
An Analysis of Social Networks Based on
Tera-Scale Telecommunication Datasets

HIDAYET AKSU , (Member, IEEE), IBRAHIM KORPEOGLU, (Senior Member, IEEE),
AND €OZG€UR ULUSOY, (Member, IEEE)

The authors are with the Department of Computer Engineering, Bilkent University, Ankara 06800, Turkey

CORRESPONDING AUTHOR: H. AKSU (hidayet.aksu@gmail.com)

ABSTRACT With the popularization of mobile phone usage, telecommunication networks have turned into
a socially binding medium. Considering the traces of human communication held inside these networks, tele-
communication networks are now able to provide a proxy for human social networks. To study degree char-
acteristics and structural properties in large-scale social networks, we gathered a tera-scale dataset of call
detail records that contains � 5� 107 nodes and � 3:6� 1010 links for three GSM (mobile) networks, as
well as � 1:4� 107 nodes and � 1:9� 109 links for one PSTN (fixed-line) network. In this paper, we first
empirically evaluate some statistical models against the degree distribution of the country’s call graph and
determine that a Pareto log-normal distribution provides the best fit, despite claims in the literature that
power-law distribution is the best model. We then question how network operator, size, density, and location
affect degree distribution to understand the parameters governing it in social networks. Our empirical analysis
indicates that changes in density, operator and location do not show a particular correlation with degree distri-
bution; however, the average degree of social networks is proportional to the logarithm of network size. We
also report on the structural properties of the communication network. These novel results are useful for man-
aging and planning communication networks.

INDEX TERMS Social networks, degree analysis, call graph, empirical analysis, tera-scale dataset

I. INTRODUCTION

Human communication behavior is the root of the usage pat-
tern in physical and virtual communication networks, includ-
ing telecommunication (telco) networks and online social
networks. While fixed-line phones and shared computers in
homes and offices reflect family or colleague behavior;
mobile phones and portable computers better reflect individ-
ual usage behavior. Technological developments in the last
two decades have resulted in two significant trends in human
behavior: 1) going frequently online and 2) owning personal
mobile computing and communication devices. Thus, the
end-user behavior of communication networks has changed
from group behavior to individual behavior.
Human communication behavior is highly related to under-

lying social network relationships. Mobile phone communica-
tion patterns provide strong insights into human social
relationships [28]. For instance, person A calls person B usu-
ally because of a social relationship, e.g., B is a friend of A or B
does business with A. The more social interactions dominate

communication networks and online media, the more user
behavior on those networks is dominated by human social rela-
tionships and networks. Hence, managing and planning today’s
communication networks require a deep understanding of user
behavior on those networks and their social structures.
Early studies on social networks were limited by manual

data collection and considered at most hundreds of individu-
als [39]. Later, social network analysis (SNA) became an
interesting topic for many other sectors and research fields,
including recommender systems [24], [31]; marketing [7];
intelligence analysis [35]; network structure [16]; modeling
epidemics spreading [44]; clustering and community detec-
tion [6], [9], [15], [17], [18], [23] and complex systems [19].
Massive use of electronic devices and online communication
leaves traces of human interaction and relationships, such as
phone call records, e-mail records, etc. Using these traces, col-
lective human behavior and social interactions can be under-
stood on a large scale, which was previously impossible [40].
Recently telecommunication datasets with location
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information have been used to conduct research on human
behavioral patterns [8], [13], [21], [22], [25], [41], [42],
mobile network behavior [43] and inferring hierarchies [38].
Social network analysis tries to understand the characteris-

tics a social network exhibits. The first and most-cited char-
acteristic among others is degree distribution of nodes
constituting a social network. A bulk of studies in the litera-
ture on this topic reports that power-law best fits with certain
parameters [1], [10], [30]. Other studies, however, propose
different statistical fit models [4], [34], [36].
Since current studies are limited by the used datasets from

which their proposals are derived/obtained, it is necessary to
explore the influence of dataset specific parameters on dis-
covered social network characteristics. This observation
motivates us to conduct research on degree distribution on
larger scales to discover the parameters governing degree dis-
tribution in social networks. Among many current research
issues to be investigated, we prefer this less studied problem
which requires a complete dataset.
Therefore, we explore how
� network operator,
� network size,
� population density and
� geographic location
affect degree distribution in social networks.
To investigate these issues, we perform degree analysis on

different social networks derived from the telecommunica-
tion network call data of a country’s1 different mobile
(GSM2) and fixed-line (PSTN3) telco operators. We obtain
degree distribution results for these networks to understand
how well existing distribution models fit reality.
In this study, our scope is limited to empirically revealing

the parameters that govern degree distribution, and comparing
a limited number of structural properties with other studies.
Our paper contributes to the field in the following ways:
� We first construct a countrywide call graph utilizing a

full call detail record (CDR) set of all mobile and fixed-
line telco network operators. This comprehensive data-
set allows us to analyze a social network without won-
dering about possible bias from single-operator, size,
location or density-limited datasets.

� We question the root cause of different conclusions in
the literature about degree distribution in social net-
works, suggesting that they might be related to utilized
datasets’ density, location, size and source operator.

� We perform controlled empirical analyses for various
densities, sizes, locations, and operators, and form con-
clusions on density-degree, location-degree, size-
degree and operator-degree distribution relations.

� We analyze call graph for structural properties and
compare it with other social graphs.

The paper proceeds as follows: In Section III, we describe
the dataset used in this study and highlight its unique fea-
tures. In Section IV, we discuss the statistical modeling of
degree distribution in social networks and report the results
of our empirical analysis. We also provide an analysis and
interpretation for each of the following factors, any or all of
which may affect social network characteristics: network
operator, network size, network density and network loca-
tion. Then we provide structural properties of the communi-
cation network in Section V. Finally, in Section VI, we
present our conclusions.

II. RELATEDWORK

Aiello et al. [1] study the statistics of phone call graphs for
long-distance fixed-lines and report that in-degree distribu-
tion is fitted by power-law distribution with exponent
g ¼ 2:1. In [30], Onnela et al. work on mobile phone data
containing N ¼ 4:6� 106 nodes and L ¼ 7:0� 106 links
and report a power-law distribution fit with exponent
g ¼ 8:4. They describe the dataset as “all mobile phone call
records of calls among � 20 percent of the entire population
of the country”, which implies that they used a sub-network
of a country’s operator network. Dasgupta et al. [10] present
another study on mobile phone data, with a reciprocal call
graph containing N ¼ 2:1� 106 nodes and L ¼ 9:3� 106

directed edges. That dataset belongs to one of the world’s
largest mobile operators. The authors report that degree dis-
tribution is fitted well by power-law distribution with expo-
nent g ¼ 2:91. Another study by Nanavati et al. [29] reports
similar results. On the other hand, Bi et al. [4] propose the
discrete Gaussian exponential (DGX) and report that it pro-
vides a very good fit with many datasets, including telco
data. Moreover, Seshadri et al. [36], using mobile phone data
from an anonymous operator in the US, study modeling
degree characteristics and report that degree distribution sig-
nificantly deviates from what would be expected by power-
law and log-normal distributions. Their findings suggest that
double Pareto log-normal distribution (DPLN) provides bet-
ter fits for degree distribution. In [34], Sala et al. analyze
Facebook’s social network data and report that Pareto log-
normal (PLN) distributions are much better predictors of
degree distributions in real graphs than power-law distribu-
tions are.

III. DATASET

Obtaining necessary and sufficient data is one of the most
difficult steps in social network analysis. Until the current
pervasive use of mobile phones, the lack of large-scale data
has limited our knowledge regarding human relationships
and social networks. Now, however, the situation has
changed. Call detail records are records of communication
traces stored by operators primarily for billing purposes.
Mobile phone companies can collect CDRs for all subscriber
calls going through their networks, and this CDR database is

1Data was provided on the condition of anonymization, including country
anonymity.
2Global System for Mobile Communications (GSM) is a digital cellular net-
work standard used by mobile phones.
3Public switched telephone network (PSTN) stands for the circuit switched
telephone network and in this paper all PSTN data is originated from fixed-
line telephone networks.
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the most exhaustive dataset to date on human mobility and
social interactions. For billing purposes, GSM networks
record the base station each mobile phone call is made from,
and this data thus holds the details of individual user move-
ments. Having almost 100 percent penetration of mobile
phones, the GSM network can now function as the most
comprehensive proxy of a large-scale social network avail-
able today [37].
Lack of large and comprehensive data was one of the main

reasons for doubts behind social network claims like Mil-
gram’s six degrees of separation (his small-world experi-
ment) [27]. Now, however, one can (with permission) access
anonymized CDRs from all network carriers providing ser-
vice in a country. Particularly, European Union Data Reten-
tion Directive 2006/24/EC requires “the retention of data
generated or processed in connection with the provision of
publicly available electronic communications services or of
public communications networks” [14] and each country has
its own specific application of this requirement. In this study
case, application of this direction is managed by a govern-
ment agency which stores and processes the data of all net-
work operators in its data-center. Upon our request to access
the data for academic research purpose, we are granted
access to anonymized data with a non-disclosure agreement
and a data access agreement which limits study to be done
on their own premises, i.e., no data movement, and limits
access time to a specific duration. Thus, we can extract infor-
mation about social interactions and construct a social net-
work of the whole country from data provided by all mobile
and fixed-line operators. This situation has the following
advantages over previous studies:

� To the best of our knowledge, the dataset we use is
much larger than the largest dataset containing trajecto-
ries and social interactions analyzed to date [37].

� Our data represents all country communication interac-
tion, which is free from bias for a particular operator,
size, location or density.

� The data contains spatial positions so we can also ana-
lyze the effect of location on social networks.

We are aware of the following limitations of our dataset:
� It covers calls of a one-month period and therefore

some infrequent links might be missing.
� It comprises data from only voice and SMS communi-

cations. People might be using many other communica-
tion channels including e-mails, instant messaging
tools, smartphone apps, etc.

Consequently, our dataset does not contain whole social
network but a projection of it. It also contains many non-
social entities.
The dataset used in this study covers all GSM (three net-

works) and PSTN (one network) CDRs for a whole country
between 1 January 2010 and 31 January 2010.4 Data is ano-
nymized and used solely for this research. The structure of

the data is presented in Table 1. The dataset contains
N � 5� 107 nodes and L � 3:6� 1010 links for the GSM
networks, and N � 1:4� 107 nodes and L � 1:9� 109 links
for the PSTN network. In this dataset, GSM penetration was
approximately 82 percent while PSTN penetration was 23
percent in 2010. We compute penetration as the ratio of
phone users to the total population of 10+ years olds.5

Assuming single subscription per user, 82 percent mobile
penetration covers 70 percent of the total population. In this
study, we also refer to this dataset as the social network anal-
ysis database.

IV. ANALYSIS

For a sound and complete understanding of degree distribu-
tion in a large-scale social network, we investigate the effects
of the following factors: 1) network operator to which the
dataset belongs; 2) size of the community network; 3) popu-
lation density; 4) location of the community live. For each
factor, we perform an analysis to determine how it affects
degree distribution.

A. SOCIAL NETWORK MODELING

A call graph is a projection of a social graph and reflects
some properties of it (i.e., a call graph is considered to reveal
citizens’ social interactions). Our dataset consists of call
traces from the one PSTN and the three GSM operators in
the country. Hence, we separately construct call graphs of
the whole country for the three GSM operators and one
PSTN operator. We also construct a call graph of the whole
country for all GSM networks. Then we try to analyze degree
distribution characteristics.
We first compute the degree distribution of the call graph

with no filtering. We call such a network 0-Core network.
Then we filter out automated one-way calls which may not
imply a work-, family-, leisure- or service-based relation-
ship [30]. To eliminate the automated calls, we use our so-
called 1-Core network (reciprocal network) to also character-
ize degree distribution. if A has called B then 0-Core network
has an edge. However, each pair of nodes ðA;BÞ in the 1-
Core network has an edge if and only if A has called B and B
has called A at least once in the observation duration. Please
note that this filtering eliminates only non-social entities
which make one-way calls. Still, there may be many

TABLE 1. Structure of data used in this work.

Field name Value description

source source party of communication: calling party

destination destination party of communication: called party

operator network operator ID

communication type voice, SMS services, etc.

date time time of communication in seconds resolution

duration duration of communication in seconds resolution

cell ID location of communication in connected base-station

location resolution

4Unfortunately, we cannot make this dataset available due to a non-disclosure
agreement signed. 5The country population of 10+ years olds was 61 M in 2010.
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non-social entities in the dataset like customer support lines
and business lines.
When we plot the degree distributions (i.e., degree versus

frequency of appearance of that degree in the call graph) on
linear x-y scales, all distributions resemble an L shape (the
curve quickly declines and most of the x-axis is close-to-zero
valued). Visually, it is hard to interpret behavior from these
plots. If we plot the degree distributions in log-log scales,
however, the plots are easier to follow. Thus, we use log-log
plots in this study. Degree distributions in Figure 1 are heavy
tailed until a certain degree; then it takes an out-of-pattern
fat-tail like shape. This means that the probability of having
very high degree nodes is higher than what you would expect
under a model fitting low-degree nodes. In Figure 1(a) we see
a slope change around degree 5,000 where 1=106 of the
nodes are covered. We can see a similar situation in parts 1
(b), 1(c), and 1(d). Nodes with large degrees present a partic-
ular behavior, which we think is caused by non-social entities

(e.g., business-related phone numbers, customer support
lines, etc.). Comparing 0-C GSM, 1-C GSM, 0-C PSTN and
1-C PSTN graphs, we see that out-of-pattern vertex ratio is
higher in the PSTN network than the GSM network. Also in
both PSTN and GSM networks, 1-C networks show lower
out-of-pattern vertex ratio compared to 0-C networks. This
observation supports that out-of-pattern vertices are business
phones or automated agents since 1-C networks cover less
number of such non-social entities. Moreover, the horizontal
nature of the tails on 0-C networks can be explained by the
fact that automated agents may call fixed numbers of people
in a 30 day period.
The literature related to degree distribution in call graphs

and social networks includes various works on power-law
distributions, power-law with cutoff distributions, log-nor-
mal distributions, exponential distributions, DPLN distribu-
tions and PLN distributions. All these distributions are
possible candidates to statistically model degree distribution

FIGURE 1. Network degree distributions and model fits for (a) 0-Core GSM ALL network (b) 1-Core GSM All network (c) 0-Core PSTN ALL

network (d) 1-Core PSTN All network. Qualitative visual analysis suggest that PNL and DPLN distributions provides tightest fit while

power-law distribution deviates most. See Table 2 for p-value based quantitative results.
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in a complex network with an L-shape-like degree-frequency
distribution.
For each constructed social network (call graph) in our

dataset, we try to fit all candidate distributions and compute
their goodness of fit. For each hypothesized distribution, we
modeled datasets with the distribution and then solved least-
squares estimates of the distribution parameters of the nonlin-
ear model using Gauss-Newton algorithm [5]. We used the R
language [32] for statistical computations and graphics. All
analysis code including our fitness function implementation
is available online.6

Figure 1 shows GSM 0-Core, GSM 1-Core, PSTN 0-Core
and PSTN 1-Core network fit results. In GSM 0-Core and 1-
Core networks, power-law distribution provides the worst fit,
while DPLN and PLN provide the best fit. When we look at
each operator network shown in Figure 2, DPLN and PLN
continue to be the best-fitting models.
It is clear that none of the curves fit the tail of the network

particularly for degree0150. The tail of network for such
large degrees, i.e., degree0150, represents less than one per-
cent of nodes. Dunbar’s study [12], [20] on the maximum
number of individuals with whom any person can maintain
stable social relationships suggests that number lies between
100 and 230; it is usually assumed to be 150. Considering
Dunbar’s study, the tail of the network most probably repre-
sents non-human complex nodes. Since in this study our
scope is social networks with human subjects, curve fitting to
the network body is sufficient to model the social network.
We also evaluate the fit success of these distribution mod-

els numerically. Table 2 summarizes the residual sum of
squares (RSS)-based fit success values for each network-dis-
tribution pair. The best fits are shown in bold in the table. To
compute model fit success (p-value), we first compute nor-
malized distance where distance is the residual sum-of-
squares, then subtract it from 1. Thus we get a p-value which
measures how tight the model fits the real dataset. A large p-
value indicates better fit to the empirical data.
The fit success results in Table 2 put forward two distribu-

tions: DPLN and PLN. The former provides the best fit for
three social networks (0C PSTN, 1C PSTN, and 1C GSM
C), while the latter provides the best fit for four social net-
works (0C GSM A, 0C GSM ALL, 1C GSM Aand 1C GSM
B). Both distributions provide equally good fits for three
social networks (1C GSM ALL, 0C GSM B0C GSM C).
There is no significant difference in their fit success; PLN is
only slightly better than DPLN. In fact, DPLN and PLN do
not lead to significantly better fits than the other models
except power-law distribution. It is only a marginal improve-
ment and should not be accepted as a generalized improve-
ment. power-law with cutoff, log-normal, exponential, PLN
and DPLN are possible representative distributions. Never-
theless, considering its lower number of parameters than
DPLN and its slightly better fits than other distributions, we

choose PLN distribution as the representative distribution for
our social network datasets. Hereafter, when we need to
model a network, we will use PLN.

1) WORKING WITH LARGE DATASETS

We encountered some limitations while working with large
datasets. Initially, we started with a commercial relational
database management system (RDBMS) on high-end hard-
ware with� 45 terabyte disk, 24 CPU cores, and 96 GBmem-
ory. Extract, transform, and load processes take three days and
require careful performance tuning. Using this RDBMS solu-
tion, we are able to compute and export the degree distribu-
tions used in Sections IV-B, IV-C, IV-D, and IV-E. 8 GB
memory is sufficient for R programs to compute our fitting
models, statistics, and plots. On the other hand, relational
databases perform poorly on graph traversal operations, i.e.,
multiple self-joins of large edges table become computation-
ally infeasible. In order to be able to compute traversal-based
network properties (e.g., clustering-coefficients) we setup a
Hadoop/HBase cluster and loaded our dataset into HBase
tables. We then implemented network analysis algorithms for
graphs stored in HBase (see [2] for used platform details).
Hadoop/HBase cluster solution enables us to compute the net-
work properties reported in this study.

B. NETWORK OPERATOR

By comparing the degree distribution characteristics of social
networks derived from different operator data, we try to
answer the question of whether characteristics are dependent
on network operators or not. Doing so will clarify if investi-
gating one operator’s social network of users is sufficient for
social network analysis.
To analyze the effect of the network operator, we again use

the social networks constructed in Section IV-A, i.e., three
GSM operators’ social networks, one PSTN operator’s social
network and the GSM operators’ joint social network.
Figure 3 illustrates and compares degree distribution in the
GSM and PSTN networks. The former displays a higher den-
sity for lower degrees, while the latter displays a higher den-
sity for degrees larger than 122. We think that the high
density for higher degrees in the PSTN network might be
because fixed-line phones are used as household items rather
than personal belongings, and are shared by many members
in the house. Thus, PSTN node degrees can be considered as
the sum of social degrees of multiple individuals. Figure 4
shows the degree distributions of the various GSM operator
networks. We can see that there is no significant difference
between degree distributions of the three GSM operators’
networks and the joint network derived from the three opera-
tors. We also apply the Kruskal-Wallis Test to compare the
degree distribution of complex communication networks
breakdown by network-operator. As the result of this test,
the p-value turns out to be greater than the 0.05 significance
level (p-value=0.84). Hence, we conclude that the degree dis-
tributions of the analyzed social networks at network-opera-
tor breakdown are statistically identical.6see www.cs.bilkent.edu.tr/�haksu/callgraph/
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FIGURE 2. Model fits for 0-Core and 1-Core variations of GSM A, GSM B and GSM C networks are illustrated. In all networks DPLN and

PLN models perform better than the rest of models. See Table 2 for p-value based quantitative results.
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C. NETWORK SIZE

To analyze the effect of network size on degree distribution,
we start with a network around one base station and then
expand it by including neighbor base station networks, just
like snowball sampling. Thus, we construct social networks
of different sizes for a city.7 Then for each social network of
a different size, we compute and plot the corresponding
degree distribution, resulting in a chart of network size versus
degree distribution parameters.
To obtain networks of various sizes, we use the SNA data-

base, which contains the cell IDs and geographic coordinates
of the GSM base stations. We divide a dense urban part of
city X into 1,000 sub-parts, each of which hosts an equal
number of base stations. Since each base station can serve a
certain number of cell phones, we safely assume that an
equal number of base stations will serve an equal number of
cell phones (users). Using Google Maps, we determine the
coordinates of the urban part of city X. The dataset lists
around 17,000 base stations in this region, so each sub-part
hosts 17 base stations. Starting from the center of the city,
we draw rings around the nearest 17 base stations and label
the rings from 1 to 1,000. Thus, in each iteration, we draw a
new ring around the nearest 17 base stations that are not yet
covered by a ring as shown in Figure 5.
Having 1,000 rings determined, we start to filter the calls

in these rings so that we have networks with an increasing
number of nodes inside. We define a circle as a ring contain-
ing all other rings with a label lower than its label. More pre-
cisely, ringN is the set of nodes Rm, where m � N. In this
manner, 1,000 circles (circle1; . . . ; circle1;000) are defined.
By filtering the calls established in each circle, we come up
with 1,000 networks that differ only in size (i.e., density,
location, etc., are not considered).
To determine whether there is any effect of size on degree

distribution we plot the pdf of degree versus network size.
Since there are 1,000 networks with increasing size, in order
to make the plot easier to interpret we create a color list with
a gradient of 1,000 green-blue-red colors. As illustrated in
Figure 6, for increasing network size, the degree distribution
curves in a specific direction: the pdf for low degrees

decreases while the pdf for high degrees increases. We also
apply the Kruskal-Wallis Test to compare the degree distri-
bution of complex communication networks breakdown by
network-size. As the result of this test, the p-value turns out
to be less than the 0.05 significance level (p-value=5.122e-
5). Hence, we conclude that the degree distributions of the
analyzed social networks at network-size breakdown are sta-
tistically nonidentical.
To further investigate the effect of network size, we fit the

PLN distribution to all 1,000 networks with increasing size.
Then we analyze each PLN distribution model parameter
against the change in size. The PLN distribution has the fol-
lowing pdf function:

pdfPLNðxÞ ¼ bxb�1eð�bnþb2t2

2 Þ 1�F
logðxÞ � nþ bt2

t

� �� �

and E½X� ¼ n� 1
b
.

TABLE 2. Numerical distribution fit success results for various networks.

Network n Distribution Power-law Power-law with cutoff Exponential Log-normal (DGX) DPLN PLN

1-Core GSM ALL 0.8597156 0.9980274 0.9983446 0.9954544 0.9999636 0.9999639
1-Core GSM B 0.8579531 0.9985913 0.9976061 0.9978552 0.9999707 0.9999709
1-Core GSM A 0.8579372 0.9981947 0.997876 0.9950699 0.9999429 0.9999432
1-Core GSM C 0.8799332 0.9977323 0.9991961 0.9961851 0.9999637 0.9999612
1-Core PSTN ALL 0.8473295 0.9991812 0.9955966 0.9976018 0.9999069 0.9996437
0-Core GSM ALL 0.7714906 0.9966974 0.9953066 0.991538 0.999826 0.9998263
0-Core GSM B 0.7733198 0.994963 0.9966673 0.9902132 0.9999488 0.9999488
0-Core GSM A 0.7642553 0.997863 0.9933416 0.993648 0.9997411 0.9997416
0-Core GSM C 0.7957198 0.9938651 0.997852 0.9879222 0.9997517 0.9997517
0-Core PSTN ALL 0.7228171 0.986819 0.9904483 0.9867846 0.9969739 0.9946071

FIGURE 3. 1-Core GSM and PSTN network operators’ degree pdf

distribution. Test shows that GSM and PSTN are not identical

distribution at 0.05 significance.
7As part of anonymization, we refer to the chosen city as city X.
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Figures 7 and 8 show the b and n parameters behavior of
the PLN distribution as a function of network size respec-
tively. Figures indicate that b � logðsizeÞ and n � logðsizeÞ.
Thus, when we try to fit b ¼ a 	 logðsizeÞ þ b and n ¼ a	
logðsizeÞ þ b to the results separately, we get tight fits as
illustrated by blue dashed lines. Since E½X� ¼ n� 1

b
, consid-

ering the n � logðsizeÞ and b � logðsizeÞ observations
together, we conclude that the average degree of observed
networks is proportional to the logarithm of the network size.

Following green-blue-red transition in Figure 6 size versus
degree distribution, we see that the distribution function shape
changes from a line into a curve while the size of network
increases. This empirical result does not follow power-law
generating evolution models discussed in [11]. We know that
our dataset is composed of both social and non-social (com-
plex) entities. Considering the evolution of complex networks
study, we think that while complex network entities follow
preferential attachment, social entities do not, due to the natu-
ral upper-bound on a node degree. Therefore, small-size sam-
ples might result in overestimating the density of popular
nodes where this natural upper bound is not hit. For instance,

FIGURE 4. Degree distributions for different network operators

are compared. Degree distributions are statistically identical for

different network operators.

FIGURE 5. 1,000 rings around base stations. Each ring is drawn

to cover the nearest 17 base stations that are not yet covered by

a ring.

FIGURE 6. Degree distribution for increasing network size. Size

unit is 17 base station, e.g., 100 means network size is 1,700

base stations. Degree distribution for 1,000 samples are plotted

with gradient colors in green-blue-red range to visually follow

network size versus distribution shape change. Statistical test

reject the hypothesis claiming that degree distributions for var-

ied sized networks are identical.

FIGURE 7. PLN b parameter versus network size in linear-log

scale.
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the average number of received calls (in-degree) is less than 2
in the telephone call graph sample analyzed in [11]. Thus,
power-law fit for in-degree, in this case, may not remain valid
for a larger sample. In fact, the study reports that it was impos-
sible to fit out-degree by any power-law dependence.

D. POPULATION DENSITY

Here we aim to understand the effect of population density
(number of users in a geographic region) on degree distribu-
tion in social networks. We would like to see whether, for
example, a denser region has a denser social network. For
this analysis, we again use the SNA database with GSM base
station cell IDs and geographic coordinates. We draw a rect-
angle that incorporates the dense urban area and neighboring
sparse rural areas. We divide the rectangle into 10 parts with
an equal number of base stations. The entire rectangle covers
nearly 450 base stations, therefore, starting from the city cen-
ter, each of 45 base station cells is grouped as a ring. Then,
by filtering the calls made in each ring, we get 10 social net-
works. For each ring, density is computed as the number of
base stations per kilometer square.8

Figure 9 shows the degree distributions for social networks
of different densities. These distributions have no specific
behavior regarding increasing network density. All distribu-
tions are close to each other and they cross many times. The
highest-density line (dashed blue line) falls in the middle of all
the density lines. Rural areas, where the number of base sta-
tions per kilometer square is lower, show slightly higher degree
density. This might be the result of outdoor based work culture
in which communication is more dominated by mobile phone
usage compared to the urban office based work culture where
communication is achieved via Internet-based tools as well.
We also apply the Kruskal-Wallis Test to compare the

degree distribution of complex communication networks
breakdown by network-density. As the result of this test, the

p-value turns out to be greater than the 0.05 significance level
(p-value=0.98). Hence, we conclude that the degree distribu-
tions of the analyzed social networks at network-density
breakdown are statistically identical.

E. GEOGRAPHIC LOCATION

Next, we aim to understand the impact of geographic loca-
tion on degree distribution characteristics. We investigate
how degree distribution in social networks changes when the
networks are physically located in different places. For this
analysis, we need social networks for which geographic loca-
tions are different while network size, density, etc., are as
close as possible. To derive such networks, we sort all cities
in the country by the number of base stations they have, and
then we look for a consecutive sub-list in which cities are
located as far apart as possible while their number of base
stations are not different more than ten percent. As illustrated
in Figure 10, we choose 10 such cities, each having
1; 000
 100 base stations. We filter the calls made in each
city and then construct 10 social networks.
Figure 11 shows degree distributions of the social networks

of the selected cities. The anonymized list of cities north to
south is: E, Z, G, T, B, Y, A, I, M, R; and west to east is: E, T,
M, I, A, B, Z, Y, G, R. As can be observed from the figure,
degree distribution curves are very close to each other and there
is no specific curve behavior following city locations.
We also apply the Kruskal-Wallis Test to compare the

degree distribution of complex communication networks
breakdown by network-location. As the result of this test, the
p-value turns out to be greater than the 0.05 significance level

FIGURE 8. PLN n parameter versus network size in linear-log

scale.
FIGURE 9. Network degree pdf versus network density plots.

Kruskal-Wallis rank sum test results.

FIGURE 10. Locations of chosen cities in the country.

8Because base stations are located with a density proportional to population
density, we consider base station density to be a measure of population
density.

VOLUME 7, NO. 2, APRIL-JUNE 2019 357

Aksu: An Analysis of Social Networks Based on Tera-Scale Telecommunication Datasets



(p-value=0.99). Hence, we conclude that the degree distribu-
tions of the analyzed social networks at network-location
breakdown are statistically identical.

V. STRUCTURAL PROPERTIES OF THE

COMMUNICATION NETWORK

So far we have examined the effects of certain parameters on
degree distribution. We now construct a general communica-
tion network from the dataset and analyze it for structural
properties. Clustering coefficient is defined as the fraction of
triangles around a node. This measure says how well a node’s
neighbors are connected. Social networks are known to have
large clustering coefficients. Figure 12 displays the clustering
coefficient values as a function of the degree of a node for
GSM and PSTN networks. The clustering coefficient decays
slowly with exponent �0:37 (c d�0:57) with the degree of a
node till degree d ( 150), and then scatters around. Results on
web graphs and theoretical analysis on hierarchical networks
report decays with exponent �1 [33], while results on

Messenger network report decays with exponent �0:37 [26].
Comparatively, our results suggest that clustering in phone
call graphs is much higher than the theoretical expectation
and web graph results, however, it is lower compared to the
clustering in Messenger communication graph. In other
words, phone users with common friends tend to be connected
more probably than the theoretical expectation and connected
less probably than Messenger users with common friends.
Scattering after a certain degree d ( 150) implies that neigh-
bors with high degree nodes know each other less, thus such
nodes are non-social entities like customer support lines.
Figure 13 displays size distribution of connected compo-

nents in networks. Over 99 percent of the nodes belong to
the largest connected component, and the remaining small
components show a power-law like distribution. This high
connected component indicates that vast majority of users
have communication with society and society is well con-
nected. In other words, most of the users are reachable from
the community. When the connectivity threshold is made
higher, the size of the largest connected component is
dropped as displayed at Figure 14(a).
We further study community structure in the networks by

computing k-core decomposition of the graph. k-core

FIGURE 11. Network degree pdf versus network location.

FIGURE 13. Distribution of connected components in (a) GSM (b)

PSTN networks. Over 99 percent of the nodes belong to the larg-

est connected component. Many small components exist

against a few large components.

FIGURE 14. Size distribution of k-cores in (a) GSM (b) PSTN net-

works. The densest region in GSM network is composed of 352

nodes where each node has more than 72 edges inside the set,

while the densest region in PSTN network is composed of 236

nodeswhere eachnode hasmore than 38 edges inside the set. The

decay in k-core sizes is stable up to a cutoff value kpstn cutoff � 5 in

PSTN and kgsm cutoff � 12 inGSM, and then the k-core size drops rap-
idly which means that the nodes with degrees less than the cutoff

value are on the fringe of the network.

FIGURE 12. Average clustering coefficient distribution versus

node degree for (a) 1-Core GSM and (b) 1-Core PSTN networks.

Clustering coefficients decay with node degree with exponents

(a) �0:57 and (b)�0:63, respectively. Variance increases after

d � 150 where non-social entities appear more.
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decomposition is a subgraph density measure and it identifies
dense regions in the graph.9 Figure 14 displays the distribution
of k-core sizes for (a) GSM and (b) PSTN networks. The decay
in k-core sizes is stable up to a cutoff value (kpstn cutoff � 5 in
PSTN and kgsm cutoff � 12 in GSM), then the k-core size drops
rapidly which means that the nodes with degrees less than the
cutoff value are on the fringe of the network. This structure is
similar to the Messenger communication network with
kmsn cutoff � 20 [26], while it is quite different from the Internet
graph in which k-core size decays as a power-law with k [3].
The densest region in GSM network is composed of 352 nodes
where each of the nodes has more than 72 edges inside the set.

VI. CONCLUSION AND FUTURE WORK

In this study, we attempt to empirically test degree distribution
versus different dataset scenarios to understand the parameters
governing degree distribution in social networks. We observe
that degree distribution in social networks does not show a
significant correlation with population density, user telco
operator, and user geographic location; however, population
size directly affects the average degree of the social network.
Therefore, in social network studies it is important to keep
social network size as a parameter while interpreting degree
distribution. It also seems acceptable to study a social network
without considering its location, density and referred telco
operator. For instance, a researcher could gather data from an
urban part or a rural part of a country, or may choose a specific
city or telco operator. However, any change in the size of the
studied network would result in a considerable change in
degree distribution characteristics and overall network topol-
ogy. Hence, social network studies must indicate the size of
the studied network and consider different sizes to come up
with a sound and complete conclusion. As a future work, mul-
tivariate regression / mixed-effects modeling can be used
which will eliminate possible effects of the heuristics that are
used to fix parameters in this study. Considering the size of
the dataset and lack of distributed multivariate regression
algorithm for Hadoop cluster, we did not attempt to use multi-
variate regression at this study.
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