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ABSTRACT

ON LOWER BOUNDS OFF CHARACTER SUMS

Ferruly Ozbudak
M.S. in Mathemadtics
Advisor: Prof. Dr. S.A. Stepanov
June, 1995

In this work we extended the results of S.A. Stepanov [3], [1] aboul lower
bounds for incomplete character sums over a prime finite field 7, to the case
of arbitrary finite ficld /7. Morcover we also applied Goppa’s construction
to superelliptic curves with a lot of rational points to coustruct rather good

geometric Goppa codes.

Keywords : inite ficld, character sum, linear code, Goppa code.
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OZET
KARAKTER TOPLAMLARININ ALT SINIRLARI UZERINE

Ferruh Ozbudak
Matematik Boliunu Yiksek Lisans
Danmisian: Prof. Dr. S.A. Stepanov

Haziran, 1995

Bu ¢aligmada S5.A. Stepanov’un [3], [1] bir asal sonlu cisim [7,nin cksik ola-
bilen karakter toplamlarimm alt simirlan hakkinda yaptigr caligmalar herhangi
bir sonlu cisim [ icin genellegtirildi. Ayrica Goppa’'nin kod bulma metodu da

tizerinde ¢ok fazla rasyonel nokta bulunan stipereliptik egrilere uygulandi.

Anahtar Ielimeler : Sonlu cisim, karakter toplami, dogrusal kod, Goppa

kodu,
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Chapter 1

INTRODUCTION

Pinite fields are interesting basically due to the fact that Galois Theory is
complete via IProbenius automorphism. We will give two applications of finite

ficlds in this thesis.

In the first hall we deal with lower hounds of incomplete character sums
over finite ficlds. In Chapter 2 basic structure of finite ficlds, multiplicative and
additive characters are given. We generalize Lhe wonderful method of Stepanov
about lower bounds of incomplete quadratic character sums of polynomials over

prime flinite fields, in Chapter 3.

The seccond part begins with Chapter 4, which gives basic definitions of
linear codes. We apply superclliptic curves with a lot of rational points to

Cloppa construction in Chapter 5. We conclude with Chapter 6.



Chapter 2

PRELIMINARIES 1

This chapter contains a very limited exposition of finite fields, multiplicative
and additive characters of finite ficlds. Mast of the proofs are referred to
Stepanov [1] or Schimidt {7]. The veason is the fact that the proofs are casy to
wnderstand and they are very well explained in above books and Lidl [8]. The
chapter ends with the statement of the A. Weil’s result on hounds of character

sums of polynomials.

2.1 Finite I'ields

A finite field with ¢ clements is denoted by [ Since £ 1s a field, ¢ may not
be any positive integer but either a prime p or a positive integer power ol a
prime p". The typical examples are 19 and [).
)
l.g=2,I=1{0,1}.

2. q=2% Fy={0,1,a,1 +a}, where o - o+ 1 = 0.
Formally we have the following theoren.

Theovem 1 If I, is « finite field of order g, then ¢ = p¥, p a prime. For
cocry such g, there ceisls ceactly one field 7. This ficld is the splilling ficld of

wl —wover Iy, and all of its clements are rools of xf — .

PROOI.  Sce lor example Schimidt [7], Theorem 1IA.



Covollary 1k, C I, iff q1 = PR g = M and by | Ay

Therelore for any characteristic p > 0, we have a tree structure ol finite
ficlds of characteristic p where 19, 15 the base of the tree.
Moreover the algebraic closure is simply the union of all clements of this

bree, namely

R

Theorem 2 0 = I\ {0} is @ madtiplicative group of order ¢ — 1 which is
cyclic.

PROOE. I ¢ = p, then this fact follows from Gauss’s theorem (see for exams-
ple Niven [16], Theorem 2.36). I ¢ = p*, then I s a separable extension, and

this follows by primitive clements theorem, which generalizes the theorem of

(tauss. |

eg. I'7 = {u, o o) = {1, 0,1 4 «}

2.2 Multiplicative Characters of /7]

A group homomorphism x from amultiplicative group 7 to the multiplicative
gronp C* s called a nedtiplicalive character of 147, Thus

n 7 - €7 s that

v(ab) = y(a)y(b) for all u, b e b
Note that y(1) = | and | x(«) |[= | for any « € I

Iy and vy are multiplicative characters of #7, then there exists a multi-

plicative character of Iy denoled by yqxa and defined by
xixa(a) = vi(a)vala) forevery a € ).

Morcover 7 which is defined as

7 ) = ()

is also a multiplicative character of I Therelore the sel ol multiplicative

characters of I Torms a group, denoted by £, calledhas the dual group of I+

3



Iy is also a cyclic group of order ¢ — 1. If g is a generator of /77, then there
exists a generator x of I77 defined by

2t

x(9') = e foreveryt €Z, (t,q—1)=1lort=0.

The unity of £ is called as the principal character and denoted by yq.
We say v is of order d if x* = xy and d is the smallest such positive integer.
We say x is of exponent s if x° = xq, l.e. d]s.

We can extend the domain of definition of any multiplicative character y

to I, via

L il x = yo,

x(0) =
(0 otherwise.

There exists orthogonality relations among the characlers as stated in the fol-

lowing theorem:

Theorem 3

. — =1 x=xu
i) 1) > x(x)= !

STy () otherwise,

g—1 fa=1,

2 Y e =
Z 0 olherwise,

NEFS
i) Lels|q—1
s fae ()
S xe) =0 ifa g (), e £,

« of exponend s I ifa=0.

PROOF. See for example Schmidt [7], Theorem 2.1D, Lemma 2.1A. |

Note that duality is transparent in 1), and i) is an extension of i),

Morcover the orthogonality relations hold for the complete linear character
sums of £ or Iy, 1L s very diflicult to find hounds for arbitrary incomplete
sims. Tn chapter 2, however we generalize Stepanov’s method which deals with

not ouly for comlete sms but also for incomplete sums as well.



2.3 Additive Characters of I,

An addiltive character b of Iy is a homomorphism [ram its additive group to

the multiplicative group C*. Thus

oI5, — C, so that

la+b) = h(a)p(b) for all a,b e I
Note that »(0) = 1.

There exists @ natural map froin f4, ¢ = p™ Lo I, called as the trace of I,

over 4, which is defined by

tr(e) =w4aP - T = 4 pw) ok (;5’”“](:1:),
where
p

Giwi— o

is the Frobenius automorphism of £ fixing I,

Theorem 4 Fvery additive character of 19, is of the lype

2rits(as)
ey forallw €1,

() = ¢

Jor some a.

PROOF.  See for example Schimidt [7] Lemma 2.2D. |

2.4 A. Weil’s Result on Character Sums
(1949)

Theorem 5 If

1) s the number of distinct rools of f(x) € I9[x] in ils splitling ficld over
I,

g

2) v s a nonlrivial nadtiplicative characler of order s,

3) [x) is nol an s-th power of any polynomial,

5



then

|20 x(J(@)) | (m = g2

w€Iy

Ovriginal proof of this result was based on the use of very powerful methods
of abstract algebraic geometry over algebraically non-closed fields. An ele-
mentary proof of the theorem was given for the first time by Stepanov. See,

Stepanov [1], Theorem 1, page 56.

0



Chapter 3

ON LOWER BOUNDS OF
INCOMPLETE CHARACTER

SUMS

3.1 Introduction

Let p> 2 be a prime number, [, he a prime finite field with p elements which
we identify with the set {1,2,...,p}. Let f(x) be a polynomial of degree > |

with coelficients in £, and define

Jelf‘ll P
e (4 19 3 N (3 Y Q NN
where (])) is the Legendre symbol
0 fa=10
« , : .
(=) == I ifa# 0 and ais asquare in [,
P

—1 il @ is not a square in I,

A.A. Karatsuba [12] and D.A. Mit’kin [15] proved the existence of a square-

free polynomial in #,[2] of degree n > 2( T 1) for which

5,00 = (R =

Therefore the Weil estimate (see Scction 2.4) cannol he sharpened essentially,

7



for example to

| 2: X)) = (On = .l.)(l)!/i

=€l
Later 5.A. Stepanov [4] gave a very simple prool of this result by using Dirichlet

pigeon-hole principle and extended it to the case of incomplete sums

L)
sw=20) 1< w <y
z=1 p
Namely, he proved the existence of a square-lree polynomial f(x) € I9,[x] of

dogree > 2(FHllos2 ) 1) for which

logp

N
. -, [(z
.SN(j) = EJ( (7) )) = /N,
2=z
In his book [1] (section 2.1.3 problem 15) S.A. Stepanov has shown that the

same method can be used to get similar results for an additive character.

We will prove the following theorem which gives an extension ol this result

to the casc ol an arbitrary nontrivial multiplicative characters of arbitrary finite

field I7.

Theorem 6 Lel g = p™, p a prime nwmber, B = {x,2q,...,an} C I, an
arbitrary subset of Iy, and x a nontrivial mulliplicative character of Iy, Lel

s > 1 be an caponenl of . Assume N = c(q)logq and n > 1 is an inleger

salisfying

. Nlog(l — 1) 4 log(l - I,(1 — L)~V (1 — ¢=N
0> Nlogs og(l — ;) -+ log( (1 =3)7™") n log(l —s7") b Ry, (2.1)

log q log ¢ log ¢

where

b < K, < 5log — 1 (2.2)
qg—1

and

log ! .
| Bl < (M2 (2.3)

, -
q (I — ;]—)N - I,
and also where:

e
log s

(1) if ¢(q) = co as q — oo, then M =
(ii) if there exists C' such that c(q) < C' as g — oo, then M = ("

8



Then there catst al least s — 1 distinet monic s power free polynomials
hi(a), 1=1,2,...,8 = I in Iy[x] of degrec < sn such thal

N
> x(hi(ay)) = N
i=1

Joreachi=1,2,...,8s—1.

Remark 1 Theorem 6 can be compared with the [lliol’s resull on a lower
bound of lcast nonresidue for a prime finite ficld.

Let x be a nontrivial multiplicative character of Iy of exponent s. Lel s < g'2.
Define Ay s = {) € IRlx] o [ & (F42])" and degf < s}, There cvisls a subsel
B C Iy osuch that [(B) & (I7)" for cach [ € A,,, for instance B = [7* by
Weil’s resull.

Define h(q,s) as the minimum of the cardinalilies of the sels salisfying the
property that 3 C Frand [(BB) € (I%5)" for cach [ € A,,. Then as a resull of
Theorem 6 h(q,s) > d, log q for large q where d, > 0.

Define By = 40,25, 9(0,8)} © I I [(Byay) € (15)° Jor cach [ € Ay,
then g(p,s) 2 h(p,s) > dologp Jor large p where dy > 0.

This resull is similar Lo Elliot’s result [14], [15] :

I [(Bypsy) € (I5)" Jor J(x) =, then g(p,s) > dylog p for infinitely many p
where dy > 0.

Nole that our resull holds for cach sufliciently large prime number while Flliol’s

resull holds only for infinilcly many prime numbers.

For the incomplete additive characler sums we will prove the following theo-

rems. Denote by 1 a nontrivial arbitrary additive character of 7, 1.c.
'2rri ————— N - ni
() =T where a €

For simplicity we can restrict ourselves to the case « = 1.

Theorem 7 Let g = p™, p a prime number, B = {x,2,,...,2n} C [ an

arbitrary subsel of Iy, and ) < ¢ < 5’; Let 1 < n < q'% be an inleger

salisfying
Nlog[e=t 1] log(2+ (22t + 1))
+

pe

(2.4)

=[5>
» mlogp mlogp

Then there cxists a polynomial [(x) € Iy[x] such that 1 <degf <n,
tr(f(1,) # {0}, i.c. not identically zero on I (2.5)

9



and
|L b(flx))] = N(1 - 27e) (2.6)
For large p we can improve Theorem 7 by a strouger condition on f.

Theorem 7' Lel ¢ = p™, p a prine number, B = {x;,xy,...,an} C F, an

arbitrary subsel of Iy, and 0 < ¢ < & — l'—) Let e 2 1 be an integer salisfying

2
FTE ]] - Nlog[f{ﬁ- log(1 + [ll’{:—:ff]"v) (2.7
> n 2.
m ~— logp log p )
Then there cxists a polynomial f(x) € I, [x] of degree < 1 such thal

tr(f(B)) # {0}, i.e. not identically zero on B

and
~ !
| 0l 2 N1 = 2m(= + ) (238)
=1 P
J.—
Moreover considering I, as an I, vector space if wy, @y, ..., an are colinear
over 15, i.c there caists w € 14 such that x; = wey, ¢; € F, 3 =1,2,...,N;

then n must salisfy
Nl();:[u log(1 4 [E_*l’_ )

nl > + St (2.9)
log p tog p

instead of tnequalily ( 2.7).

3.2 Notation and Lemmas

In the chapter (?f) will represent (generalized) Legendre symbol for 14 defined

as follows ;
0 fa=0

(=)= I il a0 and ais asquare in If

~1 il @ is not a square in I
We will prove three lemmas. Lemma | is used for Theorem 6.

Lemma 1 Lel g = p™, p a prime nuwmber, B = {&y, 0y, en} € F oan w-
bitrary subsct of £y, and 1 << N <q. Morcover let A, denole the sel of

polynomials in 14,[x) having the propertics:

H)



(i) the degrees of polynomials are < n,
(it) the polynomials have no root in B,

(iii) the polynomials are not of the form g(x)*h(x) where g(w) is a monic
~
I

irreducible polynomial of degree >

Then

| A
|AL] > ¢ (= =)~ K)+ Cynm (2.10)
q
where
’ q )
0 <K, <blog —— (2.11)
g -1
and
ol < (1Y) (2.12)

PROOF. Tet 12 be the set of all polynomials in £, [z] whose degrees < nand
which have al least one root in B. Let 25 be the sct of all polynomials in I"q[u:]
whose degrees < nand which have no root in 3. Then using exclusion-inclusion

arguments we have

|1,] = ¢"*! = | 1]

and
] = (" = ()™ 4 (=0 ()
50
Bl = 0= = () D () )
= "1 - 5)” + Cym

where

|(’}q,l\/,n’ S (u?l)



Let S be the set of all polynomials of degree < n and of the form g(x)*h(z)
where g(«) is a monic irreducible polynomial of degree > 1. Let Sg be the set
of all polynomials in .5 of the form g (a)*h(«) where gi is a monic irreducible

polynomial of degree k. Then

(3]

|15 < 32 15]

k=1

L

[t is well-known that (sce for example [8] p. 93) the number of monic irveducible
polynomials of degrec & is
L

- < -
= ST (g = ke,

N‘I('l\:) = :1\
)k

where jeis Mobius function and
(/L' —
b= < <o < |
¢“(q = 1)

Then using exclusion-inclusion arguments

!Skl f; (:,f/k) qu-l'l—l&k 4 ( l)[ SEd! ((«, '/A)) (/u-l-l-—[;zuE]'Zk

where we used generalized binomial coelficients.

I |
) 4 "R where | R <

|5} < g™

keg* o2
[L"';]\ q 12
Y15k < ¢t log + "t R where R < log3
k=1 Q= -
50
|5] < ¢"*'5log 1
q-—1
Therclore
I . (
1AL 2 1] = 19] = ¢ (0 = =)V Cyn — 15 log —
q q -
| . . o
ENEX At ;)N — K,) 4+ Cynm (2.13)

The sel A, includes the set of all of the irreducible polynomials of degree n.
Stepanov used this subsel instead of A, Since A, has more clements our

bound is slightly better than Stepanov’s bonnd,

Lemma 2 and Lemma 3 are used for Theorem 7. Lemma 2 s a special case
of Lemma 3 with a better bound.

}2
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Lemma 2 Lel g = p™, p a prime number, I3 = {oy,29,...,an} C I%, be given
and | <n < N <q. Morcover lel oy, 2y, ... xn be colincar over 15,0 Define
Ay as the sl of all polynomials in 15[x] of degree <n. Let v be the lincar map

between the 15, veelor spaces

N
T4, — H I, (2.14)

=1
wilh
(J) = (r(f(2), tr([(22)), ..., e ([(2n))) (2.15)
Then the rank of the corresponding malriz is > n - 1.

PROOF. Bach f € A, can be written as [(2) = Si_, aa®, ap € I, There
exits a normal basis {wy,we, ..., w,} C I for I, as a veclor space over /9,

i-1 , . )
such that w; = wP i =1,2,... m for some w € I7;. Then

—_ m , v . , . i
ar = 3 iLy apjwy, o € I,
n n
. N . N .
Jx)=>%" ap jw;’
k=0 3=1

By additivily ol trace

n m
. T L.
r(f(x)) =D > o jlr(w;a’)
k=0j=1
Thus the matrix of this map is
tr(wy) tr(wm) tr{wyxy) tr(wmey) tri un .‘:;' tr(wn 'r;')
tr(twy) tr(tnyn) tr(wy ) tr{ g ry) t1{ g :r;') tr{ iy .1:,'2')
ANB =
tr{ 1wy ) tr{um)  O(mry) tr(wmry) h-((ulm',:',) lr(m,,,.r';\,)

tr(wy) tr(wjay)

is a submalrix of Ay p
tr(wy)  r(wjas)

tr(w;) # 0 for any j = 1,2,...,m. Morcover for some j, | <j <m
r(wj(mg — x1)) # 0, if 22 # =1; since otherwise tr(a(vy —ay)) = 0 for
cach o € I, so tr(#) = 0 for cach # € 4. Then rank Aynp > 2. Deline

I3



Anvp(inde, o V< <mye=1,2,...,n swhich is a submatrix of Ay p,

as below

br(wy) (g, ay) Ir(w;,2?) br(w;, xY)
) (o) loged) ()
/1]\’:H(jl )]"2) s )jH) =
o) ) Do) e

Using the lacts that
(i) @y, @9,..., 2y are colincar over [,
(1) Ans(JrsJ2, .-y Jn) is similar to Vandermonde malbrix,

we can bring An.p(j1, Jay - - -, Jn) into an cquivalent form Aivdzrnin) N B which

is
r tr(wg) . . 7
0 (r(lu';](.q —-1¢)) .
AN, pUrs2, i) =
0 0 (g, (rn = tp o1 )Fn oy = ¥n_2) .- (12 = 21)) ]

where # represents a don’t-care entry.  Since a;  # @ il g £ Ja

An Bty J2y - - -y n) is nonsingular. Therefore rank 7 2 n 4 1. |

Lemma 3 et g =p™, p a prime number, 3 = {z,22,..., rn} C I be given

and
| <n< N <q. Define A, as the set of all polynomials in [y[x] of degrec <.

Let 7 be the linear map between the I, vector spaces
N
A= [ B (2.16)
t=1

with

() = (tr(f (), tr(f(22)), -, tr(f(xn))) (2.17)

Then the rank of the corresponding matriz is > [2:].
> m



PROO.  We know [(a&) = ¥

forming a normal basis.

am
7=:1

ek N P = T
ap j;at where oy € 19, wj = w

m

De(f(2)) = f(a)+[(=)4 e f ()" ?and (faN" = Z: Z (\';:’ju)l';“:r""’", 0 <

k=0 j=1

fine £ o= 2P i = |.¢
Define &, = af & = 1,2,

Therclore [ € Ker(r) il and only il

m—t n m

By normality of the basis w

i

(S (i) = Z Z Z(_}‘L.,j?llj.|4/£,{i,, =0forcach 1 <1 <N

=0 k=0 =1

We can write the system ( 2.18) in matrix notation as [ollows

(/il\’,B)Nx(n ES 1)mz(i)N,B)(n + I)mle = (U)le

where
Ao A
/l2||_) /12,1

Anp =
/\N.O AN,I
with
m times m thnes

A = —_——
hy 1...1 f;,,, . .E,',,,

A 1,m=—1 W

AZ,m—l

/‘N,m~l ]

m times

P
En n
oS

) {)N,B =

, by, =

0o Wy

o202y

Qo Wmpr

(.)’|'|1I)l+,,

'y,2102. 41

A, MWingn

O 1101 4

Oy 2 Wy

L (Xn,m“)m.-{-u

pll

= Wi

(2.18)

(2.19)

v < m--1|



There is a natural isomorphism between Ifp veclor spaces A, and I'[,(Z,H "

(28 .-

Pherelore Ker(T) = (0ot oy Qomy Q1 1y« e oy Qlimy ooy ee oy Qyly ooy () €
a(ndtim gy 7 . R . N

”S:; ) 1% 0 by Tormed with this veclor satisfies ((2.18)}.

But we can observe that in by ;3 lor cach oy ; there exists i enteries as oy jw,

I <1< Forv=10 we have a submatrix Ay g of Anp

r - -
L & o 2 af
n . e
/l* _ ! 6270 ~2,00 1 o)) ’172]
NB = . . =
N . g
] | £n+ 1,0 é,”_ 1o L ] Tniit .’I,”.H ]

which is a Vandermonde nmhi\

Therelore dim{byp € ity m I b p satislying ( 2.18)} < (n + l)m -

(n + 1). Since there is an m to | map from this kernel € I[f":] m I5, e

Ker(r) € [12™ ) we have dim(Ker(r)) < =[—(n+4 L)m + E. .l.heu-,[m(-:
n 4|1 n+ 1
ank(r) = (04 Do [=(n+ D+ =
rank(r) > (n A4 m+ [=(n 4+ 1)m - )= - J

3.3 Proof of Theorem 6

[First we will prove Theorem 6 for generalized Legendre symbol in Proposition

Proposition 1 Letq = p™, p an odd prime number, 3 = {v1,22,...,an} C 15

an arbitrary subset of 1%, Assume N = ¢(q)logq and n > 1 is an inleger sal-
isfying

.S Nlog(l — L) + log(l — Kq(1 = L)~ —9-N
Nlog2 og(l = 2) og( (=3 ) + log(l —277)  Ruvg(2.20)

n
log ¢ log q log ¢
where
0< K, <5log — (2.21)
qg—1
and

(2.22)

and also where

16



(1) if ¢(q) = co as g — co, then M = !71:,75

(11) if there exits C' such that o(q) < C' as g — oo, then M = ("

Then there exisls a monic square free polynomial [(x) in Iy[x] of degree < 2n
such that

ZN: _(__._) =N

where (q) is the generalized /,C_r/r’.-n,(lm symbr}l.

PROOI.  Let A% be the set of all monie polynomials in A, which is the sct

defined in Lemma 1. Then

/ln . | Cv( .
,A:x :,—lzfln((l ——-) - K )_’ YN
q q g

For each polynomial in A% assign an N—fuple as follows

=

/l € /1:1 —3 ¥ € I_I{— l l}

I [A2] > 2N 1, then there exits al least two equal N—tuples vy = 7, where

fi # [2. Deline [ as [ = [y f,.5inee fi is a square-free polynomial © = 1,2, [
is nob a square polynomial. Morcover (-j—%i)-) = | forecach j=1,2,...,N.So

Al ( )
Z ~—22) = N and degf < 2n

and

oN P n CoNm < * ever
28 1 < g™ (() - ;) Iy) + =i < |Ax] whenever

Cq,N,n

, Nlog2 Nlog(t = 1) -+ log(1 = Kq(1 - £)7") . log(1 -+ 2-N)
log q log q log q

Il e(q) <7 then ()lfv ) < (}—y?—) < (C'log q)*+.

+ log(1 +

. <1 - QY vrye ‘a re-
[l ¢(q) = oo as g = oo, then n+ 1 —+ 00 as g — o0 and using Stepanov’s re

sult N 4 D log 2 N
- y o f
py WA Dlog2 o N losd

log q ' n-t1 7 log2

(L - ,l,)N —

K.,)



Now using Stirling’s formula lor ( ’: ’>, e
fog Nl = (N + %) log N = N + C ()(7{,-) where (' = i log 2 as ¢ — oo

we gel,

/\f I 2n41 ntly v
N — n-+1 }(ﬂv-I-l)(l——,--t—)(l——()(-—l'—'-))_(,.;_()(;_'.'1..4_,_ _:l;'_____)
(" + ‘) (n 41 ) \/7—17—_1—( N N eI putpas
So
log q ¢
N < (25d n+1 ‘:n.-l-l = (——log n41
(" + ’> - 'log?) ‘ (log 2 o8 1)

Thus |C, ynl < (M log g)™!" where il ¢(q) is bounded by C' jthen M > C';

clse M = e But

>g2
Vo N fog ¢ |
log (1 + W )| < (M 22
Hos (!4 = v —ry) S M= DV - K,
Thus
L€ y —_— .l.. - 7 I 'Y — l -N . -
. Nlog2 Nlog(l = o) +log(l — Ky(1—2)77) . log(1 — 2-N) .

i

log q log g log q

. 4 1oggy: !
where [Iin,] < (M —’flﬂ)l(—r_—-le(—.q-

7
I f(x) is square [ree , then we are done. Otherwise [(x) = ["(2)(g(x))?
where [/(2) is a square [ree polynomial. Thus deg ['(2) < deg [(2) and (ﬂqﬂ) -

(Lglﬂ) for cach « € 3. Therefore ['(x) satisfies the conditions. |

This proposition easily extends to the case ol general multiplicative char-

aclers.

PROOF.  [Proof of Theorem 6] Assume [y and fy are distinct polynomials of
degree < n, not vanishing in 13 and they arc not of the lorin g(z)*h(x), where
g(x) is a monic irreducible polynomial, i.e. square-free. Then

‘f] '.s‘—il — ‘f'z ‘S--ig ‘f]—fz —_— ‘i]--i; S A
R =R e =/, & =1

by unique factorization. Let A7 be the set defined in the prool of Proposition

L. We know : 1 )
A5 = 4] 0 (S L (g DR T

q q q

Tere 0 < K Elop —1- : N (N
where 0 < I, < 5log ql-T and |Ch vl < (n N ])

18



Thug f

| . (—f"c UCTIEN ! .
(0= )N =) SRR N (2.23)
q q

there exist at least two polynomials fy # fy such that
VUr(3)) = X)) Tor cach j = 1,2, N
Defline by = ‘/'I"_/",;”", 2= 1,2,...,5— 1. Then
X)) = XU ) = V() = 1 for each = (2, N

Morcover hyy 3 hy, if 00 # 4, 4 = 1,2,..., 8 — |. Therefore i the inequality
((2.23) is satisfied, then there exists (s-1) distinet monic polynomials satisfying

the condition which are not in (17,[x])*. The incqualily is satisfied whenever

Nlogs Nlog(l - ,1,) +log(1 = Ky (1 - :‘i)ﬂN) og(! 451 CoNon

N> - = | A log(1 - —

logq log log q (= 'Jl')N ~Kq)

I e(q) < C7then (ni'I) < {;\f—:—%, < (M og g)"

Il e{q) = oo as ¢ —» co, then we can extend Stepanov’s result for any multi-
plicative character of exponent s such that
if s 1 < %;'; there are s — 1 diflerent, nontrivial polynomials which are
mapped to 1 at cach point in 13, This implies
N < Nloggq < fog q
n- 17 Nlogs - log(! -+ s=N) - log(2n) + logs ~ log s

N ~ (loggyngt ni1 __ o Co -l ; Ve
]) < (EL) et = (5 log )™ So we can

By using Stirling’s lormula (,,
take M = - Thus

log

N log q.. 1
log(1 -+ W) < (M) .
| ()-L)( { (I7H" (( l . %)]\I . ]‘rq) )I - ( (l ) ( l _ l)N . .I"q

7

Similar to the proofl of Proposition I, il h;(2) is not s power [ree, then
hi(a) = hi(x)(gi(2))® where hi(x) is s power [ree and satisfies the conditions

fori=1,2...(s=1). |

3.4 Proof of Theorem 7 and Theorem 7’

PROOF.  [Proofl of Theorem 7]
19
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Let I < n < "% be an integer. Deline k = [;f] Let ¢ be the set of all

polynomials [ in I4[x] which are not identically zero having the property that

2 degf << and the eocllicients of 2™ are zero for cach @ = 0, 1,..., k.
Namely
= {(aya Ay ) (o a? M e eagy, a7 ) b (g 2

S apa™) | ap @ Iy, not o cach a; s zero )
Then the cardinality of ¢ is [(/] = (/”'_[%] — LI fi fy € Cand [1 # [q,
then (deg(fy = f2),p) = 1. So since deg(fy — [2) < n < ¢'/% by Weils
theorem for additive characters (see for example [8] theorem 5.28 page 223)
ey = L)1) # {0},

Let /& = [1’7)-{_' . Define U = [(i = 1eyie), 1 <4 < K as an interval in
[0, P—,_;l + ¢) and Lp~- e Ui UinlU; =0 il 1 +# 5. lor cach [/ & (7 define an

N-tuple as follows:

(/Y= (i, Ly ..y In) where f'-(f’(TL‘D e, el 2., Kand I <0< N,

1 - . ’ . . . . - e N
Mhere are XN distinet values on the image of 110 |C] > K N b1 there are al,

least Lwo distinet polynomials [, fy in € such that,

b fy — o) . .
| "= L)l )] <cloreache=1,2,...,N
P

Let [ = i — fo. Then

N

lV t tr 3
|Z'/’( ’ == IZ(MHM—(—Q) \_ L H 2’” U—(" )) = Z(()s Z7r~ ----- —L)
=1

\

Using cos o = cos |} 2 | — |x]

Lot f()) ‘ N
cos(2m ———==) > | — 2me. Thus lZ'/’ | = N(I —2rc)
P

. —[n ya e N — [ . )
We know |Cf = ¢" GV 1 This whenever £V 1 < ¢" 0 — 1 the existence
of such [ is gnaranteed. But this means

noo Nlog([l,,%' +1]) 4 log(2 + [%‘ F 1)

P mlogp

PROOE.  [Proof of Theorem 7' Let A, be the set of all polynomials in Ig[x]
whose degree < n. Let fi € A, Denole by k the dim(Ker(r)) and let

r = rank(r) where 7 is the map defined in lemmas. Then define

Sy ={g € An: r((g1 = [1)(2i)) =0 for cach 2= 1,2,... N} CA,

20



Let fy € A\ Sy Define

Sy ={ge & Ay ({ga— [} (2y) =0 forcachi=1,2,...N} C A,
Let fi e A\ U{;,‘ Sifor j =3,4,...,m where

Si=A{y; € Ay ey — fi)(i) =0 for cach i =1,2,... N} C A,

Thus |85 = pF for j = 1,2, ., Land [ =p". Deline C = {[y, [o,..., i} C An.
| = p" and v 2 [BE] (respectively n l il {ay,29,..., 258} arc colincar) by
Lemma 3 (resp. Lemma 2).

Let I¢ = [MP’J l)(ﬁn(z Ui =i~ I) +c),1 ( 4-¢)), | <& < I as an interval

in [0,1 4 ¢) and ’ ~~~~~ e Up. By similm (ug__,tnn(,n(s as in the proofl of Theorem

7,00 KN 41 <y _<_ P52 (resp. p™+) there exists a polynomial [ of degree
< n such that
N l
IL D> N - 27r(}) + ¢))

But this means

n | N log B}L' + log(1 + [N

[—-—I——] (resp. n - 1) > i } H’

m log p

Morcover {r(f(13)) # {0} by Lemma 3 (resp. Lemma 2). 1
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Chapter 4

PRELIMINARIES 2

This chapter contains just definitions of linear codes and geometric Goppa

codes. For detailed exposition see Stepanov [2], Stichtenoth [9], or van Lint

(17].

4.1 Linear Codes

Let 17, be a finite field with ¢ clements, and J7t =17 x> I5 n-dimensional
veclor space over I We can deline a metric d on It as

n

(](;)t7 l/) poes 5: I’

iEYi

where @ = (2, o),y = (1, i) € 19

A linear code |ny k, d], is a k-dimensional subspace of the veclor space FF,

where d is the minimum distance between codewords, i.e. elements of the code.
The relative parameters of of the lincar code [n, k, d], are defined as

I 1= —, called as rale,
n
d , . ,

2. § = —, called as relative minimum: distance.
n

There exists a bound on o
d<n-—k-1

22



which is called as the Singleton Bound. In relative parameters this means

The codes achiving this hound are called as mazimal codes.

By a “good” code [n, k,d], we mean

I. nis large, for instance compared Lo q,

2. the Singleton Bound is nearly achieved.

4.2 Geometric Goppa Codes

Let ko= 1%, a finite ficld with ¢ clements, X' a smooth projeclive curve over
I, the algebraic closure of 9. Lel Dy = Py - -+ -+ £, be a divisor of degree
n where o # Py il i # 7. Let D be another divisor whose support is disjoint
from the support of Dy, et L(D)y = {f € (X)) ([)+ D >0} U {0} be
the lincar space of rational functions on X over k. Then the corresponding

qgeometrie Goppa code C( Dy, D) 1s the image of the linear map
) ) g

7o L(D) — 175,
/ b=} (/(l)l )a e /(l)”))
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Chapter 5

CODES ON SUPERELLIPTIC
CURVES

5.1 Introduction

In chapter 3 we extended Stepanov’s approach, which gives a constructable

prool of the fact that Weil's estimate (sce section 2.4) is attainable for any F7,.
In this chapter we apply Coppa’s construction (sce for example [2]) Lo the
curve over [4
y' = [(=)
where [ is obtained by Stepanov’s approach to attain

Yo x(f(=)=q

xC Iy

where y is a multiplicative character of exponent, s and s | ¢ — L.

Theorem 8 Let Iy be a finile ficld of characleristic p, s an inleger s 2 2,

s1(qg—=1), and ¢ be the infimum of the sct

C = {2 : anon-negalive veal number | there caists an integer nosuch thal

77 (1=2) ~ glogs o
2N 2 A== -,
TG ) 22 s T

Let v be an inleger salisfying

glog s .
s(s — 1) 71082 - (:] - 28 <1 < 8q.

log q



Then there cxists a lincar code {n, kyd], with paramelers

n = sy,

b = '(q"')['] o8 -}- (l

l()gq
d 2> sq—r.

Corollary 2 Under the swme conditions with Theorem 8, there exists a code
wilh relalive parameters satisfying

3(s~ I) ( 1 Inb_q ] g
Ro 16 o

8q

Remark 2 When s << q, we have for Corollary 2
R>t1—8~J(s,q)

Theorem 8§ 1s significant

where Jy(s,q) ~ CZlogs L i ough e <<
y ff ] i

!
' ’ 2 ’Ir)gq TR logq’
cspecially when g is a prime.

T 4o £ JNant s e
5.2 Proof of Theorem 8
PROOI.  Let x be a multiplicative characler of exponent s ol I,. 1 m >
”;(I:—;ﬁ; + e, then y—:l-(/"l%f% > (s = 1)s? 4 1. Note that the number of monice
irredicible polynomials of degree m over Iy is =57, j(d)g™/ = ;.:;’-r/”"c,,l (sce

. i . N , - - - m_, - =2 N )
for example [8] page 93). Here | 2 ¢, > | — o 2 =5 Torming q-
tuples for cach irredncible monic |)()lynomial as in Lthe prool of Theorem 6;
by Dirichlet’s pigecon-hole principle if (]’”1—2 > (s — 1)s? 4 L, there exists a
square-[ree polynomial [ € I7[2] of (l(,gamc < ms such that x(/f(a)) = 1 for
oo rqlogs N
cach a € I7,. Let deg [ = sfll%bq + ¢].
Since s | (¢—1) there are s many multiplicative characters of exponent s over
I’;. Morcover for any x of exponent s, x(f(a)) = 1 for all « € I Therefore

we ]N\.\’C over ”l(} curve

n = N, = sq many [-rational points (sce Schimidt [7] page 79 or Stepanov [1],
p.ol).
Using the well-known genus formulas for superelliptic curves (see for example

Stichtenoth [9] p. 196), the geometric genus is given by

g= Sz Dealoas 0y



/)() = Z.’I‘,‘
!

By tracing the normalization of a curve one sees that the number of rational
points ol a non-singnlar model C' of a curve €/ is more than the number of
rational points of ' (sec for example Shafarevich [10], section 5.3). Thus
n=deg Dy > N, = sq. Let a, be a point of X at infinity, ) = ., be the
divisor of degree r and supp Dy (v supp D =8, where r to be determined. If

20 -2 <r <N,

by using the Goppa construction,

n=>N, k=r+l—-—g, d>N;—r

26



Chapter 6

CONCLUSION

Theorem 6 is an extension of S.A. Stepanov’s result [3] and the bound we have
found is slightly better. T'heorem 8 uses the same ideas for construction of

superelliptic curves with a ot of rational points. 1t is especially important
when [7 is a prime finite field since most of the known “good” codes at present

are constriucted over extension ficlds.

It is possible Lo apply Gluhov's polynomials [5] | [6] as in Theorem 8, so
that we can gelb fairly good codes even for odd extensions of finite ficlds. Sce
[18] .

There is a new method giving even longer codes wilh “good” paramectoers,
which has been proved by S.AL Stepanov [L9] recently, using complete intersec-

fions.
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