPerf reaches its minimum value at point A (i.e., SPL equals to 1000 minutes) and  
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Figure 4.2: 80% utilization, loose due-dates with CDR set  {MOD, SPT, MDD, 
ODD}.  (a) Complete display of the results. (b) Zoom-in version. 
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Figure 4.3: 90% utilization, loose due-dates with CDR set  {MOD, SPT, MDD, 

ODD}. 
 

then it begins to deteriorate and converges to a limiting value when we further 

increase the scheduling period length. We explain this interesting behavior as follows: 

choosing a shorter scheduling period length results in misdetection of the best 

dispatching rule for the sake of better long-run performance of the system (i.e., system 

switches between rules frequently). When we increase the scheduling period length, 

system begins to select the best rule combination and BestPerf reaches its minimum. 

But, when we continue to increase the scheduling period length further, performance 

deteriorates and converges to a higher value than the minimum. This higher value is 

close to the long-run performance of the most dominant dispatching rule, because 

system begins to choose that rule most of the time. Thus, this significant increase in 

system performance is attributable to the loss of the improvements that can be 

achieved by switching to different rules during those long scheduling periods. 

We also check whether the minimum points achieved in the tight due date case 

are statistically significant or not. Figure 4.6-b shows the magnified portion of Figure 

4.3-a around the minimum point. We say that the point A is statistically smaller than  
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Figure 4.4: 80% utilization, tight due-dates with CDR set  {MOD, SPT, MDD, 
ODD}.  (a) Complete display of the results. (b) Zoom-in version around point A. 
 
 
 
 
 



 

 61 

 
 

0

0.5

1

1.5

2

2.5

0 5000 10000 15000 20000

SPL

A
ve

ra
ge

 T
ar

di
ne

ss BestPerf
MOD
ODD
SPT
MDD

 
 

(a) 
 
 

0.555
0.56

0.565
0.57

0.575
0.58

0.585
0.59

0.595
0.6

0.605

4000 6000 8000 10000 12000

SPL

A
ve

ra
ge

 T
ar

di
ne

ss

BestPerf

 
 

(b) 
  
 
Figure 4.5: 90% utilization, tight due-dates with CDR set  {MOD, SPT, MDD, 
ODD}. (a) Complete display of the results. (b) Zoom-in version around SPL 7500. 
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the two neighboring points (i.e., points B and C). This is testified by the paired-t test 

applied to difference of points AB and AC. For example, when the Confidence 

Interval is constructed on the difference between A and C, it is 

2 2 2 2
1 2

1 2 1 / 2,2 2
0.03 0.030.40 0.38 2,021 (0.001,0.039)

20n
S SY Y t

nα− −

− +
− ± = − ± =

 Since it does not include 0, we say that it is statistically smaller on 0.95 

confidence level.  

From Figures 4.4 and 4.5, we realize that the performances of the three 

dispatching rules (i.e., SPT, MDD and ODD) are close to each other when compared 

to MOD. Therefore, we repeat the same analyses for the set of dispatching rules SPT, 

MDD and ODD for tight due date case. Our objective is to see the behavior of 

BestPerf when the candidate dispatching rules have close performance to each other. 

Figures 4.6 and 4.7 show the corresponding simulation results. The behavior of 

BestPerf is still same as the previous results. Moreover, the minimum value achieved 

is more apparent in this case. Also, for 80% utilization case, BestPerf is better than 

any single-pass dispatching rule for every choice of SPL (Figure 4.6-a). These results 

clearly show that even if the long-run performances of the candidate dispatching rules 

are relatively close to each other, significant improvements can be achieved by 

selecting appropriate scheduling period length and the dispatching rule combination 

for the entire planning horizon. 

The detailed simulation results can be found in Appendix C. Based on the 

experimental results of this section we decide to use the following parameters in the 

rest of the experiments (Table 4.3). 
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Table 4.3: Parameter values considered for further experimentation 
 

Utilization 
Levels 

Due date 
Tightness 

Scheduling Period 
Length (SPL) 

Candidate Dispatching 
Rule Set 

80 % 1000 
90 % tight 7500 

{SPT, MDD, ODD} 
{SPT, MDD, ODD, MOD} 
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Figure 4.6: 80% utilization, tight due-dates with CDR set  {SPT, MDD, ODD}. (a) 
Complete display of the experiments. (b) Zoom-in version around the minimum. 
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Figure 4.7: 90% utilization, tight due-dates CDR set  {SPT, MDD, ODD}. (a) 
Complete display of the results. (b) Zoom-in version around the minimum. 
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4.4. The Effect of Monitoring Point (MP) and β-parameter Selection 

As mentioned in Section 3.3.2, one of the criteria for when-to-schedule decision is 

monitoring point (MP) symptom. In the previous section, we experimented for 

selecting the appropriate scheduling period length when there is no monitoring on the 

system performance. In this section we address the questions of how far these 

monitoring points should be apart from each other and what should be the value of β-

parameter (see 3.3.2 for definition of β, χ and Χ ). The following additional 

assumptions are also used in this section: 

1. At the beginning of each scheduling period a dispatching rule is selected 

among the candidate rules. This rule may be used until the end of that 

scheduling period or may be changed at some monitoring point within the 

scheduling period. 

2. At any monitoring point, the decision to change the existing rule or continue 

with it (until the next monitoring point or end of the scheduling period) is 

given by the procedure defined in Section 3.3.2.  

3. The appropriate monitoring period length is determined by looking at the 

minimum BestPerf value. 

Experimental design is given in Table 4.4. This is a nested experimental design, in 

which the factor monitoring period length (MPL) is nested inside the factor 

scheduling period length (SPL). The reason for this kind of a design requirement is 

that selecting a monitoring period length of 2500 makes nonsense when the 

scheduling period length is 1000. Hence, the factor levels of MPL depend on the level 

of SPL and therefore nested in factor SPL. For SPL value of 1000, three levels of 

monitoring period lengths are considered, whereas four levels of MPLs are tested for 

SPL of 7500. Note that, MPL of 1000 for SPL being 1000 corresponds to the case of 
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no monitoring at all, since they are equal. This is also the case for MPL of 7500 for 

SPL being 7500. 12 levels of β parameter are used in the experiments. The value of 

Χ  is taken to be 0.6795 and 1.195 for 80% and 90% utilizations, respectively. These 

values are the BestPerf values for 80% and 90% utilizations with respective SPLs 

(i.e., SPL=1000 for 80%, SPL=7500 for 90% utilization), which we found in the 

previous section.  

 

Table 4.4: Experimental design of monitoring period length and β-parameter 
 

Factors Levels 
Due date tightness Tight 
Dispatching rule set {SPT, MDD, ODD} 
β 0.2, 0.5, 0.8, 1, 1.4, 1.8, 2.2, 2.4, 2.6 
Utilization 80% 90% 
SPL 1000 7500 
MPL 250 500 1000 500 2500 3750 7500 

 
 
 

Again, the simulation runs are taken in steady state with 20 replications and 

each replication with 200000 minutes of a planning horizon for each factor 

combination. Also, common random numbers are used when deciding which 

dispatching rule to use in a scheduling period. All of the simulation results are 

tabulated in Appendix D. 

The results for 80% utilization case are shown in Figure 4.8. In Figure 4.8-a, 

for monitoring period length of 250, best mean tardiness value is achieved with a β 

value of 0.2, and for MPL of 500 a β value of 1 yields the best (Figure 4.8-b). These 

points are statistically smaller than the others on 0.95 confidence, which is also tested 

by paired-t test. We also compare the performances of best MPL-β pairs with each 

other, which is also shown in Figure 4.9. These points are also statistically different  
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Figure 4.8: BestPerf for various MPL-β combinations when system utilization is 80%. 
(a) MPL = 250. (b) MPL = 500. 
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Figure 4.9: Comparison of best MPL-β pairs for 80% utilization 
 

than each other on 0.95 confidence level. Hence, our results indicate that monitoring 

the system performance improves our performance measure (i.e., average tardiness). 

In addition to that, imposing frequent monitoring points on the system with a small β 

value further improves the system performance.   

For 90% utilization case, the results of the experiments are shown in Figure 

4.10. In Figure 4.10-a, for monitoring period length of 500, best mean tardiness value 

is achieved with a β value of 0.2, and for MPLs of 2500 and 3750, β value of 1 yields 

the best (Figures 4.10-b and 4.10-c). These points are statistically smaller than the 

others on 0.95 confidence level. We compare the performances of best MPL-β pairs 

with each other, which is also shown in Figure 4.11. The results are both similar in 

80% and 90% cases, where system performance deteriorates when we increase MPL 

(Figures 4.9 and 4.11). Also, these points in Figure 4.11 are statistically different than 

each other on the 0.90 confidence level. 

In summary, for both 80% and 90% utilizations, monitoring the system 

performance in discrete points in time improves our objective function (i.e., average  



 

 69 

1.1

1.12

1.14

1.16

1.18

1.2

1.22

1.24

0 0.5 1 1.5 2 2.5 3

β

M
ea

n 
Ta

rd
in

es
s

 
(a) 

 

1.12
1.14
1.16
1.18

1.2

1.22
1.24
1.26
1.28

1.3

0 0.5 1 1.5 2 2.5 3

β

M
ea

n 
Ta

rd
in

es
s

 
(b) 

 

1.16

1.18

1.2

1.22

1.24

1.26

1.28

1.3

0 0.5 1 1.5 2 2.5 3

β

M
ea

n 
Ta

rd
in

es
s

 
(c) 

 
Figure 4.10: BestPerf for various MPL-β combinations when system utilization is 
90%. (a) MPL = 500. (b) MPL = 2500. (c) MPL = 3750. 
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Figure 4.11: Comparison of best MPL-β pairs for 90% utilization. 
 

tardiness). Also, experiments show that it is vitally important to select not only the 

right monitoring period length, but also the right β parameter for that MPL. For 

example, for 90% utilization case, a MPL of 2500 with a β value other than 1 result in 

worse performance measures than no monitoring case (i.e., mean tardiness values 

greater than 1.195). Moreover, for both 80% and 90% utilizations, system 

performance improves with small monitoring period lengths. In addition to that, for 

small monitoring period lengths, small β values work better. For example, for 80% 

utilization, it is best to choose β=0.2 when MPL=250 whereas β=1 when MPL=500. 

 

4.5. The Selection of System Attributes 

As we defined in Section 3.1, the system attributes carry information about the state 

of the manufacturing system. These attributes take its place as the fundamental 

structure in the representation of instance data (see Figure 3.5 for instance). Learning 

module of our proposed system utilizes the information in these instance data to learn 

about the characteristics of the manufacturing system. After the learning algorithm 
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processes these data, we end up with a learning tree by which we will select 

dispatching rules to be used in future scheduling periods. At the beginning of each 

forthcoming scheduling period, the system attributes’ values are set by looking at the 

state of the manufacturing system. Then, a dispatching rule is selected from the 

learning tree by branching on the tree based on the values of these attributes. The 

selected rule is used until the end of the scheduling period and a new dispatching rule 

is selected for the next scheduling period by following the same procedure. 

It is evident from the above discussion that it is extremely vital to use the right 

set of attributes not only to construct a representative learning tree but also to branch 

correctly on the constructed tree to end up with the right dispatching rule to use. Since 

we don’t have a given set of attributes to use, we have to decide the set of attributes to 

use among our candidate rules, which are given in Appendix B. In this section, we 

decide the set of attributes that will be used in our system to generate high quality 

learning trees. Before attacking the question, we first try to get insights about the 

problem. For this, we create a number of attribute sets and test the performance of the 

learning trees, which are created upon these attribute sets. From these initial tries, we 

observe the following: 

1. Increasing the number of attributes in the set does not necessarily improve the 

quality of the learning tree. 

2. The effect of each attribute in the set on the performance of the generated 

learning tree depends on the other attributes in the set. 

3. Performance of the generated tree deteriorates when the attribute set contain 

Attribute-2 and Attribute-3 of Appendix B. 

Based on these observations we disregard the Attributes 2 and 3 in Appendix 

B from further consideration. However, we still have 24 attributes to consider for 
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selection and considering every combination of these attributes requires testing of 224 

attribute sets, which is impractical. Therefore, we ignore the 2nd observation above 

and assume that the effect of each attribute on the quality of the learning tree is 

independent of the other attributes in that set. Then we use the following heuristic 

algorithm to select the attributes among the candidates: 

Step 0. (Initialization) Define C as the set of all candidate attributes. D1 is the set 

of training data and D2 is the set of test data. Construct the tree on D1 set with 

attributes in C and test the performance of the tree on D2 set. Let this performance 

denoted by P(C). 

Step 1. Discard attribute-i from C and construct the tree on D1 set with attributes 

in C\{i} and test the performance of the tree (P(C\{i})) on D2 set. Repeat this step for 

all i є C. 

Step 2. Let new C be C\{i} for i, where }}){\(max{arg CjjCPi ∈= . Continue 

with the next step if C=Ø, otherwise return Step 2. 

Step 3. Select the attribute set that result in the maximum performance among all 

tested.  

In this algorithm, the performance function P(*) is defined as the percentage 

of correctly classified instances in the test data set, D2. By using this algorithm we 

experiment for the right attribute set that should be used by the learning tree for two 

cases: when we have sufficiently large data to learn on and when the data is scarce. 

For sufficiently large data and scarce data cases, we use 2000 and 200 training data, 

respectively. The size of the test data set is taken to be 2000 in both cases. Data sets, 

D1 and D2, are generated under the experimental conditions given in Table 4.5. 
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Table 4.5: Experimental conditions for generated data sets 
 

Utilization Level Due date tightness SPL MPL β Dispatching Rules 
80 % Tight 1000 250 0.2 SPT, MDD, ODD 
 
 
 For both scarce and sufficiently large data set cases, the algorithm found that 

the attribute set that result in the best learning tree contains all the attributes in the 

initial set C. In other words, we should use all the attributes defined in Appendix B 

other than the second and third attributes. The performance values of the learning 

trees in each case with all attributes used are provided in Table 4.6. Interestingly, the 

performance of the tree is found to be better in the scarce data case than the large data 

case but the difference is not significantly high. 

 
Table 4.6: Summary of the experimental results on the attribute set selection 

 
Cases Performance of the Tree 

Sufficiently large data 80.7 % 
Scarce data 81.55 % 

 

Based on the experimental results of this section, we embodied all the 

attributes defined in Appendix B (not including the second and third attributes) into 

our system. In the rest of the experiments where learning take place, the learning tree 

is constructed upon this attribute set. 

 

4.6. Job Shop Scheduling with a Static Learning Tree 

In the previous sections of this chapter, we experimented with the important system 

parameters. Now in this section, we use our learning based scheduling system in a job 

shop environment. First we measure the performance of the proposed system when 

the tree is constructed only once. That is, the learning tree is not updated over time. 

For that reason, we call this application as scheduling with a static learning tree. 
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For the experiments we again use a nested experimental design (Table 4.7). In 

this design, MPL factor is nested inside the SPL factor, as it is in the previous section, 

and the β factor is nested inside the MPL factor. The reason for nesting the β factor 

inside the MPL factor is due to the fact that we take the best level of β factor for each 

MPL . Two different dispatching rule sets are also considered in the experiments, 

where one of the sets contains MOD and the other set does not. 

 
Table 4.7: Experimental design of scheduling with a static learning tree 

 
Factors Levels 
Due date tightness Tight 
Dispatching rule set {SPT, MDD, ODD}, {SPT, MDD, ODD, MOD} 
Utilization 80% 90% 
SPL 1000 7500 
MPL 250 500 1000 500 2500 7500 
β 0.2 1 - 0.2 1 - 

 

In the simulation experiments, we take 20 replications for each experimental 

condition and each replication is composed of two phases: the Warm-up Phase and 

the Testing Phase. In the warm-up phase we generate the necessary instance data for 

our learning algorithm to construct the learning tree. This phase is composed of 2000 

scheduling periods (for the 80% utilization settings), which provides us a training data 

set that contains 2000 instance data (i.e., each scheduling period provides one instance 

data). At the end of this warm-up phase, a learning tree is constructed by using this 

training data set and the second phase starts. In the second phase, the dispatching rules 

for each scheduling period are selected from the learning tree. This phase also 

contains 2000 scheduling periods for each replication in the 80% utilization case and 

the statistics are collected in this phase (i.e., BestPerf, LearnPerf and MultiPass). As 

before, the common random numbers (CRN) scheme is used in the experiments. In 

the 90% utilization case, each replication is composed of only 1000 scheduling 
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periods for both phases due to the high memory requirement in the high utilization 

case. 

We are interested in the following questions: 

1. Does the learning based system give better average tardiness values than the 

simulation-based multi-pass algorithms (i.e., can we get LearnPerf < 

MultiPass?) 

2. What are the percentage differences between BestPerf-LearnPerf and 

BestPerf-MultiPass? 

3. What are the percentage use of dispatching rules for BestPerf, LearnPerf and 

MultiPass? 

 
The results of the experiments are given in Appendix E and Tables 4.8 through 

4.10 summarizes these results. As it is expected BestPerf gives the lower bounds for 

both MultiPass and LearnPerf. In both of the experimental conditions, our learning-

based scheduling system performs better than the simulation-based scheduling (see 

Table 4.8 and 4.9). However, LearnPerf approaches to MultiPass as we increase the 

monitoring period length. At the extreme, when there is no monitoring at all, the 

performances of learning-based and simulation-based scheduling approaches become 

almost equal. This result is consistent with our findings in Section 4.3, in which 

smaller values for MPL results better average tardiness values for BestPerf. 

Therefore, it is vital to set the appropriate SPL, MPL and β values to get the 

maximum efficiency from the learning-based system. 

For the small values of MPL, 250 for 80% and 500 for 90% utilizations, the 

percentage of the gap between the LearnPerf and the BestPerf are considerably 

smaller (at least the half) than the gap between MultiPass and BestPerf. Also, the 

percentage of the gap between the LearnPerf and the BestPerf found to be better in 
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the high utilization cases (i.e., 90% utilization) when compared with the low 

utilization case. This shows that our proposed system works much better when the 

utilization increases. Also, based on the paired-t test results we show that these 

performance values are statistically different than each other on a 0.95 confidence 

interval. 

Also, when we compare the results given in Table 4.8 with the results of Table 

4.9, we observe that when we add a very competitive dispatching rule, such as MOD, 

to the dispatching rule set, all the performance metrics (BestPerf, LearnPerf and 

MultiPass) improve significantly (almost 50% better results). Moreover, LearnPerf 

and MultiPass get closer to BestPerf (small ∆1 and ∆2 values in Table 4.9 than in 

Table 4.8) when the MOD is added to the rule set. Alternatively, we expect that 

 
Table 4.8: Summary of performance values for the rule set {SPT, MDD, ODD} 

 
Utilization MPL BestPerf LearnPerf MultiPass Single-pass ∆1� ∆2� 

250 0.648 0.799 0.894 0.905 23.3% 37.96% 
500 0.655 0.876 0.896 0.905 33.74% 36.79% 80% 

1000 0.679 0.891 0.895 0.905 31.22% 31.81% 
500 1.1 1.383 1.494 1.545 25.72% 35.81% 

2500 1.139 1.487 1.532 1.545 30.55% 34.5% 90% 
7500 1.196 1.51 1.514 1.545 26.25% 26.58% 

 
 

Table 4.9: Summary of performance values for the rule set {SPT,MDD,ODD,MOD} 
 

Utilization MPL BestPerf LearnPerf MultiPass Single-pass ∆1� ∆2� 
250 0.359 0.415 0.492 0.52 15.59% 37.04% 
500 0.374 0.428 0.44 0.52 14.43% 17.64% 80% 

1000 0.383 0.435 0.44 0.52 13.57% 14.88% 
500 0.52 0.568 0.684 0.704 9.23% 31.53% 

2500 0.539 0.587 0.632 0.704 8.9% 17.25% 90% 
7500 0.559 0.591 0.595 0.704 5.72% 6.44% 

 
 
� ( )

BestPerf
BestPerfLearnPerf −

×=∆ 1001
, ( )

BestPerf
BestPerfLearnPerf −

×=∆ 1002
 

 

(MultiPass-BestPerf) 
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LearnPerf and MultiPass to move away from BestPerf when a low-quality DR is 

added to the candidate dispatching rule set. 

We also keep track of the dispatching rule usage percentages in the 

experiments for both MultiPass, LearnPerf and BestPerf. Table 4.10 summarizes 

these percentages and the detailed values are given in Appendix E. Note that the 

values don’t add up to 100 because of the rounding. As it is clear from Table 4.10, for 

the low values of MPLs, learning-based scheduling system uses dispatching rules as 

close to their best dispatching rule combinations. On the other hand, simulation-based 

scheduling gives much different values than the best combinations for small MPLs. 

For high values of MPL, percentage usage of the dispatching rules for each system 

converge to each other as expected. 

 
Table 4.10: Average dispatching rule usage percentages 

 
  80% Utilization 90% Utilization 

Dispatching Rule 
Percentages Rules 

MPL=
250 

MPL= 
500 

MPL= 
1000 

MPL= 
500 

MPL= 
2500 

MPL= 
7500 

Multi-pass SPT 13% 14% 14% 2% 2% 2% 
 MDD 34% 34% 34% 58% 58% 58% 
 ODD 52% 51% 51% 38% 39% 39% 

        
Learning SPT 10% 14% 14% 2% 4% 2% 

 MDD 54% 38% 32% 84% 63% 58% 
 ODD 34% 46% 53% 12% 32% 38% 

        
Best SPT 9% 13% 14% 2% 3% 2% 

 MDD 54% 39% 33% 82% 63% 58% 
 ODD 36% 47% 52% 14% 33% 38% 
 
 
 In summary, our learning-based scheduling system performs better than the 

simulation-based scheduling approach in all the experiments. The results also show 

the importance of setting for the SPL, MPL and β parameters. When they are fine 

tuned up, the proposed system can provide significant improvements on the system 
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performance. Also, we expect further improvements when proposed learning tree is 

updated in time and we will analyze this in the next section. 

 

 4.7. Job Shop Scheduling with Dynamic Learning Structure 

In previous sections, we focused on important issues such as the selection of 

scheduling period and monitoring period, attributes and so on. We also tested our 

learning-based scheduling system with a static learning tree. In this section, we test 

our learning-based scheduling system with a dynamic learning tree (i.e., all of its 

modules discussed in Chapter 3 are activated). In other words, we now continuously 

monitor the quality of the learning tree by the control charts and update it whenever 

necessary. Thus, we call this experiment as the scheduling with a dynamic learning 

structure. 

 In the simulation experiments, we consider a manufacturing system in which 

its internal parameters change in time (i.e., arrival rate, due date tightness levels). The 

details of the experimental design are given in Table 4.11. Note that, we take 5 

planning horizons, where each horizon contains 1000 scheduling periods. At the 

beginning of each horizon, we change some of the parameters of the manufacturing 

system. For example, in Table 4.11, the factor “parameter sequence for arrival rate” 

represents the value of the arrival rate of the jobs during each horizon. Specifically, in 

horizons 1, 2, 3, 4 and 5, jobs arrive exponentially with parameters 0.8, 0.9, 0.7, 0.9 

and 0.8, respectively. For the construction of the learning tree, we consider two 

different strategies, which are represented by the factor “Training Data Set” in Table 

4.11. When this factor is at its level Full, the learning tree is constructed based on all 

the accumulated data points since the beginning of the experiment. On the other hand, 
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if its level is set to Partial, the most recent 200 data points (1/5 of a horizon length) 

are used each time when the learning tree is updated. 

 

Table 4.11: Experimental Design for scheduling with dynamic learning structure 
 

Factors Levels 
DR set {MOD, MDD, ODD, SPT}, {MDD, ODD, SPT} 
Sequence for arrival rate parameter {0.8, 0.9, 0.7, 0.9, 0.8} 
Horizon lengths (number of SPs) 1000 
Training Data Set Full, Partial (1/5 of horizon length) 
SM2 type Reactive, non-reactive, partially reactive 
Due date tightness Adjusted, not adjusted 
(SPL, MPL, β) {(1000, 250, 0.2), (7500, 500, 0.2)} 

 
 

The next factor, SM2 type, represents the characteristics of the simulation 

module 2 (see Figure 4.1). Recall that the SM2 is responsible for assessment of the 

decisions if they are given via the simulation runs rather than the learning tree (i.e., 

multi-pass). We consider three levels for the SM2 type: reactive, non-reactive and 

partially reactive. When SM2 type is reactive, SM2 model is updated immediately 

when there is any parameter change in the actual manufacturing environment. In other 

words, if the arrival rate of the jobs changes in real world, this information is made 

available for simulation model 2, which is used for simulation-based scheduling, 

immediately. Intuitively, this is impossible in the real world implementation, because 

when any parameter of the manufacturing system changes it can be made available to 

the simulation model of the system after a period of time. This delay is inevitable 

since detecting the shift in the parameters requires data collection and statistical 

analysis. For this reason, we also consider the partially reactive level for SM2 type.  

When the type is partially reactive, SM2 is updated for the arrival rate changes, but 

with some time delay and an accuracy level. Specifically, arrival rate in SM2 is 

updated with a delay of 200 scheduling periods (1/5 of a horizon length) after the 
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actual change in the real world takes place and set to the values in the sequence {0.8, 

0.875, 0.725, 0.875, 0.8} for each horizon 1 through 5, respectively. The time delay 

for the update in SM2 represents the passage of time for collecting sufficient data, 

which is necessary to statistically determine the new arrival rate. As another extreme, 

we consider SM2 type as non-reactive. In this case the model, SM2, is not updated for 

any changes in the manufacturing environment. For example, when arrival rate 

changes from 0.8 to 0.9 in real world, simulation-based scheduling (SM2) continues 

to operate under the initial arrival rate, which is 0.8. 

Another factor considered in the experiments is due date tightness and it has 

two levels, adjusted and not adjusted. For the adjusted case, we set the allowance 

factor k for setting the due dates such that percent tardy is always 40% under the 

FCFS rule. In Section 4.2, we found k equal to 5.5 and 11 for the arrival rates 0.8 and 

0.9 to achieve 40% of percent tardy jobs, respectively. We also look for the arrival 

rate of 0.7 and k being 3.75 results in 40% tardy. Therefore, for the adjusted case, 

flow allowance factor k is set to 3.75, 5.5 and 11 for arrival rates of 0.7, 0.8 and 0.9, 

respectively, for all simulation models SM1, SM2 and SM3 (these models are 

discussed in Section 4.1). For the not adjusted case, flow allowance factor is always at 

the level 5.5 for all arrival rates. Therefore, the first case corresponds to a policy such 

that the manufacturing firm adjusts its due date setting policy when the arrival rate of 

the jobs changes and in the second case no action is taken for setting the due dates of 

the jobs when the utilization of the shop floor changes. 

The last factor that we consider in the experiments is the choice of scheduling 

and monitoring period lengths along with the β value. For the levels of this factor, we 

simply consider the best combinations that we previously determined for 80% and 
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90% utilization levels. Therefore, the two levels, (1000, 250, 0.2) and (7500, 500, 

0.2), are considered for this factor. 

With these factors and their associated levels, we end up with 48 experimental 

conditions. At the beginning of each experiment, there is a warm up period with a 

length of 200 scheduling periods to provide necessary initial data to the system to 

construct the first learning tree and the control charts. System statistics are initialized 

after the warm up period and each experimental condition is run for 5 consecutive 

horizons (5000 scheduling periods) as it is given in Table 4.11. The results of the 

experiments, MultiPass, LearnPerf and BestPerf, are summarized in Table 4.12 and 

4.13. Note that, BestPerf provides the lower bound values for both MultiPass and the 

LearnPerf. 

From these results, our first observation is that our learning-based scheduling 

system outperforms the simulation-based scheduling approach (MultiPass) in 38 

experimental conditions out of 48. In these cases, LearnPerf is closer to BestPerf 

more than MultiPass in a range of 2.34% to 40.87%. In 2 cases, both MultiPass and 

LearnPerf is found as equal. In the remaining 8 cases simulation-based scheduling 

(MultiPass) perform slightly better than LearnPerf (i.e., between 1.68% and 7.83% 

better). However, in these cases SM2 type is reactive, which is difficult to achieve 

such conditions in the real world. 

When we compare LearnPerf for full and partial training data set cases, we see 

that using all available data always results better performances (see Tables 4.12 and 

4.13). At first glance, this seems to be counter intuitive because when parameters of 

the manufacturing system change, learning with the most recent data is expected to 

yield better performance. However, the results show that our learning algorithm gets 

benefit from the past data as well as the recent data. Note that, BestPerf and MultiPass  
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Table 4.12: Summary of the experimental results for DR set {MDD, ODD, SPT} 
 

  Training data set: Full Partial 
  (SPL, MPL, β): (1000, 250, 0.2) (7500, 500, 0.2) (1000, 250, 0.2) (7500, 500, 0.2) 

Due date tightness: SM2 type:      
MultiPass 1.18 1.25 1.18 1.25 
LearnPerf 1.1 1.11 1.13 1.2 Reactive 
BestPerf 0.98 1.02 0.98 1.02 

MultiPass 1.37 1.52 1.37 1.52 
LearnPerf 1.1 1.11 1.13 1.2 Non-reactive 
BestPerf 0.98 1.02 0.98 1.02 

MultiPass 1.25 1.32 1.25 1.32 
LearnPerf 1.1 1.11 1.13 1.20 

Adjusted 

Partially Reactive 
BestPerf 0.98 1.02 0.98 1.02 

MultiPass 2.38 1.79 2.38 1.79 
LearnPerf 2.3 1.75 2.42 1.9 Reactive 
BestPerf 2.15 1.71 2.15 1.71 

MultiPass 2.59 2.26 2.59 2.26 
LearnPerf 2.3 1.75 2.42 1.9 Non-reactive 
BestPerf 2.15 1.71 2.15 1.71 

MultiPass 2.49 2.02 2.49 2.02 
LearnPerf 2.3 1.75 2.42 1.9 

Not Adjusted 

Partially Reactive 
BestPerf 2.15 1.71 2.15 1.71 
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Table 4.13: Summary of the experimental results for DR set {MDD, ODD, SPT, MOD} 
 

  Training data set: Full Partial 
  (SPL, MPL, β): (1000, 250, 0.2) (7500, 500, 0.2) (1000, 250, 0.2) (7500, 500, 0.2) 

Due date tightness: SM2 type:      
MultiPass 0.81 0.65 0.81 0.65 
LearnPerf 0.81 0.65 0.82 0.68 Reactive 
BestPerf 0.71 0.6 0.71 0.6 

MultiPass 0.96 0.73 0.96 0.73 
LearnPerf 0.81 0.65 0.82 0.68 Nonreactive 
BestPerf 0.71 0.6 0.71 0.6 

MultiPass 0.87 0.69 0.87 0.69 
LearnPerf 0.81 0.65 0.82 0.68 

Adjusted 

Partially Reactive 
BestPerf 0.71 0.6 0.71 0.6 

MultiPass 1.52 1.2 1.52 1.2 
LearnPerf 1.2 1.15 1.61 1.27 Reactive 
BestPerf 1.15 1.1 1.15 1.1 

MultiPass 1.67 1.35 1.67 1.35 
LearnPerf 1.2 1.15 1.61 1.27 Nonreactive 
BestPerf 1.15 1.1 1.15 1.1 

MultiPass 1.6 1.26 1.6 1.26 
LearnPerf 1.2 1.15 1.61 1.27 

Not Adjusted 

Partially Reactive 
BestPerf 1.15 1.1 1.15 1.1 
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are not affected from this parameter, since the training data set characteristic only influences 

the learning tree and have not any influence on these performances. 

The third observation is related with the selection of SPL, MPL and β values. For the 

rule set of {MOD, MDD, ODD, SPT}, the combination (7500, 500, 0.2) gives always better 

results for LearnPerf than the combination (1000, 250, 0.2) (Table 4.13) regardless of partial 

or full data sets being used. The reason why the combination (7500, 500, 0.2) yields better 

results when MOD is in the rule set is that the performance of MOD dominates the 

performance of other rules when it is used for a long period of time. Thus, the combination 

(7500, 500, 0.2) yields better results than the combination (1000, 250, 0.2). For the rule set 

{MDD, ODD, SPT}, the best choice of (SPL, MPL, β) combination depends on the 

parameter “due date tightness”. When the due date tightness factor is at its level not adjusted, 

the choices of (7500, 500, 0.2) results in again the improved performance than (1000, 250, 

0.2) regardless of the partial or full data sets being used. But, when it is at the adjusted level, 

(7500, 500, 0.2) and (1000, 250, 0.2) results in better for the full and partial training data sets, 

respectively, (Table 4.12). These results stress us the importance of the appropriate selection 

of SPL, MPL and β values once more. 

  As stated before, partially reactive SM2 is a more realistic case for the simulation-

based scheduling approach. In this case, the simulation model used for the scheduling 

decisions of multi-pass approach is updated with some time delay and inaccuracy that may 

exist in detecting the parameter changes in the actual manufacturing environment. Therefore, 

the comparison of the learning-based (LearnPerf) and the simulation-based (MultiPass) 

systems for this factor level is of special importance. When the SM2 type is partially reactive, 

LearnPerf is better than MultiPass in 14 cases out of 16. That is, LearnPerf is closer to 

BestPerf more than MultiPass in a range of 3.26% to 34.79% in these 14 cases. In the  



 

 85 

Table 4.14: Summary of the experimental results for DR set {MDD, ODD, SPT} (Percentage of deviation from the best) 
 

  Training data set: Full Partial 
  (SPL, MPL, β): (1000, 250, 0.2) (7500, 500, 0.2) (1000, 250, 0.2) (7500, 500, 0.2) 

Due date tightness: SM2 type:      
100×

−
BestPerf

BestPerfMultiPass  20.40% 22.55% 20.40% 22.55% 
Reactive 

100×
−

BestPerf
BestPerfLearnPerf  12.24% 8.82% 15.30% 17.64% 

100×
−

BestPerf
BestPerfMultiPass  39.79% 49.01% 39.79% 49.01% 

Non-reactive 
100×

−
BestPerf

BestPerfLearnPerf  12.24% 8.82% 15.30% 17.64% 

100×
−

BestPerf
BestPerfMultiPass  27.55% 29.41% 27.55% 29.41% 

Adjusted 

Partially Reactive 
100×

−
BestPerf

BestPerfLearnPerf  12.24% 8.82% 15.30% 17.64% 

100×
−

BestPerf
BestPerfMultiPass  10.69% 4.67% 10.69% 4.67% 

Reactive 
100×

−
BestPerf

BestPerfLearnPerf  6.97% 2.33% 12.55% 11.11% 

100×
−

BestPerf
BestPerfMultiPass  20.46% 32.16% 20.46% 32.16% 

Non-reactive 
100×

−
BestPerf

BestPerfLearnPerf  6.97% 2.33% 12.55% 11.11% 

100×
−

BestPerf
BestPerfMultiPass  15.81% 18.12% 15.81% 18.12% 

Not Adjusted 

Partially Reactive 
100×

−
BestPerf

BestPerfLearnPerf  6.97% 2.33% 12.55% 11.11% 
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Table 4.15: Summary of the experimental results for DR set {MOD, MDD, ODD, SPT} (Percentage of deviation from the best) 
 

  Training data set: Full Partial 
  (SPL, MPL, β): (1000, 250, 0.2) (7500, 500, 0.2) (1000, 250, 0.2) (7500, 500, 0.2) 

Due date tightness: SM2 type:      

100×
−

BestPerf
BestPerfMultiPass  14.08% 8.33% 14.08% 8.33% 

Reactive 
100×

−
BestPerf

BestPerfLearnPerf  14.08% 8.33% 15.49% 13.33% 

100×
−

BestPerf
BestPerfMultiPass  35.21% 21.66% 35.21% 21.66% 

Non-reactive 
100×

−
BestPerf

BestPerfLearnPerf  14.08% 8.33% 15.49% 13.33% 

100×
−

BestPerf
BestPerfMultiPass  22.53% 15% 22.53% 15% 

Adjusted 

Partially Reactive 
100×

−
BestPerf

BestPerfLearnPerf  14.08% 8.33% 15.49% 13.33% 

100×
−

BestPerf
BestPerfMultiPass  32.17% 9.09% 32.17% 9.09% 

Reactive 
100×

−
BestPerf

BestPerfLearnPerf  4.34% 4.54% 40% 15.45% 

100×
−

BestPerf
BestPerfMultiPass  45.21% 22.72% 45.21% 22.72% 

Non-reactive 
100×

−
BestPerf

BestPerfLearnPerf  4.34% 4.54% 40% 15.45% 

100×
−

BestPerf
BestPerfMultiPass  39.13% 14.54% 39.13% 14.54% 

Not Adjusted 

Partially Reactive 
100×

−
BestPerf

BestPerfLearnPerf  4.34% 4.54% 40% 15.45% 
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remaining 2 cases, MultiPass is closer to BestPerf more than LearnPerf only 0.9%, which 

means they are almost equal. 

In the experiments, we also keep track of the statistics about the number of updates of 

learning trees and control charts. Tables F.2 and F.3 in the appendix summarizes these 

statistics. Furthermore, we analyze the detailed output reports about the exact timing of these 

updates of the learning tree and the control charts. From these reports, we observe that when 

the parameters in the actual manufacturing environment changes, the reconstruction process 

of the learning tree and the control charts accelerates. This continues for a while until the new 

charts and the learning tree stabilizes. Therefore, the total number of updates for both the 

learning tree and the control charts increase.  

 To illustrate the operations of the control charts, update signals of the learning tree 

and the control charts, we plot a portion of the control charts in Figure 4.12 and 4.13. The 

plotted data is taken from the experiment with the following conditions: training data set full; 

SM2 type reactive; due date tightness adjusted; (SPL, MPL, β) is (7500 , 500, 0.2); DR set is 

{MDD, ODD, SPT}. The actual data points are given in Appendix F. 

In these figures, the extreme points (i.e., the points outside the chart limits) are 

designated by the signals, which trigger the need for the learning tree update. In addition, at 

R-signal 4 the control charts are also updated because at that point two successive learning 

tree update signal is received (i.e., learning tree is updated just in the previous point and at 

that point). Furthermore, at the same time we receive X-signal 4 and R-signal 6, where both 

the learning tree and the control charts are updated. Note that, each plotted data point in the 

charts come from the aggregation of the data points (average tardiness values observed) of 

five scheduling periods. Thus, when X-signal 1 and R-signal 1 signal the first update of the 

learning tree at point 12, we have 12*5=60 new instance data points available for the 
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Figure 4.12: X chart 
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Figure 4.13: R chart 
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construction of the new learning tree. Hence, the first update of the learning tree takes place 

after 60 scheduling periods since the system is initiated. 

From these charts, we can see how our system adapts itself to the changes in time. 

Signal types used in the proposed system are based on the statistical principles in which the 

probability of each signal is very low if there is no change in the actual manufacturing 

environment. Hence, detecting any of these signals is due to the changes occurred in the 

actual manufacturing environment and hence the appropriate actions (i.e., updating the 

learning tree and the control charts) are taken. For example, detecting two consecutive 

learning tree update signals have a very low probability when there isn’t any change in the 

actual manufacturing system. Therefore, detecting such a signal triggers the reconstruction of 

the control charts, since the reason of such a signal can most probably be the lost of validity 

of the existing charts. Also, as it is understand from the example, our system considers 

updating the learning tree in the first place, which is a direct result of the definitions of the 

signal types (see Chapter 3). If updating the learning tree doesn’t bring the process under 

control, then updating the control charts takes place. This is due to the fact that when 

updating the learning tree, we provide new training instances to the learning algorithm and 

expect to have a new tree that performs within the limits of the existing control charts. 

However, if updating the learning tree is not sufficient for being within the limits of the 

control, then it is concluded that the process parameters have shifted and the charts are need 

to be updated. Our system survives in time by the help of this capability and yields very 

promising results.  

 To sum up, the proposed learning-based scheduling system performs well in the 

experiments. It also outperforms the simulation-based scheduling significantly in most of the 

cases. Monitoring the performance of the learning tree by the control charts not only improve 
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the performance of the system but also let the system to survive in time without any external 

manipulations. However, the simulation-based scheduling requires external manipulations 

such as data collection, statistical analysis of data and modifying the existing simulation 

model when the SM2 type is reactive or partially reactive. 

 

4.8. Summary 

We begin this chapter with the experiments on important parameters of the scheduling 

problem such as the scheduling and monitoring period lengths. In these experiments, we 

show the importance of selecting the appropriate values for these parameters. After these 

experiments, we also restrict our dispatching rule set with the rules that have close single-

pass performances and perform the rest of the experiments with this restricted rule set (i.e., 

{MDD, ODD, SPT}) as well as the original rule set (i.e., {MOD, MDD, ODD, SPT}). Before 

experimenting on our proposed system with these DR sets, we perform experiments on 

selecting the system attributes to embody into our learning-based scheduling system. For this, 

we follow a heuristic approach and determine the system attributes. After that point, we begin 

to experiment on our proposed system. As a first step, we consider the learning tree as static. 

In other words, once the learning tree is constructed, it is never updated again. In these 

experiments, we assume that the manufacturing system does not undergo any changes such as 

a change in the arrival rate or the service rate. The results of the experiments are compared 

with the best performance values that can be achieved as well as the simulation-based 

scheduling performances. Results show that the learning-based scheduling outperforms the 

simulation-based scheduling approach. Furthermore, the performance values achieved are not 

larger than the best values. Also, LearnPerf is always found to be better than the single-pass 

performances of individual dispatching rules. 
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In the last section of this chapter, we finally experiment on our proposed system as it 

is presented in Chapter 3. We employ the control charts and update the learning tree as well 

as the charts’ themselves whenever it is signaled. In these experiments, we assume that the 

conditions of the manufacturing system change from one horizon to another. In the 

experiments we only consider a change in the arrival rate. Results show that the proposed 

system outperforms the simulation-based scheduling approach and provide significantly close 

values to the best performances that can be achieved. 
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Chapter 5 

Conclusion and Future Research 

Directions 

 
 
 
 
In this thesis, we presented a learning-based scheduling system for a classical job shop 

problem. C4.5 algorithms, which are developed by Quinlan (1993), are used for the learning 

process to construct the learning tree. Process control charts are also employed in the 

proposed system to continuously monitor the performance of the system so that it adapts 

itself to the changes in the manufacturing environment (without any external manipulations). 

In the next section, we discuss our contributions and in Section 5.2, we give some future 

research directions. 
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5.1. Contributions 

In Chapter 4, we conducted extensive computational experiments to fine tune up the 

parameters (e.g., monitoring period, scheduling period length) and to understand their 

impacts on the system performance (i.e., average tardiness). Our results indicate that 

scheduling period length plays a critical role as it significantly affects the system 

performance. Specifically, the system performance is worst when short SPLs are used. This is 

due to the fact that for small SPL, even though the selected rules seem to be the best for these 

short scheduling periods, the system switches back and forth between different rules so 

frequently that the performance of the system is never stabilized and it deteriorates in the 

long run.  

Moreover, for the loose due dates, the system performance does not differ much for 

different scheduling period lengths that are larger than a threshold value. That is, the 

performance of the system converges to the performance of the single-pass dispatching rules 

for large value of SPL when the due dates are loose. This is due to the fact that the 

performances of the individual dispatching rules (MDD, ODD and MOD) are very close to 

each other in the long run for loose due-dates (as also stated by Baker, 1984), switching 

between these rules doesn’t provide any benefit. Therefore, BestPerf converges to a limit 

(single-pass performance of the rules) showing a behavior of exponential decay function. 

In the other case of tight due dates, BestPerf displays an exponential decay behavior 

as we increase SPL, but it reaches a minimum value at some point. At the minimum, the 

system selects the best rule combination and BestPerf reaches to its minimum. But, when we 

continue to increase the SPL further, the system performance deteriorates and converges to a 

higher value than the minimum. This higher value is again close to the long-run performance 

of the most dominant dispatching rule, because system begins to choose this particular rule 
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most of the time. Note that this increase in tardiness after the minimum point is attributable to 

the loss of the improvements that can be achieved by switching to different rules during the 

long scheduling periods. 

Our second set of experiments is conducted on the monitoring policy (i.e., MPL and β 

parameters). In general, monitoring improves the system performance. For short monitoring 

intervals, best performance is achieved with very small β values. This suggests that we 

should use a small threshold value (χ) for small monitoring intervals. This also implies that 

we impose more restriction on the system performance. When we increase the MPL, we 

observe that the best performance value is achieved with larger β values. This means that, 

when we allow the system to have higher performance values at the monitoring points, we get 

better performance values. 

In summary, it is very important to select the appropriate values for SPL, MPL and β. 

For poorly selected parameters, performance of multi-pass methods can be worse than the 

single-pass performances of the individual dispatching rules. 

After all these preliminary analyses of the system parameters, we measured the 

performance of the proposed system in two stages. First we used a static learning tree, (i.e., 

the learning tree is not updated in time). In this set of experiments, our proposed system first 

constructs the learning tree at the beginning of a planning horizon and it is used throughout 

the planning horizon for selecting the dispatching rules. The results indicated that the 

proposed system performs better than the simulation-based multi-pass scheduling and the 

single-pass scheduling. But for very large values of monitoring intervals, the performance of 

the proposed system deteriorates to the level of the performance of the multi-pass scheduling 

system. Hence, at this point we conclude that the monitoring process is really essential for 

our learning based algorithm. Moreover, when we add a competitive dispatching rule (i.e., 
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MOD) to our rule set, the performance of the proposed system as well as the MultiPass 

further improves (gets closer to BestPerf). Hence, deciding the rules in the candidate 

dispatching rule set is also important for our learning based algorithm. Alternatively, we 

expect that the gap between LearnPerf and BestPerf as well as the gap between MultiPass 

and BestPerf increase when we add low-quality DR to the candidate dispatching rule set. 

In the second stage, we conduct experiments with the proposed system with a 

dynamic learning structure. In this experimental setting, the control charts are used to monitor 

the performance of the learning tree and the tree is updated whenever necessary. In these 

simulation experiments, we consider the system in which the parameters of the 

manufacturing system (e.g., arrival rate) change in time (as in the case of real life). The 

results show that significant improvements are achieved by our proposed system when the 

manufacturing system parameters change from one planning horizon to other.  

In such a realistic environment, even though the simulator of multi-pass scheduler is 

updated for these parameter changes, our proposed system still gives better results. Since our 

system adapts itself to the parameter changes automatically, we eliminate the external work 

required such as data collection and statistical analyses of the collected data. However, this 

external works are required for the multi-pass scheduling algorithm to update the simulation 

model. Furthermore, we showed that when the candidate dispatching rule set contains a 

competitive dispatching rule such as MOD, both our system and the multi-pass algorithm 

resulted in closer values to the best performance. Therefore, it is vital to select high quality 

dispatching rules and set the system parameters (i.e., SPL, MPL and β) appropriately to attain 

better performance. Finally, since our system selects dispatching rules from the learning tree 

automatically (i.e., on-line), we also eliminated the extensive simulation experiments that 

should be required for simulation-based multi-pass scheduling approach. 
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5.2. Future Research 

In today’s highly competitive business environment, product variety of a firm tends to 

increase due to the demand for highly customized goods, which in turn increases the 

complexity of operating a manufacturing system. In addition to these, the demand patterns of 

commodities may also change too rapidly. Especially for high tech industries, the product life 

cycles become very short and the customer demand can change drastically due to the 

introduction of new technologies in the market (i.e., introduction by the competitors). In this 

research, we developed a scheduling system that survives in time and handles the scheduling 

operations in such a changing manufacturing environment. We tested our proposed system 

when the arrival rate parameter changes in time. One possible future research topic can be to 

test the proposed system for other parameter changes, such as the shifts in processing time 

parameter. Moreover, it can be tested in a manufacturing system with machine breakdowns. 

Also, the behavior of the system performance as a function of SPL and MPL can be further 

analyzed by considering machine breakdowns. 

 Another research direction could be to combine the capabilities of multi-pass 

scheduling and the proposed learning-based system. For example, the decisions of the 

learning-based system can also be tested via simulation prior to use and some corrective 

actions can be applied (i.e., altering the recommendation of the learning tree).  

Another possible research area may be to develop a more sophisticated learning 

system. For example, a second, high-level learning can be developed upon the proposed 

learning structure. In the current implementation, we update our learning tree each time it is 

signaled and the old tree is trashed. However, a high-level learning that also learns on the 

characteristics of the constructed learning trees may provide further insights to the problem. 
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In other words, such a system may detect the general patterns behind all the constructed 

learning trees and provide valuable information about the problem. 

Finally, in some manufacturing systems there might be a high implementation cost for 

switching between the rules frequently. Another research direction can be to incorporate this 

cost factor into the objective function. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 100 

 

 

 

 

Bibliography 

 

 

 
 

Cho, H. and Wysk, R.A., 1993, A robust adaptive scheduler for an intelligent workstation 
controller. International Journal of Production Research, 31(4), 771-789. 

 
DeVor, R. E., Chang, T-h., Sutherland, J. W., Statistical Quality Design and Control, 
Prentice Hall, New Jersey, 1992. 

 
Duncan, A. J., Quality Control and Industrial Statistics, Irwin, Illinois, 1986. 

 
Huyet, A.L., Paris, J.L., 2003, Synergy between evolutionary optimization and induction 
graphs learning for simulated manufacturing systems, Working Paper. 

 
Ishii, N. and Talavage, J.J., 1994, A mixed dispatching rule approach in FMS scheduling. 
International Journal of Flexible Manufacturing Systems, 2(6), 69-87. 

 
Ishii, N. and Talavage, J.J., 1991, A transient-based real-time scheduling algorithm in FMS.  
International Journal of Production Research, 29(12), 2501-2520. 

 
Jeong, K. –C. and Kim, Y.-D., 1998, A real-time scheduling mechanism for a flexile 
manufacturing system: using simulation and dispatching rules. International Journal of 
Production Research, 36, 2609-2626. 

 
Kim, M. H., Kim, Y.-D, 1994, Simulation-based real-time scheduling in a flexible 
manufacturing system. Journal of Manufacturing Systems, 13, 85-93. 

 
 



 

 101 

Kutanoglu, E., Sabuncuoglu, I., 2001, Experimental investigation f iterative simulation-based 
scheduling in a dynamic and stochastic job shop. Journal of Manufacturing Systems, 20, 264-
279. 
 
Pierreval, H., Mebarki, N., 1997, Dynamic selection of dispatching rules for manufacturing 
system scheduling. International Journal of Production Research, 35, 1575-1591. 

 
Quinlan, J.R., C4.5 Programs for Machine Learning, Morgan Kaufmann, California, 1993. 

 
Sabuncuoglu, I., Goren, S., 2003, A review of reactive scheduling research: proactive 
scheduling and new robustness and stability measures. Technical working paper, Department 
of Industrial Engineering, Bilkent University. 

 
Shaw, M.J., Park, S., Raman, N., 1992, Intelligent scheduling with machine learning 
capabilities: the induction of scheduling knowledge. IIE Transactions, 24, 156-168. 

 
Suwa, H., Fujii, Susumu, 2003, Rule acquisition for rolling horizon heuristics in single 
machine dynamic scheduling, _____________. 

 
Takahashi, K., Nakamura, N., 1999, Reacting JIT ordering systems to the unstable changes in 
demand. International Journal of Production Research, 37, 2293-2313. 

 
Takahashi, K., Nakamura, N., 2002, Decentralized reactive Kanban system. Eurapean 
Journal of Operational Research, 139, 262-276. 

 
Tayanithi, P., Minivannan, S., Banks, J., 1993a, A knowledge-based simulation architecture 
to analyze interruptions in a flexible manufacturing system.  Journal of Manufacturing 
Systems, 11(3), 195-214. 

 
Tayanithi, P., Minivannan, S., Banks, J., 1993b, Complexity reduction during interruption 
analysis in a flexible manufacturing system using knowledge-based on-line simulation. 
Journal of Manufacturing Systems, 12(2), 153-169. 

 
Wu, S.D. and Wysk, R.A., 1988, Multi-pass expert control system – a control/scheduling 
structure for flexible manufacturing cells. Journal of Manufacturing Systems, 7(2), 107-120. 

 
Wu, S.D. and Wysk, R.A., 1989, An application of discrete-event simulation to on-line 
control and scheduling in flexible manufacturing. International Journal of Production 
Research, 27(9), 1603-1623. 
 
 
 
 
 
 
 
 



 

 102 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX A 

Construction Methods of Control 

Charts 

 
 
 
 
 
 
 
 
 
 
 
 
 



 

 103 

 
 

1

*

For  samples where each sample has size :
1. For each sample, an average is calculated:

,  where  are from Performance Value column of Figure-6 and

 where j represents any Realise

m

kj
j

k kj

kj i

n m

m
X

=

Χ
Χ = Χ

Χ =

∑

*

arg arg

d Scheduling Period for which  is obtained.

2. The spread or dispertion within the k  sample is measured by the range :

     where ,  

3. The Grand Av

i

th
k

th
k l est smallest l est smallest

X

R

R k sample= Χ −Χ Χ Χ ∈

1

1

erage, ,  is an estimate of the process mean and becomes the
centerline of the  chart:

4. The average of the sample ranges :

5. The true range of samples of size  is related to the

n

k
k

n

i
k

n
R

R
R

n
m

=

=

Χ

Χ

Χ
Χ =

=

∑

∑

2

2

2

 standard deviation of the
population (process) by the formula:

( )

where  is a function of the sample size under an assumed normal distribution of
's. For values  of for varying sample sizes 

X

k

R d

d
d

σ
Ε

=

Χ

2

2 2

4 3

3 4

 (see for example DeVor et. al.,1992)
6. Control Limits for  chart:

ˆ

3         3

7. Control Limits for  chart:
                

where values of  and  

m

m
R

d m
R RUCL LCL

d m d m
R

UCL D R LCL D R
D D

σ
σ

σ

Χ
Χ

Χ

Χ

=

=

= Χ + = Χ −

= × = ×

can be found in most of the quality books 
(see for example DeVor et. al.,1992)

 



 

 104 

 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX B 

Notation and Definition of the System 

Attributes 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 105 

Notation 
 
M : set of machines, M = {1, 2, 3, 4}. 

m : number of machines in the manufacturing system, which is equal to cardinality of M, 

M . 

Q : set of queues in front of the machines, Q = {1, 2, 3, 4}. 

Iq : set of jobs in the queue q at time t, q є Q. 

Om : set of operations of all jobs in the system that is to be processed on machine m, m є 

M. 

It : set of jobs in the system at time t. 

n : cardinality of It, that is the number of jobs in the system at time t. 

Ji : set of all operations of job i, i є I. 

iĴ  : set of all remaining operations of job i, i є I, Ĵ • J. 

ri : release time of job i, i є I. 

pij : processing time of operation j of job i, i є I, j є J. 

pi,cur : processing time of job i at the machine just after its current queue, i є I, j є J. 

i<j> : machinery location of jth operation of job i, i є I, j є J. 

di : due date of job i, i є I. 

dij : due date of operation j of job i, i є I, j є J. 

oi : number of operations of job i, i є I. 

k : flow allowance factor. 

SPL : Scheduling period length 

MPL : Monitoring period length 
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Definition of the System Attributes 

 

Attribute-1) Number of Customers in the System (NumCust) 

This attribute stores the number of customer in the system at time t. Hence, its value is equal 

to cardinality of It, which is n. 

 

Attribute-2) Percentage of Maximum Relative Machine Workload (PMaxRMW) 

This attribute is calculated as the following: for each machine, we find the total processing 

times of the operations that will be performed on that machine. Then we take the maximum 

of these values and divide it to total remaining processing time and multiply by 100.  

100
}{

ˆ

,

×=
∑∑

∑

∈ ∈

∈
∈

t

q

Ii Jj
ij

Ii
curiQq

p

pMax
PMaxRMW  

 

Attribute-3) Percentage of Completed Processing Times (PCompPT) 

This attribute is calculated by dividing the total completed processing time to the total 

processing time and multiplying by 100. 

100
ˆ

×=
∑∑

∑ ∑

∈ ∈

∈ −∈

t

t

Ii Jj
ij

Ii JJj
ij

p

p
PCompPT  

 

Attribute-4) Relative Tightness Ratio (RTR) 

This attribute is simply the ratio of average flow allowance to the average remaining 

processing times of the jobs. RTR is calculated as follows: 
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Attribute-5) Rule Updating Signal (RUS) 

In Section 3.3.2, new rule selection symptoms for updating the current DRs are discussed. 

Whenever one of these symptoms is detected, a new DR is requested from the learning 

module to continue the scheduling operations. Hence, it may be a good idea to provide this 

information to the learning module as an attribute. RUS is a discrete type attribute and takes 

its values as follows:  





=
MP is signal  theif 1
BSP is signal  theif 0

RUS  

 

Attribute-6) Total Remaining Processing Time (TotRemPT) 

This attribute, as it is clear from its name, stores the total remaining processing time of the 

jobs that are in the system at time t.  

∑∑
∈ ∈

=
tIi Jj

ijpmPTTot
ˆ

Re  

 

Attribute-7) Average Remaining Processing Time (AvRemPT) 

This attribute is equal to the total remaining processing time divided by the number of jobs in 

the system and calculated as follows: 

n

p

n
mPTTotmPTAv tIi Jj

ij∑∑
∈ ∈==

ˆReRe  
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Attribute-8) Total Slack Time (AverageSlackT) 

This attribute stores the value of total slack times minus the total remaining processing time 

of all the jobs in the system divided by the number of jobs. Mathematical formulation is as 

follows: 

n

ptd
ckTAverageSla Ii Ii Jj

iji∑ ∑∑
∈ ∈ ∈

−−
=

ˆ
)(

 

 

Attribute-9) Average Period Queue Length (AvPerQL) 

This attribute stores the average queue length of all queues in the last scheduling period. That 

is, if the current time is t and ),( tSPLtQTq −  is the total queue time of the jobs in queue q 0 

Q between time t-SPL and t, then: 

SPLQ

tSPLtQT
AvPerQL Qq

×

−
=
∑
∈

),(
 

 

Attribute-10) Maximum Queue Length at Time t (MaxQL-t) 

This attribute stores the information about the number of jobs waiting in the longest queue in 

the system. That is, 

}{max qQq ItMaxQL ∈=− , where qI  is the cardinality of set Iq. 

 

Attribute-11) Average Remaining Time Until Due Dates (AvRemTDd) 

Store the average of remaining time of all jobs until their due dates. Mathematical 

representation is as follows: 
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Attribute-12) Number of Jobs with Long Processing Time (NumLongPT) 

This attribute especially defined to separate SPT rule from the other rules. It stores the 

number of jobs that have a processing time greater than the average processing time of all 

jobs in the system. The mathematical representation is the following: 

L.set   the

ofy cardinalit  theis  and    where},,{such that  L
n

p
pIippiLLNumLongPT Ii Jj

ij

ti

∑∑
∈ ∈=∈≥==  

Attribute-13) Percentage of Jobs with Long Processing Times (PercentLongPT) 

It is calculated by dividing NumLongPT to the number of jobs in the system and multiplying 

by 100. That is, 

100×=
n

NumLongPTgPTPercentLon  

 

Attribute-14) Difference between Maximum and Average Processing Times 

(Max_AvPT) 

It stores the difference between the maximum processing time and the average processing 

time of the jobs at time t. That is, 

n

p
pppAvPTMax Ii Jj

ij

Jj
ijIi

∑∑
∑ ∈ ∈

∈
∈ =−=   where,}{max_  
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Attribute-15) Percentage of Difference between Maximum and Average Processing 

Times (PercentMax_AvPT) 

It is the percentage of Max_AvPT and calculated by dividing Max_AvPT by average 

processing time and multiplied by 100. That is, 

100__ ×=
p
AvPTMaxAvPTPercentMax  

Attribute-16) Maximum Due Date (MaxDue) 

This attribute stores the value of maximum due date of the jobs minus the current time t. In 

other words, it is the difference between the current time t and the maximum due date of the 

jobs in the system at time t.  

}}{max,0max{ tdMaxDue iIi −= ∈  

 

Attribute-17) Number of Jobs with Long Due Dates (NumberLongDD) 

This attribute especially defined to separate EDD rule from the other rules. It stores the 

number of jobs that have due dates greater than the average due date of all jobs in the system. 

The mathematical representation is the following: 

S. ofy cardinalit  theis  and  ,},{  where, S
n

d
dIiddiSSDDNumberLong Ii

i

i

∑
∈=∈≥==  

Attribute-18) Percentage of Jobs with Long Due Dates (PercentLongDD) 

It stores the percentage of jobs that have due dates greater than the average due date of all 

jobs in the system. The mathematical representation is the following: 

  ,},{  where100,
n

d
dIiddiS

n
S

DDPerentLong Ii
i

i

∑
∈=∈≥=×=  and S  is the cardinality of 

S. 
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Attribute-19) Maximum Coefficient of Variation of Processing Times of Machines 

(MaxCV_PT_Machines) 

To set the value of this attribute at any time t, we first form a set for each machine, which is 

composed of the operations that should be performed on that machine. Then, for each set, we 

calculate the coefficient of variation of processing times of the operations in the set. Then we 

set the attribute value to the maximum of these coefficient of variations. That is, 

 where,}{max__ mMm cvMachinesPTMaxCV ∈=  
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Attribute-20) Average of Coefficient of Variations of the Job Processing Times 

(Mean_CVPT) 

To set the value of this attribute at time t, we calculate the coefficient of variation of 

operation processing times of each individual job in the system. Then we take the average of 

these cvi values and set it as the value of our attribute. The mathematical formulation is the 

following: 
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Attribute-21) Average of Variances of the Job Processing Times (Mean_VarPT) 

It is quite similar to attribute-20, but instead of taking the average of coefficient of variations, 

we take the average of the variances. That is, 

n
VarPTMean Ii
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Attribute-22) Maximum of Coefficient of Variations of the Job Processing Times 

(Max_CVPT) 

As it is in the calculations of Attribute-20, we calculate the coefficient of variation of 

operation processing times of each individual job in the system and set Max_CVPT to the 

maximum of these values. 

}{max_ iIi cvCVPTMax ∈=  where, 
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Attribute-23) Difference between Maximum and Average of Coefficient of Variations of 

the Job Processing Times (Diff_Max/Mean_CVPT) 

This attribute is simply the difference of Attribute-22 and Attribute-20. That is, 

n

cv
cvCVPTMeanCVPTMaxCVPTMeanMaxDiff Ii
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Attribute-24) Number of Jobs Already Tardy (Num_AlreadyTardy) 

If the total remaining processing time of any job plus the current time t exceeds the due date 

of that job, we are certain that this job will be tardy. The number of such jobs at time t is set 

as the value of that attribute. Hence, 

SdyAlreadyTarNum =_  where, 

},{
ˆ

ti
Jj

ij IitdpiS ∈−>= ∑
∈

and S  is the cardinality of set S. 

 

Attribute-25) Average Remaining Processing Time of Already Tardy Jobs 

(AveragePT_AlreadyTardy) 

Referring to the discussion of the previous attribute, we calculate the average remaining 

processing time of the jobs that we certainly know as tardy and record this value to this 

attribute. Hence, mathematically, 

S

p
dyAlreadyTarAveragePT Si Jj

ij∑∑
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ˆ
_  where, 
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ˆ

ti
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 and S  is the cardinality of set S. 

 

Attribute-26) Last Period’s Average Tardiness Value (MeanTardiness) 

The value of this attribute at time t is set to the mean tardiness (our performance measure) of 

the last scheduling period, which was just ended at time t. We define this attribute, because 

the realized system performance at the last scheduling period may carry some information 

about the most appropriate dispatching rule for the next scheduling period.  
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Table C.1: 80% utilization, tight due-dates replication mean tardiness values (Ri: replication i, SPL: scheduling period length, 
DR set: SPT, MDD, MOD, ODD) 
 

SPL R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 
50 0.649 0.708 0.62 0.581 0.667 0.641 0.579 0.645 0.569 0.709 0.712 

100 0.589 0.599 0.536 0.493 0.575 0.622 0.577 0.608 0.466 0.548 0.563 
200 0.435 0.575 0.532 0.461 0.542 0.486 0.583 0.525 0.551 0.47 0.455 
500 0.438 0.399 0.44 0.447 0.418 0.5 0.379 0.414 0.409 0.378 0.355 
1000 0.42 0.37 0.385 0.394 0.425 0.382 0.46 0.32 0.365 0.338 0.436 
2000 0.384 0.36 0.391 0.434 0.441 0.42 0.385 0.372 0.414 0.396 0.356 
5000 0.405 0.376 0.343 0.441 0.344 0.451 0.406 0.364 0.451 0.421 0.351 
7500 0.378 0.436 0.374 0.424 0.38 0.362 0.386 0.426 0.466 0.377 0.499 

10000 0.396 0.456 0.376 0.36 0.39 0.379 0.377 0.448 0.435 0.374 0.442 
12500 0.388 0.361 0.404 0.408 0.436 0.332 0.399 0.383 0.439 0.406 0.456 
15000 0.388 0.403 0.412 0.338 0.451 0.324 0.388 0.377 0.439 0.424 0.366 

 
SPL R12 R13 R14 R15 R16 R17 R18 R19 R20 MEAN STD. DEV 
50 0.543 0.634 0.756 0.705 0.692 0.565 0.621 0.633 0.631 0.643 0.057954 

100 0.555 0.666 0.505 0.604 0.548 0.582 0.58 0.628 0.545 0.56945 0.047788 
200 0.465 0.524 0.496 0.522 0.466 0.543 0.57 0.485 0.433 0.50595 0.046796 
500 0.407 0.431 0.42 0.466 0.391 0.45 0.399 0.411 0.39 0.4171 0.033659 
1000 0.416 0.368 0.333 0.423 0.358 0.403 0.362 0.336 0.382 0.3838 0.038087 
2000 0.422 0.431 0.413 0.393 0.422 0.341 0.412 0.447 0.378 0.4006 0.029726 
5000 0.38 0.409 0.464 0.372 0.511 0.348 0.4 0.379 0.42 0.4018 0.045425 
7500 0.397 0.393 0.361 0.4 0.381 0.371 0.393 0.425 0.398 0.40135 0.035435 

10000 0.39 0.417 0.389 0.405 0.357 0.41 0.452 0.392 0.427 0.4036 0.030855 
12500 0.41 0.379 0.393 0.371 0.459 0.451 0.435 0.374 0.357 0.40205 0.035413 
15000 0.415 0.426 0.366 0.389 0.429 0.435 0.444 0.362 0.394 0.3985 0.035585 
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Table C.2: 90% utilization, tight due-dates replication mean tardiness values (Ri: replication i, SPL: scheduling period length, 
DR set: SPT, MDD, MOD, ODD) 
 

SPL R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 
50 1.978 2.425 2.348 1.766 2.362 2.067 1.97 2.309 1.76 2.32 2.572 

100 1.599 1.651 1.584 1.314 1.39 1.758 1.471 1.427 1.161 1.431 1.357 
200 1.255 1.457 1.585 1.036 1.501 0.911 1.812 1.351 1.38 1.115 1.082 
500 1.071 0.922 1.09 0.995 0.953 1.346 0.913 0.988 0.909 0.815 0.75 
1000 0.919 0.754 0.812 0.947 0.815 0.633 0.824 1.105 0.912 0.605 1.225 
2000 0.656 0.477 0.521 0.662 0.666 0.754 0.493 0.688 0.729 0.704 0.547 
5000 0.65 0.587 0.591 0.69 0.46 0.519 0.58 0.567 0.654 0.49 0.55 
7500 0.504 0.433 0.569 0.504 0.602 0.471 0.569 0.478 0.635 0.529 0.586 

10000 0.592 0.776 0.42 0.5 0.445 0.499 0.584 0.697 0.794 0.76 0.716 
12500 0.523 0.612 0.443 0.374 0.79 0.71 0.761 0.604 0.65 0.517 0.561 
15000 0.561 0.621 0.696 0.534 0.922 0.772 0.506 0.406 0.495 0.632 0.441 

 
SPL R12 R13 R14 R15 R16 R17 R18 R19 R20 MEAN STD. DEV 
50 1.518 2.33 2.017 2.197 1.999 1.678 1.81 1.879 2.23 2.07675 0.285243 

100 1.456 2.11 1.288 1.73 1.729 1.511 1.4 1.883 1.334 1.5292 0.228364 
200 1.123 1.489 1.331 1.186 0.974 1.113 1.668 1.103 1.069 1.27705 0.24725 
500 0.854 1.151 0.943 1.317 0.748 1.009 1.418 0.839 0.801 0.9916 0.192514 
1000 0.807 0.673 0.852 0.706 0.73 0.755 0.615 0.763 0.796 0.8124 0.155278 
2000 0.727 0.509 0.592 0.618 0.634 0.553 0.697 0.779 0.525 0.62655 0.093758 
5000 0.783 0.562 0.554 0.86 0.537 0.492 0.691 0.731 0.497 0.60225 0.105693 
7500 0.679 0.629 0.553 0.502 0.79 0.618 0.659 0.526 0.543 0.56895 0.084129 

10000 0.621 0.582 0.534 0.568 0.48 0.451 0.621 0.498 0.588 0.5863 0.113324 
12500 0.749 0.745 0.651 0.407 0.631 0.54 0.472 0.577 0.499 0.5908 0.121374 
15000 0.744 0.525 0.52 0.549 0.731 0.569 0.718 0.782 0.633 0.61785 0.13136 
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Table C.3: 80% utilization, loose due-dates replication mean tardiness values (Ri: replication i, SPL: scheduling period length, 
DR set: SPT, MDD, MOD, ODD) 
 

SPL R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 
50 0.031 0.054 0.041 0.048 0.035 0.037 0.047 0.04 0.036 0.066 0.043 

100 0.018 0.019 0.014 0.015 0.014 0.027 0.025 0.02 0.012 0.014 0.024 
200 0.023 0.014 0.018 0.012 0.018 0.022 0.016 0.012 0.023 0.015 0.011 
500 0.006 0.006 0.009 0.008 0.004 0.004 0.003 0.007 0.007 0.003 0.003 
1000 0.005 0.005 0.003 0.002 0.015 0.003 0.003 0.008 0.004 0.002 0.003 
2000 0.005 0.004 0.003 0.004 0.004 0.003 0.004 0.003 0.003 0.003 0.003 
5000 0.003 0.004 0.003 0.005 0.003 0.004 0.012 0.003 0.004 0.004 0.004 
7500 0.004 0.004 0.003 0.013 0.004 0.004 0.005 0.003 0.003 0.004 0.005 

10000 0.004 0.004 0.004 0.005 0.004 0.004 0.004 0.005 0.004 0.003 0.005 
12500 0.005 0.005 0.006 0.012 0.008 0.004 0.005 0.004 0.003 0.005 0.004 
15000 0.004 0.004 0.004 0.004 0.005 0.004 0.004 0.004 0.008 0.004 0.004 

 
SPL R12 R13 R14 R15 R16 R17 R18 R19 R20 MEAN STD. DEV 
50 0.033 0.038 0.065 0.037 0.038 0.052 0.032 0.049 0.049 0.04355 0.010092 

100 0.029 0.027 0.022 0.024 0.022 0.019 0.026 0.019 0.02 0.0205 0.005021 
200 0.013 0.02 0.014 0.014 0.012 0.019 0.017 0.016 0.01 0.01595 0.003967 
500 0.004 0.005 0.005 0.005 0.003 0.005 0.004 0.006 0.005 0.0051 0.001714 
1000 0.006 0.002 0.002 0.007 0.004 0.003 0.006 0.004 0.004 0.00455 0.003 
2000 0.003 0.003 0.007 0.004 0.003 0.003 0.004 0.005 0.006 0.00385 0.001137 
5000 0.004 0.004 0.003 0.004 0.006 0.005 0.004 0.004 0.006 0.00445 0.001986 
7500 0.004 0.003 0.007 0.012 0.003 0.004 0.004 0.004 0.004 0.00485 0.002777 

10000 0.003 0.008 0.005 0.004 0.004 0.003 0.007 0.004 0.004 0.0044 0.001231 
12500 0.005 0.004 0.004 0.006 0.004 0.004 0.005 0.004 0.004 0.00505 0.001959 
15000 0.004 0.004 0.004 0.008 0.004 0.006 0.004 0.004 0.008 0.00475 0.001482 
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Table C.4: 90% utilization, loose due-dates replication mean tardiness values (Ri: replication i, SPL: scheduling period length, 
DR set: SPT, MDD, MOD, ODD) 
 

SPL R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 
50 0.604 0.628 0.758 0.564 0.676 0.728 0.664 0.609 0.419 0.888 0.782 

100 0.139 0.217 0.344 0.14 0.148 0.126 0.302 0.18 0.158 0.217 0.131 
200 0.056 0.146 0.07 0.124 0.061 0.084 0.07 0.035 0.058 0.064 0.047 
500 0.06 0.03 0.04 0.06 0.037 0.033 0.153 0.03 0.053 0.035 0.058 
1000 0.014 0.006 0.01 0.017 0.004 0.01 0.013 0.031 0.001 0.009 0.019 
2000 0.001 0.013 0.0006 0.0005 0.001 0.001 0.0007 0.007 0.002 0.002 0.008 
5000 0.0009 0.0008 0.001 0.0007 0.0008 0.001 0.001 0.001 0.0009 0.0007 0.0008 
7500 0.0008 0.0009 0.0008 0.0006 0.017 0.0008 0.002 0.016 0.0008 0.008 0.001 

10000 0.003 0.0006 0.014 0.0007 0.001 0.006 0.001 0.0009 0.0009 0.006 0.002 
12500 0.001 0.02 0.0008 0.002 0.0007 0.0009 0.0009 0.0006 0.0008 0.065 0.001 
15000 0.001 0.0008 0.001 0.0008 0.001 0.001 0.001 0.0009 0.001 0.0009 0.002 

 
SPL 

R12 R13 R14 R15 R16 R17 R18 R19 R20 MEAN STD. DEV 
50 0.353 0.692 0.689 0.688 0.534 0.392 0.47 0.449 0.629 0.6108 0.140149 

100 0.226 0.527 0.188 0.178 0.18 0.271 0.214 0.296 0.138 0.216 0.096233 
200 0.284 0.047 0.06 0.11 0.051 0.049 0.078 0.057 0.084 0.08175 0.055057 
500 0.024 0.033 0.031 0.042 0.052 0.033 0.027 0.018 0.021 0.0435 0.028743 
1000 0.015 0.007 0.002 0.013 0.004 0.007 0.012 0.01 0.014 0.0109 0.006828 
2000 0.0007 0.0006 0.0007 0.007 0.001 0.006 0.0008 0.0006 0.002 0.00281 0.003468 
5000 0.003 0.001 0.001 0.035 0.001 0.0009 0.001 0.0008 0.0008 0.002705 0.007617 
7500 0.028 0.008 0.001 0.0008 0.001 0.0009 0.0009 0.0008 0.0009 0.00455 0.00746 

10000 0.005 0.002 0.0007 0.0009 0.001 0.0009 0.008 0.005 0.0008 0.00302 0.00344 
12500 0.018 0.003 0.001 0.0008 0.001 0.0009 0.002 0.0009 0.0009 0.00611 0.014921 
15000 0.001 0.008 0.0008 0.0009 0.001 0.004 0.0008 0.001 0.003 0.001595 0.001718 
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Table C.5: 80% utilization, tight due-dates replication mean tardiness values (Ri: replication i, SPL: scheduling period length, 
DR set: SPT, MDD, ODD) 
 

SPL 
REP1 REP2 REP3 REP4 REP5 REP6 REP7 REP8 REP9 REP10 REP11 

50 0.75 0.84 0.73 0.69 0.76 0.74 0.68 0.75 0.67 0.84 0.83 
100 0.8 0.74 0.68 0.64 0.71 0.79 0.75 0.77 0.58 0.69 0.73 
200 0.63 0.83 0.79 0.7 0.77 0.69 0.82 0.76 0.76 0.67 0.66 
500 0.69 0.64 0.7 0.71 0.64 0.8 0.66 0.68 0.64 0.63 0.61 

1000 0.64 0.72 0.64 0.75 0.64 0.6 0.64 0.74 0.78 0.62 0.86 
2000 0.68 0.64 0.74 0.77 0.8 0.74 0.69 0.68 0.75 0.73 0.66 
5000 0.78 0.71 0.67 0.84 0.67 0.85 0.76 0.7 0.86 0.8 0.69 
10000 0.8 0.9 0.75 0.71 0.79 0.76 0.75 0.86 0.87 0.77 0.89 
12500 0.79 0.73 0.82 0.8 0.84 0.69 0.8 0.78 0.87 0.84 0.9 
15000 0.82 0.83 0.83 0.69 0.89 0.66 0.78 0.78 0.88 0.88 0.75 
20000 0.78 0.69 0.74 0.79 0.82 0.89 0.88 0.8 0.86 0.88 0.79 
25000 0.84 0.84 0.88 0.75 0.89 0.77 0.85 0.89 0.86 0.85 0.84 

 
SPL 

REP12 REP13 REP14 REP15 REP16 REP17 REP18 REP19 REP20 Average 
Std. 
Dev. 

50 0.62 0.74 0.87 0.81 0.83 0.67 0.71 0.73 0.75 0.7505 0.068015 
100 0.7 0.82 0.65 0.8 0.72 0.72 0.73 0.8 0.7 0.726 0.061422 
200 0.66 0.79 0.7 0.74 0.67 0.75 0.78 0.71 0.62 0.725 0.06245 
500 0.66 0.71 0.68 0.76 0.66 0.7 0.63 0.7 0.64 0.677 0.046578 
1000 0.67 0.65 0.65 0.67 0.65 0.62 0.68 0.73 0.64 0.6795 0.064683 
2000 0.75 0.76 0.73 0.68 0.74 0.6 0.76 0.78 0.69 0.7185 0.051224 
5000 0.74 0.73 0.79 0.88 0.7 0.92 0.72 0.78 0.7 0.7645 0.074231 

10000 0.77 0.82 0.77 0.79 0.72 0.84 0.89 0.76 0.86 0.8035 0.058784 
12500 0.84 0.76 0.81 0.74 0.91 0.89 0.84 0.79 0.73 0.8085 0.059936 
15000 0.82 0.85 0.77 0.8 0.85 0.87 0.9 0.75 0.79 0.8095 0.064927 
20000 0.85 0.81 0.86 0.69 0.79 0.92 0.93 0.87 0.93 0.8285 0.07125 
25000 0.78 0.88 0.98 0.88 0.8 0.82 0.75 0.8 0.93 0.844 0.058974 
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Table C.6: 90% utilization, tight due-dates replication mean tardiness values (Ri: replication i, SPL: scheduling period length, 
DR set: SPT, MDD, ODD) 
 

SPL REP#1 REP#2 REP#3 REP#4 REP#5 REP#6 REP#7 REP#8 REP#9 REP#10 REP#11 
50 2.02 2.53 2.41 1.86 2.38 2.18 2.01 2.26 1.74 2.51 2.61 
100 1.68 1.7 1.62 1.41 1.45 1.9 1.58 1.61 1.23 1.47 1.52 
200 1.52 1.09 1.04 1.57 1.59 1.08 1.01 0.97 1.68 1.13 1.19 
500 1.47 0.78 1.37 1.44 1.11 1.11 2.15 1.16 1.39 1.18 1.56 

1000 1.26 0.82 1.38 1.25 1.47 1.36 1.17 1.04 1.04 1.51 1.43 
2000 1.07 1.45 1.68 1.42 1.03 1.06 0.97 1.54 1.54 1.45 1.3 
7500 1.13 1.26 1.28 0.93 1.38 1.34 1.27 0.85 1.18 1.26 1.28 
10000 1.41 0.76 1.41 1.23 1.1 1.6 0.92 1.19 1.13 1.2 0.74 
15000 1.44 1.66 1.52 1.25 1.46 1.13 1.32 1.57 1.56 1.57 1.17 
20000 0.99 1.34 1.55 1.16 1.28 1.12 1.31 1.35 1.7 1.65 1.27 
25000 1 1.09 0.95 1.15 1.47 2.03 1.34 1.25 1.18 1.93 1.17 

 

SPL REP#12 REP#13 REP#14 REP#15 REP#16 REP#17 REP#18 REP#19 REP#20 Average 
Std. 
Dev. 

50 1.57 2.21 2.09 2.23 2.04 1.68 1.8 1.93 2.3 2.118 0.295913 
100 1.66 2.26 1.46 1.83 1.9 1.56 1.58 1.97 1.34 1.6365 0.241449 
200 1.9 1.77 1.5 1.69 1.32 1.14 1.22 1.03 1.43 1.3435 0.290304 
500 1.34 1.35 1.68 1.08 1.28 1.6 1.17 1.44 1.15 1.3405 0.284854 
1000 1.85 1.19 1.47 0.91 1.34 1.44 1.27 1.35 1.6 1.3075 0.240129 
2000 1 1.69 1.42 1.28 1.28 0.79 1.35 1.44 0.99 1.2875 0.255855 
7500 1.06 1.05 1.1 0.73 1.31 1.44 1.26 1.39 1.4 1.195 0.191874 

10000 1.4 1.01 1.82 1.4 1.37 1.07 1.22 1.17 0.78 1.1965 0.278289 
15000 1.1 1.42 1.24 1.47 2.02 1.38 1.19 0.95 1.15 1.3785 0.243965 
20000 1.22 1.96 1.56 1.24 1.21 0.97 1.35 1.14 1.28 1.3325 0.244538 
25000 1.48 1.48 1.95 0.96 1.12 0.99 1.23 1.25 1.35 1.3185 0.325063 
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Table D.1: 80% utilization, for MPL = 250 replication mean tardiness values (Ri: replication i, MPL: monitoring period length) 
 
 
 

β R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 
0.2 0.61 0.64 0.64 0.68 0.68 0.66 0.65 0.56 0.58 0.6 0.71 
0.5 0.63 0.63 0.61 0.6 0.67 0.63 0.6 0.67 0.62 0.75 0.68 
0.8 0.67 0.7 0.6 0.72 0.69 0.61 0.56 0.56 0.58 0.61 0.68 
1 0.61 0.66 0.54 0.7 0.7 0.74 0.67 0.62 0.63 0.7 0.66 

1.4 0.69 0.55 0.79 0.64 0.6 0.74 0.67 0.72 0.65 0.54 0.67 
1.8 0.69 0.58 0.65 0.63 0.69 0.62 0.69 0.69 0.71 0.66 0.7 
2.4 0.67 0.7 0.62 0.66 0.75 0.57 0.67 0.73 0.7 0.68 0.62 
2.6 0.67 0.76 0.7 0.64 0.67 0.71 0.65 0.68 0.59 0.67 0.73 

 
 

β R12 R13 R14 R15 R16 R17 R18 R19 R20 Mean 
Std. 
Dev. 

0.2 0.59 0.7 0.69 0.66 0.63 0.66 0.63 0.7 0.58 0.6425 0.044589 
0.5 0.58 0.67 0.67 0.76 0.59 0.7 0.54 0.75 0.62 0.6485 0.059496 
0.8 0.63 0.7 0.67 0.62 0.66 0.72 0.66 0.71 0.67 0.651 0.051493 
1 0.62 0.77 0.59 0.6 0.61 0.68 0.71 0.62 0.57 0.65 0.058938 

1.4 0.57 0.57 0.64 0.67 0.67 0.64 0.71 0.73 0.62 0.654 0.066523 
1.8 0.58 0.72 0.66 0.76 0.72 0.59 0.75 0.65 0.58 0.666 0.055763 
2.4 0.67 0.59 0.76 0.6 0.79 0.69 0.63 0.71 0.71 0.676 0.058616 
2.6 0.71 0.66 0.69 0.68 0.7 0.63 0.65 0.62 0.79 0.68 0.047016 
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Table D.2: 80% utilization, for MPL = 500 replication mean tardiness values (Ri: replication i, MPL: monitoring period length) 

 
 
 

β R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 
0.2 0.74 0.7 0.57 0.7 0.75 0.76 0.71 0.57 0.63 0.6 0.74 
0.5 0.74 0.7 0.68 0.7 0.69 0.61 0.74 0.7 0.74 0.67 0.69 
0.8 0.6 0.68 0.71 0.64 0.73 0.74 0.65 0.62 0.68 0.61 0.69 
1 0.73 0.63 0.61 0.7 0.66 0.64 0.69 0.59 0.6 0.64 0.67 

1.4 0.71 0.74 0.72 0.7 0.61 0.71 0.69 0.69 0.66 0.7 0.69 
1.8 0.75 0.63 0.62 0.64 0.66 0.66 0.68 0.65 0.71 0.64 0.74 
2.4 0.61 0.73 0.66 0.66 0.73 0.73 0.6 0.74 0.7 0.59 0.65 
2.6 0.65 0.63 0.81 0.69 0.69 0.57 0.61 0.61 0.75 0.67 0.66 

 
 

β R12 R13 R14 R15 R16 R17 R18 R19 R20 Mean 
Std. 
Dev. 

0.2 0.61 0.78 0.73 0.66 0.69 0.63 0.73 0.73 0.69 0.686 0.064105 
0.5 0.6 0.69 0.59 0.64 0.62 0.67 0.63 0.7 0.72 0.676 0.046611 
0.8 0.79 0.63 0.61 0.76 0.57 0.61 0.67 0.68 0.63 0.665 0.058714 
1 0.55 0.71 0.65 0.68 0.66 0.66 0.7 0.7 0.62 0.6545 0.045593 

1.4 0.66 0.69 0.58 0.68 0.69 0.71 0.64 0.74 0.6 0.6805 0.043827 
1.8 0.61 0.65 0.65 0.66 0.72 0.71 0.68 0.66 0.7 0.671 0.039189 
2.4 0.69 0.73 0.62 0.64 0.73 0.65 0.56 0.7 0.68 0.67 0.05458 
2.6 0.83 0.65 0.63 0.72 0.66 0.75 0.71 0.66 0.74 0.6845 0.066923 
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Table D.3: 90% utilization, for MPL = 500 replication mean tardiness values (Ri: replication i, MPL: monitoring period length) 
 
 

β R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 
0.2 0.73 1.45 1.03 0.93 1.53 0.89 1.08 1.19 0.96 0.81 1.2 
0.5 0.96 1.35 1.38 1.12 1.23 1.01 1.1 0.89 0.77 1.28 1.02 
0.8 1.36 1.07 1.34 1.41 1.53 0.9 1.11 1 1 1.14 1.36 
1 1.09 1.65 0.89 1.03 1.24 1.18 1.12 1.34 0.88 1.4 1.49 

1.4 0.8 1.39 1.44 1.02 1.04 1.17 1.04 1.18 1.12 1.63 1.61 
1.8 1.08 1.03 1.03 1.13 0.66 1.21 1.42 0.91 1.61 1.03 1.08 
2.4 1.2 1.4 1.41 1 1.02 1.3 0.92 1.22 1.55 1.28 1.32 
2.6 1.07 1.29 1.09 0.78 1.06 1.4 1.3 1.19 1.34 1.21 1.24 

 
 

β R12 R13 R14 R15 R16 R17 R18 R19 R20 MEAN 
Std. 
Dev. 

0.2 1.84 1.12 0.97 1.2 1.38 0.88 1.19 1.05 0.74 1.1085 0.279554 
0.5 1.05 0.92 1.21 1.36 1.22 1.06 1.36 0.85 1.29 1.1215 0.187119 
0.8 0.62 0.98 1.08 1.32 0.8 1.27 1.31 1.05 0.88 1.1265 0.232815 
1 1.1 1.44 1.31 1.16 1.38 1.43 1.07 1.21 1.09 1.225 0.202264 

1.4 1.31 1.02 1.03 1.16 1.6 1.04 1.58 1.34 1.13 1.2325 0.241309 
1.8 1.14 1.18 1.43 1.83 0.83 1.05 1.17 0.98 1.44 1.162 0.271828 
2.4 1.07 0.9 1.06 0.89 1.23 1.22 1.69 0.83 1.1 1.1805 0.228484 
2.6 1.24 1 1.33 1.2 1.34 1.23 1.12 1.05 1.04 1.176 0.149821 
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Table D.4: 90% utilization, for MPL = 2500 replication mean tardiness values (Ri: replication i, MPL: monitoring period length) 
 
 

β R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 
0.2 0.99 0.82 1.69 1.46 1.18 1.38 1.13 1.48 1.43 1.48 1.4 
0.5 0.85 1.34 1.09 0.91 1.21 0.97 1.8 1.18 1.49 1.34 1.48 
0.8 1.15 1.58 1.16 1.56 1.05 0.91 1.5 1.42 0.96 0.96 1.36 
1 0.933 0.84 0.83 1.32 1.09 1.49 0.91 1.4 1.19 1.17 1.16 

1.4 1.16 1.16 1.1 1.04 1.8 1.17 1.45 1.32 1.43 1.44 1 
1.8 1.44 0.99 1.32 1.04 1.14 1.4 1.5 1.15 1.31 1.08 1.29 
2.4 1.44 0.87 1.21 0.86 1.38 1.5 1.39 1.2 1.28 1.28 1.4 
2.6 1.77 1.16 1.45 1.27 1.2 1.18 1.25 1.28 1.42 1.04 1.61 

 
 

β R12 R13 R14 R15 R16 R17 R18 R19 R20 MEAN 
Std. 
Dev. 

0.2 1.41 1.42 1.06 1.35 1.13 1.23 0.95 1.29 1.06 1.267 0.220576 
0.5 0.79 1.64 1.26 1.19 0.91 1.53 1.22 1.62 1.34 1.258 0.282965 
0.8 1.32 1.13 1.05 1.44 0.89 0.9 1.6 0.9 1.66 1.225 0.271303 
1 1.17 0.95 1.4 1.3 1.39 0.77 0.99 1.09 1.26 1.13265 0.215036 

1.4 1.02 1.3 1.15 1.44 1.1 1.4 1.39 1.08 1.3 1.2625 0.20026 
1.8 1 1.4 0.77 1.32 1.26 1.26 1.47 1.37 1.2 1.2355 0.188553 
2.4 1.5 1.24 0.85 1.48 1.33 1.33 1.08 1.45 1.44 1.2755 0.2103 
2.6 1.31 1.17 0.96 1.27 1.23 1.24 1.05 1.24 0.99 1.2545 0.196294 
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Table D.5: 90% utilization, for MPL = 3750 replication mean tardiness values (Ri: replication i, MPL: monitoring period length) 
 
 

β R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 
0.2 1.13 1.02 1.13 1.29 1.46 1.17 1.06 1.14 1.29 1.06 1.3 
0.5 1.27 1.21 1.42 0.86 1.17 1.04 1.28 0.67 1.23 1.47 0.94 
0.8 1.26 1.27 1.52 1.06 1.02 1.27 1.24 1.22 1.23 1.57 1.25 
1 1.41 1.09 1.42 0.91 1.18 1.26 1.04 1.14 1.55 1.07 0.78 

1.4 1.56 1.11 1.02 1 1.5 1.2 1.54 1.11 1.25 1.32 1.11 
1.8 1.44 0.79 0.79 1.28 0.94 0.97 1.39 1.53 1.51 1.48 1.44 
2.4 0.94 1.46 1.05 1.35 1.48 1.17 1.1 1.48 1.66 1.35 1.29 

2.6 1.22 1.06 1.57 1.23 1.39 1.2 1.02 1.49 1.41 0.94 1.22 
 

β R12 R13 R14 R15 R16 R17 R18 R19 R20 MEAN 
Std. 
Dev. 

0.2 1.2 1.18 1.49 1.45 1.26 1.37 1.01 1.2 1.2 1.2205 0.142699 
0.5 0.78 1.2 0.87 1.53 1.51 1.54 1.62 1.64 1.39 1.232 0.291613 
0.8 1.39 1.41 1.59 1.35 1.2 1.41 0.94 1.22 1.45 1.2935 0.172391 
1 1.31 1.45 0.98 1.36 1.34 0.89 0.76 1.25 1.25 1.172 0.227679 

1.4 1.22 1.28 0.95 1.47 1.08 1.17 1.25 1.26 1.42 1.241 0.181685 
1.8 1.65 1.51 1.48 0.75 1.65 1.31 1.28 0.87 1.29 1.2675 0.301241 
2.4 1.44 1.38 0.92 1.09 1.53 1.36 1.49 0.78 1.37 1.2845 0.235271 
2.6 1.27 1.24 1.52 1.45 1.17 1.48 1.35 1.25 1.23 1.2855 0.170586 
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Table E.1: 80% Utilization, MPL=250, β=0.2, DR set {MDD, ODD, SPT} 
 
Performances R# 1 R# 2 R# 3 R# 4 R# 5 R# 6 R# 7 R# 8 R# 9 R# 10 R# 11 R# 12 
MultiPass 0.87 0.88 0.9 0.86 0.9 0.86 0.88 0.84 0.89 0.93 0.94 0.99 
LearnPerf 0.81 0.78 0.82 0.89 0.81 0.81 0.8 0.76 0.75 0.83 0.83 0.84 
BestPerf 0.63 0.66 0.65 0.66 0.62 0.64 0.65 0.6 0.67 0.71 0.63 0.66 
 
Performances R# 13 R# 14 R# 15 R# 16 R# 17 R# 18 R# 19 R# 20 Average Std. Dev. 
MultiPass 0.94 0.84 0.99 0.82 0.95 0.82 0.89 0.9 0.8945 0.049891989 
LearnPerf 0.83 0.81 0.81 0.75 0.81 0.73 0.79 0.73 0.7995 0.039930861 
BestPerf 0.71 0.63 0.67 0.63 0.69 0.56 0.63 0.66 0.648 0.035183728 
 
 
 
 
 
 
Table E.2: 80% Utilization, MPL=500, β=1, DR set {MDD, ODD, SPT} 
 
Performances R# 1 R# 2 R# 3 R# 4 R# 5 R# 6 R# 7 R# 8 R# 9 R# 10 R# 11 R# 12 
MultiPass 0.89 0.88 0.89 0.95 0.9 0.88 0.91 0.89 0.94 0.92 0.92 0.9 
LearnPerf 0.86 0.86 0.89 0.9 0.88 0.88 0.83 0.83 0.91 0.9 0.87 0.89 
BestPerf 0.64 0.66 0.66 0.67 0.67 0.66 0.68 0.66 0.67 0.686 0.676 0.656 
 
Performances R# 13 R# 14 R# 15 R# 16 R# 17 R# 18 R# 19 R# 20 Average Std. Dev. 
MultiPass 0.97 0.93 0.89 0.89 0.94 0.81 0.79 0.83 0.896 0.045002924 
LearnPerf 0.92 0.89 0.89 0.85 0.92 0.81 0.9 0.84 0.876 0.031355349 
BestPerf 0.666 0.656 0.636 0.646 0.686 0.596 0.646 0.616 0.655 0.021980853 
 
 
 
 
 
 
Table E.3: 80% Utilization, MPL=1000, β= -, DR set {MDD, ODD, SPT} 
 
Performances R# 1 R# 2 R# 3 R# 4 R# 5 R# 6 R# 7 R# 8 R# 9 R# 10 R# 11 R# 12 
MultiPass 0.89 0.87 0.89 0.93 0.91 0.89 0.92 0.89 0.92 0.92 0.9 0.89 
LearnPerf 0.88 0.88 0.89 0.91 0.88 0.88 0.91 0.89 0.92 0.92 0.89 0.89 
BestPerf 0.67 0.66 0.68 0.68 0.68 0.67 0.7 0.67 0.7 0.71 0.68 0.68 
 
Performances R# 13 R# 14 R# 15 R# 16 R# 17 R# 18 R# 19 R# 20 Average Std. Dev. 
MultiPass 0.93 0.88 0.92 0.88 0.92 0.84 0.87 0.85 0.8955 0.02584875 
LearnPerf 0.93 0.88 0.92 0.88 0.91 0.83 0.88 0.86 0.8915 0.023680994 
BestPerf 0.7 0.67 0.7 0.68 0.7 0.63 0.67 0.66 0.6795 0.018771479 
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Table E.4: 90% Utilization, MPL=500, β=0.2, DR set {MDD, ODD, SPT} 
 
Performances R# 1 R# 2 R# 3 R# 4 R# 5 R# 6 R# 7 R# 8 R# 9 R# 10 R# 11 R# 12 
MultiPass 1.59 1.14 1.54 1.65 1.71 1.4 1.37 1.77 1.53 1.66 1.7 1.14 
LearnPerf 1.35 1.37 1.28 1.34 1.47 1.29 1.35 1.63 1.63 1.53 1.38 1.17 
BestPerf 1.08 1.11 1.01 1.05 1.18 1.01 1.1 1.36 1.23 1.19 1.07 0.9 
 
Performances R# 13 R# 14 R# 15 R# 16 R# 17 R# 18 R# 19 R# 20 Average Std. Dev. 
MultiPass 1.4 1.52 1.31 1.34 1.54 1.72 1.34 1.52 1.4945 0.184860545 
LearnPerf 1.32 1.39 1.14 1.39 1.56 1.42 1.22 1.43 1.383 0.134677002 
BestPerf 1.06 1.12 0.8 1.13 1.29 1.13 1.06 1.12 1.1 0.123756977 
 
 
 
 
 
 
Table E.5: 90% Utilization, MPL=2500, β=1, DR set {MDD, ODD, SPT} 
 
Performances R# 1 R# 2 R# 3 R# 4 R# 5 R# 6 R# 7 R# 8 R# 9 R# 10 R# 11 R# 12 
MultiPass 1.43 1.59 1.35 1.39 1.64 1.86 1.58 1.53 1.36 1.6 1.56 1.3 
LearnPerf 1.49 1.44 1.37 1.43 1.64 1.58 1.42 1.51 1.45 1.56 1.56 1.48 
BestPerf 1.15 1.1 1.02 1.08 1.2 1.19 1.11 1.17 1.12 1.17 1.17 1.1 
 
Performances R# 13 R# 14 R# 15 R# 16 R# 17 R# 18 R# 19 R# 20 Average Std. Dev. 
MultiPass 1.4 1.39 1.88 1.4 1.57 1.55 1.66 1.61 1.5325 0.158575069 
LearnPerf 1.45 1.47 1.48 1.53 1.3 1.45 1.51 1.63 1.4875 0.082454134 
BestPerf 1.1 1.15 1.16 1.15 1.18 1.11 1.15 1.21 1.1395 0.046506932 
 
 
 
 
 
 
Table E.6: 90% Utilization, MPL=7500, β= -, DR set {MDD, ODD, SPT} 
 
Performances R# 1 R# 2 R# 3 R# 4 R# 5 R# 6 R# 7 R# 8 R# 9 R# 10 R# 11 R# 12 
MultiPass 1.5 1.5 1.4 1.46 1.52 1.62 1.44 1.51 1.52 1.54 1.55 1.48 
LearnPerf 1.51 1.48 1.42 1.44 1.52 1.62 1.42 1.49 1.54 1.53 1.52 1.47 
BestPerf 1.18 1.18 1.11 1.18 1.22 1.25 1.14 1.2 1.2 1.21 1.21 1.17 
 
Performances R# 13 R# 14 R# 15 R# 16 R# 17 R# 18 R# 19 R# 20 Average Std. Dev. 
MultiPass 1.53 1.55 1.56 1.57 1.57 1.45 1.48 1.54 1.5145 0.052362602 
LearnPerf 1.51 1.57 1.52 1.58 1.57 1.47 1.51 1.52 1.5105 0.052060188 
BestPerf 1.17 1.23 1.23 1.21 1.23 1.18 1.2 1.22 1.196 0.033308763 
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Table E.7: 80% Utilization, MPL=250, β=0.2, DR set {MOD, MDD, ODD, SPT} 
 
Performances R# 1 R# 2 R# 3 R# 4 R# 5 R# 6 R# 7 R# 8 R# 9 R# 10 R# 11 R# 12 
MultiPass 0.47 0.49 0.52 0.48 0.49 0.47 0.48 0.51 0.51 0.53 0.48 0.5 
LearnPerf 0.41 0.41 0.43 0.44 0.41 0.39 0.4 0.42 0.43 0.44 0.41 0.42 
BestPerf 0.36 0.35 0.38 0.38 0.32 0.35 0.35 0.28 0.35 0.41 0.37 0.39 
 
Performances R# 13 R# 14 R# 15 R# 16 R# 17 R# 18 R# 19 R# 20 Average Std. Dev. 
MultiPass 0.51 0.48 0.52 0.49 0.51 0.46 0.47 0.48 0.4925 0.029464519 
LearnPerf 0.43 0.43 0.43 0.41 0.43 0.38 0.39 0.4 0.4155 0.019967078 
BestPerf 0.39 0.37 0.35 0.33 0.4 0.35 0.36 0.35 0.3595 0.01731291 
 
 
 
 
 
 
Table E.8: 80% Utilization, MPL=500, β=1, DR set {MOD, MDD, ODD, SPT} 
 
Performances R# 1 R# 2 R# 3 R# 4 R# 5 R# 6 R# 7 R# 8 R# 9 R# 10 R# 11 R# 12 
MultiPass 0.43 0.42 0.45 0.45 0.42 0.44 0.46 0.44 0.45 0.44 0.45 0.42 
LearnPerf 0.4 0.44 0.45 0.45 0.44 0.42 0.41 0.4 0.46 0.45 0.44 0.41 
BestPerf 0.35 0.37 0.38 0.38 0.37 0.37 0.38 0.36 0.39 0.39 0.38 0.37 
 
Performances R# 13 R# 14 R# 15 R# 16 R# 17 R# 18 R# 19 R# 20 Average Std. Dev. 
MultiPass 0.48 0.44 0.44 0.43 0.47 0.41 0.44 0.42 0.44 0.017770466 
LearnPerf 0.45 0.44 0.44 0.43 0.43 0.38 0.43 0.4 0.4285 0.021830688 
BestPerf 0.39 0.37 0.38 0.37 0.4 0.35 0.37 0.36 0.374 0.013138934 
 
 
 
 
 
 
Table E.9: 80% Utilization, MPL=1000, β= -, DR set {MOD, MDD, ODD, SPT} 
 
Performances R# 1 R# 2 R# 3 R# 4 R# 5 R# 6 R# 7 R# 8 R# 9 R# 10 R# 11 R# 12 
MultiPass 0.43 0.42 0.44 0.47 0.44 0.44 0.45 0.43 0.46 0.45 0.44 0.43 
LearnPerf 0.43 0.42 0.44 0.44 0.44 0.42 0.45 0.42 0.45 0.44 0.44 0.43 
BestPerf 0.38 0.37 0.38 0.4 0.38 0.38 0.4 0.38 0.4 0.39 0.39 0.38 
 
Performances R# 13 R# 14 R# 15 R# 16 R# 17 R# 18 R# 19 R# 20 Average Std. Dev. 
MultiPass 0.44 0.42 0.46 0.43 0.46 0.42 0.43 0.45 0.4405 0.014680815 
LearnPerf 0.45 0.42 0.46 0.43 0.45 0.4 0.42 0.45 0.435 0.015043796 
BestPerf 0.39 0.37 0.39 0.37 0.4 0.36 0.38 0.37 0.383 0.011742859 
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Table E.10: 90% Utilization, MPL=500, β=0.2, DR set {MOD, MDD, ODD, SPT} 
 
Performances R# 1 R# 2 R# 3 R# 4 R# 5 R# 6 R# 7 R# 8 R# 9 R# 10 R# 11 R# 12 
MultiPass 0.81 0.64 0.67 0.59 0.74 0.66 0.77 0.79 0.67 0.89 0.6 0.65 
LearnPerf 0.67 0.53 0.54 0.48 0.61 0.54 0.65 0.65 0.54 0.76 0.49 0.55 
BestPerf 0.56 0.6 0.67 0.48 0.51 0.67 0.52 0.62 0.58 0.54 0.63 0.44 
 
Performances R# 13 R# 14 R# 15 R# 16 R# 17 R# 18 R# 19 R# 20 Average Std. Dev. 
MultiPass 0.61 0.64 0.54 0.69 0.7 0.67 0.67 0.68 0.684 0.082359929 
LearnPerf 0.5 0.54 0.45 0.58 0.58 0.56 0.56 0.58 0.568 0.072663608 
BestPerf 0.47 0.48 0.34 0.46 0.52 0.43 0.44 0.44 0.52 0.088317609 
 
 
 
 
 
Table E.11: 90% Utilization, MPL=2500, β=1, DR set {MOD, MDD, ODD, SPT} 
 
Performances R# 1 R# 2 R# 3 R# 4 R# 5 R# 6 R# 7 R# 8 R# 9 R# 10 R# 11 R# 12 
MultiPass 0.6 0.62 0.45 0.57 0.74 0.78 0.68 0.63 0.66 0.7 0.66 0.5 
LearnPerf 0.59 0.54 0.47 0.53 0.74 0.68 0.52 0.61 0.55 0.66 0.66 0.58 
BestPerf 0.55 0.5 0.42 0.48 0.6 0.59 0.51 0.57 0.52 0.57 0.57 0.5 
 
Performances R# 13 R# 14 R# 15 R# 16 R# 17 R# 18 R# 19 R# 20 Average Std. Dev. 
MultiPass 0.5 0.59 0.68 0.6 0.57 0.65 0.71 0.76 0.6325 0.087891979 
LearnPerf 0.55 0.57 0.58 0.63 0.4 0.55 0.61 0.73 0.5875 0.082454134 
BestPerf 0.5 0.55 0.56 0.55 0.58 0.51 0.55 0.61 0.5395 0.046506932 
 
 
 
 
 
Table E.12: 90% Utilization, MPL=7500, β= -, DR set {MOD, MDD, ODD, SPT} 
 
Performances R# 1 R# 2 R# 3 R# 4 R# 5 R# 6 R# 7 R# 8 R# 9 R# 10 R# 11 R# 12 
MultiPass 0.58 0.58 0.58 0.56 0.6 0.63 0.57 0.59 0.6 0.6 0.59 0.58 
LearnPerf 0.58 0.58 0.57 0.57 0.6 0.62 0.56 0.58 0.6 0.6 0.6 0.57 
BestPerf 0.56 0.54 0.54 0.53 0.57 0.59 0.54 0.55 0.56 0.57 0.56 0.54 
 
Performances R# 13 R# 14 R# 15 R# 16 R# 17 R# 18 R# 19 R# 20 Average Std. Dev. 
MultiPass 0.59 0.63 0.62 0.61 0.61 0.58 0.59 0.61 0.595 0.019056702 
LearnPerf 0.59 0.61 0.61 0.61 0.6 0.58 0.59 0.61 0.5915 0.016944181 
BestPerf 0.56 0.58 0.58 0.58 0.57 0.55 0.55 0.57 0.5595 0.016693838 
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Table E.13: 80% Utilization, MPL=250, β=0.2, DR set {MDD, ODD, SPT} 
 

Dispatching Rule Percentages Rules R# 1 R# 2 R# 3 R# 4 R# 5 R# 6 R# 7 R# 8 R# 9 R# 10 R# 11 
SPT 15% 12% 14% 11% 14% 11% 14% 13% 14% 14% 14% 

MDD 33% 35% 36% 33% 33% 35% 31% 33% 32% 34% 35% Multi-pass 
ODD 51% 52% 49% 54% 52% 52% 53% 52% 53% 51% 50% 

             
SPT 10% 13% 11% 11% 11% 9% 12% 10% 10% 10% 11% 

MDD 52% 54% 55% 54% 52% 57% 53% 50% 55% 58% 55% Learning 
ODD 37% 32% 32% 34% 36% 33% 33% 40% 34% 32% 33% 

             
SPT 8% 9% 9% 9% 10% 9% 9% 9% 9% 11% 9% 

MDD 52% 55% 55% 57% 51% 53% 53% 55% 54% 55% 55% Best 
ODD 38% 35% 34% 33% 38% 37% 36% 35% 36% 33% 35% 

 
Dispatching Rule Percentages Rules R# 12 R# 13 R# 14 R# 15 R# 16 R# 17 R# 18 R# 19 R# 20 Average 

SPT 13% 13% 13% 14% 13% 13% 14% 13% 14% 13% 
MDD 34% 33% 33% 33% 34% 35% 34% 34% 32% 34% Multi-pass 
ODD 51% 53% 52% 52% 52% 50% 51% 52% 53% 52% 

            
SPT 10% 10% 11% 9% 9% 9% 10% 8% 10% 10% 

MDD 52% 54% 52% 57% 57% 56% 50% 55% 57% 54% Learning 
ODD 37% 34% 35% 33% 33% 33% 38% 36% 31% 34% 

            
SPT 10% 10% 9% 9% 9% 10% 8% 9% 9% 9% Best 

MDD 52% 52% 53% 53% 55% 55% 51% 54% 55% 54% 
ODD 36% 37% 37% 37% 35% 34% 40% 36% 35% 36% 
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Table E.14: 80% Utilization, MPL=500, β=1, DR set {MDD, ODD, SPT} 
 

Dispatching Rule Percentages Rules R# 1 R# 2 R# 3 R# 4 R# 5 R# 6 R# 7 R# 8 R# 9 R# 10 R# 11 
SPT 14% 13% 13% 13% 15% 12% 14% 13% 14% 14% 14% 

MDD 35% 34% 36% 33% 33% 36% 31% 34% 33% 34% 35% Multi-pass 
ODD 50% 52% 49% 53% 51% 51% 54% 52% 51% 50% 49% 

             
SPT 14% 14% 18% 14% 15% 13% 15% 13% 15% 13% 16% 

MDD 38% 39% 37% 39% 39% 43% 38% 40% 43% 37% 39% Learning 
ODD 47% 46% 44% 46% 44% 42% 45% 45% 40% 48% 44% 

             
SPT 13% 13% 14% 13% 14% 13% 14% 14% 14% 15% 14% 

MDD 36% 39% 40% 40% 37% 39% 37% 40% 39% 39% 39% Best 
ODD 49% 46% 45% 45% 47% 46% 48% 45% 46% 45% 45% 

 
Dispatching Rule Percentages Rules R# 12 R# 13 R# 14 R# 15 R# 16 R# 17 R# 18 R# 19 R# 20 Average 

SPT 13% 13% 14% 14% 14% 14% 13% 13% 15% 14% 
MDD 34% 34% 33% 32% 36% 35% 33% 34% 32% 34% Multi-pass 
ODD 52% 52% 51% 53% 49% 50% 53% 51% 52% 51% 

            
SPT 15% 15% 13% 14% 14% 12% 14% 14% 13% 14% 

MDD 35% 36% 38% 31% 40% 43% 36% 38% 34% 38% Learning 
ODD 48% 48% 48% 53% 45% 43% 49% 46% 52% 46% 

            
SPT 14% 13% 12% 13% 13% 13% 11% 14% 12% 13% 

MDD 39% 37% 39% 37% 39% 40% 37% 38% 39% 39% Best 
ODD 46% 48% 47% 48% 46% 46% 51% 47% 48% 47% 
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Table E.15: 80% Utilization, MPL=1000, β= -, DR set {MDD, ODD, SPT} 
 

Dispatching Rule Percentages Rules R# 1 R# 2 R# 3 R# 4 R# 5 R# 6 R# 7 R# 8 R# 9 R# 10 R# 11 
SPT 14% 13% 14% 12% 15% 12% 15% 13% 14% 14% 14% 

MDD 32% 34% 35% 34% 32% 35% 31% 36% 34% 35% 34% Multi-pass 
ODD 52% 52% 49% 53% 52% 51% 53% 50% 51% 50% 51% 

             
SPT 13% 11% 14% 15% 16% 14% 13% 16% 12% 12% 14% 

MDD 25% 33% 31% 29% 30% 33% 31% 29% 37% 31% 26% Learning 
ODD 61% 54% 53% 54% 52% 52% 54% 53% 49% 56% 59% 

             
SPT 13% 13% 14% 13% 14% 14% 14% 14% 15% 14% 13% 

MDD 31% 34% 34% 36% 32% 32% 33% 34% 33% 34% 34% Best 
ODD 55% 52% 51% 50% 52% 53% 51% 51% 51% 50% 51% 

 
Dispatching Rule Percentages Rules R# 12 R# 13 R# 14 R# 15 R# 16 R# 17 R# 18 R# 19 R# 20 Average 

SPT 13% 13% 13% 14% 14% 14% 14% 14% 13% 14% 
MDD 33% 35% 33% 33% 34% 34% 34% 34% 33% 34% Multi-pass 
ODD 52% 51% 52% 51% 51% 51% 51% 51% 52% 51% 

            
SPT 16% 16% 13% 16% 14% 15% 14% 12% 14% 14% 

MDD 35% 31% 34% 35% 34% 29% 31% 32% 35% 32% Learning 
ODD 48% 51% 52% 47% 51% 54% 54% 55% 50% 53% 

            
SPT 13% 14% 13% 14% 14% 14% 11% 13% 13% 14% 

MDD 34% 33% 33% 33% 34% 34% 33% 34% 33% 33% Best 
ODD 51% 52% 52% 52% 50% 50% 55% 51% 53% 52% 
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Table E.16: 90% Utilization, MPL=500, β=0.2, DR set {MDD, ODD, SPT} 
 

Dispatching Rule Percentages Rules R# 1 R# 2 R# 3 R# 4 R# 5 R# 6 R# 7 R# 8 R# 9 R# 10 R# 11 
SPT 3% 3% 3% 2% 2% 3% 1% 2% 2% 2% 3% 

MDD 60% 56% 57% 62% 58% 57% 58% 58% 58% 58% 60% Multi-pass 
ODD 35% 40% 39% 35% 39% 39% 39% 39% 38% 38% 36% 

             
SPT 2% 2% 2% 2% 2% 1% 4% 3% 4% 3% 3% 

MDD 82% 86% 83% 86% 85% 82% 85% 86% 82% 82% 81% Learning 
ODD 15% 11% 14% 10% 12% 16% 9% 9% 12% 14% 14% 

             
SPT 3% 2% 2% 1% 2% 3% 2% 2% 3% 3% 2% 

MDD 82% 83% 79% 83% 83% 82% 84% 82% 82% 80% 83% Best 
ODD 14% 13% 18% 15% 14% 14% 13% 14% 14% 16% 14% 

 
Dispatching Rule Percentages Rules R# 12 R# 13 R# 14 R# 15 R# 16 R# 17 R# 18 R# 19 R# 20 Average 

SPT 2% 2% 2% 3% 2% 3% 2% 2% 3% 2% 
MDD 56% 59% 57% 58% 56% 56% 57% 58% 59% 58% Multi-pass 
ODD 40% 38% 39% 38% 40% 40% 40% 39% 37% 38% 

            
SPT 1% 3% 2% 5% 3% 2% 2% 0% 2% 2% 

MDD 82% 86% 84% 82% 84% 84% 83% 86% 87% 84% Learning 
ODD 16% 10% 13% 12% 12% 13% 14% 12% 9% 12% 

            
SPT 2% 3% 2% 3% 2% 3% 4% 1% 2% 2% 

MDD 83% 82% 82% 82% 83% 83% 81% 82% 83% 82% Best 
ODD 14% 13% 14% 14% 14% 13% 13% 15% 14% 14% 
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Table E.17: 90% Utilization, MPL=2500, β=1, DR set {MDD, ODD, SPT} 
 

Dispatching Rule Percentages Rules R# 1 R# 2 R# 3 R# 4 R# 5 R# 6 R# 7 R# 8 R# 9 R# 10 R# 11 
SPT 3% 2% 3% 2% 2% 3% 2% 2% 2% 3% 3% 
MDD 59% 56% 55% 58% 57% 59% 58% 57% 58% 55% 58% Multi-pass 
ODD 36% 41% 41% 38% 39% 37% 39% 39% 38% 41% 37% 

             
SPT 4% 3% 7% 1% 6% 2% 6% 2% 3% 5% 6% 

MDD 63% 65% 61% 65% 59% 63% 66% 64% 64% 60% 63% Learning 
ODD 32% 31% 31% 32% 34% 34% 27% 32% 32% 33% 30% 

             
SPT 3% 3% 2% 3% 4% 3% 2% 3% 3% 2% 3% 

MDD 63% 62% 60% 61% 66% 63% 64% 63% 62% 63% 61% Best 
ODD 33% 34% 36% 35% 29% 33% 33% 33% 34% 33% 34% 

 
Dispatching Rule Percentages Rules R# 12 R# 13 R# 14 R# 15 R# 16 R# 17 R# 18 R# 19 R# 20 Average 

SPT 3% 3% 2% 2% 2% 3% 2% 2% 3% 2% 
MDD 57% 59% 58% 63% 54% 54% 58% 60% 59% 58% Multi-pass 
ODD 39% 36% 38% 34% 42% 42% 39% 37% 37% 39% 

            
SPT 2% 3% 1% 2% 3% 2% 4% 5% 5% 4% 

MDD 63% 67% 67% 66% 62% 66% 63% 62% 58% 63% Learning 
ODD 33% 29% 30% 31% 33% 31% 32% 33% 36% 32% 

            
SPT 2% 3% 3% 3% 2% 3% 2% 4% 4% 3% 

MDD 63% 64% 62% 64% 61% 65% 63% 60% 64% 63% Best 
ODD 33% 31% 34% 31% 35% 31% 33% 34% 31% 33% 
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Table E.18: 90% Utilization, MPL=7500, β= -, DR set {MDD, ODD, SPT} 
 

Dispatching Rule Percentages Rules R# 1 R# 2 R# 3 R# 4 R# 5 R# 6 R# 7 R# 8 R# 9 R# 10 R# 11 
SPT 3% 2% 3% 2% 2% 3% 1% 2% 2% 2% 3% 

MDD 59% 55% 56% 60% 57% 58% 56% 57% 59% 56% 58% Multi-pass 
ODD 36% 42% 40% 37% 39% 37% 41% 40% 38% 40% 37% 

             
SPT 3% 3% 1% 2% 2% 3% 3% 3% 2% 2% 3% 

MDD 51% 53% 57% 76% 52% 61% 60% 65% 50% 55% 56% Learning 
ODD 44% 43% 40% 21% 44% 35% 35% 30% 47% 42% 40% 

             
SPT 3% 3% 1% 3% 2% 3% 2% 2% 1% 2% 3% 

MDD 60% 58% 58% 58% 59% 58% 59% 57% 59% 57% 58% Best 
ODD 36% 38% 39% 38% 38% 38% 38% 39% 38% 40% 38% 

 
Dispatching Rule Percentages Rules R# 12 R# 13 R# 14 R# 15 R# 16 R# 17 R# 18 R# 19 R# 20 Average 

SPT 2% 2% 2% 3% 2% 3% 1% 1% 2% 2% 
MDD 59% 57% 59% 59% 56% 54% 57% 60% 59% 58% Multi-pass 
ODD 37% 39% 38% 37% 41% 41% 40% 37% 38% 39% 

            
SPT 1% 1% 4% 2% 2% 4% 2% 4% 2% 2% 

MDD 59% 56% 55% 70% 54% 57% 59% 60% 61% 58% Learning 
ODD 38% 42% 40% 26% 43% 38% 38% 34% 35% 38% 

            
SPT 2% 2% 2% 3% 2% 2% 2% 3% 3% 2% 

MDD 59% 57% 58% 59% 58% 57% 57% 56% 58% 58% Best 
ODD 37% 40% 39% 37% 39% 39% 40% 40% 38% 38% 
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Table F.1: Plotted data in the charts 
 

Data X X-Bar X-Lower X-Upper Sigma 2-Sigma -Sigma -2-Sigma R R-Bar R-Lower R-Upper 
1 0.639 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 1.193 2.236 0 4.729 
2 0.507 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 1.915 2.236 0 4.729 
3 1.123 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 1.94 2.236 0 4.729 
4 0.3 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 0.718 2.236 0 4.729 
5 0.454 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 0.876 2.236 0 4.729 
6 0.867 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 0.983 2.236 0 4.729 
7 1.175 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 2.939 2.236 0 4.729 
8 1.533 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 4.266 2.236 0 4.729 
9 0.617 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 0.907 2.236 0 4.729 

10 1.256 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 2.961 2.236 0 4.729 
11 0.426 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 0.707 2.236 0 4.729 
12 4.407 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 8.675 2.236 0 4.729 
13 0.625 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 1.013 2.236 0 4.729 
14 0.678 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 1.184 2.236 0 4.729 
15 1.416 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 3.812 2.236 0 4.729 
16 1.092 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 3.81 2.236 0 4.729 
17 1.085 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 2.464 2.236 0 4.729 
18 0.712 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 2.165 2.236 0 4.729 
19 1.313 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 2.016 2.236 0 4.729 
20 0.368 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 0.437 2.236 0 4.729 
21 0.474 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 0.937 2.236 0 4.729 
22 0.572 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 1.605 2.236 0 4.729 
23 0.706 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 2.249 2.236 0 4.729 
24 0.54 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 1.127 2.236 0 4.729 
25 1.507 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 3.814 2.236 0 4.729 
26 0.33 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 0.432 2.236 0 4.729 
27 2.064 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 4.516 2.236 0 4.729 
28 3.085 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 6.048 2.236 0 4.729 
29 0.982 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 3.142 2.236 0 4.729 
30 3.578 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 6.169 2.236 0 4.729 
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31 1.482 0.828 -0.46 2.118 1.257 1.686 0.399 -0.03 5.258 2.236 0 4.729 
32 2.1 0.929 -0.43 2.229 1.382 1.835 0.476 0.023 4.171 2.359 0 4.989 
33 1.061 0.929 -0.43 2.229 1.382 1.835 0.476 0.023 3.067 2.359 0 4.989 
34 1.848 0.929 -0.43 2.229 1.382 1.835 0.476 0.023 7.571 2.359 0 4.989 
35 0.507 0.929 -0.43 2.229 1.382 1.835 0.476 0.023 1.963 2.359 0 4.989 
36 5.799 0.929 -0.43 2.229 1.382 1.835 0.476 0.023 10.67 2.359 0 4.989 
37 1.762 1.046 -0.498 2.59 1.56 2.074 0.532 0.018 2.325 2.677 0 5.662 
38 0.741 1.046 -0.498 2.59 1.56 2.074 0.532 0.018 1.158 2.677 0 5.662 
39 0.262 1.046 -0.498 2.59 1.56 2.074 0.532 0.018 0.423 2.677 0 5.662 
40 2.044 1.046 -0.498 2.59 1.56 2.074 0.532 0.018 5.089 2.677 0 5.662 
41 1.359 1.046 -0.498 2.59 1.56 2.074 0.532 0.018 2.698 2.677 0 5.662 
42 0.388 1.046 -0.498 2.59 1.56 2.074 0.532 0.018 0.224 2.677 0 5.662 
43 3.011 1.046 -0.498 2.59 1.56 2.074 0.532 0.018 9.757 2.677 0 5.662 
44 1.377 1.046 -0.498 2.59 1.56 2.074 0.532 0.018 3.957 2.677 0 5.662 
45 0.447 1.046 -0.498 2.59 1.56 2.074 0.532 0.018 1.672 2.677 0 5.662 
46 1.087 1.046 -0.498 2.59 1.56 2.074 0.532 0.018 3.022 2.677 0 5.662 
47 0.599 1.046 -0.498 2.59 1.56 2.074 0.532 0.018 1.626 2.677 0 5.662 
48 0.685 1.046 -0.498 2.59 1.56 2.074 0.532 0.018 1.371 2.677 0 5.662 
49 1.211 1.046 -0.498 2.59 1.56 2.074 0.532 0.018 2.451 2.677 0 5.662 
50 0.697 1.046 -0.498 2.59 1.56 2.074 0.532 0.018 1.326 2.677 0 5.662 
51 0.879 1.046 -0.498 2.59 1.56 2.074 0.532 0.018 1.141 2.677 0 5.662 
52 0.653 1.046 -0.498 2.59 1.56 2.074 0.532 0.018 0.772 2.677 0 5.662 
53 0.967 1.046 -0.498 2.59 1.56 2.074 0.532 0.018 1.164 2.677 0 5.662 
54 0.594 1.046 -0.498 2.59 1.56 2.074 0.532 0.018 0.601 2.677 0 5.662 

 
 
 
 
 
 
 
 
 



 

 141 

 
 

Table F.2: Number of updates for the learning tree and the charts for DR set {MOD, MDD, ODD, SPT} 
 

 Training data set: Full Partial 
 (SPL, MPL, β): (1000, 250, 0.2) (7500, 500, 0.2) (1000, 250, 0.2) (7500, 500, 0.2) 
Due date tightness:      

Learning tree updates 313 315 255 239 
Adjusted Control chart updates 157 163 131 117 

Learning tree updates 503 504 252 254 
Not Adjusted Control chart updates 242 252 125 127 

 
 
 
 
 
 

Table F.3: Number of updates for the learning tree and the charts for DR set {MDD, ODD, SPT} 
 

 Training data set: Full Partial 
 (SPL, MPL, β): (1000, 250, 0.2) (7500, 500, 0.2) (1000, 250, 0.2) (7500, 500, 0.2) 
Due date tightness:      

Learning tree updates 308 318 258 255 
Adjusted Control chart updates 147 164 125 123 

Learning tree updates 537 537 269 284 
Not Adjusted Control chart updates 266 268 134 137 

 
 


