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ABSTRACT

AUTOMATED CELL ANALYSIS IN MICROSCOPY
IMAGES

Can Fahrettin Koyuncu

Ph.D. in Computer Engineering

Advisor: Çiğdem Gündüz Demir

September 2018

High-throughput microscopy systems have become popular recently, which facil-

itate to acquire boundless microscopy images without requiring human interven-

tion. However, the analysis of such amount of images using conventional methods

is nearly impractical since the analysis can take up to months. Additionally, a

considerable amount of observer variability may occur since the analysis com-

pletely relies on interpretation of the analysts. As a remedy for that, automated

decision support systems, which are objective and rapid, have gained more at-

tention. Since these systems conduct analyses at cellular level, they require a cell

segmentation model, results of which directly affect the performance of the entire

system.

There are several challenges in cell segmentation, each of which should be

addressed carefully in order to have an accurate cell segmentation model. One

challenge is that cells can be grown in multilayer on the plate, which makes

them appear as clusters on the image. Segmentation of these cells requires extra

effort since they should be splitted from each other. Another challenge is the

imperfections on the image such as inhomogeneities of pixel intensities in a cell

and insufficient pixel intensity differences at the border of overlapping cells. Yet-

another challenge is the heterogeneity in the morphological characteristics of cells.

Depending on cell line types, cells may appear in various outlooks. Developing

a generic cell segmentation model, which can handle different cells’ outlooks and

imperfections, is an open and challenging problem.

In order to tackle with these challenges, we deal with the cell segmentation

problem in two parts: (1) We focus on finding a new representation for microscopy

images, helping us simplify the cell segmentation problem, so that imperfections

in cells and inhomogeneities in their visual properties can be alleviated, and

cell locations can be emphasized better. (2) We focus on developing a more

advanced cell segmentation method, with the motivation that it is almost impos-

sible to obtain a perfect representation in practice. Thus, we work on developing
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more sophisticated cell segmentation techniques that overcome deficiencies on the

representation. To this end, this thesis introduces three new cell segmentation

models, two of which introduce a new cell representation technique as well.

In our experiments, we tested our algorithms on various microscopy images

obtained under the fluorescence and phase contrast microscopies and compared

them with the previous cell segmentation methods. Our experiments show that

the proposed algorithms are more effective in segmenting cells and more robust

to the aforementioned challenges.

Keywords: Microscopy imaging, fluorescence microscopy, phase contrast mi-

croscopy, cell segmentation, cell detection, nucleus segmentation, nucleus detec-

tion.



ÖZET

MİKROSKOPİ GÖRÜNTÜLERİNDE OTOMATİK
HÜCRE ANALİZİ

Can Fahrettin Koyuncu

Bilgisayar Mühendisliği, Doktora

Tez Danışmanı: Çiğdem Gündüz Demir

Eylül 2018

İnsan müdahelesi gerektirmeyen ve çok fazla miktarda mikroskop görüntüleri

elde edebilen yüksek çıktılı mikroskopi sistemleri son zamanlarda popülerlik

kazanmaktadır. Öte yandan, bu kadar fazla miktarda görüntünün geleneksel

yöntemlerle analiz edilmesi aylarca sürebileceği için, bu geleneksel yöntemlerin

uygulanması pratikte neredeyse imkansızdır. Ayrıca, analiz tamamen, analiz

eden kişinin yorumuna bağlı olduğu için, sonuçlar önemli miktarda değişkenlik

gösterebilir. Buna çözüm olarak objektif ve hızlı olan otomatik karar destek

sistemlerinin geliştirilmesine olan ilgi günden güne artmaktadır. Bu sistemler,

analizlerini hücre seviyesinde gerçekleştirdiği için hücre bölütlemesi modeller-

ine gereksinim duymaktadır. Hücre bölütlemesinin başarısı da bütün sistemin

başarısını etkilemektedir.

Başarılı bir hücre bölütlemesi modeli elde edebilmek için üstesinden gelin-

mesi gereken zorluklar bulunmaktadır. Bu zorluklardan bir tanesi hücrelerin

tabakta çok katmanlı çoğalması sonucu görüntü üzerinde hücrelerin kümelenmiş

görülmesidir. Bu hücreler birbirinden ayrılması gerektiği için bunların

bölütlenmesi ek bir efor gerektirmektedir. Diğer bir zorluk, hücre içinde bulu-

nan piksellerin yoğunluk değerlerinin görüntü üzerinde homojen dağılmaması ve

birbirine dokunan hücrelerde, hücre sınırlarındaki piksel yoğunluk değerlerinin

yeterli farklılıkta olmaması gibi kusurlardır. Bir diğer zorluk ise hücrelerin

morfolojik karakterlerinin farklılık göstermesidir. Hücre hattı tipine bağlı

olarak hücreler farklı görünümlere sahip olabilir. Farklı hücre görünümlerinde

çalışabilecek ve hücre içindeki kusurları çözebilecek kapsamlı bir hücre bölütlemesi

modeli geliştirmek çözüme açık ve zor bir problemdir.

Bu zorlukların üstesinden gelebilmek için hücre bölütlemesini iki kısımda

ele almaktayız. (1) Mikroskopi görüntüleri için, hücre bölütleştirme problem-

ini basitleştirmede bize yardımcı olabilecek yeni gösterimler bulmaya odak-

lanmaktayız. Bu sayede, hücre içindeki kusurların ve hücre görünümündeki
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farklılıkların üstesinden gelebileceğimizi ve hücre konumlarını daha iyi vurgulaya-

bileceğimizi düşünmekteyiz. (2) Hücreler için kusursuz bir gösterim bulmanın

pratikte neredeyse imkansız olması motivasyonuyla, daha gelişmiş bir gösterim

metodu geliştirme üzerine odaklanmaktayız. Dolayısıyla, gösterim kusurlarının

üstesinden gelebilecek, daha gelişmiş hücre bölütleme tekniklerinin geliştirilmesi

üzerinde çalışmaktayız. Bu bağlamda, bu tez, üç yeni hücre bölütlemesi modeli

sunmaktadır. Bunlardan ikisi, aynı zamanda, yeni gösterim modeli de ortaya

koymaktadır.

Deneylerimizde, sunduğumuz algoritmaları, floresan ve faz kontrast mikrosko-

plarında elde edilmiş görüntülerde test ettik ve önceki hücre bölütlemesi

metotlarıyla karşılaştırdık. Deneylerimiz, önerdiğimiz algoritmaların hücre

bölütlemesinde daha etkin ve bahsi geçen zorluklara karşı daha gürbüz olduğunu

göstermektedir.

Anahtar sözcükler : Mikroskopi Görüntüleme, Floresan Mikroskopi, Faz Kontrast

Mikroskopi, Hücre Bölütlemesi, Hücre Tespiti, Çekirdek Bölütlemesi, Çekirdek

Tespiti.



Acknowledgement

This thesis is the end of my journey in obtaining my Ph.D. degree. At the end

of this journey, I would like to thank all people, who made this thesis possible.

First and foremost I would like to thank my advisor Assoc. Prof. Dr. Çiğdem
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Chapter 1

Introduction

Cellular biology research is the examination of the structure and function of the

cell, which is the basic unit of life, to understand all aspects of disease. Conven-

tionally, the examination starts with the staining of different cellular components

for the purpose of visualization under microscope. Employing different types

of microscopes and staining techniques yields a wide range of imaging modali-

ties. For instance, fluorescence microscopy is used for observing minuscule organic

molecules of a cell by utilizing synthetic and organic fluorescent dyes. Apart from

fluorescent dyes, different types of stains can be used with respect to the type of

microscopy. To illustrate, Hoechst staining is used to dye genomic DNA under flu-

orescence microscopy. Another staining method called Hematoxylin&Eosin dyes

nuclei as blue and cytoplasms as reddish pink. Yet-another staining technique

called Papanicolaou, which is commonly known as the pap smear, is used for ex-

amining cells obtained from body fluids. However, staining as such has damaging

effect on cells. To refrain from these negative effects, bright-field and phase con-

trast microscopies have been developed for live cell imaging without the need for

any staining. As the technology advances, new staining methodologies, as well as

novel microscopy techniques, have been implemented as new imaging modalities,

each of which has its own merits and caveats. These advanced imaging techniques

are capable of producing high-throughput data for researchers, pathologists, and

biologists to study human physiology in disease and in health.
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With the advent of high-throughput microscopy systems, boundless mi-

croscopy images can be acquired in no time without necessitating human in-

tervention. On the other hand, traditional analysis of these images can take up

to weeks, or even months. Besides, the subjectivity problem can occur during

the analysis. Considering these drawbacks, such individual analyses are thought

of as a bottleneck for the entire pipeline (Figure 1.11), necessitating automated

or semi-automated decision support systems. These systems typically need to

locate and quantify the cell, which usually makes up the first part of such sys-

tems. This thesis focuses on developing novel, effective methods for this first part

of automated decision support systems in which cell segmentation/detection2 is

performed.

1.1 Motivation

Quantitative analysis of microscopy cell images plays a pivotal role in the diag-

nosis and the clinical assessment of a disease. However, traditional cell image

analysis has several drawbacks: (1) It is tedious and lengthy as high-throughput

microscopy techniques evolve to produce a massive number of images simulta-

neously, each of which should be analyzed diligently. Individual analysis of mi-

croscopy images is usually impractical because it is labor intensive and unlikely

to reproduce. (2) It is subjective since the perception of the analyst plays a sub-

stantial role in defining the result, which yields inter-observer variability problem.

Additionally, It is possible to make opposing decisions on the same sample when

the analyst reviews it at different times, which yields intra-observer variability

problem. Considering these drawbacks, microscopy cell image analysis neces-

sitates objective and rapid computer-aided systems. Since the systems perform

these quantitative analyses at cellular level, there is currently a need for accurate,

1The images illustrating each step of the entire pipeline in the figure are obtained from the fol-
lowing links respectively:https://www.labcompare.com/241-TCSPC-Fluorescence-Lifetime-Imaging-Microscopy-Flim-Microscopy/
9377088-Easy-Ratio-Pro/, https://www.mpbio.com/featured.php?fid=8, http://www.multivu.com/players/English/

7270051-college-of-american-pathologists-cap-14-what-s-next-in-cancer-testing/
2Since cell detection and cell segmentation are similar tasks, this thesis uses them inter-

changeably. However, to be more specific, in the studies explained in Chapters 3 and 4, our
aim is the segmentation of cells, whereas in Chapter 5, the aim is the identification of their
locations.
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Figure 1.1: General workflow of studying the underlying biologic processes in a
disease.

robust, and reproducible cell/nucleus3 segmentation methods in this field.

In the clinical assessment of a disease, morphological properties of cells have

been studied with all details because they store vital information about the dis-

ease. For example, in a cancerous tissue, the overall size and shape of cells are

often abnormal and vary greatly. Another point is the arrangement of cells which

reflects the function of a tissue. In a normal tissue, cells are coordinated with

their neighboring cells within the tissue. However, in a cancerous tissue, cells are

not coordinated with their neighboring cells and invade the tissue. Such obser-

vations are vital for researchers to diagnose the cancer and identify its type. To

conduct such analyses, cells must be identified or segmented beforehand.

Cell segmentation can be categorized in two different contexts; segmentation

3Cell and nucleus will be used interchangeably.
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(a) (b)

(c) (d)

Figure 1.2: Illustrations of imperfections occurred in cells. (a) An example sub-
image for insufficient pixel intensity differences at the border of overlapping cells
which may cause to miss some true boundary pixels. (b) Identified high-gradient
pixels are shown in red. (c) Example sub-image for inhomogeneities of pixel
intensities in a cell which may cause to define spurious boundaries. (d) Identified
high-gradient pixels are shown in red.

of monolayer isolated cells and segmentation of clumped cells. Segmentation of

isolated cells is straightforward. The research segmenting these cells firstly differ-

entiate cell pixels from the background using thresholding or clustering algorithms

and then consider the connected components of the cell pixels as segmented cells.

On the other hand, segmentation of clumped cells remains an open and chal-

lenging problem. Applying thresholding or clustering would not be sufficient for

this problem since cells as such had to be split into individual cells in the image.

Splitting a cell clump is straightforward when the gradients of boundary pixels

in-between the cells are higher than the others. However, imperfections may

exist: Inhomogeneities of pixel intensities in a cell may cause to define spurious

boundaries resulting in falsely defined cells whereas insufficient pixel intensity dif-

ferences at the border of overlapping cells may cause to miss some true boundary

pixels resulting in missed or under-segmented cells (see Figure 1.2).

In addition to these hurdles, yet-another challenge is heterogeneity in the visual
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(a) (b) (c)

Figure 1.3: Example images from human liver and breast cancer cell lines con-
taining cells with different morphological properties: (a) MDA-MB453, (b) MDA-
MB-468, and (c) FOCUS cell lines.

characteristics of cells. Visual appearance of cells within a given cell type may

vary from one cell to another. In other words, cells may appear in varying colors

and irregular shapes within the same cell type. In Figure 1.3, sample images

from human liver and breast cancer cell lines are shown. Most of the cells in

the MDA-MB-453 cell line have near-circular cells. However, a certain group of

these cells contains mostly bright pixels whereas others contain dark pixels inside

and bright ones outside (Figure 1.3a). Cells of the MDA-MB-468 cell line are

near-circular, as well as non-circular (Figure 1.3b). For the FOCUS cell line, a

majority of nuclei are near-circular, containing small low-intensity dots inside.

However, there is a second group of cells in the same cell line which has irregular

shapes and brighter boundary pixels (Figure 1.3c). The heterogeneities in the

morphological properties of cells increase the difficulty level of cell segmentation

problem. The difficulty further increases when the cells grow overclumped.

1.2 Contribution

Even though cells are overclumped and contain aforementioned imperfections,

their segmentation will still be straightforward when we have a representation

illustrating these cells neatly. For instance, it would be ideal if cells were rep-

resented on a density map where pixels have brighter intensity values on cell

6



centroids and darker values on the rest. In this case, it will be sufficient to

detect regional maxima as location of the cells or to apply a marker-controlled

watershed algorithm to segment them. Overall, when we have a more powerful

representation, we can put less effort in segmentation of the cells to obtain more

accurate results. On the other hand, it is not an easy task to obtain a perfect rep-

resentation, which renders straightforward approaches such as regional maxima

detection and marker-controlled watershed unsuccessful. As a remedy for an im-

perfect representation, we can utilize more sophisticated segmentation algorithms

which compensate for such deficiencies.

Thus, in order to perfect segmentation tools, we should carefully discuss the

problem in two different aspects: (1) developing a model which converts the

representation of an image into one which is more meaningful and easier to analyze

and (2) developing a powerful cell segmentation technique which can compensate

for failures in accurate representations. In this thesis, we introduce new powerful

cell representations and generate new techniques for accurate cell detection and

segmentation on microscopy images. In this context, this thesis has three main

contributions.

For our first contribution [1], we introduce a new object-oriented cell segmen-

tation method. The main contributions of this object oriented method are (1) the

introduction of reconstructing a fluorescence microscopy image in terms of sub-

regions and edge-objects of different types and (2) the implementation of a new

merging algorithm that effectively uses this high-level reconstruction for segment-

ing cells. As this study works on a high-level representation and employs object-

level gradients (i.e. edge-objects), the proposed segmentation method is expected

to be less vulnerable to the aforementioned pixel-level imperfections compared to

the existing studies that directly work on the pixel intensities/gradients. Toward

this end, we propose to decompose an image into smaller homogeneous subregions

using one of the super-pixel generation algorithms [2] (see Figure 1.4b), define

edge-objects at four different orientations to encode the gradient information at

the object-level (see Figure 1.4c), and devise a merging algorithm, in which the

edge-objects vote for subregion pairs along their orientations and the pairs are

iteratively merged if they get sufficient votes from multiple orientations. The
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(a) (b)

(c)

Figure 1.4: (a) An example fluorescence microscopy image, (b) its subregions
obtained using the SLIC algorithm, and (c) its edge-objects of different types.
Here left, right, top, and bottom edge-objects are shown with green, cyan, red,
and yellow, respectively.

details of this method are given in Chapter 3.

As for our second contribution [3], we devise a new cell detection method which

detects cell locations successfully even though an image contains aforementioned

imperfections. The method iteratively identifies nucleus locations making use

of h-minima transform, considering a set of different h values. The success of

the work comes from the use of different h values, which compensates for the

imperfections on a given map. H-minima transform removes regional minima

whose depth is smaller than the predefined h value (see Figure 1.5). Our proposed

algorithm relies on using multiple h values to identify the markers of a connected

component, which corresponds to a nucleus clump on an image. The motivation

behind this is the fact that there exists no best h value that can be used to identify

all markers of the same connected component due to the possible variations in the
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(a) (b)

Figure 1.5: Illustration of h-minima transform in 1-D. (a) Example data with the
numbers showing the location of regional minima. (b) After h-minima transform
with an h value of 1. As seen in the example, the minima-1 and minima-3 in
the left image are eliminated since their depths are smaller than or equal to the
selected h value.

nuclei’s sizes, shapes, and intensities within the same nucleus clump. We believe

that the proposed work can better identify nuclei even when the map contains

imperfections. Toward this end, we extend the study on live cell image data.

Experimental results show that the iterative approach improves the detection

performance slightly in comparison with the conventional h-minima transform

[22]. The proposed approach is discussed comprehensively in Chapter 4.

As for our third contribution, we propose to obtain a better representation

of live cell images directly on image data using deep learning techniques and to

use this representation to successfully detect cell locations. Toward this end, we

propose a new model that learns high-level features directly from image data. In

particular, this model proposes to pose cell detection as a regression problem,

in which the normalized distance from each pixel to the closest background is

learned by training a deep convolutional neural network (CNN) on small patches.

Then, for a given image, cell detection is achieved by generating a normalized

distance map of the image pixels with the trained CNN and by finding regional

maxima of the generated map. Since the proposed model automatically learns

features from the image data, it is not necessary to redesign any of its steps for

new cell types, even when they show different visual characteristics. For a new

cell type, our model uses the same CNN architecture and the same steps for cell
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detection; it only needs a couple of annotated training images of the new type,

on which the network is to be fine-tuned. This work is extended by integrating a

cascaded multi-task learning U-Net, instead of CNN. Employing a more sophis-

ticated network in the learning step boosts the efficiency and effectiveness of the

whole pipeline. The model is further improved by employing iterative h-minima

transform, which is our second contribution in this thesis, instead of conventional

h-minima transform. The details of this deep learning model and its extension

are given in Chapter 5.

The remainder of this thesis is organized as follows. The images studied in

the thesis and the previous studies related with cell segmentation on microscopy

images are discussed in Chapter 2. Subsequently, the methodology and exper-

imental results of a new cell representation and segmentation method, named

object-oriented segmentation method, are given in detailed in Chapter 3. Then,

in Chapter 4 a cell detection method, named iterative h-minima based detection,

is deeply discussed together with its experimental results. As for our last con-

tribution, the deep learning based new cell representation method and relevant

experimental results are given in Chapter 5. Lastly, a summary of our proposed

models is given together with their possible future directions in Chapter 6.
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Chapter 2

Background

In this thesis, we propose fully automated cell segmentation tools focusing on mi-

croscopy images. Before these proposed tools are elaborated in the next chapters,

the details of the microscopy images which we made use of are given in Section2.1.

Then, in Section 2.2, we provide with a survey of related studies within the con-

text of cell segmentation of microscopy images based on two main categories:

segmentation of isolated cells and segmentation of overclumped cells.

2.1 Microscopy Images

In this thesis, we focus on fluorescence microscopy and phase contrast microscopy

images, all of which were obtained from human carcinoma cell lines. The images

belong to two major types of cancer cell lines, namely breast cancer and liver

cancer (Table 2.1), which have pervasive effect on human life. Liver cancer is one

of the leading causes of cancer-related death worldwide, and breast cancer is one

of the most common cancers diagnosed in women. Thus, research on especially

these two cancer types requires more attention because of their devastating impact

on the society worldwide.
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Table 2.1: Name of microscopies and the cancer cell lines together with their

types used in this thesis.

Microscopy type Cancer type Cell line

Fluorescence Liver Huh7

Fluorescence Liver HepG2

Phase contrast Liver FOCUS

Phase contrast Liver Huh7

Phase contrast Liver SkHep1

Phase contrast Breast MDA-MB-453

Phase contrast Breast MDA-MB-468

Phase contrast Breast CAMA-1

There are eight different data sets used within the scope of this thesis (Ta-

ble 2.1). In the models explained in Chapter 3 and Chapter 4, fluorescence mi-

croscopy images were analyzed. The data set contains isolated and overclumped

cells of the Huh7 and HepG2 cell lines. Example images showing both isolated

and overclumped cells are given in Figure 2.1. As seen in this figure, all cells

are round-like shape, but isolated cells were grown monolayer on the plate and

appeared isolated on the image (Figure 2.1a). Overclumped cells were grown in

multilayer on the plate. These overclumped cells could be less-confluent (Fig-

ure 2.1a), where some overlaps appear along the boundaries of their nuclei, or

more-confluent (Figure 2.1b), where the nuclei appear as clusters on the image.

Please note that in fluorescence microscopy images cytoplasm region of cells do

not appear because of the staining technique. Blue regions are actually corre-

spond to nucleus part of cells .

In the study explained in Chapter 5, phase contrast microscopy images were

used. There are six different types of cell lines, examples of which are given in

Figure 2.2. As seen in the examples, visual characteristics may change from one

cell type to another. Additionally, in the first three cell lines, cells have irregular

shapes and heterogeneous intensities. Small low-intensity dots represent cell nu-

clei but there also exist similar-looking small dark subregions, especially towards
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(a) (b) (c)

Figure 2.1: Example fluorescence images from human liver cancer cell lines used
in our experiments: (a) Monolayer cells whose nuclei appear as isolated (Huh7),
(b) less-confluent cells for which some overlaps appear along the boundaries of
their nuclei (Huh7), and (c) more-confluent cells whose nuclei appear as clusters
(HepG2).

cellular boundaries. In the last three cell lines, cell shapes are less irregular.

However, this time they appear differently. For instance, in Figure 2.2d, there

are mostly near-circular cells, which sometimes contain more than occasionally

bright pixels but sometimes contain dark pixels inside and bright ones outside.

On the other hand, in Figures 2.2e and 2.2f, there are near-circular as well as

non-circular cells. For such images, it would not be easy to use a single model to

detect cells with different morphologies.

2.2 Related Work on Cell Segmentation for Mi-

croscopy Images

Segmentation of cells in microscopy images typically starts with differentiating

nuclear pixels from background to obtain a binary mask. For that, it is usually

adequate to apply simpler techniques such as thresholding [4, 5, 6, 7, 8, 9] and

clustering [10, 11, 12, 13] on pixel intensities when there is a huge intensity dif-

ference between foreground and background pixels in images. However, images

usually exhibit poor contrast, degrading in differentiating the foreground pixels

from the background. There are several approaches that apply preprocessing
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(a) (b) (c)

(d) (e) (f)

Figure 2.2: Example phase contrast images from human liver and breast cancer
cell lines used in our experiments: (a) FOCUS, (b) Huh7, (c) SkHep1, (d) MDA-
MB-453, (e) MDA-MB-468, and (f) CAMA-1 cell lines.

techniques, including color normalization and image denoising to handle this is-

sue [14, 15, 16]. Afterwards, segmentation continues with identifying cells on the

binary mask.

Segmentation of cells is quite straightforward when the cells appear isolated

on an image; each connected component on the binary mask corresponds to a

cell. On the other hand, it becomes challenging to segment cells in cell clumps,

in which the cells appear touching or overlapping on the image. In this case, a

connected component should be split into multiple cells. There are many cell

segmentation studies targeting on cell clumps. These studies can be categorized

according to the main concept utilized for the segmentation purpose.

Shape-based methods split one component into multiple cells using the fact

that a typical cell is nearly circular and convex. For that, a group of these algo-

rithms have used Gaussian mixtures [17] and physical deformable models [18] to

decompose clustered cell nuclei based on their roundness. The marker-controlled

14



watershed is another technique that the previous studies have commonly used to

segment clustered cells. They define a set of markers on an image and obtain

cell nucleus regions growing them only from these predefined markers. A group

of the previous studies apply morphological operations (e.g., erosion) on the bi-

nary mask [19, 20] to obtain markers for the watershed algorithm. Yet another

group of marker controlled watershed algorithms take regional minima found on

distance transform maps as the markers [21, 22, 23] and/or grow the identified

markers on the distance transforms [24, 25, 26, 27]. However, defining regional

minima as markers is very sensitive to noise, and hence, may lead to defining

spurious markers. To alleviate this problem, these algorithms typically apply

the h-minima transform, which suppresses all minima under a value of h, before

finding the regional minima [28, 22, 23]. Another group of shape based methods

employ concavity detection algorithms to find concave points on the mask and

split the cells from these points [29, 30, 31, 32]. It has also been proposed to split

the mask by identifying circular shapes by the Hough transform [33] and ellipse

fitting techniques [34]. The shape-based methods usually yield promising results

when the degree of overlapping is relatively low so that there is not so much

deviation in cell appearance from its assumed circular shape. Additionally, when

the overlapping degree impedes finding a sufficient amount of background pixels

adjacent to the boundary of a cell, the distance transform may give misleading

results and concavity detection may not work.

Gradient-based methods identify individual cells in a cluster relying on the

fact that cell contours have high contrast differences. The voting based tech-

niques define kernels to obtain the gradient information and get image pixels

voted along the directions specified by these kernels, imposing cells on having ra-

dially symmetrical shape. They then identify regions with larger votes as nucleus

centers [35, 36, 37, 38, 39]. It is also possible to use pixel gradients to detect

the markers of a marker-controlled watershed algorithm [4, 11, 40, 41]. Level

set algorithms commonly employ the pixel gradients to refine the nucleus bound-

aries found by the shape-based methods. These algorithms define their energy

functions on the gradients and converge the final boundaries by minimizing these

energy functions [42, 43]. Yet another group of gradient based approaches include
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superpixel based algorithms. A superpixel is a group of neighboring pixels hav-

ing similar features. It reduces the complexity of the algorithm since, instead of

dealing with a great deal of pixels, just a few superpixels are taken into account

within the scope of this approach. In [44, 45, 46], superpixels are classified as one

of the three major classes for cell detection: nucleus, cytoplasm, and background.

There is another group of superpixel based algorithms which over-segment images

into superpixels and then merges the ones belonging to the same cells [47, 48].

However, for all these gradient based methods, the use of the gradient informa-

tion may not always be adequate to correctly split the overlapping nuclei due

to the imperfections in pixel values due to the following reasons, which are also

explained in Section 1.1. These are (1) inhomogeneities of pixel intensities in a

cell which may cause to define spurious boundaries resulting in falsely defined

cells and (2) insufficient pixel intensity differences at the border of overlapping

cells which may cause to miss some true boundary pixels resulting in missed or

under-segmented cells.

Graph-based algorithms utilize graph structure to better represent cells. One

popular approach is to segment cells by constructing a tree structure which stores

maximally stable extremal regions (MSER) [50, 51, 52, 53, 54, 55]. Based on re-

gion properties, the algorithm detects the hot spots which have higher probability

of being a cell. The method given in [50] employs eccentricity features of the ex-

tremal regions. Those explained in [51, 52, 53, 54, 55] exploit color and shape

properties of the regions together. In [51, 52, 54], detection problem is converted

to an optimization problem, where the aim is to select non-overlapping regions

that are maximizing previously defined score metric. Moreover, the method in

[52] shows the generality of the MSER tree structure, having experiments on

various independent data sets. Even though it performs well on these data sets,

what might limit its efficiency is the use of hand-crafted low-level features. Other

graph-based approaches define each image as a graph, where nodes correspond to

pixels and edges to their neighborhood information [56, 57]. In [56], cell nuclei are

segmented using two-step graph-cut methods. In [57], the authors incorporate

blob-like shape information into a graph-cut algorithm to segment cells. In [46],

instead of pixels, superpixels are defined as nodes, which increases efficiency of
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the algorithm significantly. One of the previous studies developed by our re-

search group also utilizes graph structure, called attributed relational graph, to

segment nuclei in fluorescent microscopy images [58]. First, it defines four differ-

ent edge primitives with respect to orientation information. Then, it constructs

an attributed relational graph by defining nodes and edges based on the edge

primitives and their spatial properties according to each other. It localizes nuclei

by searching specific structural patterns on the graph.

Lastly but not least importantly, a group of machine learning-based algorithms

have been proposed as a segmentation model. Several of these algorithms use

machine learning as a preprocessing step to enhance images [59, 60] and/or a

post-processing step to eliminate false positives [59]. Besides, the majority of

these studies employ hand-crafted features, which limit their extendability to

other domains [48, 61, 62, 63, 64, 65]. More interestingly, there exist a group

of studies focusing on deep learning approaches, which have the ability to learn

features from input images without requiring any human interference. These

deeply learned features might have high level information and can be used, unlike

the hand-designed ones, to tackle problems such as detection and segmentation.

These studies can be categorized by some aspects such as: whether the problem

is formulated as a classification or a regression task and whether the model is

trained with a sliding window approach or with an end-to-end technique. The

majority of these studies pose cell detection as a pixel-wise classification problem

in which a deep classifier is trained to differentiate between cell pixels and the

background. Then, for a given image, they may obtain a binary mask by estimat-

ing the class labels of the image pixels using a trained classifier and then use this

mask as an input to shape-based methods [68, 69]. Alternatively, they may use

the class posteriors of the pixels and identify cell locations on this posterior map

by either thresholding [66, 70] or clustering [67] but mostly finding regional max-

ima [71, 72, 73, 74, 75]. Since their focus is cell pixel classification, these studies

treat the pixels taken from the annotated cells the same way, regardless of their

relative positions within the cell during the training step. On the other hand,

the position of a pixel relative to a cell center (or to a cell boundary) may bring
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about additional information. There exists some studies that take this informa-

tion into account by constructing a regression model that learns a continuous

distance output for each pixel [76, 77, 78, 79]. All these approaches compute the

output map with regards to the distance between the pixel and its closest cell

center that is annotated. In [77, 78, 80], the output is the Euclidean distance from

the pixel to its closest cell center annotated. This definition, however, imposes a

circular and one-sized shape on cells, which may not be true for all cell types. In

both classification and regression, earlier studies have used a patch-based (slid-

ing window) approach [68, 69, 66, 70, 67, 71, 72, 74] to estimate the output (i.e.,

class labels posteriors in classification and distance maps in regression). However,

this technique is not efficient due to the redundant computations required for the

overlapping patches extracted around each pixel. To overcome this issue, end-to-

end methods, especially Fully Convolutional Networks (FCN) [81, 82] and U-net

model [83], have become more popular for cell segmentation purposes [79, 84, 80].

The method proposed in [79] utilizes pre-trained off-the-shelf models (DeepLab

model from [85]). Those explained in [84, 80] modify FCN and U-net archi-

tectures by adding/dropping some network layers, by changing the number of

features, and by adding residual connections/blocks.

18



Chapter 3

Object Oriented Segmentation of

Cell Nuclei in Fluorescence

Microscopy Images

This study introduces a new cell segmentation method that relies on using gra-

dient information not at the pixel-level but at the object-level. To this end, it

proposes to decompose an image into smaller homogeneous subregions, define

edge-objects at four different orientations to encode the gradient information at

the object-level, and devise an effective algorithm that segments nuclei by merging

the smaller subregions using the edge-objects. In this merging algorithm, the edge-

objects vote for subregion pairs along the direction specified by their edge types

and the subregion pairs are iteratively merged provided that they get sufficient

votes from multiple directions. The main contributions of this object oriented

method are the introduction of representing a fluorescence microscopy image in

terms of subregions and edge-objects of different types and the implementation of

a new merging algorithm that effectively uses this high-level representation to seg-

ment nuclei. As it works on a high-level representation and employs object-level

gradients, the proposed segmentation method is expected to be less vulnerable

to the aforementioned pixel-level imperfections compared to the existing studies

that directly work on the pixel intensities/gradients [35, 36, 37, 38, 39]. Note
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that the study developed by our research group also uses the edge-objects for

nucleus segmentation [58]. However, this use is completely different than the one

proposed in this current study. Our previous study constructs a graph on the

edge-objects and achieves segmentation by searching predefined patterns on the

constructed graph. It does not define any subregions, and thus, obviously, it does

not use them in any merging algorithm in conjunction with the edge-objects.

In the literature, there exist studies that also partition an image into subre-

gions and then form nuclei by merging them. All these studies extract features

from the subregions and select the subregions to be merged by solving an opti-

mization problem on the extracted features [47, 48, 49, 52, 54]. Different than

our proposed method, these previous studies do not define any kind of high-level

objects encoding the gradient information and they do not employ such high-

level objects to merge their subregions. Working on 2661 nuclei, our experiments

show that this high-level object-based representation together with the proposed

merging algorithm yield better results compared to its pixel-based counterparts.

3.1 Methodology

The proposed object oriented method relies on first dividing an image into over-

segmented subregions and then merging them with the help of the edge-objects to

segment nuclei. The motivation behind this first-divide-then-merge approach is as

follows: In principle, one can locate a single subregion for every nucleus. However,

due to non-ideal conditions in real life, this may not actually happen for many

images and the located subregions are commonly over- or under- segmented.

Inhomogeneities inside a nucleus may cause to define multiple over-segmented

subregions corresponding to this nucleus whereas insufficient contrast differences

at the boundary of two overlapping nuclei may result in representing the two

nuclei with the same under-segmented subregion. Hence, we propose to divide

the image into homogeneous subregions that are usually smaller than the average

nucleus and merge them afterwards.
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The merging process employs the edge-objects of four different types that are

defined at four different orientations. These edge-objects correspond to the left,

right, top, and bottom nucleus boundaries according to the orientation they are

defined. In the ideal case, for each nucleus, one can define exactly one left edge-

object for its left boundary, one right edge-object for its right boundary, one

top edge-object for its top boundary, and one bottom edge-object for its bottom

boundary and these edge-objects form a closed curve (this hypothetical case is

illustrated in Figure 3.1a). In this case, the merging process would be quite

simple; one could easily form a nucleus by merging the subregions surrounded by

the edge-objects of this nucleus. On the other hand, there may exist the following

deviations from this ideal case:

1. The edge-objects belonging to the same nucleus may not cover all of its

boundaries, and thus, they may not form a closed curve (Figure 3.1b).

2. More than one nucleus may share the same edge-object of the same type

(Figure 3.1c).

3. Multiple edge-objects of the same type may correspond to a single nucleus

(Figure 3.1d).

4. The edge-object of at least one type may be missing (Figure 3.1e).

5. There may exist spurious edge-objects inside a nucleus (Figure 3.1f).

We draw illustrations for each of these deviations in Figure 3.1b-Figure 3.1f. In

order to address these non-ideal conditions, the proposed method devises an iter-

ative merging algorithm, in which two subregions are merged provided that they

share an edge-object for a sufficient number of the edge types. The pseudo-code

of the proposed object oriented algorithm is given in Algorithm 1 and its details

are explained in the following subsections. The source codes of its implemen-

tation are available at http://www.cs.bilkent.edu.tr/~gunduz/downloads/

ObjectOrientedCellSegm/.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.1: Illustrations of (a) the hypothetical case and (b)-(f) the non-ideal

conditions for the edge-object definition. (b) The edge-objects do not form a

closed curve. (c) The same left edge-object is partially shared by two nuclei. (d)

Two different left edge-objects are defined for the same nucleus. (e) There is

no right and no bottom edge-object defined. (f) Spurious top and bottom edge-

objects are defined. Here left, right, top, and bottom edge-objects are shown with

green, cyan, red, and yellow, respectively.
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Algorithm 1 NucleusSegmentation: Overall framework of the proposed object
oriented algorithm.

Input: image I, superpixel image P , object size threshold tsize, maximum dis-
tance dmax, voting threshold tvote, area threshold tarea

Output: segmented nuclei S

1: B ← OtsuGlobalThresholding(I)

2: for all perc ∈ {0.5, 1.0, 1.5, 2.0} do
3: Operc ← EdgeObjectDefinition(I, B, tsize, perc)
4: end for

5: S ← SubregionPartitioning(P,O0.5, B)

6: for all perc ∈ {0.5, 1.0, 1.5, 2.0} do
7: S ← SubregionMerging(S,Operc, dmax, tvote)
8: end for

9: S ← SmallNucleusElimination(S, tarea)

3.1.1 Edge-Object Definition

The proposed algorithm defines four different types of the edge-objects : left, right,

top, and bottom. It derives the edge-objects of each type using a gradient map

and a binary mask, both of which are obtained on the L channel of an image. For

each type, the gradient map is obtained by convolving the L channel with one of

the following Sobel operators. In this work, we prefer using the La*b* color space

for both edge-object definition and subregion partitioning since it was designed

to be perceptually uniform with respect to human color vision. Thus, as the first

step, an RGB image is converted to its equivalent in the La*b* color space and

the remaining steps use this converted image.

The same binary mask B is used for all of the edge types and it is obtained

by thresholding the L channel with the value automatically calculated by the

Otsu’s method [86]. It is usually sufficient for our method to use a rough binary

mask as long as this mask does not miss too many true nucleus pixels. The post-

processing step will correct false pixels up to a certain degree; it will eliminate
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small regions of false nucleus pixels by small area elimination and fill gaps on

false background pixels by majority filtering. Thus, the proposed method uses a

quite simple thresholding technique for binarization. However, one may consider

to obtain such a mask by employing more advanced methods such as supervised

techniques. The investigation of using such techniques could be considered as a

future work.

Sleft =


−1 0 1

−2 0 2

−1 0 1

 Sright =


1 0 −1

2 0 −2

1 0 −1



Stop =


−1 −2 −1

0 0 0

1 2 1

 Sbottom =


1 2 1

0 0 0

−1 −2 −1
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The edge-object definition step defines the left edge-objects as follows. Let

Gleft be the gradient map obtained by convolving the L channel with the Sobel

operator Sleft. First, Gleft is compared against a threshold tleft and pixels with

high enough gradients are identified. These identified pixels are masked with

the binary mask B and spurious edges on the image background are eliminated.

Then, a binary edge map is defined on the remaining pixels. Finally, the m-

leftmost1 pixels of the binary edge map are taken and the connected components

of these m-leftmost pixels are considered as the left edge-objects provided that

their heights are larger than the size threshold tsize. Here, we take the m-leftmost

pixels instead of just taking the leftmost pixels since discontinuities may exist in

boundaries due to the pixel-based representation of a digital image. In this work,

we select m = 3 considering the pixel resolution of the images that are used in

our experiments. The steps of the left edge-object definition are illustrated in

Figure 3.2.

1The m-leftmost pixels of a connected component are defined as follows. For each row of
the component, the white pixels which have background pixel in their left neighborhood are
identified. Afterwards, these pixels and the consecutive m − 1 white pixels which are located
in their right adjacency are defined as m-leftmost pixels for this component.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.2: Left edge-object definition on an example subimage: (a) original
subimage obtained from the HepG2 liver cancer cell line, (b) its L channel, (c)
gradient map Gleft obtained by convolution, (d) binary mask B, (e) binary edge
map obtained after thresholding Gleft and masking the result with B, (f) leftmost
pixels of the binary edge map, (g) m-leftmost pixels of the same binary edge map,
(h) remaining connected components after eliminating the shorter ones, and (i)
left edge-objects defined for the subimage.

Here it is critical to determine a threshold value tleft that can identify edge-

objects correctly. However, this is not always straightforward and a single thresh-

old may not always work over an entire image especially when the image exhibits

variance on the gradient distribution in its different parts. Threshold values

smaller than necessary may lead to defining spurious edges whereas too large

values may cause to miss some nucleus boundaries. Thus, we propose to use a

set of multiple threshold values, for which the subregion merging step is con-

secutively called one after another (lines 6-7 of Algorithm 1). In particular, a

threshold τ is automatically calculated on the gradient map Gleft by the Otsu’s
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method, and then the values starting from the half of this threshold to its double

are used. In this work, four sets of the left edge objects Oleft are defined using

tleft ∈ {0.5τ, 1.0τ, 1.5τ, 2.0τ}. We decide to use the threshold percentage perc

constants of 0.5, 1.0, 1.5, and 2.0 because of the following reasons: Small values

for the minimum perc cause to define too much spurious edge-objects. On the

other hand, large values for the maximum perc result in defining almost no useful

edge-objects. The use of small intervals in between the consecutive perc values in-

creases the computation time without adding too much extra information. Thus,

considering all these issues, we select perc ∈ {0.5, 1.0, 1.5, 2.0}.

This step defines the objects of the other edge types similarly with the differ-

ence that edge-objects shorter than tsize are eliminated for the left and right

types whereas those narrower than tsize are eliminated for the top and bot-

tom types. At the end of this step, we obtain four sets of the edge-objects

Operc = {Oleft, Oright, Otop, Obottom}, each of which is calculated using a different

threshold percentage constant perc ∈ {0.5, 1.0, 1.5, 2.0} (lines 2-4 of Algorithm 1).

3.1.2 Subregion Partitioning

The proposed algorithm first partitions an image into homogeneous subregions,

which are usually smaller than a typical nucleus, and then merges them with the

help of the edge-objects. The first step of this partitioning runs the SLIC (Simple

Linear Iterative Clustering) superpixel algorithm [2] on the image. The SLIC

algorithm clusters image pixels according to their L, a, and b values in the La*b*

color space together with their x and y coordinates, and defines a superpixel for

each of these clusters. After obtaining superpixels by the SLIC algorithm, the

second step of this subregion partitioning takes one of the following three actions

for each superpixel p.

1. If p is entirely outside the binary mask B, which is also used in the edge-

object definition step, it discards this superpixel.

2. Otherwise, if p entirely or partially overlaps with the mask, the overlapping
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(a) (b) (c) (d)

Figure 3.3: Illustration of splitting a superpixel into multiple subregions: (a) a
superpixel before splitting, (b) a left edge-object that will split the superpixel, (c)
the left object superimposed on the superpixel, and (d) three subregions obtained
after splitting.

part of p is taken. Then, if any edge-object cuts this overlapping part into

multiple components, the second step further splits p using this edge-object

and defines multiple subregions corresponding to the superpixel, as illus-

trated in Figure 3.3. It repeats this split operation for all such edge-objects.

Note that this second step considers the edge-objects in the set of O0.5,

which is defined using the lowest Otsu threshold, for further partitioning of

the superpixels (line 5 of Algorithm 1).

3. Otherwise, it considers p as one subregion.

At the end of this step, an image is represented with the subregions and the

edge-objects of four different types. The next step will merge the subregions using

the edge-objects to form nuclei and the last step will postprocess these nuclei to

obtain the final segmentation (Figure 3.4).

3.1.3 Subregion Merging

The merging algorithm involves an iterative procedure, each of whose iterations

starts with assigning the present subregions to the edge-objects within a distance

d. Afterwards, based on these assignments, pairs of the adjacent subregions that

share a sufficient number of the edge-objects are determined and their merging

scores are calculated. Starting from the best one, such pairs are merged with
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(d) (e) (f)

(g) (h)

Figure 3.4: Illustration of the edge-objects and the subregions before and after
merging: (a) original subimage obtained from the HepG2 liver cancer cell line,
(b) left edge-objects, (c) right edge-objects, (d) top edge-objects, (e) bottom edge-
objects, (f) subregions at the end of the subregion partitioning step, (g) nuclei
obtained by merging the subregions, and (h) final segmentation after postpro-
cessing.

respect to their scores and the pairs are updated also considering the newly

emerged subregions. Each iteration continues until there remains no subregion

pair to be merged. The next iteration increments the value of d by one and

repeats the same steps. This procedure continues its iterations from d = 1 to

dmax. The pseudo-code of this procedure is given in Algorithm 2; the details of

its steps are explained below.

In the first step of each iteration, the subregions are assigned to the edge-objects

(lines 2-7 of Algorithm 2). For a subregion, this assignment is done separately for

each edge type. To assign a subregion si to a left edge-object, the vote v(si, oj)
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Algorithm 2 SubregionMerging: Procedure that iteratively merges subregion
pairs using the edge-objects.

Input: subregions S, edge-objects O, maximum distance dmax, voting threshold
tvote

Output: merged subregions S

1: for d← 1 to dmax do
2: for all subregions si of S do
3: left(si)← LeftAssignment(O, si, d)
4: right(si)← RightAssignment(O, si, d)
5: top(si)← TopAssignment(O, si, d)
6: bottom(si)← BottomAssignment(O, si, d)
7: end for

8: φ = ∅
9: for all adjacent subregions si and sk of S do

10: if
[
left(si) = left(sk) and σleft(sik) ≥ tvote or

right(si) = right(sk) and σright(sik) ≥ tvote
]

and
[
top(si) = top(sk) and σtop(sik) ≥ tvote or

bottom(si) = bottom(sk) and σbottom(sik) ≥ tvote
]

then
11: σ(sik)← σleft(sik) + σright(sik) + σtop(sik) + σbottom(sik)
12: φ = φ ∪ {〈sik, σ(sik)〉}
13: end if
14: end for

15: for all subregion pairs of φ do
16: sik ← select the pair with the highest σ(sik)
17: merge the subregions si and sk
18: update the set φ
19: end for

20: end for
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(a) (b) (c)

Figure 3.5: Illustration of calculating the vote v(si, oj) that the left edge-object
oj gives the subregion si. (a) The subregion si and the two edge-objects oj and
om are shown in maroon, green, and blue, respectively. (b) The area scanned for
the rows of oj, which is shown with light green color. For the upper rows of oj,
the scan continues until it reaches the distance d. For its lower rows, the scan
stops earlier since it hits the blue object om. (c) The part of the subregion si that
overlaps the scanning area, which is shown with light maroon color. The vote
v(si, oj) is incremented by one for each row of this overlapping part.

that this subregion takes from each left edge-object oj is calculated and the one

with the maximum vote is selected. If v(si, oj) = 0 for all oj, there is no left

edge-object assignment for the subregion si. To calculate v(si, oj), for each row

of oj, the image is scanned towards right starting from the leftmost pixel of oj

in this row and this vote is incremented by one if the scan meets a pixel of si

along this row. The scan continues until it hits another object or reaches the

distance d. This voting is illustrated in Figure 3.5. For the other edge types, the

assignment is done in a similar way with the following differences. The image is

scanned row-wise for the left and right types and column-wise for the top and

bottom types. Additionally, the image is scanned towards the opposite direction

of the specified edge type.

The next step determines the subregion pairs to be merged (lines 8-14 of Al-

gorithm 2). For each edge type, every pair of adjacent subregions that share

an edge-object is identified and a score that quantifies the degree of this sharing

is calculated. If they do not share an edge-object, this score is set to 0. The

subregions si and sk are said to share an edge-object if they are assigned to the

same object oj. In this case, the object oj will vote for the boundary between the

subregions si and sk. This vote calculation is very similar to the aforementioned
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one, except that each row/column of the object will increment the vote by one if

the corresponding scan meets a boundary pixel (instead of a pixel of a subregion)

and the scan stops only if it hits another object (instead of also reaching the

distance d). After calculating the votes (e.g., the vote vleft(sik) that the shared

left edge-object gives to the merge of the subregions si and sk), the merging scores

are defined as

σleft(sik) = mean
{ vleft(sik)

height(si)
,

vleft(sik)

height(sk)

}
σright(sik) = mean

{vright(sik)

height(si)
,
vright(sik)

height(sk)

}
σtop(sik) = mean

{ vtop(sik)

width(si)
, vtop(sik)

width(sk)

}
σbottom(sik) = mean

{
vbottom(sik)
width(si)

, vbottom(sik)
width(sk)

}
where each vote is normalized with the size of the subregions. Here we use nor-

malization not to create any bias towards merging larger subregions, for which the

number of boundary pixels is expected to be higher. If the pair of si and sk gets

sufficient vote from at least one vertical edge type (left or right) and at least one

horizontal edge type (top or bottom), the total merging score σ(sik) is calculated

as the sum of all of its scores and the pair is added to the merge set φ. In other

words, if σleft(sik) ≥ tvote or σright(sik) ≥ tvote and σtop(sik) ≥ tvote or σbottom(sik) ≥
tvote, the merging score σ(sik) = σleft(sik) + σright(sik) + σtop(sik) + σbottom(sik). Oth-

erwise, this pair will not be qualified for merging.

As the last step, all pairs in φ are iteratively merged with respect to their total

merging scores (lines 15-19 of Algorithm 2). After merging a pair of the subregions

si and sk, the newly emerged subregion sik is reassigned to the edge-objects, the

merging scores between this new subregion and its neighbors are recalculated and

the merge set φ is updated accordingly. Each iteration continues until there is no

subregion pair left for merging.

As explained in Section 3.1.1, the SubregionMerging procedure is called for

different sets of the edge-objects Operc, each of which is calculated using a different

Otsu threshold percentage constant perc ∈ {0.5, 1.0, 1.5, 2.0} (see lines 6-8 of
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Algorithm 1). As a final step, subregions smaller than an area threshold tarea

will be eliminated to obtain the final segmented nuclei. Here, the majority filter

is applied afterwards to obtain smoother boundaries. Note that this majority

filter only slightly affects the segmentation performance but it yields smoother

boundaries. In this work, we select the radius of this filter as 3 considering the

pixel resolution of the images used in our experiments.

3.2 Experiments

3.2.1 Dataset

We test our object oriented algorithm on 2661 cell nuclei of 37 fluorescence mi-

croscopy images. The cells were taken from the Huh7 and HepG2 liver cancer

cell lines and stained with nuclear Hoechst 33258. The images were taken un-

der a Zeiss Axioscope fluorescent microscope with a Carl Zeiss AxioCam MRm

monochrome camera with a 20× Carl Zeiss objective lens. For Hoechst 33258 flo-

rescent dye which a bisbenzimide DNA intercalator can be observed in the blue

region upon UV region excitation. Hoechst 33258 dye was excited with 365nm

and the emitted blue light (420nm) was acquired, the beam splitter was 395nm.

During the image acquisition, binning was set to 1 × 1, the gain and the offset

were set to default 0, and the integration time was 10-40ms. The images were

saved in the jpg image format and their pixel resolution was set to 768× 1024.

We use 785 nuclei of ten randomly selected images (five Huh7 and five HepG2

cell line images) in the training set, on which the model parameters are estimated.

The nuclei in the remaining 27 images are used for testing. HepG2 cells tend to

grow in more overlayers than Huh7 cells. This leads to more overlapping nuclei

in the images of the HepG2 cell line. Thus, we separately test our algorithm for

these cell lines. The Huh7 cell line test set includes 891 nuclei of 11 images and

the HepG2 cell line test set includes 985 nuclei of 16 images. The nuclei in these

images were manually annotated by our biologist collaborator. The image sets
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and their annotations are publicly available at http://www.cs.bilkent.edu.

tr/~gunduz/downloads/NucleusSegData/.

3.2.2 Evaluation

Each algorithm is quantitatively evaluated by calculating the precision, recall,

and F-score metrics at both the nucleus- and pixel-levels. The nucleus-level cal-

culation finds true positive nuclei as follows: it matches a nucleus N segmented

by the algorithm with an annotated nucleus A if at least half of the N ’s pixels

overlap with those of A. Similarly, it matches each annotated nucleus with a

segmented one. It then considers a segmented nucleus as true positive if there

exists one-to-one match between this segmented nucleus and an annotated one.

Afterwards, considering the correctly identified pixels of only the true positive

nuclei as true positive pixels, the pixel-level precision, recall, and F-score metrics

are calculated. Note that in this work, we used the same nucleus- and pixel-level

quantitative evaluation with the studies proposed by our research group [3, 58],

the results of which will be provided for comparison.

3.2.3 Parameter Selection

Table 3.1 lists the external parameters of the proposed method. We select the

values of these parameters on the training set; in this selection, we do not use the

test sets at all. For that, we consider a set of values for each parameter, also given

in Table 3.1, take the results for all possible combinations of different parameters,

and select the combination that yields the highest F-score for the training set.

The selected values are tsize = 5, dmax = 20, tvote = 0.1, and tarea = 400.
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Table 3.1: A list of the external model parameters together with their values
considered in parameter selection. The selected values are indicated as bold.
Parameter Explanation Values considered

tsize Minimum height/width for a component to
be an edge-object

5, 10, 15

dmax Maximum distance within which an edge-
object can vote for a subregion

15,20, 25

tvote Minimum score that a subregion pair should
take from at least one vertical (left or right)
and at least one horizontal (top or bottom)
edge type to be qualified for merging

0.1, 0.2, 0.3

tarea Minimum area for a subregion to be a nucleus 200, 300,400, 500

3.2.4 Results

Quantitative segmentation results of the proposed object oriented method are

given in Tables 3.2 and 3.3 for the Huh7 and HepG2 cell line test sets, respec-

tively. These tables show that the object oriented algorithm improves segmen-

tation results at both the nucleus- and pixel- levels. This improvement is higher

for the HepG2 cell line test set, which includes more overlapping nuclei. When

the results are visually examined, it is observed that the proposed method is able

to determine nucleus locations with high success for both less and more overlap-

ping nuclei (some examples are given in Figure 3.6). This is consistent with the

nucleus-level evaluation results.

In order to understand its effectiveness, we compare our object oriented method

with two of our previous methods [3, 58] and the other three proposed by other

research groups [22, 35, 36]. The quantitative and visual results of these com-

parison methods are also provided in Tables 3.2 and 3.3 and Figure 3.6. These

methods could be grouped into three. The first group includes the adaptive h-

minima [22] and iterative h-minima [3] methods, which are marker-controlled wa-

tersheds. Both of these methods apply h-minima transform to a distance/gradient

map to suppress its noise and then identify the regional minima on the noise-

suppressed map as their markers. The former one determines and uses a single h

value to identify its markers and adaptively changes it to refine the shapes of the
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identified markers [22]. On the other hand, the latter method iteratively identifies

its markers using a set of multiple h values [3]. Nucleus-level evaluation given in

Table 3.2 shows that using a single h value [22] is less efficient to correctly iden-

tify many markers, each of which corresponds to a nucleus in the result. When

multiple h values are used, more correct markers are found, and as a result, the

latter comparison method [3] yields nucleus-level evaluation comparable with our

method (it gives 89.29 and 83.22 percent F-scores for the Huh7 and HepG2 cell

line test sets, respectively, whereas our method gives just 90.75 and 84.21 per-

cents). On the other hand, pixel-level evaluation given in Table 3.3 reveals that

the proposed object oriented method gives much more successful results than

both of these comparison methods to delineate the nucleus’ boundaries, as also

observed in the visual results. For pixel-level evaluation, the proposed method

increases the F-score of iterative h-minima from 78.46 to 83.98 percent for the

Huh7 cell line test set and from 71.77 to 76.45 percent for the HepG2 cell line test

set. This may be attributed to the following reason. After identifying its mark-

ers, a marker-controlled watershed algorithm grows these markers pixel-by-pixel

usually with respect to pixel gradients and/or distance transforms. This pixel-by-

pixel growing is, however, more susceptible to pixel-level noise and imperfections.

On the other hand, the proposed object oriented method relies on subregion-level

merging with the help of the edge-objects, which are defined to encode gradients

at the object-level. This object-level processing results in delineating the nucleus’

boundaries more successfully.

The second group of comparison algorithms relies on using pixel-level gradi-

ents [35, 36]. The iterative voting method defines a series of oriented kernels to

obtain the gradient information and determines nucleus centers by getting im-

age pixels iteratively voted along the directions specified by these kernels [35].

The single-pass voting method improves the nucleus seed detection algorithm by

defining a voting area on the eroded binary mask of an image. This method

considers only the boundary regions of this binary mask instead of traversing the

entire image [36]. Tables 3.2 and 3.3 show that our proposed method leads to

higher F-scores compared to these two voting based methods. This indicates the

effectiveness of using the gradient information at the object-level instead of using
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Table 3.2: Comparison of the algorithms in terms of nucleus-level evaluation on
(a) the Huh7 cell line and (b) the HepG2 cell line test sets.

Huh7
Precision Recall F-score

Object-oriented [1] 92.33 89.23 90.75
Adaptive h-minima [22] 88.27 83.61 85.87
Iterative h-minima [3] 89.24 89.34 89.29
Iterative voting [35] 81.28 80.92 81.10
Single-pass voting [36] 87.82 85.75 86.77
ARGraphs [58] 88.14 88.44 88.29

(a)
HepG2

Precision Recall F-score
Object-oriented [1] 87.00 81.00 84.21
Adaptive h-minima [22] 80.37 69.44 74.50
Iterative h-minima [3] 86.35 80.3 83.22
Iterative voting [35] 75.89 73.19 74.52
Single-pass voting [36] 77.04 72.89 74.91
ARGraphs [58] 81.41 79.19 80.28

(b)

pixel-level gradients. Table 3.2 also shows that both of these comparison methods

yield lower nucleus-level precision and recall values. These lower values indicate

the detection of less true positives (correctly located nuclei), but also lower pre-

cisions are the indicators of more false positives (incorrectly located nuclei) and

lower recalls are those of more false negatives (missing nuclei). The increase in

the number of false positives and false negatives might be the result of noise and

imperfections in pixel values, which will directly affect the computation of the

gradients at the pixel-level. Intensity inhomogeneities in a nucleus may lead to

defining spurious edges, which increases the number of false positives, whereas

insufficient pixel intensity differences at the nucleus’ boundaries may cause not to

identify existing nuclei, which increases the number of false negatives. The use of

the gradient at the object-level alleviates the negative effects of these imperfec-

tions, which might be the reason of obtaining higher nucleus-level precision and

recall values.

The last comparison group includes the ARGraphs method [58], which was
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Table 3.3: Comparison of the algorithms in terms of pixel-level evaluation on (a)
the Huh7 cell line and (b) the HepG2 cell line test sets.

Huh7
Precision Recall F-score

Object-oriented [1] 80.25 88.08 83.98
Adaptive h-minima [22] 82.57 79.47 80.99
Iterative h-minima [3] 83.58 73.93 78.46
Iterative voting [35] 81.26 68.48 74.33
Single-pass voting [36] 83.61 71.03 76.81
ARGraphs [58] 78.28 85.51 81.74

(a)
HepG2

Precision Recall F-score
Object-oriented [1] 71.96 81.53 76.45
Adaptive h-minima [22] 67.16 66.33 66.74
Iterative h-minima [3] 80.09 65.02 71.77
Iterative voting [35] 70.67 61.12 65.55
Single-pass voting [36] 71.70 59.12 64.80
ARGraphs [58] 65.75 75.37 70.24

(b)

implemented by our research group. This method constructs an attributional

relational graph on the edge-objects and identifies nucleus centers by searching

predefined patterns on this graph. This previous method also uses the edge-

objects, but this use is completely different than the one proposed in this current

work. ARGraphs does not define any subregions, and thus, obviously, it does not

use these subregions in conjunction with the edge-objects. Moreover, it does not

make use of any first-divide-then-merge approach to form nuclei from the subre-

gions and the edge-objects. We use this comparison method to understand the

effects of developing such kind of approach in segmenting the nuclei. Tables 3.2

and 3.3 demonstrate that this newly proposed approach improves the F-scores

both at the nucleus- and pixel-levels. This improvement is higher for the HepG2

cell line test set, in which cells tend to grow in overlayers. This reveals the effec-

tiveness of our first-divide-then-merge approach, which first divides an image into

subregions and then merges them by the edge-objects, to more correctly identify

overlapping nuclei in more overlayered cell clumps. This is also consistent with

the visual results given in Figure 3.6.
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Table 3.4: Comparison of the algorithms in terms of computational times on the
Huh7 and HepG2 cell line test sets.

Computational Time (sec)
Huh7 HepG2

Object-oriented [1] 14.82 ± 10.38 14.11 ± 11.84
Adaptive h-minima [22] 1.81 ± 1.29 1.75 ± 1.36
Iterative h-minima [3] 2.02 ± 1.44 1.38 ± 1.99
Iterative voting [35] 10.03 ± 7.96 9.42 ± 6.11
Single-pass voting [36] 6.52 ± 5.85 4.85 ± 4.47
ARGraphs [58] 5.86 ± 2.08 5.84 ± 2.69

Table 3.4 provides the average computational time to segment nuclei in a

given image and its standard deviation. These computational times are obtained

on a computer with a 2.9 GHz Intel Core i5 processor and 16 GB of RAM.

We implement our object oriented method mostly in Matlab but when faster

computations are needed, we write the code in C++ and compile it by the MEX

compiler of Matlab. Its average computational time is approximately 15 seconds,

which is higher than those of the other comparison methods. The most expensive

part of our method is the iterative subregion merging procedure (lines 15-19 of

Algorithm 2). At each iteration, this procedure selects one subregion pair from

the candidate set, merges them, and updates the assignments and the voting

scores of the remaining candidates. This part takes longer time especially when

the number of subregions is high. Although it is implemented in C++, it is still

possible to make this part faster by more effectively coding it. It is also possible

to obtain further speedups by implementing the entire algorithm in C++. This

is considered as a future work of this implementation.

3.3 Discussion

This chapter presents a new object oriented method for segmenting cell nuclei

in fluorescence microscopy images. This method relies on the use of gradient

information at the object-level, instead of directly using pixel-level gradients. To
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this end, it proposes to partition an image into smaller subregions, define edge-

objects at four different orientations for encoding the gradient information at the

object-level, and devise an effective merging algorithm that forms nuclei from

the subregions with the help of the edge-objects. In this subregion-level merging,

the edge-objects vote for subregion pairs along the direction specified by their

edge types and the subregion pairs are iteratively merged provided that they get

sufficient votes from multiple directions. This high-level representation together

with this high-level merging are expected to be less susceptible to pixel-level noise

and imperfections compared to the methods that directly work on pixel values.

Our experiments on fluorescence microscopy images are consistent with this ex-

pectation. They demonstrate that the proposed object oriented method leads

to better segmentation results compared to pixel-level cell nucleus segmentation

algorithms.

The proposed method defines four different types for the edge-objects but does

not define any type for the subregions. It is also possible to assign types to sub-

regions, based on their characteristics, and incorporate them into the merging

algorithm. This could be considered as a future work of this study. In this work,

we focus on the fluorescence microscopy images. As another future work, one

may consider to extend this object oriented method to other types of microscopy

images. For instance, it can be extended to 3D nucleus segmentation by defin-

ing 3D edge-objects and 3D subregions. For that, the third axis (depth) can be

employed to identify the edge-objects of six different types (left, right, top, bot-

tom, front, and back object types) and supervoxels can be used to define the

subregions instead of superpixels. For obtaining the supervoxels, one can use the

option provided by the SLIC algorithm [2]. After defining them, the merging step

can be modified to consider object assignments for the new types and to use the

votes of the edge-objects from six directions. This may be considered as another

future work of the proposed study.
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Figure 3.6: Visual results obtained by the algorithms for various subimages. The
subimage sizes have been scaled for better visualization.

40



Chapter 4

Iterative H-minima Based

Marker-Controlled Watershed for

Cell Nucleus Segmentation

The marker-controlled watershed is a commonly used technique that segments

clustered cell nuclei. It defines a set of markers on an image and obtains cell

nucleus regions growing them only from these predefined markers. In this tech-

nique, it is crucial to correctly identify the markers since a nucleus cannot be

segmented if a marker is not defined for it. The majority of the previous algo-

rithms take regional minima/maxima found on the intensity/gradient [4] and/or

the distance transform [21] maps as the markers. However, this is very sensitive

to noise, and hence, may lead to defining spurious markers. To alleviate this prob-

lem, these algorithms typically apply the h-minima/h-maxima transform, which

suppresses all minima/maxima under a value of h, before finding the regional min-

ima/maxima [28, 22, 23]. The selection of the h value directly affects the defined

markers. Smaller h values do not sufficiently suppress the noise, which might

result in defining false and over-segmented markers. On the other hand, larger h

values suppress too many pixels such that minima/maxima become connected to

each other or to the background; this might yield missing and under-segmented

markers.
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The previous algorithms typically use the same h value for an entire image

or for each connected component of the binary mask of the image, which corre-

sponds to a nucleus cluster. They select this h value experimentally [28, 87] or by

optimizing a criterion function [23]. Once it is selected, this value is used for the

entire image or the corresponding connected component. On the other hand, the

same image/component may require using different h values for more accurately

identifying the markers. For instance, Figure 4.1 shows the markers found on an

example image using three different h values. The cell nuclei illustrated as red

markers in Figure 4.1b can only be identified using a smaller h value. However,

the same h value yields many over-segmented cell nuclei, markers of which are

shown in magenta in Figures 4.1b and 4.1c. Increasing the h value may overcome

the over-segmentation problem, but this time, it may cause under segmentations,

as illustrated with a yellow marker in Figure 4.1d, and missing nuclei.

In this study, we propose a new marker-controlled watershed algorithm to ad-

dress this issue. To this end, the proposed algorithm iteratively identifies its

markers, considering a set of different h values. In each iteration, it defines a

set of candidates using a particular h value and selects the markers from those

candidates provided that they fulfill the size requirement. In the literature, there

also exist h-minima based methods that make use of iterative approaches to iden-

tify their markers [22, 23]. After identifying the initial markers using a selected

h value, the shape of these markers are refined by increasing the selected h value

iteratively, until the point just before the initial markers start to merge with each

other [22]. The method given in [23] determines the h value that optimizes an

evaluation function in an iterative algorithm. However, once they fix the h values,

these algorithms use them for the entire image/component. Our proposed algo-

rithm differs from these algorithms in the sense that it identifies its markers using

multiple h values for the same image/component. By doing so, it alleviates the

over and under-segmentation problems due to the use of the same h value for the

entire image/component. Our experiments on widefield fluorescence microscopy

images demonstrate that this use of multiple h values improves the segmentation

performance for nuclei of both isolated and confluent cells.
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(a) (b)

(c) (d)

(e)

Figure 4.1: Markers found on an example subimage: (a) original subimage, (b)

markers when h = 1, (c) markers when h = 2, and (d) markers when h = 3. Here,

magenta and yellow markers indicate oversegmentations and undersegmentations,

respectively. The markers that cannot be identified with larger h values are shown

with red in (b). The markers identified by our proposed algorithm are shown in

(e).
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Figure 4.2: Schematic overview of our proposed algorithm.

4.1 Methodology

Our proposed algorithm relies on using multiple h values to identify the markers

of a connected component, which corresponds to a nucleus clump in an image.

The motivation behind this use is the fact that there exists no best h value that

can be used to identify all markers of the same connected component, due to

the possible variations in the nuclei’s sizes, shapes, and intensities within the

same nucleus clump. Our algorithm has three main steps: map construction,

marker identification, and region growing. We implement the map construction

and marker identification steps in Matlab, using its built-in function for h-minima

transform. We implement the region growing step in C. The source codes of

our implementation are available at http://www.cs.bilkent.edu.tr/~gunduz/

downloads/IterativeHMin. The schematic overview of the algorithm is given in

Figure 4.2. The details of its steps are given in the following subsections.

4.1.1 Map Construction

In this step, we construct two maps on which initial markers are identified and

grown. These are the gradient map Gmap, which we use to model the intensity

deviations along the nucleus boundaries, and the distance transform map Dmap,

which we use to model the size and shape of nuclei. For an image I, we obtain

the gradient map Gmap by applying the Sobel operators on its grayscale. Here
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we smooth both the grayscale image and the Sobel responses to reduce inten-

sity variations and noise within nuclei. In particular, before applying the Sobel

operators, we smooth the grayscale image by morphological opening that uses a

disk structuring element with a radius of dsize. Then, after obtaining them, we

smooth the Sobel responses using the average filter also with a half size of dsize.

Note that we select the diameter (radius) of the disk structuring element and the

filter size (its half size) the same to reduce the number of free model parameters

in our algorithm.

We calculate Dmap by taking the distance transform for the pixels of a binary

mask B, which is obtained by thresholding the grayscale of the image I. In our

algorithm, we use a global threshold value calculated by the Otsu’s method [86].

However, we use its half to ensure that the mask covers most of the nuclear

regions.

4.1.2 Iterative Marker Identification

Watershed-based nucleus segmentation algorithms commonly define their markers

on nucleus centroids. For that, they typically find regional maxima on a distance

transform map, to reflect a fact that nucleus centroids are the locations farthest

from boundaries, and/or regional minima on a gradient map, to reflect a fact that

the centroids typically show smallest intensity deviations. In this work, we use

the gradient map Gmap to iteratively identify the markers. In each iteration of

this process, we first suppress noise on Gmap using the h-minima transform, with

a different h value, and then find the regional minima on the noise-suppressed

map. The motivation behind using different h values in different iterations is

that the selection of the h value is not straightforward since a single fixed h value

would not be enough to suppress all noise at a desired level, and thus, different h

values work with different levels of success to identify the markers corresponding

to different types of nuclei. Smaller h values work better to identify the correct

markers for nuclei containing a fair amount of noise inside, but may yield over-

segmented markers for those with a high amount of noise. On the other hand,
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larger h values address the over-segmentation problem, but this time, they may

lead to under-segmented or missing markers for the former type of nuclei. Thus,

in order to address this problem, we proposed to use multiple h values in an

iterative algorithm (Figure 4.1).

In this algorithm, we start iterations from h = 1 and increment its value by one

until no new markers are defined. In each iteration, we suppress noise on Gmap

using the h-minima transform and identify the regional minima on the noise-

suppressed map as marker candidates. Then, in order to reduce the number of

over-segmented markers, whose areas are typically small especially when a small h

value is used, we eliminate the candidates that are smaller than an area threshold

tarea. We eliminate such small candidates to prevent defining a noisy region as a

marker. Note that if such a region corresponds to a true marker, next iterations

are expected to locate it since larger h values typically yield larger candidates

(regional minima).

At the end, we add the candidates to the marker set provided that they do

not overlap with the markers defined in the previous iterations. Here instead of

considering the previous markers as they are, we dilate them with a disk struc-

turing element, whose radius is also dsize, and determine the overlaps accordingly.

The rationality of this dilation is that consecutive h values may yield overlapping

markers or those that are not overlapping but very close to each other and the

dilation prevents over-segmentation arising from such close markers (Figure 4.3).

We provide the pseudocode of this marker identification in Algorithm 3. The

algorithm takes three inputs. The first one is the gradient map Gmap, on which

markers are identified. The next one is the area threshold tarea, which is used

to eliminate small marker candidates. The last one is the radius dsize of a disk

structuring element, which is used to dilate the previous markers for determining

the overlaps. The iterative marker identification algorithm outputs the marker

set M . Figure 4.4 illustrates an example output of this algorithm, each iteration

of which uses a different h value. Each image shown in this figure corresponds

to a different iteration and illustrates the markers added to the marker set in the

current iteration in red and those found in the previous iterations in green.
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(a) (b) (c)

Figure 4.3: (a) Previously identified markers before dilation, (b) previously iden-
tified markers after dilation, and (c) currently identified markers. There is no
overlap between the top marker of (a) and the top marker of (c) before dilation.
However, after dilation, these two become overlapping and the top marker of (c)
will not be included into the marker set, which prevents oversegmentation for the
top nucleus.

4.1.3 Region Growing

After identifying the markers, we grow the dilated markers on the foreground

pixels of the binary mask B by a marker-controlled watershed algorithm and

delineate the nucleus boundaries. We use the distance transform map Dmap as the

marking function in the flooding process of the watershed. For each foreground

pixel, Dmap keeps the closest distance from this pixel to its closest marker. In a

standard watershed algorithm, the flooding process grows the identified markers

on all foreground nucleus pixels until the grown markers meet. However, this may

cause a problem when markers are not correctly identified for all adjacent nuclei.

Figure 4.5 illustrates this problem on two subimages, each of which contains three

nuclei. In each subimage, the markers are correctly identified for the two nuclei

but no marker is found for the other nucleus (Figure 4.5a). The standard flooding

process grows these markers on the nucleus pixels, whose boundaries are given in

Figure 4.5b. Thus, it yields incorrect nucleus boundaries, as shown in Figure 4.5c,

since some of these pixels belong to the nucleus with an unidentified marker.

To prevent flooding into pixels that belong to a nucleus with an unidentified

marker, we modify the flooding process such that it grows a marker on a fore-

ground pixel unless it meets the stopping condition for this pixel, which is defined
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Algorithm 3 IterativeMarkerIdentification: Procedure that iteratively iden-
tifies markers.

Input: gradient map Gmap, area threshold tarea, disk size dsize
Output: markers M

1: M = ∅
2: h = 1
3: repeat
4: hmap = HMinima(Gmap, h)
5: Mcurr = RegionalMinima(hmap)
6: Mcurr = EliminateSmall(Mcurr, tarea)
7: Mcurr = EliminateOverlapping(M,Mcurr, dsize)
8: M = M ∪Mcurr

9: h = h+ 1
10: until Mcurr = ∅

considering other pixels found in its symmetric location. Particularly, to grow a

marker M on a foreground pixel P , we check all pixels found on a circular arc,

whose midpoint is symmetric to P with respect to the M ’s centroid. The start

and end angles of the arc are −α and +α degrees with respect to the line passing

through this midpoint and the M ’s centroid (see Figure 4.6). We allow growing

only if none of the pixels on this arc belong to the background or have previ-

ously been assigned to another marker. At the end, when none of the markers

can be grown further, we allow them to grow on the foreground at most p more

pixels without considering the stopping condition. For the subimages given in

Figure 4.5a, the boundaries obtained by our modified flooding process are shown

in Figure 4.5d. Note that since this flooding process considers pixels on an arc,

instead of an entire circle, it locates non-circular nuclei better, as illustrated in

Figure 4.7.

48



Figure 4.4: Outputs of four different iterations, each of which uses a different
h value, in the marker identification step. In each image, the red markers are
the ones that are added to the marker set in the current iteration and the green
markers are those that were found in the previous iterations.

4.2 Experiments

4.2.1 Dataset

In our experiments, we use fluorescence microscopy images of human hepatocel-

lular carcinoma (Huh7 and HepG2) cell lines that were cultured in the Molecular

Biology and Genetics Department at Bilkent University. The cells were stained

with Hoechst 33258 nuclear staining and their images were taken under a Zeiss

Axioscope fluorescent microscope with an AxioCam MRm monochrome camera.

The objective lens is 20× and the image size is 768 × 1024. The cell nuclei in

these images were annotated by our biologist collaborators.
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(a) (b) (c) (d)

Figure 4.5: Flooding process of the watershed algorithm for two example subim-
ages. (a) Markers from which flooding starts, (b) boundaries of nucleus pixels, (c)
nucleus boundaries obtained using the standard flooding process, and (d) nucleus
boundaries obtained using our flooding process.

First, we conduct experiments on the dataset containing the fluorescence mi-

croscopy images of Huh7 and HepG2 cell lines. In this dataset, 785 nuclei are

used as training instances, on which the parameters of the algorithms are se-

lected. These nuclei are taken from 10 randomly selected images; five of them

are selected from the Huh7 cell line and the other five from the HepG2 cell line.

The rest of the images are used as test instances. Since cells are grown in more

overlayers in the HepG2 cell line and since we want to explore the effectiveness

of the algorithms on different confluency levels, there are two test sets. The first

one contains 891 nuclei taken from 11 images of the Huh7 cell line. The second

one contains 985 nuclei taken from 16 images of the HepG2 cell line. In addition

to these test sets, we form another one that contains more confluent cells. This

test set contains 1065 nuclei taken from 4 images of the HepG2 cell line. We will

refer them as the Huh7 test set, the HepG2 test set, and the dense HepG2 test

set, respectively.
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Figure 4.6: Illustration of defining the stopping condition in region growing. To
grow a marker M on a pixel P , this condition checks all pixels (red pixels in this
figure) on a circular arc, whose mid-point is symmetric to P with respect to the
M ’s centroid.

(a) (b) (c)

Figure 4.7: Effects of defining the stopping condition by considering the pixels of
an arc instead of an entire circle. (a) An example image of nucleus, (b) boundaries
obtained when the pixels of an arc are considered, and (c) boundaries obtained
when the pixels of an entire circle are considered.

4.2.2 Evaluation

We evaluate our proposed algorithm and the comparison methods, both visually

and quantitatively. For quantitative evaluation, we use the precision, recall, and

F-score metrics. First, we calculate these metrics on nuclei to quantify how

successful an algorithm is in the correct identification of nuclei. Then, we calculate

them on pixels by considering the correctly segmented pixels of only the correctly

identified nuclei as correct segmentation.

Note that we use the same approach to evaluate our method which we explained

in Chapter 3. To explain the evaluation method again: We match each nucleus

N that an algorithm segments with an annotated nucleus A in the gold standard
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if at least half of N ’s segmented pixels overlap with those of A. Likewise, we

match each annotated nucleus with a segmented nucleus. Then, N is considered

as correctly identified if there is a one-to-one match between N and an annotated

nucleus. Otherwise; 1) N is a false detection if it does not match with any

annotated nuclei, 2) A is a miss if it does not match with any segmented nuclei,

3) A is over-segmented if more than one segmented nucleus match with A, and

4) annotated nuclei that match with the same segmented nucleus are under-

segmented.

4.2.3 Parameter Selection

The proposed algorithm has four external parameters. The first one is the area

threshold tarea, which is used to eliminate smaller markers in the marker iden-

tification step. The second parameter dsize is used in two different steps: map

construction and marker identification. In the map construction step, it de-

termines the size of the disk structuring element and the average filter, both

of which are used for smoothing operation. In the marker identification step,

this parameter also determines the size of the disk structuring element, which

is used to dilate the previous markers for eliminating the overlapping markers.

Note that although it is possible to use different values, we set the radius of the

disk structuring elements and the half size of the average filter to the same dsize

value to reduce the number of the external parameters of our algorithm. The

last two parameters are used in the region growing step. The angle α is used

to define the start and endpoints of an arc, whose pixels are used to define the

stopping condition of the flooding process. The offset p is the maximum number

of pixels that a marker grows at the end without considering the stopping con-

dition. In our experiments, we consider any combination of the following values

tarea = {5, 10, 20, 30}, dsize = {5, 7, 10, 13}, α = {0, 15, 30, 45}, and p = {0, 2, 4},
and select the one that maximizes the F-score metric on the training set. The

selected parameter values are tarea = 20, dsize = 10, α = 15, and p = 2. In this

selection, none of the test set images are used. In addition to these external

parameters, we have an internal choice, which is the decrease ratio of the Otsu
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threshold to obtain the binary mask B in the map construction step. In this step,

we decrease the Otsu threshold to its half (i.e., use the 0.5 ratio) to ensure that

B covers most of the nucleus pixels. We will analyze the effects of this selection

to the segmentation performance in Section 4.3.1.

4.2.4 Comparisons

We compare our proposed algorithm with four nucleus segmentation methods:

adaptive h-minima [22], conditional erosion [19], iterative voting [35], and AR-

Graphs [58]. The first two are marker-controlled watersheds. The adaptive h-

minima method [22] identifies markers by finding regional minima on the inverse

distance map, which is also explained in Chapter 3. The conditional erosion

method [19] finds its markers by iteratively eroding the binary mask of an im-

age using two different structuring elements. The iterative voting [35] and the

ARGraphs [58] methods are also explained in Chapter 3 since they are compared

with our iterative h-minima method. You can find the details of the three algo-

rithms, namely adaptive h-minima [22], iterative voting [35], and ARGraphs [58],

in Chapter 3. Note that we select the parameters of these four comparison meth-

ods also on the training set images.

4.3 Results

We provide the quantitative results of our algorithm and the comparison methods

in Figure 4.8 and report their nucleus-based F-score metrics in Tables 4.1, 4.2,

and 4.3. The figure and the tables show that the proposed algorithm improves

the segmentation performance of the other methods. This improvement is more

evident in more confluent cells, as seen in the results obtained on the dense HepG2

test set (Table 4.3). These quantitative results are also consistent with the visual

ones given in Figures 4.10, 4.11, and 4.12. Figure 4.10 contains subimages taken

from the Huh7 test set, which typically have nuclei of isolated and less confluent

cells. All algorithms give good segmentation results for almost all of such nuclei.
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(a) (b)

(c)

Figure 4.8: Comparison of the algorithms in terms of segmented-annotated nu-
cleus matches on the (a) Huh7, (b) HepG2, and (c) dense HepG2 test sets.

Figure 4.11 contains subimages from the HepG2 test set and Figure 4.12 con-

tains subimages from the dense HepG2 test set. These visual results show that

as the confluency degree increases, the performance of the comparison methods

decreases more compared to our proposed algorithm.
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Table 4.1: Comparison of the algorithms in terms of nucleus- and pixel-based pre-

cision, recall, and F-score measures (a) and segmented-annotated nucleus matches

(b) on the Huh7 test set.
Nucleus-based Pixel-based

Precision Recall F-score Precision Recall F-score

Iterative H-minima [3] 89.24 89.34 89.29 83.58 73.93 78.46

Adaptive H-minima [22] 88.27 83.61 85.87 82.57 79.47 80.99

Conditional erosion [19] 85.21 82.82 84.01 86.11 72.61 78.78

Iterative voting [35] 81.28 80.92 81.10 81.26 68.48 74.33

ARGraphs [58] 88.14 88.44 88.29 78.28 85.51 81.74

(a)

One-to-one Overseg Underseg False Miss

Iterative H-minima [3] 796 31 22 17 42

Adaptive H-minima [22] 745 11 120 28 15

Conditional erosion [19] 738 27 77 34 49

Iterative voting [35] 721 51 60 59 34

ARGraphs [58] 788 35 51 17 20

(b)

Table 4.2: Comparison of the algorithms in terms of nucleus- and pixel-based pre-

cision, recall, and F-score measures (a) and segmented-annotated nucleus matches

(b) on the HepG2 test set.
Nucleus-based Pixel-based

Precision Recall F-score Precision Recall F-score

Iterative H-minima [3] 86.35 80.30 83.22 80.09 65.02 71.77

Adaptive H-minima [22] 80.37 69.44 74.50 67.16 66.33 66.74

Conditional erosion [19] 73.89 62.63 67.80 64.24 55.86 59.76

Iterative voting [35] 75.89 73.19 74.52 70.67 61.12 65.55

ARGraphs [58] 81.41 79.19 80.28 65.75 75.37 70.24

(a)

One-to-one Overseg Underseg False Miss

Iterative H-minima [3] 791 31 48 37 115

Adaptive H-minima [22] 684 4 280 43 17

Conditional erosion [19] 617 15 297 57 56

Iterative voting [35] 721 58 131 75 45

ARGraphs [58] 780 37 116 44 52

(b)

55



Table 4.3: Comparison of the algorithms in terms of nucleus- and pixel-based pre-

cision, recall, and F-score measures (a) and segmented-annotated nucleus matches

(b) on the dense HepG2 test set.
Nucleus-based Pixel-based

Precision Recall F-score Precision Recall F-score

Iterative H-minima [3] 84.48 70.05 76.59 74.94 59.89 66.58

Adaptive H-minima [22] 71.37 47.51 57.05 48.89 44.08 46.36

Conditional erosion [19] 61.67 44.41 51.64 49.22 39.82 44.02

Iterative voting [35] 58.41 49.58 53.63 52.52 42.32 46.87

ARGraphs [58] 74.34 63.94 68.75 59.69 62.87 61.24

(a)

One-to-one Overseg Underseg False Miss

Iterative H-minima [3] 746 22 126 32 171

Adaptive H-minima [22] 506 12 467 49 80

Conditional erosion [19] 473 27 395 91 170

Iterative voting [35] 528 57 287 122 193

ARGraphs [58] 681 39 197 62 148

(b)

The comparison between our proposed algorithm and the adaptive h-minima

method also reveals that using multiple h values to identify the markers for the

same connected component leads to better segmentation results. To investigate

whether this is indeed a result of using multiple values or improper selection of

the fixed h value, we conduct another experiment. For that, we have modified our

algorithm such that it uses a single fix h value; the other parts of the algorithm

remain exactly the same. For the Huh7, HepG2, and dense HepG2 test sets,

Figure 4.9 shows the nucleus based F-score metric as a function of h values.

For each test set, it also plots the nucleus based F-score metric obtained by our

algorithm, which iteratively uses multiple h values. This figure shows that it is

possible to obtain a similar F-score metric when the optimal h value is used for the

Huh7 test set, in which cell nuclei are isolated or less confluent (Figure 4.9a). On

the other hand, the gap between the F-scores obtained by the proposed algorithm

and the optimal h value increases for the HepG2 and dense HepG2 test sets, in

which cell nuclei are more confluent. This indicates the effectiveness of using

multiple h values, especially when cell nuclei form denser clusters.
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(a)

(b)

(c)

Figure 4.9: Nucleus based F-score metrics obtained when a fixed h value is used

(solid lines) and when multiple h values are iteratively used by our proposed

algorithm (dashed lines). The F-score metrics are obtained for the (a) Huh7, (b)

HepG2, and (c) dense HepG2 test sets.
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Figure 4.10: Visual results obtained by the algorithms for various subimages.

The subimages are from the Huh7 test set. Note that the subimage sizes have

been scaled for better visualization.
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Figure 4.11: Visual results obtained by the algorithms for various subimages.

The subimages are from the HepG2 test set. Note that the subimage sizes have

been scaled for better visualization.
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Figure 4.12: Visual results obtained by the algorithms for various subimages.

The subimages are from the dense HepG2 test set. Note that the subimage sizes

have been scaled for better visualization.
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Figure 4.13: For the Huh7, HepG2, and dense HepG2 test sets, the nucleus-based
F-score metrics as a function of the Otsu threshold ratio used to obtain the binary
mask.

4.3.1 Analyses

Our proposed algorithm has four external parameters: the area threshold tarea,

the size dsize of the disk structuring elements and the average filter, the angle

α, and the offset p. As explained in Section 4.2.3, we select the values of these

parameters on the training set, without using any test set images at all. Besides,

the algorithm has an internal choice, which is the Otsu threshold ratio. Although

this ratio could also be considered as an external parameter and its value could

also be selected on the training set, we fix it to 0.5 for reducing the number of

free model parameters in our algorithm. In this section, we will first analyze the

effect of this choice to the segmentation results.

To identify the foreground pixels, we obtain a binary mask B by thresholding

the gray scale image. Here we calculate the threshold value by the Otsu’s method

and decrease this value to its half to ensure that the mask covers most of the

nucleus pixels. However, instead of decreasing the value to its half (i.e., using

the 0.5 ratio), it is also possible to use other decrease ratios. In Figure 4.13, we

analyze the effects of using different Otsu threshold ratios to the F-score metrics

for the three test sets used in our experiments. This figure indicates that ratios

in the range of 0.4 and 0.8 give similar results and the segmentation performance

does not very much depend on a specific value of this ratio.
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Figure 4.14: Effects of image quality degradation to segmentation results. For
the Huh7, HepG2 and dense HepG2 test sets, the nucleus-based F-score metrics
as a function of the standard deviation σ of a Gaussian filter, with which images
are blurred. Note that Poisson noise is also added to each blurred image.

Next, we analyze the effects of image quality degradation to segmentation re-

sults. To this end, we degrade the quality of images by blurring them with a

Gaussian filter and added Poisson noise to the blurred image. Figure 4.14 shows

the F-score metric as a function of the standard deviation σ of the Gaussian fil-

ter, which controls the degradation degree. This figure shows that our proposed

algorithm is robust to image quality degradation to a certain extent. However, as

expected, when the image quality drops below a certain point (when the standard

deviation σ too much increases), there is a substantial decrease in the segmenta-

tion performance.

4.3.2 Experiments on Tissue Section Images

In our experiments, we test our proposed algorithm on the images of cultured

human hepatocellular carcinoma (Huh7 and HepG2) cell lines. To understand

its applicability on different image types, we extend the application of our al-

gorithm on images of tissue sections from mouse liver, which were stained with

4?,6-diamidino-2-phenylindole (DAPI) nuclear stain. The images of these tissue

sections were taken under a fluorescent microscope with a 20× objective lens.

The image size is 480× 640. Our biologist collaborators annotated these images
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Table 4.4: For the experiments on tissue section images, comparison of the al-
gorithms in terms of the precision, recall, and F-score measures. The results are
obtained on the test images.

Huh7 HepG2 Dense HepG2
Iterative h-minima [3] 84.78 87.96 86.34
Adaptive h-minima [22] 84.30 73.71 78.65
Conditional erosion [19] 86.77 75.50 80.75
Iterative voting [35] 81.60 75.61 78.49
ARGraphs [58] 85.46 77.88 81.49

by marking the cell nuclei without drawing their boundaries. Because these an-

notations do not include the nucleus boundaries but a marker for each nucleus,

we consider a segmented nucleus as a one-to-one match if this nucleus contains

only a single marker, which indicates a gold standard nucleus, inside. For quanti-

tative evaluation, we compute the precision, recall, and F-score metrics on these

one-to-one matches.

In this tissue section dataset, there are a total of 13 images containing 2,660 cell

nuclei. Because these images may show characteristics different than those of cul-

tured human hepatocellular carcinoma cell lines, we randomly separate them into

the training set (766 nuclei from four images) and the test set (1,894 nuclei from

the remaining nine images) and select the model parameters again on the training

nuclei. In this selection, we consider any combination of the following parameter

values tarea = {5, 10, 15, 20, 30}, dsize = {3, 5, 7, 10, 13}, α = {0, 15, 30, 45}, and

p = {0, 2, 4}, and select the one that maximizes the F-score metric on the train-

ing nuclei. The selected parameter values are tarea = 15, dsize = 5, α = 30, and

p = 2. Likewise, we select the parameters of the comparison methods again,

considering the training set of these tissue sections. On the test set nuclei, our

proposed algorithm gives 86.34 percent F-score metric, leading to the highest

F-score compared to the other methods. The test set F-scores are 78.65 percent

for the adaptive h-minima method [22], 80.75 percent for the conditional erosion

method [19], 78.49 percent for the iterative voting method [35], and 81.49 percent

for the ARGraphs method [58]. We also present the visual results obtained on

three example subimages in Figure 4.16. These preliminary results indicate that

the proposed algorithm has a potential to be applied on other image types as
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well. One could consider the detailed investigation of this application as a future

research direction of the proposed segmentation algorithm.

4.3.3 Tight Nucleus Cluster Detection

Some images may contain tight clusters of nuclei, which cannot accurately be

analyzed even manually. To identify such kind of clusters, we develop a simple

detection algorithm, which determines markers whose likelihood of corresponding

to nuclei in a tight cluster is high and eliminates these markers before region

growing takes place. To this end, for each identified marker M , we calculate the

minimum distance from its centroid to the background and the distance to the

closest marker’s centroid. We eliminate the marker M if both of these distances

are greater than the distance threshold. The motivation behind using this method

is the following. For a tight cluster that contains indiscernible nucleus boundaries,

the gradient map is not too much informative. As a result, only a few correct

markers can be found within this tight cluster. Additionally, since such a cluster

is typically large in size, these markers are usually far from the background.

In our experiments, we select the distance threshold as 30 considering the

average radii of cell nuclei in the training images. As expected, the proposed

tight nucleus cluster detection method does not eliminate any markers from the

Huh7 test set since this set contains relatively less confluent cells. On the other

hand, it eliminates one marker from the HepG2 and six markers from the dense

HepG2 test sets, which contain more cells grown in overlayers. For an example

subimage, taken from the dense HepG2 test set, the segmentation results obtained

with and without using this detection method are given in Figure 4.15. As seen in

this figure, no nuclei are found within the tight cluster of this subimage since the

corresponding markers have been eliminated by the proposed detection method.

Please note that the use of this method slightly changes the F-score metrics for

the HepG2 sets; it changes the F-scores from 83.22 to 83.16 percent for the HepG2

test set, and from 76.59 to 76.31 percent for the dense HepG2 test set.
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(a) (b)

(c)

Figure 4.15: Visual segmentation results obtained when the tight nucleus cluster
detection method is used. (a) Original subimage from the dense HepG2 test set,
(b) nucleus boundaries obtained when the detection method is not used, and (c)
nucleus boundaries obtained when the detection method is used.

4.4 Discussion

This study presents a new marker-controlled watershed algorithm for cell nucleus

segmentation in fluorescence microscopy images. In this algorithm, we propose

to define the markers iteratively, using a different h value in each iteration. The

use of different h values suppresses noise at different levels, allowing us to define

better markers for nuclei showing different characteristics. Our experiments on

widefield fluorescence microscopy images demonstrate that this algorithm gives

better markers for nuclei of both isolated and confluent cells, leading to better

segmentation results.
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In this work, we develop an algorithm for segmenting nuclei of both isolated and

confluent cell taken from conventional widefield fluorescent microscopes, which

are highly available and affordable for various laboratories. They are found in

every molecular biology laboratory as well as they are routinely used for mor-

phological analysis of cells in pathology diagnostics laboratories. However, we do

not focus on confocal microscopy, which produces cell images with higher mag-

nification and resolution for detailed visualization of subcellular distribution of

fluorescent-labeled proteins. Although our algorithm can also be used for confocal

microscopy images, simpler segmentation techniques would also be adequate for

their segmentation since these images have only a few cells that are of higher mag-

nification and resolution and that are mostly isolated (nonconfluent). However,

the confocal microscopes may not be affordable for every research laboratory.

Moreover, the interest may be the confluent cells if a researcher aims to see the

aggregation of cells (e.g., cancer stem cell mammosphere formation). In such

cases, our proposed algorithm can be used for cell nuclei segmentation.

We conduct our experiments on the images of cultured human hepatocellular

carcinoma (Huh7 and HepG2) cell lines. To understand the applicability of our

proposed algorithm on different image types, we also extend the application of

our algorithm on images of tissue sections from mouse liver and obtain the pre-

liminary results. The application of our algorithm on other image types could be

considered as a future work.

In this work, we mainly focus on finding better markers. We use a relatively

simple region growing algorithm to delineate nucleus boundaries. As another

future work, we plan to work on designing better techniques for marker growing.

Here one could consider designing iterative methods also in the region growing

process. Another possibility is to explore the use of other types of maps, on which

the growing takes place.
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Figure 4.16: Visual results obtained by the algorithms for various tissue section
subimages. Note that the subimage sizes have been scaled for better visualization.
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Chapter 5

Deep Learning for Cell Detection

in Live Cell Images

(DeepDistance)

This study presents a new deep model that learns high-level features directly

from image data. In particular, this model proposes to pose cell detection as

a regression problem, in which the normalized distance from each pixel to the

closest background is learned by training a deep convolutional neural network

(CNN) on small patches cropped around the pixels. Then, for a given image,

cell detection is achieved by generating a normalized distance map of the image

pixels with the trained CNN and finding regional maxima of the generated map.

Since the proposed model automatically learns features from the image data, it

is not necessary to redesign any of its steps for new cell types, even when they

show different visual characteristics. For a new cell type, our model uses the

same CNN architecture and the same cell detection steps; it only needs a couple

of annotated training images of the new type, on which the CNN is to be fine-

tuned. Our experiments on six different cell line types, examples of which are

shown in Figure 5.1, reveal that the proposed model successfully identifies the cell

locations, improving the results of both the traditional approach and the previous

deep learning based methods.
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(a) (b) (c)

(d) (e) (f)

Figure 5.1: Example images from human liver and breast cancer cell lines used
in our experiments: (a) FOCUS, (b) Huh7, (c) SkHep1, (d) MDA-MB-453, (e)
MDA-MB-468, and (f) CAMA-1 cell lines.

The proposed DeepDistance model is different than the previous cell detection

models in the following aspects. As opposed to the traditional approach where

the features are handcrafted and the model is designed considering the visual cell

characteristics, DeepDistance provides a generic cell detection model where the

features are automatically learned from the image data. Our experiments show

that this feature learning allows us to use exactly the same model for different cell

types and improves the results of the previous studies. In the literature, there

also exist studies that use deep learning for cell detection. Our DeepDistance

model is also different than these studies. First, different than our model, the

majority of these studies pose cell detection as a classification problem in which

a deep classifier is trained on small patches to differentiate cell pixels from those

of the background. Then, for a given image, they may obtain a binary mask by

estimating the class labels of the image pixels with the trained classifier and use

this mask as an input to shape-based methods [68, 69]. Alternatively, they may

use the class posteriors of the pixels and identify cell locations on this posterior

map by either thresholding [66, 70] or clustering [67] but mostly finding regional
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Figure 5.2: Detection results on an exemplary subimage. (a) Original subimage,
(b) annotated subimage where cells are marked with blue dots, (c) cell locations
detected by a model that uses the distance from each cell pixel to the closest cell
center annotation as the output, and (d) cell locations detected by the proposed
DeepDistance model, which uses the normalized distance from each cell pixel to
the closest cell boundary annotation as the output. Since the DeepDistance model
does not impose any shape on cells, its results better preserve the cells’ shapes,
improving the detection results.

maxima [71, 72, 77, 74, 75]. Since their focus is the classification of cell pixels,

these studies treat the pixels taken from the annotated cells in the same way,

regardless of their relative positions within the cell, while training their classifier.

On the other hand, the position of a pixel relative to a cell center (or to a cell

boundary) may bring about additional information.

There exist studies that take this information into account by constructing

a regression model that learns a continuous distance output for each pixel. To

learn this output, these studies construct a training set by taking small patches of

pixels as the input and calculating an output distance for the pixels. In [73, 78],

this output is the Euclidean distance from the pixel to its closest annotated cell
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center. In [82], it is the response of a Gaussian which is located around the

closest annotated cell center of the pixel. These definitions, however, impose a

circular shape on cells, which may not be true for all cell types. As opposed

to these previous studies, the proposed DeepDistance model does not have such

imposition. It uses the boundary annotations (not the annotated centers) and

estimates the normalized distance from each cell pixel to the closest cell boundary

designing a deep regression model (it estimates zero for background pixels). Our

experiments demonstrate that this distance estimation better preserves shape

characteristics of the cells, and as a result, improves the success of cell detection

(see Figure 5.2 for exemplary results, more can be found in Section 5.2).

5.1 Methodology

The proposed DeepDistance model relies on defining a distance metric that better

preserves morphological characteristics of cells, constructing a deep convolutional

neural network (CNN) to estimate this distance metric for image pixels, and

using the estimated distances for the purpose of cell detection. The following

subsections give the details.

5.1.1 Distance Definition

The premise of our model is that it will be quite straightforward to successfully

detect cells in an image when an ideal distance map can be obtained for image

pixels. In such an ideal map, the distance for pixels close to a cell center will

be the largest and it will gradually decrease to zero towards cell boundaries.

Moreover, the definition of this ideal distance should not impose any assumption

on the shape and size of the cells if the aim is to detect cells of different visual

characteristics observed within and across various image samples.

In response to this premise, the DeepDistance model defines its distance metric
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as follows when cell (or nucleus1) annotations are given. Let P(Ak) = {pi} be

the set of pixels belonging to an annotated cell Ak, B(Ak) = {bi} be the set of

its boundary pixels, and maxD(Ak) be the Euclidean distance from the centroid

of Ak to its furthest boundary pixel bmax ∈ B(Ak). The distance dq for pixel q is

defined as

dq =


min

bi∈B(Ak)
‖q − bi‖2

maxD(Ak)
if q ∈ P(Ak)

0 if q ∈ background.

(5.1)

Note that the calculation of this distance requires the cell annotations, which are,

of course, not available for images whose cells are supposed to be automatically

detected. Thus, our model proposes to estimate this distance by a deep CNN

that will be trained on the pixels of annotated images. The details of this CNN

and its training are given in Section 5.1.2.

For an example subimage given in Figures 5.3a and 5.3b shows the distance

map calculated using Equation 5.1. As shown in the figure, this distance definition

preserves the morphological characteristics of cells. This is attributed to the

following properties of this definition: First, the distance is calculated with a

reference to a cell boundary instead of a cell center. If the center was used as

a reference point, the distance decrease from the center to the cell boundaries

would be the same for all directions, which would impose a circular shape on the

cells (Figure 5.3c). Second, this definition normalizes the distance with respect to

the size (maximum radius) of the cell that a pixel belongs to. This normalization

is effective to obtain similar distances for cells of different sizes, which will drive

the CNN classifier to make better generalizations regardless of the cell size. As a

result, this classifier is able to yield accurate estimated distances (Figure 5.3d), on

which the cell detection steps will be run (Section 5.1.3). Note that the subimage

used in this figure is not a part of a training image used in our experiments, and

thus, its pixels are not used to train the CNN classifier.

1Since the aim of cell detection is to identify the locations of cells (but not to segment their
exact boundaries), detecting the cells and detecting the nuclei of these cells will be equivalent.
Therefore, the annotations of cell nucleus boundaries will be used when delineating the exact
cell boundaries (especially for irregular shaped cells) is difficult.
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Figure 5.3: (a) Original subimage, (b) normalized distance map obtained by

the proposed distance metric, which calculates distances from cell pixels to their

closest boundary annotations, (c) normalized distance map obtained when the

distance is calculated from cell pixels to their closest cell centers, and (d) distance

map estimated by our CNN classifier. Note that the subimage used in this figure

is not a part of a training image used in our experiments, and thus, its pixels are

not used to train our CNN classifier.
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5.1.2 Distance Learning by CNN

This step trains a deep CNN to estimate the distance (given in Equation 5.1) for

a pixel in an unannotated image. This CNN takes the pixels of the patch located

at the center of a pixel as an input and outputs the distance estimated for this

pixel. Note that this work uses the L channel of the pixels as the input, after

converting the given RGB image to its La*b* equivalent.

For learning, it makes use of the 16-layer network architecture proposed by

the VGG team in the ILSVRC-2014 competition [88]. The original VGG-16

network was trained on the ImageNet dataset, where the inputs are 224 × 224

images and the output is one of the 1000 classes. In particular, this step uses the

convolutional, ReLu, and pooling layers of the VGG-16 network as they are and

makes the following changes in its input, output, and fully connected layers. The

first change is in the input size. Our model calculates the average cell size over the

training images and uses this average as the patch (input) size. The size of a cell

is calculated as the average of the width and the height of its bounding box. The

motivation behind selecting the input size on the training images of a given cell

type, instead of using a hard-coded one, is the following. One goal of this study

is to build a cell detection algorithm that can work on different cell types without

redesigning the model, which includes redesigning the CNN architecture and the

cell detection steps. Thus, we want the CNN classifier to be less susceptible to

variations in image resolution and magnification. By using this automatic input

size selection, the same network architecture can easily be used for different cell

types, of course after fine-tuning its weights on the given training set. The second

change is in the output size and type. Since the estimated distance is a scalar

continuous value, the problem is to regress a single output. Thus, the model

reduces the number of units in the output layer to one and does not use the

softmax function. Due to this reduction, the number of hidden units in the fully

connected layer is reduced from 4096 to 500 (Figure 5.4).
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Figure 5.4: Updated version of VGG-16 network used in this study.

To learn the weights of this CNN classifier, a training set of patches is formed

by cropping small windows around the selected pixels of the training images.

Note that here the pixel selection is not purely random to prevent any bias that

would occur upon algorithm’s over-fitting to any specific part of an image during

its training. Instead, each training image is divided into three parts using its

annotation and then pixels are uniformly selected from each part. These parts

correspond to the regions close to cell centers, regions close to boundaries, and

image background. A training image is divided into three by using the morpho-

logical erosion and dilation operators (Figure 5.5). For that, annotated cell pixels

are first eroded with a disk structuring element of 51× 51 and the remaining an-

notated pixels are considered as “center”. Then, the original annotated cell pixels

are this time dilated with the same structuring element and the background pix-

els of the dilated image are considered as “background”. The other pixels are

considered as “boundary”. Once again note that these center, boundary, and

background parts are just used to form the training sets for regression where the

inputs are patches and the outputs are continuous distance values.
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Figure 5.5: (a) Original subimage and (b) its division into three parts for forming

a training set of patches. In (b), “center”, “boundary”, and “background” pixels

are shown with green, red, and white respectively. Here black lines are used to

show boundary annotations. These black lines do not represent an additional part

but are drawn just for the illustration purpose. Note that they are considered as

“boundary” pixels when forming the set of training patches.

5.1.3 Distance Estimation for Cell Detection

The last step estimates a distance map for the pixels of an unannotated image

and identifies cell locations on this estimated map. For a pixel, the patch cropped

around it is fed to the trained CNN as the input and the CNN’s output is used

as the estimated distance. In this map, pixels with higher estimated values are

expected to belong to cellular regions far from a boundary, and thus, to be part

of a cell center. Thus, the proposed DeepDistance model finds regional maxima

on the distance map and then identifies the regions larger than the area threshold

tarea as the cell centers. In order to suppress possible noise in the estimated dis-

tance map, the model applies the h-maxima transform beforehand and suppresses

the maxima whose height is less than the value of h.

In this step, the distance estimation may require extensive computation for

images with high resolution. In order to reduce the computational time for such

images, one may consider to estimate the distance every k pixels using the trained
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CNN and calculate the approximate distance for the other pixels. This approxi-

mation yields almost k2 fold speed-up in the computational time. In this work, for

a pixel for which the CNN is not directly called, we use the estimated distance of

its closest pixel. Considering the resolution of the images, we select k = 10, which

yields a considerable amount of speed-up and still produces accurate detection

results.

5.2 Experiments

5.2.1 Datasets

We test our DeepDistance model on six different datasets, each of which consists

of live cell images of a different cell line. The first three are FOCUS, Huh7,

and SkHep1 human liver cancer cell lines and the other three are MDA-MB-453,

MDA-MB-468, CAMA-1 human breast cancer cell lines. The images in all these

datasets were acquired at 20× magnification and 3096×4140 pixel resolution. An

example from each dataset is shown in Figure 5.6. As seen in this figure, visual

characteristics may change from one cell type to another. Additionally, in the first

three cell lines, cells have irregular shapes and heterogeneous intensities. Small

low-intensity dots exist as a part of cells’ nuclei but there also exist similar small

dark subregions especially towards cells’ boundaries. For such cells, it would

be quite challenging to define handcrafted intensity, gradient, or shape-based

features. In the last three cell lines, cells’ shapes are less irregular. However,

this time, they appear in different looks. For instance, in Figure 5.6d, there

are mostly near-circular cells, which sometimes contain mostly bright pixels but

sometimes contain dark pixels inside and bright ones outside. On the other hand,

in Figures 5.6e and 5.6f, there are near-circular as well as non-circular cells. For

such images, it would not be easy to use a single model to detect cells of all these

different looks.

For each cell line, three images are randomly selected and their cells are used
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Figure 5.6: Example subimages from human liver and breast cancer cell lines
used in our experiments: (a) FOCUS, (b) Huh7, (c) SkHep1, (d) MDA-MB-453,
(e) MDA-MB-468, and (f) CAMA-1 cell lines.

for training. These training cells are used to learn the CNN regressors as well

as to select the parameters of the cell detection step. The cells in the rest of

the images are used for testing and none of them are used in any of the training

steps including the parameter selection. For each cell line, the number of images

and the number of cells in the training and test sets are presented in Table 5.1.

The cells are annotated by putting markers to their approximate centers. These

markers are used in the cell-level evaluation of our model as well as the comparison

methods (Section 5.2.2). In addition to these markers, the training cells are

also annotated by delineating their precise boundaries since the definition of the

distance to be learned by the CNN requires knowing the cell boundaries.
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Table 5.1: For each cell line, the number of images and the number of cells in its
training and test sets.

Training set Test set
Image no Cell no Image no Cell no

Liver cancer cell lines
FOCUS 3 205 6 336
Huh7 3 438 5 948
SkHep1 3 309 5 596
Breast cancer cell lines
MDA-MB-453 3 817 4 1254
MDA-MB-468 3 615 5 747
CAMA-1 3 786 6 866
Total 18 3170 31 4747

5.2.2 Evaluation

Each method is quantitatively evaluated on the test cells regarding the F-score

metric. This metric is calculated at the cell-level, considering the number of one-

to-one matches between the annotated markers and the detected cells (detected

regional maxima). For that, each annotated marker is matched to every detected

cell if the distance between this marker and the centroid of the detected cell is

less than a distance threshold. Similarly, each detected cell is matched to every

annotated marker if their distance is less than the same threshold. Afterwards,

a detected cell C is considered as one-to-one match (true positive), if it matches

with only one marker and this marker matches with only the cell C. Considering

the resolution of the images and the cell sizes, this threshold is selected as 50.

Then, the precision and recall metrics are obtained using on these one-to-one

matches, and the F-score is calculated as the harmonic mean of these two metrics.

5.2.3 Parameter Selection

The DeepDistance model has two external parameters: The first one is the h

value, which is used by the h-maxima transform to suppress possible noise in

the estimated distance map. The second parameter is the area threshold tarea,
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Table 5.2: Selected parameter values for each cell line.
h tarea

FOCUS 0.5 750
Huh7 0.5 250
SkHep1 0.5 1000
MDA-MB-453 0.3 250
MDA-MB-468 0.4 750
CAMA-1 0.4 500

which is used to eliminate smaller maxima from the results. The values of these

parameters are selected on the training sets. For that, we consider every combi-

nation of the values in the following sets and select the one that yields the highest

F-score metric for the training cells. These sets are h = {0.1, 0.2, 0.3, ..., 1.0} and

tarea = {100, 250, 500, 750, 1000, 1500, 2000}. Here the parameters are selected for

each cell line separately, by using the cells in the training set of this cell line, since

different cell lines may show different intensity and morphological characteristics.

For each cell line, the selected parameter values are given in Table 5.2. Note that

the parameter values are selected similarly for the comparison methods.

5.2.4 Results

The quantitative test set results obtained by the proposed DeepDistance model

are reported in the second column of Table 5.3. This table shows that our model

leads to accurate detection results for different cell lines. As mentioned before,

cells of the selected liver cancer cell lines have more irregular shapes and more

heterogeneous intensities, which make their detection harder. This is also ob-

served in the table, where our model gives more accurate results for cells of the

selected breast cancer cell lines. Additionally, the second rows of Figures 5.7

and 5.8 present the visual results obtained on example subimages taken from

different cell lines. Both the quantitative and visual results of our model indicate

the effectiveness of using deep learning for cell detection.
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Figure 5.7: Visual results for various subimages taken from the test sets of each

liver cancer cell line: (a) FOCUS, (b) Huh7, and (c) SkHep1. For each method,

detected cells are indicated with blue dot markers. Note that the sizes of the

subimages are scaled for better visualization.
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Figure 5.8: Visual results for various subimages taken from the test sets of each

breast cancer cell line: (a) MDA-MB-453, (b) MDA-MB-468, and (c) CAMA-1.

For each method, detected cells are indicated with blue dot markers. Note that

the sizes of the subimages are scaled for better visualization.
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Table 5.3: F-score metrics obtained on the test sets by the proposed DeepDistance
model and the comparison methods.

Deep Deep Deep Traditional Traditional
Distance Center Classifier Distance Intensity

FOCUS 82.82 77.22 84.03 52.56 48.92
Huh7 78.76 54.53 76.38 39.10 28.32
SkHep1 86.54 77.75 84.11 69.88 59.59
MDA-MB-453 87.32 83.38 50.75 68.11 76.29
MDA-MB-468 89.73 83.77 81.18 77.97 79.05
CAMA-1 92.95 89.62 87.58 85.03 88.10
Overall 87.27 78.85 78.62 67.28 67.15

The DeepDistance model relies on estimating a distance map for image pixels

by the trained CNN and identifying regional maxima on this map for cell detec-

tion. For this purpose, it proposes to use the distance definition given in Equa-

tion 5.1. In order to understand the effectiveness of this distance definition and

estimation, we compare our model with different distance calculation/estimation

approaches. The first approach is the DeepCenter method that includes exactly

the same steps of our model except the distance definition. In particular, instead

of using the definition given in Equation 5.1, the DeepCenter method defines the

distance d̄q for the pixel q as in Equation 5.2, where εq is the Euclidean distance

from q to its closest annotated cell center and α is the decay ratio, which needs

to be empirically selected.

d̄q = 1/(1 + α εq) (5.2)

Note that this definition is similar to the one employed in [77]. We use this

comparison method to investigate the effects of using boundary annotations, in-

stead of cell center annotations, in distance definition. As aforementioned, the

use of annotated cell centers results in imposing a circular shape on cells, which

may not always be true for all cell types. Except this difference of distance defini-

tion, the DeepCenter method uses the CNN of the same architecture, trains this

CNN on its selected patches in a similar way, and takes the same cell detection

83



steps of our model. These steps include applying the h-maxima transform, find-

ing regional maxima, and eliminating smaller maxima. The test set results given

in Table 5.3 and the third rows of Figures 5.7 and 5.8 show that the distance

definition used in our model significantly improves the success of cell detection.

Next, we explore the use of a deep classification method that generates a pos-

terior map on which regional maxima are found to detect the cell locations. Note

that this is the most common approach followed by the previously reported deep

learning based cell detection studies. For this, we implement this second com-

parison approach, which we call the DeepClassifier method. Instead of regressing

a distance output, this method poses the problem as binary classification where

it trains the CNN to classify image pixels as cell (foreground) or background.

Afterwards, for an unannotated image, the DeepClassifier method obtains a map

containing the cell class’ posteriors of image pixels, suppresses noise on this poste-

rior map applying the h-maxima transform, and identifies regional maxima larger

than an area threshold as cell locations. The test set results obtained by this ap-

proach are given in Table 5.3 and the forth rows of Figures 5.7 and 5.8. Here

it can be observed that except for the FOCUS cell line dataset, our proposed

model leads to more accurate detections. Only for this dataset, the DeepClassi-

fier method gives slightly better results. This may be attributed to the following.

As this method estimates the cell class’ posteriors of pixels regardless of their rel-

ative positions within the cell, it may produce similar posteriors for foreground

pixels close to a cell center or close to a cell boundary. However, foreground

pixels close to a cell boundary may have similar patches with background pixels

that are also close to a cell boundary, especially when cells have overlaps and/or

when there do not exist sufficient visually distinctive boundaries in between the

overlapping cells. As a result, this may reduce the method’s performance. This

is also consistent with our experimental findings. We observe that the Deep-

Classifier method gives good results when cells are relatively far from each other

and have less overlaps (e.g., FOCUS cell line dataset) and when there exist vi-

sually distinctive boundaries in between the nearby cells (e.g., CAMA-1 cell line

dataset). On the other hand, its performance decreases when none of them are

observed (e.g., MDA-MB-453 cell line dataset). On the other hand, the proposed
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DeepDistance model leads to high accuracies for all these datasets. These results

together with those of the DeepCenter method indicate the effectiveness of our

distance definition as well as of its estimation constructing a deep CNN regressor.

The third comparison approach is the TraditionalDistance method. It obtains

a binary image based on pixel intensities and gradients and calculates the dis-

tance transform on this binary image. This transform assigns a distance to every

pixel, which is the Euclidean distance between the corresponding pixel and the

nearest zero pixel in the binary image. After obtaining this distance map, the

TraditionalDistance method takes the same steps of our model. That is, it applies

the h-maxima transform, finds regional maxima, and eliminates smaller maxima.

We use this method in our comparisons to understand the difference between

defining a distance metric manually (by using a standard distance transform op-

eration) and learning it directly on image data (by a deep learning approach).

The quantitative test set results given in Table 5.3 show that the latter one signif-

icantly improves the detection success. From this table as well the visual results

given in the fifth rows of Figures 5.7 and Figure 5.8, it can be seen that the

TraditionalDistance method may give relatively good results for some datasets

(e.g., for the CAMA-1 cell line). Indeed, the success of this method very closely

relies on the accurateness of the binary image, on which the distance transform

is calculated. In our experiments, we obtain a binary image using the algorithm

previously developed in our research group [26] but take additional postprocess-

ing steps to refine this binary image. The algorithm as well as the postprocessing

steps make use of pixel intensities and gradients. However, here there are two

main problems. First, the same set of operations may not give binarization results

with the same accuracy level for entire parts of the image, especially when there

exists heterogeneity in pixel intensities/gradients. Second, in our experiments, we

need to manually select which additional postprocessing steps are to be used with

respect to the given dataset (with respect to the given cell line type’s characteris-

tics). When compared this manual selection, our model has the benefit of using a

deep learning approach, which learns distance estimation directly on image data.

Such an approach makes it easier to use the same detection model, with the same

set of computational steps, for different cell types, as also demonstrated by our
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experiments.

The last comparison approach is the TraditionalIntensity method, which di-

rectly makes use of image intensities instead of applying a distance transform.

Likewise, this method takes the same cell detection steps of our model. How-

ever, since the majority of cells have dark pixels inside, we apply the h-maxima

transform on the inverse intensity map and find regional maxima on its result.

Similar to the TraditionalDistance method, this one also yields inaccurate results

when cells have heterogeneous pixels (e.g., the first three cell lines). Additionally,

it fails to detect all cells in the same image when the cells appear in different

looks. For example, in the MDA-MB-453 cell line, there may also exist cells that

contain bright pixels inside. Of course, finding regional maxima on the inverse

intensity map does not work for such cells. However, if the model was modified to

detect these cells, this time, it would fail to detect the cells containing dark pixels

inside. In this case, either one of these options should be selected at the expense

of failing for the other cell type or a more complex model should be designed.

However, as the cell characteristics may change from one cell type to another, this

complex model design may still need to be modified for another cell type. On the

other hand, it is less likely for our proposed model to make such modifications

for different cell types, provided that a couple of annotated training images are

given. This indeed demonstrates the strength of deep learning.

5.3 Improvement with U-Net

DeepDistance is a patch-based approach which takes a rectangular region sur-

rounding pixel to be processed and then computes regressed value for that pixel.

However, there are excessively redundant computations required because of the

overlapping regions. Recently, end-to-end methods, such as fully convolutional

networks (FCNs) and U-nets have become popular, which take a patch and then

compute output value for each pixel in the patch at the same time. Since it calcu-

lates output value of all pixels in a patch at the same time, it boosts the efficiency
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of the overall method dramatically. There are studies utilizing U-Net for cell seg-

mentation problem [79, 80, 84]. The method explained in [79] makes use of a pre-

trained off-the-shelf model, called DeepLab [85]. The methods given in [80, 84]

modify FCN and U-net architectures by adding/dropping some network layers,

by changing number of features, and by adding residual connections/blocks. On

the other hand, they all consider the cell segmentation problem as a single-task

problem where the image is the input and there only exists one output map to

be learned, making it difficult to avoid local optima in the training process and

to have a generalizable model. In response to these issues, we introduce a new

cascaded multi-task learning framework instead of using a CNN for detection of

cells. In this framework, two distance maps are learned end-to-end at the same

time, sharing high-level feature representations at various layers (layers of the

encoder path) in the context of multi-task learning. This multi-task network is

cascaded to a segmentation network. In the literature, there exists a study that

use cascaded network architecture for cell detection [89]. However as opposed to

our framework, it is a single-task framework in which density regression is learned

on the output mask of the network. There also exists a study [90] that learns

two different maps and combined them for the final segmentation, in which such

shared features are used to find the glands and nuclei in histopathology images.

Not only this task is completely different than ours where our aim is to detect

cells in microscopy images, but also, they neither used a distance (regression)

approach nor a cascaded architecture. The output of this mentioned work is a

combination of the tasks learned with a simple fusion function.

The contributions of our proposed framework are threefold: (1) As opposed to

the previous studies that consider this problem as a single-task problem, we take

advantage of the multi-task learning approach which is known to be successful

for many domains, leveraging the contribution of different tasks to the feature

representation learning process [91]. Learning complementary tasks with shared

representations may increase the generalization ability and the performance of

the method by avoiding false local optima. In our framework, the first task to be

learned is the inner distance, which is calculated with respect to the cell centers,
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similar to the ones used in the previous studies (Equation 5.2). This distance im-

poses a circular shape on the cells when it is used alone. However, as mentioned in

the previous sections, there may exist different cells with different characteristics.

(2) To address this issue, we propose to use the normalized inner distance metric,

given in Equation 5.22, together with the newly proposed normalized outer dis-

tance metric, given in Equation 5.1. We claim that using these metrics together

to learn shared feature representations improves performance for each task. (3)

This multi-task network is cascaded to a segmentation network which constructs

the binary mask from the two output regression maps. The motivation behind

this cascade strategy is the simple fact that the distance outputs should contain

all the information necessary to reconstruct the segmentation with minimum er-

ror. The segmentation network can be thought as a supervision mechanism which

penalizes the short-comings of the regression outputs, such as deficient and/or

perforated cell shapes and multiple local optima in one cell, by back-propagating

the error through the entire framework in the end-to-end training process. Then,

with these three contributions, for a given image, cell detection is achieved by

generating inner distance outputs with the trained model and finding regional

maxima of the generated map.

Our cascaded multi-task network includes three subnetworks, each of which

has the same architecture (Figure 5.9). The first two subnetworks learn outer

distance and inner distance from a grayscale image, simultaneously. Afterwards,

outputs of the networks are conveyed to the last subnetwork. The last subnetwork

learns the binary map from these two distance maps. Errors are back-propagated

through the entire network to improve performance of all subnetworks. The

entire network is depicted in Figure 5.10. Finally, regional maxima on the inner

distance map are selected as the cell locations after we apply h-maxima transform

to eliminate noise.

2α is the decay ratio which controls sharpness of the peaks on the cell locations. To keep
the sharpness very small, we select α as 0.1.
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Figure 5.9: The U-Net structure utilized for the cascaded multi-task DeepDis-
tance.

Figure 5.10: The overall pipeline. The pipeline takes a 2D image and learns three

maps, namely outer, inner, and binary maps. The inner distance map is used for

cell detection.
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Table 5.4: Selected h value for each cell line.
h

FOCUS 0.3
Huh7 0.3
SkHep1 0.3
MDA-MB-453 0.2
MDA-MB-468 0.2
CAMA-1 0.2

5.3.1 Experiments

The proposed model is evaluated on the same test sets and compared with the

same algorithms explained in Section 5.2.4 in order to observe if we achieve any

improvements on the proposed DeepDistance. To evaluate generalizability of the

cascaded multi-task DeepDistance model, we exclude two cell line data sets (one

from the liver cell lines, namely SkHep1, and one from the breast cell lines,

namely MDA-MB-468) from the training step, merge the training images of the

remaining cell lines (namely FOCUS, Huh7, MDA-MB-453, and CAMA-1) and

train the model on the merged set. Here, we do not include any images of the

SkHep1 and MDA-MB-468 cell lines in any steps of training. The aim of excluding

two sets is to see how the proposed framework acts on previously unseen cell line

types.

The inner distance map is used for cell detection purpose since it represents cell

locations better. Before detecting cell locations, we eliminate undesired maxima

by using h-maxima transform. However, even though the cascaded DeepDistance

is one and common for all cell line types, the same h value in h-maxima transform

is not sufficient for all cell line types because of variabilities in size and shape of

the cells. Hard selection of h value in conventional h-maxima transform makes it

limited to various cell types. Because of this reason, we select an h value for each

cell line among values of the set {0.1, 0.2, 0.3, ..., 1.0}. The h value is selected for

each cell line separately, using its own training images (Table 5.4). Here, we do

not remove small regions because all regional maxima on the inner map have

very small area, unnecessitating use of such elimination step.
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Table 5.5: F-score metrics obtained on the test sets by the cascaded multi-task
DeepDistance model and the comparison methods. Note that the proposed cas-
caded DeepDistance does not use any images of SkHep1 and MDA-MB-468 cell
lines in the training step.

Cascaded
Deep Deep Deep Trad. Trad. Multi-task.

Distance Center Classifier Distance Intensity DeepDist.
FOCUS 82.82 77.22 84.03 52.56 48.92 88.58
Huh7 78.76 54.53 76.38 39.10 28.32 84.95
MDA-MB-453 87.32 83.38 50.75 68.11 76.29 85.20
CAMA-1 92.95 89.62 87.58 85.03 88.10 91.79
SkHep1 86.54 77.75 84.11 69.88 59.59 92.99
MDA-MB-468 89.73 83.77 81.18 77.97 79.05 86.80

We believe that our cascaded multi-task network can learn high-level features

of cells in live microscopy images even though they appear in various shapes and

intensities. Our results, even for the cell lines which were not included in training,

reveal that the cascaded multi-task end-to-end model successfully identifies cell

locations better, improving the results of the DeepDistance model. The cascaded

multi-task DeepDistance has several advantages over the initial DeepDistance:

(1) Instead of building one model for each cell line, which needs extra effort when

a new data set comes in, we built one model which is common for all cell types,

requiring no effort even for new cell lines. (2) Improved version of DeepDistance

outperforms all comparison methods in terms of F-score values (Table 5.5). Be-

sides, it outperforms the initial version of DeepDistance on datasets of all liver cell

lines. For the breast cancer cell lines, F-score values of the cascaded multi-task

DeepDistance model are slightly lower than the ones of the original DeepDistance.

The reason might be that the initial approach trains a new model for each cell

line. It is likely to learn features specific to one cell line, improving detection

performance of the model. However, even though the model can detect cells of a

specific cell type successfully, it cannot be as generalizable as the cascaded multi-

task DeepDistance. (3) Since it does not have excessive redundant calculations

as in patch-based approaches, which is also used by the initial DeepDistance, cell

detection is performed more efficiently.
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5.3.2 Further Improvement with Iterative H-maxima

Transform

Cell detection is performed using the conventional h-maxima transform on the

inner distance map. However, the conventional h-maxima method uses only one

h value for the entire image, imposing cells on the image on having similar size

and shape. Since the h-maxima disregards the fact that cells, especially living

cells, have different morphological properties, it is likely to fail on cell detection.

Besides, we need to define an h value for each cell line, which is contrary to

the idea of our deep learning model. It limits us to build one common model

working for all cell types. To make a further improvement in this study and to

make the model generic for all cell types, we replace the conventional h-maxima

transform with the iterative one, which constitutes the Chapter 4 of the thesis3.

Since the iterative h-maxima transform does not require hard-selection of the h

value, integrating the iterative h-maxima transform, instead of the conventional

one, makes the overall framework independent from parameter fine-tuning and

cell types.

The iterative h-maxima transform is performed on the inner distance map.

However, even for the smallest value of h, which is 1, h-maxima transform would

fail since the value would be too large for the inner distance map, which is in

between [0, 1]. To solve this problem, we rescale the map into the range which is

similar to the map used in the original iterative h-minima study. To do so, we

multiply each and every value of it by a constant, which is 50, before giving it to

the iterative h-maxima transform.

As seen in Table 5.6, the cascaded multi-task DeepDistance is further improved

by integrating the iterative h-maxima transform, instead of the conventional one.

We improve the framework so that it works different types of cells without re-

quiring any parameter fine-tuning. Besides, we improve the F-score values for the

3The original study explained in Chapter 4 uses h-minima transform since regional minima
on input image correspond to cell locations. However, here, since regional maxima on inner
distance map correspond to cell locations we changed the h-minima transform to h-maxima
transform.
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Table 5.6: F-score metrics obtained on the test sets by the DeepDistance models.
Note that the proposed cascaded DeepDistance models do not use any images of
SkHep1 and MDA-MB-468 cell lines in the training step.

Cascaded Cascaded
Deep Multitask. Multitask.

Distance DeepDist. Iter. DeepDist.
FOCUS 82.82 88.58 88.02
Huh7 78.76 84.95 85.02
MDA-MB-453 87.32 85.20 85.30
CAMA-1 92.95 91.79 93.23
SkHep1 86.54 92.99 92.26
MDA-MB-468 89.73 86.80 89.31

CAMA-1 and MDA-MB-468 cell lines and keep the F-score values for the other

cell lines approximately same. Note that in this table, the results for the initial

DeepDistance are those obtained by separately training a model for each cell line

type.

5.4 Discussion

This study introduces a generic cell detection model, which we call DeepDistance,

for microscopic images of live cells. The proposed DeepDistance model relies on

defining an efficient metric, on which the detection steps take place, and estimat-

ing this metric for pixels of an unannotated image by a deep learning method. To

this end, it defines its metric as to calculate a normalized distance from a pixel

to its closest cell boundary, which is different than the previously reported deep

learning based methods that use cell centers in their distance calculations. This

definition of the DeepDistance model proves more useful in preserving the shape

characteristics of the cells since the latter definition imposes a circular shape on

the cells. In order to estimate this distance metric for unannotated pixels, our

model proposes to train a CNN regressor on patches cropped around training pix-

els. Afterwards, it achieves cell detection by identifying regional maxima on the

estimated distance map, which corresponds to finding a set of connected pixels

whose estimated distances are locally maximum.
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Our experiments on six different datasets, containing a total of 7917 cells,

have revealed that the distance definition and estimation proposed by the Deep-

Distance model lead to better detection results compared to its counterparts.

They have also demonstrated that the DeepDistance model provides a generic

cell detection tool that can successfully be used for different datasets showing

different visual characteristics, without making any algorithmic changes in its

steps. On the other hand, it requires parameter fine-tuning when a new cell line

comes in. We solve this problem by integrating a cascaded multi-task U-Net

into DeepDistance. The cascaded network is trained once by using the training

images of all cell lines together, excluding the SkHep1 and MDA-MB-468 cell

lines. We do not need to train the model for each cell line, which contributes to

making the tool much more generic. Experimental results show that even with

one common model, improved DeepDistance performs as successful as the CNN

based DeepDistance, which builds one model for each cell line. Moreover, since it

eliminates redundant calculations for pixels in overlapping regions, performance

of the whole framework is boosted. However, the improved DeepDistance model

still needs a parameter fine-tuning step for each cell line at the step of h-maxima

transform. The h value of the transform should be defined separately for each

data set. Integrating iterative h-maxima provides us to have a fully independent

cell detection framework which is independent from any cell types. The model

is also tested on two different cell types not included in any steps of training.

Table 5.6 shows that the cascaded multi-task iterative h-maxima based DeepDis-

tance method can detect cells accurately independent from cell types as long as

morphological properties of cells do no change dramatically from properties of

the ones used in training.

This work mainly focuses on the cell detection problem, which corresponds to

identifying cell locations in an unannotated image. It does not focus on delin-

eating the precise boundaries of the cells. As a future work, it is possible to im-

plement a seed-controlled region growing algorithm, in which the seeds are found

by the DeepDistance model and are grown with respect to also the estimated

distances. Our improved model has better performance on detecting different

types of cells thanks to the cascaded subnetworks, which make performance of
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each other better as if they are in a mutualist relationship. Here, regressed in-

ner distance map is utilized for cell detection since it represents location of cells

better. The binary map is another output of the network which illustrates the

cellular regions as foreground (white) and others as background (black). Since

the binary map represents these region nearly-optimal, cells’ boundaries can be

delineated accurately by making use of the inner distance map and the binary

map together. To do that, cell locations can be detected on the inner distance

map and then these locations can be grown on the distance transform of the

binary map. This can be considered as one of the future research directions. As

another future work, one may consider applying this algorithm to microscopic

images of histopathology slides in order to detect and segment cells as well as

tubular structures in these images.
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Chapter 6

Conclusion

This thesis addresses the cell segmentation problem in two parts: (1) It focuses

on finding a new representation for microscopy images so that imperfections on

the image can be alleviated, and cells can be emphasized better, helping us for

simplifying the cell segmentation problem. (2) It focuses on developing a more

advanced cell segmentation method. Even though the representation method

works well, it is almost impossible to obtain a perfect representation in practical

life. There is still a need for developing more sophisticated cell segmentation

techniques which overcome deficiencies on the representation. To this end, this

thesis introduces three new cell segmentation models, two of which introduce a

new cell representation technique as well.

Our first model is object oriented method for segmenting cells of fluorescence

microscopy images. The model first represents a fluorescence microscopy image

in terms of edge-objects and subregions. Then, cells are segmented by merging

subregions sharing the same edge-objects in different orientations. We believe that

utilizing edge-objects and subregions in a divide-and-then-merge manner have a

great potential of segmenting cells accurately. Here, the reason for using edge

information at the object level instead of the pixel level is that edge-objects have

capability of handling pixel level noises and imperfections.
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This high-level representation together with this high-level merging are ex-

pected to be more successful at segmentation of cells compared to the methods

that directly work on low-level pixel properties. Our experiments on fluores-

cence microscopy images show that the proposed object oriented method leads

to better segmentation results compared to pixel-level cell nucleus segmentation

algorithms.

We believe that our object oriented approach has a capability of segmenting

3D cells as well. For that, edge-objects and subregions should be defined in 3D.

Subregions in 3D can be extracted by the SLIC algorithm which has a support of

defining supervoxels, as well. Additionally, there should be edge-objects defined

in the third axis (depth), namely front and back object types. Extending the

model in 3D cell segmentation can be considered as one of the future research

directions.

Our second model is a new cell segmentation algorithm in fluorescence mi-

croscopy images. The model makes use of a marker-controlled watershed algo-

rithm in which markers are iteratively identified by employing h-minima trans-

form. The conventional h-minima transform applies the same h value on the

entire component or the entire image which disregards an obvious fact; cells have

different morphological properties such as size and shape necessitating a different

h value for each. More specifically, smaller h values are sufficient for cells with

homogenous intensity distribution inside, whereas it is likely to fail on cells having

inhomogeneities inside. On the other hand, keeping the h value too large yields

suppressing noises together with true markers, which correspond to actual cells.

To tackle this problem, we propose defining markers iteratively, using a different

h value in each iteration, with the aim of suppressing noise at different levels.

The iterative identification of markers allows us to define better markers for nu-

clei showing different characteristics, cascading to have a better segmentation

method.

Our experiments on fluorescence microscopy images demonstrate that this al-

gorithm gives better markers for nuclei of both isolated and confluent cells com-

pared to conventional h-minima transform and other cell segmentation methods.
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We also show the applicability of the method to other image types. For that pur-

pose, we conduct experiments on images obtained from tissue sections of mouse

liver. The images were taken under fluorescent microscope. The experiments

show that the model can be easily extended to other image types obtained under

fluorescent microscope. We also conduct experiments on bright-field microscopy

images which contains cells with various outlook. The preliminary results reveal

that identifying cell locations iteratively outperforms the traditional approach.

As a future direction to this study, extendibility of the model to other mi-

croscopy domains such as confocal microscopy, which produces cell images with

higher resolution for detailed visualization of interior structure of cells, can be

investigated. The application of our model to different image types taken un-

der confocal microscope could be considered as a future work. In this work, we

mainly focus on finding better markers. We use a relatively simple region grow-

ing algorithm to delineate nucleus boundaries. Yet another future work can be to

design better techniques for marker growing. Here one could consider designing

iterative methods also in the region growing process. Another possibility is to

explore the use of other types of maps, on which the growing takes place.

Our last but not least model presents a representation method which convert

image into one where cells are emphasized and look more distinguishable. The

model can work for any cell types since it automatically learns high-level features

from image data. The new deep model approaches cell detection as a regression

problem, where the normalized distance from each pixel to the closest background

is learned by training a deep convolutional neural network (CNN). Then, for a

given image, cell detection is achieved by generating a normalized distance map

of the image pixels with the trained CNN and finding regional maxima of the

generated map. The model is further improved replacing the patch-based CNN

model with an end-to-end multi-tasking cascaded U-Net model and conventional

h-maxima with the iterative h-maxima, given in Chapter 4.

Our experiments on six different cell line types reveal that the proposed model

successfully identifies the cell locations, improving the results of both the tradi-

tional approach and the previous deep learning based methods. The improved
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version of the model utilizes cascade multi-task U-Net model which learns a bi-

nary map and two distance maps, namely inner distance map and outer distance

map, at the same time. The inner distance map gives better information about

cell locations, and the binary map differentiates cellular regions from the back-

ground quite accurately. One can consider combining these two maps in order to

delineate cell boundaries after cells’ locations are identified. For that, a marker-

controlled watershed algorithm can be employed in which markers are identified

on the inner distance map and growing is applied on the binary map. This can

be considered as one of the future research directions.
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