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A B S T R A C T

This study considers an airport gate assignment problem where a set of aircraft arriving to an airport
are assigned to the fixed gates of the airport terminal or to the apron. The aim is to lexicographically
minimize the number of aircraft assigned to the apron, and then the total walking distance by passengers.
A new mixed integer linear programming formulation and a matheuristic is proposed for the problem.
The proposed formulation is based on the idea of flow of passengers and has smaller size compared to
the existing formulations in the literature. The proposed matheuristic, which relies on solving a restricted
version of the proposed formulation of the problem, is not only easy to implement but is also very effective.
A computational study performed on benchmark instances reveals that the proposed formulation and the
matheuristic outperform the existing exact and heuristic algorithms in the literature.
1. Introduction

Global air traffic has increased steadily over the past decades and
is likely to increase further after recovery from the current pandemic.
This increase, together with the passenger expectations and the highly
competitive environment, calls for efficient use of available resources
in the airline industry (Daş et al., 2020). The decision makers face
operational problems that are challenging due to being large scale and
involving competing criteria that should be concurrently considered.
In line with this, various optimization problems related to airline
operations have been defined and addressed in the literature.

One of the key operational decisions that airport professionals face
on a daily basis is assigning aircraft to available gates, known as the
airport gate assignment problem (AGAP). This problem concerns itself
with assigning aircraft to gates so as to optimize various objective func-
tions that are relevant. Daş et al. (2020) provide a recent comprehen-
sive review on airport gate assignment problems, in which the existing
works are classified with respect to the type of formulation, objective
function (passenger, airport/airline or robustness-oriented) and solu-
tion methodology (exact or heuristic). See also Dorndorf et al. (2007)
for another detailed survey on flight gate assignment approaches.

As stated in Daş et al. (2020), early approaches to the AGAP
consider single objective formulations and propose various exact meth-
ods such as branch and bound. Some noteworthy initial attempts are
due to Babić et al. (1984) and Bihr (1990), who minimize passen-
ger walking distance in their models. Other studies considering exact
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solution approaches to various variants of AGAP are due to Bolat
(1999), who proposes a branch-and-bound algorithm and a heuristic for
minimizing the difference between the minimum and maximum slack
times and Yu et al. (2016), who consider network flow formulations
to minimize a weighted aggregation of the total distance traveled by
transfer passengers, the towing costs, and the expected conflict time
between schedules. Jaehn (2010) optimally solves a single objective
problem that considers a special case where the flight/gate preferences
are maximized, through dynamic programming. Recently, Li et al.
(2021) consider an AGAP with the objective of minimizing arrival
delays and propose a column generation-based exact algorithm. There
are also studies that propose (meta)heuristic algorithms for several
variants of AGAP (see e.g. Daş, 2017; Deng et al., 2017; Ding et al.,
2005; Dorndorf et al., 2008; Li et al., 2022; Yu et al., 2016) as
well as studies considering robust approaches (Cai et al., 2019; Xu
et al., 2017) and multiobjective extensions that simultaneously address
criteria related to different perspectives of passengers, airlines and
robustness (Daş et al., 2020). Owing to their relevance, most studies
consider minimizing passenger walking distance and minimizing the
number of flights assigned to the apron as two objectives (Dell’Orco
et al., 2017; Ding et al., 2005; Drexl and Nikulin, 2008); while there
are also studies focusing on various passenger and robustness-oriented
objectives (Daş, 2017; Şeker and Noyan, 2012; Tang and Wang, 2013;
Yan and Huo, 2001).
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We note here that these AGAP variants differ from the problem ad-
dressed in this work with respect to the objective functions, the assump-
tions on the operational dynamics, and the methodology employed
(see also Daş et al., 2020; Dorndorf et al., 2007 and the references
therein for more information on different variants of the airport gate
assignment problems).

In this work, we consider the AGAP, in which airport-oriented
and passenger-oriented objectives are considered in a lexicographic
manner. Specifically, we ensure that total walking distance by pas-
sengers, the most used passenger-oriented objective in the literature
according to Daş et al. (2020), is minimized while keeping the number
of assignments to the apron at its minimum. This problem (AGAP-
WD&AA) has been recently addressed by Karsu et al. (2021), where a
mixed integer linear programming (MILP) formulation, a branch and
bound algorithm and two branch and bound-based heuristics (beam
search and filtered beam search) are proposed. Their branch and bound
algorithm utilizes lower bounds for the passenger walking distance in
a branch and bound framework, in which each level corresponds to the
assignment of an aircraft and each node at a level is for the assignment
of the corresponding aircraft to one of the feasible gates. Beam search
and filtered beam search algorithms proposed by Karsu et al. (2021)
are based on the idea of keeping attractive nodes when evaluating
the branch and bound tree and discarding the rest permanently. The
attractive nodes are determined with respect to their lower bounds on
the passenger walking distance in beam search while filtered beam
search uses a two-step procedure in which an initial screening based
on realized distances is followed by a second phase evaluation based
on the lower bounds on passenger walking distance.

Among the studies that consider only minimizing the passenger
walking distance in AGAP (AGAP-WD), we observe that the ones find-
ing exact solutions propose linearized formulations and solve them to
optimality (Haghani and Chen, 1998; Maharjan and Matis, 2012; Xu
and Bailey, 2001; Karsu et al., 2021). These linearizations are based
on replacing the quadratic term with new variables which results in
four-indexed variables in the respective MILP formulations. There are
also several heuristics proposed for the AGAP-WD. Cheng et al. (2012)
propose a genetic algorithm, a simulated annealing heuristic, a tabu
search heuristic and a hybrid of simulated annealing and tabu search
heuristics (SATS). They assess the performance of these heuristics on
the real-world instances of Incheon International Airport of Korea
(ICN) and find that the SATS performs the best among considered
heuristics. Cheng et al. (2017) develop a tabu search heuristic with a
path relinking feature (TSPR), which performs better than the SATS on
ICN instances. Dell’Orco et al. (2017) and Deng et al. (2019) propose a
fuzzy bee colony optimization algorithm (REFBCO) and an improved
ant colony optimization algorithm (REICMPACO), respectively. Re-
cently, Li et al. (2022), which develop a probability learning-based
feasible and infeasible tabu search (PLFITS) heuristic, run REFBCO and
REICMPACO heuristics on ICN instances besides PLFITS. They also run
these heuristics on instances introduced by Karsu et al. (2021) which
are based on Esenboğa (ESB) and İstanbul Atatürk airports (ATA) of
Turkey. Results of Li et al. (2022) reveal that PLFITS heuristic finds
the best-known solution in all instances of ICN, ESB and ATA data sets.
Thus, one can say that PLFITS is the state-of-the-art heuristic method
for the AGAP-WD.

Our contributions can be summarized as follows:

• Unlike (Haghani and Chen, 1998; Maharjan and Matis, 2012; Xu
and Bailey, 2001; Karsu et al., 2021), we propose a new MILP
formulation that uses three-indexed continuous variables instead
of four-indexed variables so as to tackle the quadratic term in
the AGAP-WD&AA. We consider the flow of commodity (transfer
passengers of aircraft) between gates and propose a flow-based
formulation that is novel for the airport gate assignment problem.
The proposed formulation solves larger instances to optimality
with smaller solution times than the exact algorithms and MILP
2

formulation in Karsu et al. (2021).
• We suggest a mathematical programming-based heuristic (a.k.a
a matheuristic) that exploits the strength of our new formula-
tion and a newly proposed strong upper bound that is quickly
obtained. The proposed matheuristic, which relies on solving a
restricted version of the proposed formulation, is not only easy to
implement but is also very effective.

• For the AGAP-WD&AA, we demonstrate that the proposed
matheuristic outperforms the heuristics in Karsu et al. (2021) on
benchmark instances.

• We also validate our matheuristic on the benchmark instances for
the AGAP-WD. We compare our matheuristic with the heuristics
proposed by Cheng et al. (2017, 2012), Dell’Orco et al. (2017),
Deng et al. (2019), Li et al. (2022). The computational results
show that our matheuristic performs much better than the ex-
isting heuristics and yields new best-known solutions in all ICN
instances, and is comparable to the best-known approach in the
literature in ESB and ATA instances.

The rest of the paper is as follows. In Section 2, we describe the
problem we address in detail and give the new MILP formulation for
the AGAP-WD&AA and its adaptation to the AGAP-WD. We describe
the matheuristic we propose in Section 3 and report the results of our
computational experiments in Section 4. We conclude the discussion in
Section 5, in which we also point out some future research directions
that could be pursued.

2. Problem description and formulations

We study an airport gate assignment problem where arriving air-
craft have to be assigned to the fixed gates of the airport terminal or
to the apron of the airport. Some of the fixed gates of the airport are
solely allocated for international flights whereas the rest are used only
for domestic flights. Whenever an aircraft arrives at the airport, it is
assigned to a fixed gate until its departure if any fixed gate is available.
If there are no available fixed gates, then the aircraft is assigned to the
apron, which has an unlimited capacity and serves both domestic and
international flights but is far from the airport exit and fixed gates of
the terminal. Each aircraft has a number of passengers who are either
transfer or non-transfer passengers. Non-transfer passengers come from
the entrance of the airport to the gates of their aircraft or leave the
airport via its exit after the arrival of the aircraft. Transfer passengers
travel from their arrival gate (including apron) to the departure gate
(including apron).

The main objective is to minimize the number of aircraft assign-
ments to the apron. Then, among the solutions having the minimum
number of aircraft assignments to the apron, the aim is to find the
one with the minimum total walking distance by passengers. Note
that total passenger walking distance may include not only the ac-
tual distance walked by passengers but also any distance traveled via
buses, trains or any means of transportation used by passengers within
the airport. Karsu et al. (2021) show that the minimum number of
aircraft assignments to the apron can be found by solving maximum
cost network flow problems. Thus, the obtained minimum number
of aircraft assignments to the apron can be imposed as a constraint
and the objective is to minimize the total passenger walking distance.
This problem is referred to as the AGAP-WD&AA. When the minimum
number of aircraft assignments to the apron is not considered, the
problem is referred to as the AGAP-WD.

We first present the MILP formulation proposed by Karsu et al.
(2021) and then propose a new MILP formulation for the AGAP-
WD&AA. Before presenting the formulations, the parameters and vari-
ables used in the formulations are defined in the following. Note that
all parameters are assumed to be known.

Parameters:
𝑑𝑘𝑙: distance traveled when going from gate 𝑘 to gate 𝑙.

𝑒𝑑𝑘: distance between gate 𝑘 and the entrance/exit of the airport.
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𝑒𝑖: number of passengers coming from the entrance of the airport to
aircraft 𝑖.

𝑓𝑖: number of passengers leaving the airport via its exit after the
arrival of the aircraft 𝑖.

𝑔(𝑖) = 𝐷 if aircraft 𝑖 is domestic; and 𝑔(𝑖) = 𝐼 if aircraft 𝑖 is
international.

𝐼 : set of all domestic and international aircraft.
𝐼𝐷𝑡: set of domestic aircraft overlapping in a time interval 𝑡.
𝐼𝐼𝑡: set of international aircraft overlapping in a time interval 𝑡.
𝑇𝐷: set containing 𝐼𝐷𝑡 for all 𝑡. 𝑇𝐷 = {𝐼𝐷1, 𝐼𝐷2,…}
𝑇𝐼 : set containing 𝐼𝐼𝑡 for all 𝑡. 𝑇𝐼 = {𝐼𝐼1, 𝐼𝐼2,…}
𝑚: number of fixed gates; 𝑚 + 1 denotes the apron.
𝐾 ′

𝐷: set of domestic fixed gates.
𝐾 ′

𝐼 : set of international fixed gates.
𝐾𝐷: set of domestic gates (fixed gates and apron).
𝐾𝐼 : set of international gates (fixed gates and apron).
𝐾 ′ = 𝐾 ′

𝐷 ∪𝐾 ′
𝐼 .

𝐾 = 𝐾𝐷 ∪𝐾𝐼 = 𝐾 ′ ∪ {𝑚 + 1}.
𝑁𝐴∗: minimum number of aircraft that must be assigned to the

pron.
𝑛: number of aircraft.
𝑝𝑖𝑗 : number of passengers transiting from aircraft 𝑖 to aircraft 𝑗.
Decision Variables:
𝑦𝑖𝑗𝑘𝑙: fraction of passengers transiting from aircraft 𝑖 to aircraft 𝑗 via

ates 𝑘 and 𝑙.
𝑥𝑖𝑘: 1 if aircraft 𝑖 is assigned to gate 𝑘, and 0 otherwise.
The MILP formulation (KAA) proposed by Karsu et al. (2021) is as

ollows:

𝐀𝐀 ∶

in
∑

𝑖∈𝐼

∑

𝑗∈𝐼

∑

𝑘∈𝐾𝑔(𝑖)

∑

𝑙∈𝐾𝑔(𝑗)

𝑝𝑖𝑗𝑑𝑘𝑙𝑦𝑖𝑗𝑘𝑙 +
∑

𝑖∈𝐼

∑

𝑘∈𝐾𝑔(𝑖)

(𝑒𝑖 + 𝑓𝑖)𝑒𝑑𝑘𝑥𝑖𝑘 (1)

s.t. 𝑦𝑖𝑗𝑘𝑙 ≥ 𝑥𝑖𝑘 + 𝑥𝑗𝑙 − 1 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼, 𝑘 ∈ 𝐾𝑔(𝑖), 𝑙 ∈ 𝐾𝑔(𝑗) (2)
∑

𝑘∈𝐾𝑔(𝑖)

𝑥𝑖𝑘 = 1 ∀𝑖 ∈ 𝐼 (3)

∑

𝑖∈𝐼𝐷𝑡

𝑥𝑖𝑘 ≤ 1 ∀𝐼𝐷𝑡 ∈ 𝑇𝐷,∀𝑘 ∈ 𝐾 ′
𝐷 (4)

∑

𝑖∈𝐼𝐼𝑡

𝑥𝑖𝑘 ≤ 1 ∀𝐼𝐼𝑡 ∈ 𝑇𝐼 ,∀𝑘 ∈ 𝐾 ′
𝐼 (5)

∑

𝑖∈𝐼
𝑥𝑖,𝑚+1 = 𝑁𝐴∗ (6)

𝑥𝑖𝑘 ∈ {0, 1} ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾𝑔(𝑖) (7)

𝑦𝑖𝑗𝑘𝑙 ≥ 0 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼, 𝑘 ∈ 𝐾𝑔(𝑖), 𝑙 ∈ 𝐾𝑔(𝑗). (8)

The objective function (1) is the sum of total walking distance
by transfer passengers and non-transfer passengers, respectively. Note
that the first term of (1) is actually the linearization of quadratic
term 𝑝𝑖𝑗𝑑𝑘𝑙𝑥𝑖𝑘𝑥𝑗𝑙 by replacing 𝑥𝑖𝑘𝑥𝑗𝑙 with 𝑦𝑖𝑗𝑘𝑙 variables and defining
onstraints (2) and (8). Constraints (2) ensure that 𝑦𝑖𝑗𝑘𝑙 = 1 when

both 𝑥𝑖𝑘 = 1 and 𝑥𝑗𝑙 = 1. Constraints (3) stipulate that each aircraft
is assigned to a fixed gate or apron. Constraints (4) and (5) ensure
that at most one aircraft can be assigned to a fixed gate during a
certain time interval. Constraints (4) are for domestic aircraft whereas
(5) are for international aircraft. Note that the sets 𝐼𝐷𝑡 and 𝐼𝐼𝑡 are
maximal cliques which mean all aircraft in a set overlap with each
other in a time interval and there is no other aircraft that overlaps
with all aircraft in that set. The sets 𝐼𝐷𝑡 and 𝐼𝐼𝑡 are easily found
using the polynomial time algorithm in Krishnamoorthy et al. (2012).
Actually, Karsu et al. (2021) consider each interval between sorted
arrival and departure times to derive constraints (4) and (5), which
results in higher number of constraints with some being redundant
(i.e., clique constraints that are not maximal). Constraint (6) guarantees
that 𝑁𝐴∗ aircraft are assigned to the apron. Note that we use 𝑁𝐴∗,
which is found a priori using the procedure in Karsu et al. (2021), as a
3

arameter in our model. Constraints (7) and (8) are for integrality and
onnegativity of variables, respectively. Note that although 𝑦 variables
re defined as continuous variables, they are indeed 0–1 variables
hich automatically take 0–1 values due to constraints (2) and (7).

Defining 𝑤𝑖
𝑘𝑙 as the number of passengers of aircraft 𝑖 traveling from

ate 𝑘 to gate 𝑙, we propose the following flow-based MILP formulation
hich is referred to as the FC formulation:

𝐂 ∶

in
∑

𝑖∈𝐼

∑

𝑘∈𝐾𝑔(𝑖)

∑

𝑙∈𝐾
𝑑𝑘𝑙𝑤

𝑖
𝑘𝑙 +

∑

𝑖∈𝐼

∑

𝑘∈𝐾𝑔(𝑖)

(𝑒𝑖 + 𝑓𝑖)𝑒𝑑𝑘𝑥𝑖𝑘 (9)

.t.(3)–(7),
∑

𝑙∈𝐾
𝑤𝑖

𝑘𝑙 = (
∑

𝑗∈𝐼
𝑝𝑖𝑗 )𝑥𝑖𝑘 ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾𝑔(𝑖) (10)

∑

𝑙∈𝐾𝑔(𝑖)

𝑤𝑖
𝑙𝑘 =

∑

𝑗∈𝐼
𝑝𝑖𝑗𝑥𝑗𝑘 ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 (11)

𝑖
𝑘𝑙 ≥ 0 ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾𝑔(𝑖), 𝑙 ∈ 𝐾. (12)

The objective function (9) is equivalent to (1). Constraints (10) and
11) are the multicommodity flow balance equations for passengers.
onstraints (10) ensure that if an aircraft 𝑖 is assigned to gate 𝑘, then
ll passengers originating from aircraft 𝑖 must travel from gate 𝑘 to
ther gates. Constraints (11) ensure that all passengers between aircraft
and other aircraft assigned to gate 𝑘 must travel to gate 𝑘 from the
ate aircraft 𝑖 is assigned to. Note that multicommodity flow-based
onstraints similar to (10) and (11) are proposed by Erdoğan and Tansel
2007) for the quadratic assignment problem (QAP) but Erdoğan and
ansel (2007) did not present any computational results obtained with
he formulation involving these constraints for the QAP. By using these
ulticommodity flow-based constraints in AGAP-WD&AA, it enables
s to formulate the problem with three-index variables instead of
our-index variables in KAA formulation. Note that FC formulation
as 𝑂(𝑛𝑚2) continuous variables, 𝑂(𝑛𝑚) binary variables, and 𝑂(𝑛𝑚)
onstraints whereas the KAA formulation has 𝑂(𝑛2𝑚2) continuous vari-
bles, 𝑂(𝑛𝑚) binary variables, and 𝑂(𝑛2𝑚2) constraints. This makes the
C formulation computationally advantageous compared to the KAA
ormulation as can be seen in Section 4.

Different multicommodity flow-based formulations are proposed for
he AGAP variants in the literature (see e.g., Maharjan and Matis,
012; Wang et al., 2022; Yu et al., 2016). These multicommodity flow-
ased formulations use binary 𝑧𝑖𝑗𝑘 variables meaning assignment of
ircraft 𝑗 just after aircraft 𝑖 to fixed gate 𝑘 to prevent assignment of
ore than one aircraft to the same gate during a certain time interval.
ecently, Wang et al. (2022) proposed a new multicommodity flow-
ased formulation using the same 𝑧 variables to optimize robustness
f aircraft assignments to gates. However, these multicommodity flow-
ased formulations require 𝑂(𝑛2 𝑚) binary variables and they do not
eal with the quadratic term in the objective function associated with
he passenger walking distance, unlike our multicommodity flow-based
ormulation (FC), where we linearize the quadratic term due to the
assenger walking distance using 𝑂(𝑛𝑚2) continuous variables (i.e., 𝑤
ariables).

In order to strengthen the proposed FC formulation, we propose the
ollowing valid inequalities which are based on the set of domestic and
nternational aircraft overlapping in a time interval 𝑡:
∑

∈𝐼𝐷𝑡

𝑥𝑖,𝑚+1 ≥ |𝐼𝐷𝑡| − |𝐾 ′
𝐷| ∀𝐼𝑡 ∈ 𝑇 ∶ |𝐼𝐷𝑡| > |𝐾 ′

𝐷| (13)

∑

∈𝐼𝐼𝑡

𝑥𝑖,𝑚+1 ≥ |𝐼𝐼𝑡| − |𝐾 ′
𝐼 | ∀𝐼𝑡 ∈ 𝑇 ∶ |𝐼𝐼𝑡| > |𝐾 ′

𝐼 | (14)

Constraints (13) stipulate that among the domestic aircraft over-
apping in a time interval at least a certain number of them (i.e., the
umber of domestic aircraft overlapping in a time interval less the
umber of fixed gates for domestic flights) must be assigned to the
pron. Constraints (14) ensure the same for international aircraft. In
he rest of the paper, whenever the FC formulation is referred to, it
ncludes constraints (13) and (14) as well.
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3. The proposed matheuristic

In this section, we propose a matheuristic which relies on construct-
ing and solving a small-size FC formulation. In the matheuristic, we
first obtain an initial feasible solution (i.e., a feasible assignment of
aircraft to fixed gates and apron) by solving the following approximate
formulation:

𝐈𝐅𝐒 ∶

Min
∑

𝑖∈𝐼

∑

𝑘∈𝐾𝑔(𝑖)

((𝑑𝑎𝑣𝑒𝑡𝑜𝑘

∑

𝑗∈𝐼
𝑝𝑗𝑖 + 𝑑𝑎𝑣𝑒𝑓𝑟𝑜𝑚𝑘

∑

𝑗∈𝐼
𝑝𝑖𝑗 ) + 𝑒𝑑𝑘(𝑒𝑖 + 𝑓𝑖))𝑥𝑖𝑘 (15)

s.t. (3)–(7).

where 𝑑𝑎𝑣𝑒𝑡𝑜𝑘 =
∑

𝑙∈𝐾 𝑑𝑙𝑘∕|𝐾| and 𝑑𝑎𝑣𝑒𝑓𝑟𝑜𝑚𝑘 =
∑

𝑙∈𝐾 𝑑𝑘𝑙∕|𝐾|.
The objective function (15) of the IFS formulation approximates the

walking distance of transfer passengers by using the average distances
between a gate and other gates (i.e., 𝑑𝑎𝑣𝑒𝑡𝑜𝑘 and 𝑑𝑎𝑣𝑒𝑓𝑟𝑜𝑚𝑘 ) and the number
of passengers associated with aircraft assigned to that gate. If the
distance matrix is symmetric, 𝑑𝑎𝑣𝑒𝑡𝑜𝑘 and 𝑑𝑎𝑣𝑒𝑓𝑟𝑜𝑚𝑘 will be equal. Note that
this approximation enables us to eliminate 𝑤 variables and constraints
(10)–(12) of the FC formulation.

Using the values of 𝑥 variables in the optimal solution of above
formulation, we can also easily compute the true objective function
value which can be used as an initial upper bound. As will be observed
from Section 4, the IFS formulation provides a quick and good quality
initial upper bound for the AGAP-WD&AA and AGAP-WD.

The main idea of the proposed heuristic is to solve a restricted FC
formulation by replacing parameter 𝐾𝑔(𝑖) with �̄�𝑔(𝑖), where �̄�𝑔(𝑖) defines
only a subset of the available gates to which aircraft 𝑖 can be assigned.
This new parameter �̄�𝑔(𝑖) reduces the number of 𝑥 and 𝑤 variables
n the original formulation which helps solving the formulation to
ptimality. On the other hand, not defining all 𝑥 and 𝑤 variables in
he FC formulation may cause infeasibility when the formulation is
olved because assignment of all aircraft to a restricted set of gates
without exceeding the number of aircraft that must be assigned to the
pron) may not be possible in some time intervals. Thus, the feasible
olution obtained by solving the IFS formulation is critical to ensure
easibility of the restricted FC formulation as will be discussed below.
ote that the restricted FC formulation can simply be constructed by

etting 𝑥𝑖𝑘 = 0 if 𝑘 ∉ �̄�𝑔(𝑖)∀𝑖 ∈ 𝐼 .
In the proposed matheuristic, which is referred to as the restricted

ormulation-based heuristic, we determine �̄�𝑔(𝑖) as follows: For each air-
raft 𝑖, we sort all fixed gates in nondecreasing order of 𝑑𝑎𝑣𝑒𝑡𝑜𝑘

∑

𝑗∈𝐼 𝑝𝑗𝑖+
𝑎𝑣𝑒𝑓𝑟𝑜𝑚
𝑘

∑

𝑗∈𝐼 𝑝𝑖𝑗 + 𝑒𝑑𝑘(𝑒𝑖 + 𝑓𝑖) and take the first 𝛽 − 1 of them where
< |𝐾𝑔(𝑖)|. Note that we take 𝛽 − 1 of fixed gates because the apron

s always included in �̄�𝑔(𝑖) as the 𝛽𝑡ℎ gate. If this set does not include
he regular gate that the aircraft is assigned to in the initial feasible
olution found by solving the IFS formulation, we replace the (𝛽 − 1)𝑡ℎ

ate with the one from the initial feasible solution. With this definition
f �̄�𝑔(𝑖), we guarantee obtaining a feasible solution when solving the
estricted formulation.

We set 𝛽 to an initial value and increase it until the stopping condi-
ion is satisfied. The algorithm stops when until either no improvement
egarding the objective function value is obtained or a time limit is
eached.
4

4. Computational results

We conducted computational experiments on benchmark instances
introduced by Karsu et al. (2021) and Cheng et al. (2012) for the
problem with the objectives of minimizing the passenger walking dis-
tance and minimizing the assignment of aircraft to apron (i.e., AGAP-
WD&AA) and for the problem with the objective of minimizing the
passenger walking distance (i.e., AGAP-WD).

Karsu et al. (2021) used the layouts of Ankara Esenboğa airport with
18 fixed gates (ESB instances) and İstanbul Atatürk airport with 38
fixed gates (ATA instances) to generate instances with 50, 100, 150,
and 200 aircraft. Two sets of instances, set 1 and set 2, are generated
for each problem size (i.e., number of fixed gates (𝑚) and number of
aircraft (𝑛)) combination. There is low (resp. high) apron usage in Set 1
(resp. Set 2). For each problem size and set combination, 10 instances
are generated. Thus, there are 80 ESB instances and 80 ATA instances
in total. In addition to ESB and ATA instances, Karsu et al. (2021)
randomly generated small size instances containing 12 fixed gates and
up to 30 aircraft in order to test the exact approaches (see Karsu et al.,
2021 for details).

The second set of benchmark instances introduced by Cheng et al.
(2012) are based on real data from ICN, the largest airport in South
Korea. As in the other studies (Cheng et al., 2012; Li et al., 2022) we
use instances generated based on the gates and exits of Terminal 1 with
74 gates and 14 exits. In these instances, the daily flight data is obtained
from FlightStats, where the number of aircraft/flights varies from 279
to 304. For each day of the week, the percentage of transfer passengers
(𝜋) are set to 0.1, 0.3, and 0.5, which results in 21 ICN instances.
However as the flight data of Thursday when 𝜋 = 0.1 is lost, we use
20 ICN instances as in Li et al. (2022).

The proposed matheuristic (RFH) is coded in C++ and all formu-
lations (KAA, FC, and IFS) are solved by CPLEX 12.7 with its default
settings. All experiments with RFH, FBS, KAA, FC, and IFS were per-
formed on an Intel Core i7 2.70 GHz dual-core computer with 8 GB
RAM, which is the same computational platform as in Karsu et al.
(2021). All solution times are reported in CPU seconds.

4.1. Results for AGAP-WD&AA: Comparison of exact approaches

We first investigate the performance of the proposed MILP formu-
lation (FC) compared to the three exact approaches suggested in Karsu
et al. (2021): the linearized formulation with and without a lower
bound constraint (KAA with LB and KAA, respectively) and the branch
and bound algorithm (BB) on the same set of instances used in Karsu
et al. (2021) for AGAP-WD&AA. In order to observe the computational
efficiency gained by the valid inequalities (13) and (14), we also
include the results of FC formulation excluding these inequalities.

We summarize the results of our experiments in Table 1. For each
approach, we provide the average (𝑇 𝑖𝑚𝑒𝑎𝑣𝑔) and maximum (𝑇 𝑖𝑚𝑒𝑚𝑎𝑥)
solution times and the number of instances that could not be solved
to optimality within a time limit of one hour (NO). For any method,
we stopped solving larger instances when at least one instance could
not be solved within the time limit. The results clearly demonstrate the
superiority of our formulation. The FC formulation has considerably
lower solution times and could solve larger instances to optimality
within the time limit compared to KAA formulations and the BB.
Moreover, the results show the computational advantage of using valid
inequalities, especially in larger problem instances. The results also
reveal that set 2 instances where apron usage is high are more difficult
to solve for all exact approaches.
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Fig. 1. Effect of 𝛽 (Set 2, instance 6).
Table 1
Comparison of exact approaches.

Set m n KAA KAA with LB BB FC FC without (13) and (14)

𝑇 𝑖𝑚𝑒𝑎𝑣𝑔 𝑇 𝑖𝑚𝑒𝑚𝑎𝑥 NO 𝑇 𝑖𝑚𝑒𝑎𝑣𝑔 𝑇 𝑖𝑚𝑒𝑚𝑎𝑥 NO 𝑇 𝑖𝑚𝑒𝑎𝑣𝑔 𝑇 𝑖𝑚𝑒𝑚𝑎𝑥 NO 𝑇 𝑖𝑚𝑒𝑎𝑣𝑔 𝑇 𝑖𝑚𝑒𝑚𝑎𝑥 NO 𝑇 𝑖𝑚𝑒𝑎𝑣𝑔 𝑇 𝑖𝑚𝑒𝑚𝑎𝑥 NO

1 12 15 2.13 3.28 0 2.55 4.03 0 0.257 1.42 0 0.15 0.21 0 0.16 0.26 0
20 94.30 354.51 0 96.53 192.72 0 9.557 58.06 0 0.46 1.59 0 0.43 1.24 0
25 2076.46 3600.00 4 3176.85 3600.00 5 890.13 3600.00 2 6.77 54.99 0 7.19 59.01 0
30 – – – – – – – – – 17.34 116.74 0 17.53 118.85 0

2 12 15 88.22 321.68 0 410.83 3600.00 1 18.55 90.14 0 1.08 3.31 0 1.88 6.39 0
20 2869.19 3600.00 5 – – – 1360.86 3600.00 1 25.28 99.68 0 43.03 131.32 0
25 – – – – – – – – – 368.45 1748.08 0 608.46 2217.25 0
30 – – – – – – – – – 445.59 1538.98 0 603.49 1585.24 0
4.2. Results for AGAP-WD&AA: Comparison of heuristics

In this section, we compare our matheuristic (RFH) with other
heuristics on ESB and ATA instances for AGAP-WD&AA. Specifically,
we compare RFH with FBS and an initial upper bound procedure
(i.e., KAA-UB) in Karsu et al. (2021), the best upper bound obtained by
CPLEX with the FC formulation in one hour (FC-1hr), and the initial
upper bound obtained by solving the IFS formulation (IFS).

Note that, in our experiments we set the filter width and beam width
parameters in the FBS algorithm to higher values compared to Karsu
et al. (2021) so as to make this algorithm more effective (also consumes
more time). In particular, considering the memory requirements, we set
filter width to 23000 and beam width to 11500.

Fig. 1 provides some insight on how parameter 𝛽 affects the results
of RFH. In this figure, we provide the results of an ESB instance with
50 aircraft, for which RFH started with 𝛽 = 4 and stopped after
ive iterations. The figure typically illustrates the progress of RFH
computation times and objective function) while 𝛽 is increasing. We
ee that the larger 𝛽 is, the better the quality of the solution is, but this
omes at the expense of higher solution times.

Based on a preliminary analysis on the ESB instances with 50
ircraft, we set the initial value of 𝛽 to six in RFH. The results of
his preliminary analysis are summarized in Table 2, which shows the
bjective function values with the best results being highlighted in
oldface for each instance. All approaches are implemented with a time
imit of one hour.

We implement all algorithms on ESB instances with 50, 100 and
00 aircraft and present the results in Table 3. For these instances
e report the average solution times (Time) as well as average %
aps with respect to the best known lower and upper bounds. We find

gap of the solutions from the best upper bound using %GapUB =
00 × (𝑆 − 𝐵𝑒𝑠𝑡𝑈𝐵)∕𝐵𝑒𝑠𝑡𝑈𝐵 where 𝑆 is the solution of interest and
5

Table 2
Preliminary results to set 𝛽 in RFH for AGAP-WD&AA.

Instance Set 1 Set 2

𝛽 = 4 𝛽 = 5 𝛽 = 6 𝛽 = 4 𝛽 = 5 𝛽 = 6

1 23 934 23 934 23 934 73 181 73 181 73 173
2 26 782 26 782 26 782 69 446 69 446 69 444
3 23 404 23 354 23 354 78 880 78 880 78 880
4 26 459 26 455 26 455 81 156 81 140 81 140
5 24 122 24 122 24 122 79 689 79 665 79 665
6 23 358 23 358 23 382 75 552 75 552 75 552
7 25 129 25 129 25 129 88 365 88 103 88 103
8 24 868 24 868 24 868 80 888 80 888 80 888
9 24 615 24 615 24 615 78 766 78 766 78 766
10 27 365 27 354 27 354 69 084 69 084 69 084

𝐵𝑒𝑠𝑡𝑈𝐵 is the best upper bound found by all algorithms. Similarly,
we also calculate the % gap of the solutions (𝑆) from the lower
bound (𝐶𝑃𝑋𝐿𝐵) obtained by solving the FC formulation using CPLEX
with a time limit of one hour. This % gap is calculated as follows:
%GapLB = 100 × (𝑆 −𝐶𝑃𝑋𝐿𝐵)∕𝐶𝑃𝑋𝐿𝐵. Note that as the initial upper
bound procedure suggested by Karsu et al. (2021) (i.e., KAA-UB) makes
assignments of aircraft iteratively to gates by considering one gate at
a time until no aircraft is left to be assigned or until the last fixed
gate is considered, it does not guarantee that the apron assignments
are kept at minimum. Similarly, FBS does not guarantee returning an
apron feasible solution as it is based on using lower bounds on the total
passenger walking distance in the nodes of the branch and bound tree.
In case of a failure in finding a feasible solution to some instances,
the number of feasible solutions found by that algorithm is reported
in column #F. Note that %GapLB and %GapUB are calculated only
when the corresponding algorithm finds an apron feasible solution, and
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Table 3
Comparison of heuristics on ESB instances for AGAP-WD&AA.

Set m n RFH FC-1hr IFS FBS KAA-UB

Time %GapLB %GapUB #F %GapLB %GapUB Time %GapLB %GapUB Time #F %GapLB %GapUB Time #F %GapLB %GapUB

1 18 50 3600.00 2.59 0.01 10 2.64 0.06 0.04 2.79 0.21 262.72 10 3.75 1.14 0.11 10 4.59 1.96
100 3600.38 7.22 0.00 10 7.92 0.65 0.06 7.27 0.04 2321.50 7 13.23 4.95 0.11 0 – –
200 3600.55 5.57 0.00 7 7.34 1.67 0.38 5.58 0.00 3600.00 0 – – 0.16 0 – –

2 18 50 2326.95 2.78 0.04 10 2.94 0.18 0.03 2.91 0.16 264.74 6 8.96 5.37 0.11 0 – –
100 3295.51 2.75 0.01 10 2.90 0.16 0.11 2.81 0.07 2289.32 5 3.29 0.27 0.11 5 3.29 0.27
200 3578.74 1.56 0.04 10 1.79 0.27 0.14 1.57 0.05 3600.00 5 1.65 0.03 0.12 5 1.65 0.03
Table 4
Comparison of heuristics on ATA instances for AGAP-WD&AA.

Set m n RFH FC-1hr IFS FBS KAA-UB

Time %GapLB %GapUB #F %GapLB %GapUB Time %GapLB %GapUB Time #F %GapLB %GapUB Time #F %GapLB %GapUB

1 38 50 3600.52 19.57 0.00 10 21.87 1.93 0.06 20.37 0.68 1081.32 10 20.58 0.85 0.11 10 36.45 14.09
100 3600.67 25.63 0.00 10 30.04 3.51 0.10 25.87 0.19 3732.59 10 46.69 16.77 0.13 10 46.69 16.77
200 3448.01 29.83 0.00 4 48.58 14.47 1.28 29.88 0.03 3907.46 0 – – 0.18 0 – –

2 38 50 1173.92 26.45 0.00 10 28.98 2.00 0.05 26.69 0.19 1164.99 10 34.00 5.95 0.11 8 39.90 10.60
100 2248.62 11.14 0.00 8 13.09 1.76 0.15 11.19 0.05 3776.77 0 – – 0.12 0 – –
200 3313.12 – 0.00 0 – – 0.56 – 0.02 4136.99 2 – 0.37 0.13 2 – 0.37
Table 5
Number of best solutions achieved by each method for AGAP-WD&AA.

Set n ESB (m=18) ATA (m=38)

RFH FC-1hr FBS RFH FC-1hr FBS

1 50 8 5 1 10 0 0
100 10 0 0 10 0 0
200 10 0 0 10 0 0

2 50 7 3 0 10 0 0
100 8 1 1 10 0 0
200 8 1 3 10 0 0

the averages are calculated over instances for which an apron feasible
solution is obtained.

Results in Table 3 reveal that the proposed matheuristic outperforms
other approaches with respect to the solution quality. It is observed
that the RFH mainly stops since no improvement is observed. IFS also
performs very well, returning high quality solutions in negligible time.
This is not the case for KAA-UB as it cannot find feasible solutions
in many instances (i.e., the number of apron assignments exceeds the
minimum) and in the instances that it can, the quality of the solution is
worse than that of IFS. FBS could not find any feasible solution in more
than half of the instances. Even in instances where FBS found a feasible
solution, the quality of those solutions are inferior to those of RFH, FC,
and IFS. In addition, FBS could not improve the solution provided by
KAA-UB in any instances of Set 2 as shown by the average %GapLB and
%GapUB values. While FC managed to find a feasible solution for most
ESB instances, the quality of its solutions are worse than those of RFH
and IFS.

We provide the computational results on ATA instances in Table 4
which has the same format as Table 3. Similar to the ESB instances,
the proposed matheuristic yields results superior to other approaches
on ATA instances. Average % gaps with respect to the best lower
bounds are quite large in ATA instances compared to those in ESB
instances. This can be explained by the fact that the FC formulation
could not return good quality lower bounds due to the large size of ATA
instances which have 38 fixed gates. Note that FC even failed to find
a feasible solution to 18 ATA instances out of 60 with the majority of
those instances having 200 aircraft. FBS and KAA-UB also failed to find
feasible solutions in 28 and 30 ATA instances out of 60, respectively.
Our simple and quick heuristic IFS not only found a feasible solution
to all ATA instances but also outperformed both FBS and KAA-UB with
respect to the solution quality and time. Note that the average % gaps
for FC, FBS and KAA-UB are calculated over the instances in which they
could obtain a feasible solution.
6

Table 6
Performance of RFH compared to FC with IFS for AGAP-WD&AA.

ESB
Instance RFH FC with IFS Instance RFH FC with IFS

Set 1 1 23 934 23 947 Set 2 1 73 173 73 203
2 26 782 26 823 2 69 444 69 459
3 23 354 23 342 3 78 880 78 790
4 26 455 26 459 4 81 140 81 156
5 24 122 24 122 5 79 665 79 676
6 23 382 23 399 6 75 552 75 630
7 25 129 25 184 7 88 103 88 365
8 24 868 24 879 8 80 888 80 843
9 24 615 24 617 9 78 766 78 726
10 27 354 27 348 10 69 084 69 113

ATA
Instance RFH FC with IFS Instance RFH FC with IFS

Set 1 1 34 938 34 976 Set 2 1 48 092 48 120
2 34 102 34 129 2 48 790 48 889
3 34 883 35 081 3 55 434 55 836
4 36 663 36 709 4 62 413 62 451
5 35 280 35 574 5 51 653 51 672
6 36 056 36 103 6 47 743 47 781
7 35 476 35 789 7 65 460 65 533
8 34 411 34 564 8 57 601 57 738
9 34 434 34 744 9 58 094 58 139
10 38 092 38 128 10 49 606 49 742

In Table 5, we provide the number of best solutions returned by
each method on ESB and ATA instances. Note that more than one
method may yield the best solution in some instances. According to
Table 5, RFH found the best solutions in all ATA instances whereas
it obtained the best solutions in 51 ESB instances out of 60. It seems
that as the number of fixed gates increases, the performance of RFH
improves compared to other heuristics.

Note that IFS produces very good solutions quickly and RFH im-
proves the solution found by IFS in most instances in a very short
time. We performed further experiments on the ESB instances with 50
aircraft to see the value of using the restricted formulation (i.e., RFH)
compared to solving the full formulation (i.e., FC) when the solution
found by the IFS is supplied to the solver as an initial solution. The
results which are summarized in Table 6 demonstrate that it is better
to use the restricted formulation instead of the full one with the initial
solution by IFS (i.e., FC with IFS) as the former mostly yields better

solutions than the latter does within the given time limit.
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Table 7
Preliminary experiments for ICN instances.
𝛽 𝜋 = 0.5, Friday (𝑛 = 294) 𝜋 = 0.3, Tuesday (𝑛 = 290)

RFH with IFS′ RFH with IFS RFH with IFS′ RFH with IFS

Time WD Time WD Time WD Time WD

5 42.08 27,227,920 31.01 28,294,000 23.70 24,881,075 24.52 25,669,080
6 68.24 27,212,150 56.67 28,273,405 37.13 24,874,255 34.38 25,660,965
7 182.02 27,146,795 180.34 28,255,450 71.45 24,864,740 73.93 25,660,965
8 200.00 27,107,200 200.00 28,270,650 172.39 24,838,515 200.00 25,657,930
9 200.00 27,163,225 200.00 28,331,660 200.00 24,843,395 200.00 25,665,180
10 200.00 27,248,700 200.00 28,343,035 200.00 24,836,010 200.00 25,675,480

4.3. Results for AGAP-WD: Comparison of heuristics

In this section, we compare our matheuristic with the metaheuristics
existing in the literature on ICN, ESB and ATA instances for AGAP-WD.
Specifically, we compare the following heuristics:

• SATS: Hybrid simulated annealing and tabu search heuristic
in Cheng et al. (2012)

• TSPR: Tabu search heuristic with a path relinking feature in
Cheng et al. (2017)

• REFBCO: Fuzzy bee colony optimization algorithm in Dell’Orco
et al. (2017)

• REICMPACO: Improved ant colony optimization algorithm in
Deng et al. (2019)

• FBS: Filtered beam search heuristic in Karsu et al. (2021)
• PLFITS: Probability learning-based feasible and infeasible tabu

search heuristic in Li et al. (2022)
• IFS: IFS formulation-based heuristic proposed in this study
• RFH: Restricted formulation-based heuristic proposed in this

study

The results of TSPR and SATS, which are only available for ICN in-
tances, are obtained from Cheng et al. (2017) and Cheng et al. (2012),
espectively, whereas those of REFBCO, REICMPACO and PLFITS are
aken from Li et al. (2022), and those of FBS are obtained from Karsu
t al. (2021). Note that Li et al. (2022) implemented REFBCO, REICM-
ACO and PLFITS with a time limit of 200 s.

As all metaheuristics except SATS, TSPR and FBS were run with
time limit of 200 s on the benchmark instances for AGAP-WD, we

mplemented RFH with a slight modification in order to have a fair
omparison. In particular, we solve the restricted formulation only once
ith a fixed 𝛽 (the number of gates that can be considered per aircraft)
nd set the time limit to 200 s as in Li et al. (2022). For ESB and
TA instances, we set 𝛽 to six as in our previous experiments whereas
e set 𝛽 to eight for ICN instances based on a preliminary experiment
erformed on two randomly selected instances with a different percent-
ge of transfer passengers (𝜋) and a different day implying different
umber of aircraft (i.e., 𝑛) (see Table 7). We observe that the number
f transfer passengers is very small compared to the number of non-
ransfer passengers in ICN instances. Therefore, in addition to trying
ifferent 𝛽 values, we tried minimizing ∑

𝑖∈𝐼
∑

𝑘∈𝐾𝑔(𝑖)
𝑒𝑑𝑘(𝑒𝑖 + 𝑓𝑖)𝑥𝑖𝑘

nstead of the original objective function (15) in IFS. This modified IFS
s referred to as IFS′ in the sequel.

The results of the preliminary experiments are given in Table 7
here the obtained objective function values and solution times are

hown in columns WD and Time, respectively. The results in Table 7
ndicate that using RFH with IFS′ and setting 𝛽 to eight yield better
esults. Hence we perform our main experiments using IFS′ and 𝛽 = 8
n ICN instances. Note that we also tried using RFH without IFS or IFS′
n these two instances and observed that RFH could not return any
easible solution for 𝛽 values ranging from 5 to 10, which reveals the
mportance of IFS or IFS′ for RFH.

The results for ESB and ATA instances are summarized in Tables 8
nd 9. In these tables we report the objective function (i.e., total
7

assenger walking distance (WD)) achieved by FBS, REICMPACO, REF-
CO, PLFITS, IFS and RFH, and the solution times (Time) of these
pproaches. Note that REICMPACO, REFBCO, and PLFITS were run
0 times and the reported passenger walking distances in Tables 8
nd 9 are the best ones among 10 runs. The solution times given
or REICMPACO, REFBCO, and PLFITS are the average solution times
ver 10 runs. In Tables 8 and 9 we also present the average percent
mprovement (Imp%) on the total passenger walking distance achieved
y the RFH compared to the PLFITS (𝐼𝑚𝑝% = 100 × (𝑃𝐿𝐹𝐼𝑇𝑆 −
𝐹𝐻)∕𝑃𝐿𝐹𝐼𝑇𝑆). Note that PLFITS has achieved the best results on
ll ESB and ATA instances in the literature. It is seen that RFH and
LFITS outperform FBS, REICMPACO and REFBCO on ESB instances.
FH yields superior results to PLFITS with regard to average solution
uality in set 1 instances while the former obtains slightly worse results
han the latter in set 2 instances where apron usage is high. IFS quickly
inds slightly worse but similar results as RFH. On ATA instances which
ave fixed gates more than twice of the fixed gates available in ESB
nstances, RFH largely outperforms other heuristics in that it achieves
he best average results in all ATA instances except those in set 1
ith 50 aircraft and those in set 2 with 150 aircraft. Similar to the

esults for AGAP-WD&AA, when the number of fixed gates increases,
FH improves its performance compared to other heuristics. Like ESB

nstances, IFS obtains slightly worse results than RFH on ATA instances
ut with negligible times.

The results for ICN instances are summarized in Table 10, where
e report the objective function values (WD) achieved by SATS, TSPR,
EICMPACO, REFBCO, PLFITS, IFS′ and RFH, and the solution times
f these approaches. We also report the percent improvement (Imp%)
chieved by RFH over PLFITS in terms of WD as PLFITS obtained the
est-known solutions for all ICN instances until now. It is seen that RFH
ields the best results in all 20 ICN instances. Hence, our results im-
rove the best-known results in the literature for these instances. RFH
mproves the best results by 3.28% on average, with average percent
mprovement decreasing as the percentage of transfer passengers (𝜋)
ncreases. Note that our simple and fast IFS′ heuristic also performs
etter than the existing metaheuristics with very small solution times
ompared to others.

Although computational platforms used by the heuristics are dif-
erent, the solution times needed by the heuristics except IFS/IFS′ are
omparable to each other on all data sets due to the time limit of 200 s.
ote that the computational platform used for REICMPACO, REFBCO
nd PLFITS is slightly slower than the one used for RFH, as stated by Li
t al. (2022). However, considering that the best objective values of
0 runs of REICMPACO, REFBCO and PLFITS are reported with their
verage solution times over 10 runs, the obtained results are in favor
f RFH.

Finally, as in Section 4.2, we performed additional experiments to
ee how RFH compares against the full formulation where the MILP
olver is fed with the solution found by IFS (i.e., FC with IFS). The
esults of these experiments are given in Table 11 for ESB and ATA
nstances with 50 aircraft. Similar to the case in AGAP-WD&AA, RFH
as clear advantage over FC with IFS in these instances as the former
rovides better solutions in 38 out of 40 instances within the given
ime limit. Moreover, on ICN instances, when we solve FC providing
FS′ solution as an initial solution to the solver, we do not get any
mprovement over IFS′ results in any of the ICN instances whereas
FH improves IFS′ results in all ICN instances. Thus, these results
learly show the value of using the restricted formulation over the full
ormulation with an initial solution.

. Conclusion

We consider the airport gate assignment problem recently addressed
n Karsu et al. (2021), which lexicographically minimizes the number of
ircraft assignments to apron and the total passenger walking distance.
e propose a novel flow-based mixed integer linear programming
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Table 8
Comparison of heuristics on ESB instances for AGAP-WD.

Set m n FBS REICMPACO REFBCO PLFITS IFS RFH

WD Time WD Time WD Time WD Time WD Time WD Time Imp%

1 18 50 25,482.2 0.54 27,896.3 154.13 26,879.3 96.64 25,123.6 72.62 25,047.3 0.04 25,009.5 200.00 0.45
100 91,556.9 7.20 93,256.8 114.65 91,641.3 112.87 87,640.2 85.21 85,353.1 0.05 85,340.0 200.00 2.62
150 174,984.3 30.84 181,234.5 135.63 184,631.2 97.32 173,854.3 76.32 166,777.4 0.07 166,774.5 200.00 4.07
200 344,250.2 91.32 365,953.1 126.74 354,213.6 73.21 342,005.3 115.65 336,439.2 0.10 336,439.2 200.00 1.63

2 18 50 81,056.4 0.36 85,214.6 102.52 83,542.4 85.62 78,345.6 76.27 77,569.7 0.03 77,499.3 52.40 1.08
100 210,763.8 4.71 232,564.5 95.65 225,634.3 114.21 209,135.5 85.32 209,908.5 0.05 209,883.1 129.37 −0.36
150 297,333.2 21.10 325,745.1 89.72 315,263.4 164.96 295,213.3 99.14 297,009.1 0.10 296,925.9 106.46 −0.58
200 494,978.9 67.63 548,564.3 73.25 536,254.7 189.56 494,635.9 112.62 495,354.4 0.16 495,305.5 200.00 −0.14
Table 9
Comparison of heuristics on ATA instances for AGAP-WD.

Set m n FBS REICMPACO REFBCO PLFITS IFS RFH

WD Time WD Time WD Time WD Time WD Time WD Time Imp%

1 38 50 36,178.8 4.30 38,645.8 185.21 37,925.3 54.65 35,420.2 118.32 35,670.9 0.05 35,464.2 200.00 −0.12
100 84,792.7 71.58 86,452.3 146.45 88,126.5 113.21 83,820.9 105.21 83,213.4 0.10 83,099.3 200.00 0.86
150 124,072.7 361.24 135,483.1 139.69 128,362.2 184.62 120,532.1 65.85 118,367.3 0.40 118,334.8 200.00 1.82
200 249,034.6 1094.92 276,532.9 95.54 254,563.2 129.63 236,523.2 95.32 229,177.5 1.02 229,121.1 200.00 3.13

2 38 50 58,165.0 4.24 61,235.6 182.32 57,698.5 132.52 56,127.5 78.58 54,577.3 0.05 54,525.5 8.45 2.85
100 278,693.7 60.91 294,652.1 132.52 280,321.3 179.32 268,432.1 87.12 262,686.6 0.11 262,558.9 21.82 2.19
150 443,563.6 281.09 463,252.3 112.87 456,325.6 185.62 435,216.3 76.53 435,538.9 0.18 435,449.6 48.44 −0.05
200 798,524.5 804.25 812,369.5 142.37 823,641.2 156.27 796,231.2 143.95 793,971.7 0.30 793,691.9 154.34 0.32
Table 10
Comparison of heuristics on ICN instances for AGAP-WD.
𝜋 Date m n SATS TSPR REICMPACO REFBCO PLFITS IFS′ RFH

WD Time WD Time WD Time WD Time WD Time WD Time WD Time Imp%

0.1 Friday 74 294 27,091,415 170 26,945,560 185 26,958,710 176.53 26,883,430 185.65 25,926,530 114.82 25,070,495 8.70 25,006,045 29.69 3.55
Saturday 74 290 27,001,350 174 26,800,315 185 26,925,450 159.43 26,879,255 174.65 25,966,585 95.25 25,031,660 2.96 24,975,980 53.27 3.81
Sunday 74 304 30,016,505 193 29,764,555 201 29,672,665 169.63 29,784,010 165.32 28,910,295 104.92 27,974,065 4.68 27,925,355 24.97 3.41
Monday 74 297 27,554,290 185 27,668,210 207 27,370,585 158.52 27,054,520 186.65 26,699,195 122 25,880,105 2.13 25,829,915 33.78 3.26
Tuesday 74 290 26,055,045 180 25,780,535 196 35,740,330 189.98 25,682,365 179.53 24,906,875 122.11 24,025,135 4.69 23,981,610 33.85 3.71
Wednesday 74 279 25,092,430 151 24,875,240 173 24,552,775 198.92 24,883,320 200.01 24,227,945 127.04 23,416,075 5.63 23,382,520 21.76 3.49

0.3 Friday 74 294 29,325,270 184 29,274,210 196 28,452,540 185.45 29,330,105 175.65 27,158,465 143.94 26,288,910 8.78 26,226,690 85.41 3.43
Saturday 74 290 29,378,545 194 29,272,310 224 29,020,050 167.14 28,940,075 165.41 26,977,360 117.11 26,201,750 3.21 26,060,650 200.00 3.40
Sunday 74 304 31,690,910 199 31,642,165 226 31,745,625 178.63 31,578,310 184.63 29,673,555 136.52 28,794,790 2.66 28,665,125 78.65 3.40
Monday 74 297 29,798,700 219 30,025,230 228 29,837,770 163.21 29,413,050 145.32 27,739,185 155.72 26,927,165 2.36 26,841,520 200.00 3.24
Tuesday 74 290 28,050,095 189 27,898,320 211 27,894,450 167.58 27,596,960 167.34 25,712,685 131.25 24,967,940 3.26 24,838,515 170.85 3.40
Wednesday 74 279 27,816,840 156 27,558,215 174 27,557,455 192.36 27,605,650 187.65 25,456,930 145.8 24,865,820 2.19 24,780,635 200.00 2.66
Thursday 74 289 29,472,105 186 29,402,315 205 28,509,725 132.02 28,347,840 196.54 27,056,815 145.57 26,141,685 5.13 26,040,010 200.00 3.76

0.5 Friday 74 294 31,679,360 199 31,304,880 213 31,816,275 185.65 31,519,750 156.57 27,879,920 121.33 27,361,940 3.87 27,100,040 200.00 2.80
Saturday 74 290 31,436,665 195 31,337,070 213 30,738,010 134.61 30,868,875 168.32 27,971,855 155.17 27,239,615 2.28 26,987,935 200.00 3.52
Sunday 74 304 35,011,240 217 35,050,585 261 35,403,830 147.32 34,260,520 175.63 30,861,150 166.91 30,024,830 2.73 29,897,910 200.00 3.12
Monday 74 297 31,989,310 213 31,900,725 234 30,875,445 169.31 29,872,170 197.47 28,559,395 165.01 27,883,800 2.65 27,750,140 200.00 2.83
Tuesday 74 290 30,112,340 198 30,069,210 223 29,224,860 184.23 28,912,285 179.32 26,664,255 120.78 26,022,455 2.41 25,899,600 200.00 2.87
Wednesday 74 279 29,751,435 175 29,667,010 201 27,259,495 173.65 28,135,610 185.65 26,457,175 134.41 25,920,735 2.35 25,729,615 200.00 2.75
Thursday 74 289 31,896,375 194 31,755,335 228 29,323,555 197.61 29,274,900 163.54 28,087,180 155.12 27,322,105 3.13 27,186,485 200.00 3.21
formulation for the problem and a matheuristic, which is based on the
idea of iteratively solving a small-size (restricted) formulation of the
problem.

We first test the suggested formulation and matheuristic on problem
instances used in Karsu et al. (2021) for the AGAP that lexicograph-
ically minimizes apron usage and passenger walking distance. The
results reveal that the suggested formulations outperform the existing
ones as well as the customized branch and bound procedure suggested
in Karsu et al. (2021). We also demonstrate that for larger problem in-
stances, which are generated based on the layouts of Ankara Esenboğa
and İstanbul Atatürk airports, the proposed matheuristic finds solutions
that are of better quality than the Filtered Beam Search proposed
in Karsu et al. (2021) as well as solving the proposed formulation with
a time limit.

Finally, we compare our matheuristic to the metaheuristic ap-
proaches for the single objective AGAP, where the only objective
is minimizing total passenger walking distance. We compared our
matheuristic with REFBCO in Dell’Orco et al. (2017), REICMPACO
8

in Deng et al. (2019), FBS in Karsu et al. (2021), and PLFITS in Li et al.
(2022) on benchmark instances (ESB and ATA) of Karsu et al. (2021)
and also with SATS in Cheng et al. (2012), TSPR in Cheng et al. (2017),
REFBCO in Dell’Orco et al. (2017), REICMPACO in Deng et al. (2019),
and PLFITS in Li et al. (2022) on ICN instances of Cheng et al. (2012).
PLFITS by Li et al. (2022) is reported to provide the current best-known
results for these benchmark instances. The results of our computational
experiments demonstrated that our matheuristic outperforms PLFITS
and provides the new best-known solutions for all ICN instances and is
comparable to PLFITS for ESB and ATA instances.

Future research can be conducted to address other variants of the
problem with different objective functions and operational dynamics.
We believe that our flow based formulation and matheuristic will
also prove valuable in addressing airport gate assignment problem in
a multiobjective setting that involves the passenger walking distance
criterion.

Moreover, the formulation and the algorithm that we propose can
be used for problems including factors such as resource availability and
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Table 11
Performance of RFH compared to FC with IFS for AGAP-WD.

ESB
Instance RFH FC with IFS Instance RFH FC with IFS

Set 1 1 23 947 23 956 Set 2 1 73 181 73 203
2 26 803 26 825 2 69 446 69 459
3 23 379 23 346 3 78 880 78 925
4 26 455 26 459 4 81 148 81 152
5 24 156 24 202 5 79 676 79 689
6 23 358 23 399 6 75 570 75 630
7 25 139 25 184 7 88 354 88 365
8 24 879 24 929 8 80 888 80 891
9 24 615 24 617 9 78 766 78 799
10 27 364 27 369 10 69 084 69 113

ATA
Instance RFH FC with IFS Instance RFH FC with IFS

Set 1 1 34 917 35 226 Set 2 1 48 092 48 120
2 34 051 34 339 2 48 852 48 889
3 34 827 35 081 3 55 530 55 836
4 36 685 36 740 4 62 451 62 451
5 35 424 35 574 5 51 659 51 676
6 36 010 36 243 6 47 743 47 781
7 35 558 35 789 7 65 507 65 533
8 34 475 34 564 8 57 612 57 738
9 34 570 34 686 9 58 128 58 139
10 38 125 38 128 10 49 681 49 742

allocation, in addition to layout and size considerations. Specifically,
newer technologies such as Internet of Things or Video Analytics can
be employed to determine the resource use at the gates, which would
then be used to incorporate these concerns into the formulations and
make effective decisions. We believe that modifying our models so
as to consider such resource allocation aspects is a promising future
direction.
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