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The problem of simultaneously predicting multiple real-valued outputs using a shared set of input vari-
ables is known as multi-target regression and has attracted considerable interest in the past couple of
years. The dominant approach in the literature for multi-target regression is to capture the dependencies
between the outputs through a linear model and express it as an output mixing matrix. This modelling
formalism, however, is too simplistic in real-world problems where the output variables are related to
one another in a more complex and non-linear fashion. To address this problem, in this study, we propose
a structural modelling approach where the correlations between output variables are modelled using a
non-linear approach. In particular, we pose the multi-target regression problem as one of vector-
valued composition function learning in the reproducing kernel Hilbert space and propose a non-linear
structure learning approach to capture the relationship between the outputs via an output kernel. By vir-
tue of using a non-linear output kernel function, the proposed approach can better discover non-linear
dependencies among targets for improved prediction performance. An extensive evaluation conducted
on different databases reveals the benefits of the proposed multi-target regression technique against
the baseline and the state-of-the-art methods.

� 2021 Published by Elsevier B.V.
1. Introduction

Multi-target regression has received considerable attention due
to its widespread use in many application domains including eco-
logical modelling [1], economics [2], network datasets [3], natural
language processing [4], computer vision [5,6], bioinformatics [7],
education [8], marketing [9], signal processing [10], signal de-
noising and enhancement [11], etc. The major challenges in
multi-target regression are mainly due to the following two
aspects of the problem: 1) capturing the relationship between
the input variables and the outputs; and 2) modelling and exploit-
ing inter-output dependencies to enhance the predictive capabil-
ity. The former task was conventionally addressed via a linear
model to link the inputs to each output. However, due to the lim-
ited expressive capacity of a linear model, non-linear approaches
for input–output modelling based on, for instance, non-linear ker-
nel machines have been proposed [12,13]. Regarding the second
task, it is known that in the presence of correlations between out-
put variables, utilising the shared information across multiple rel-
evant targets through a joint modelling mechanism provides
performance advantageous compared to the case where each
target variable is modelled independently [14,15,13,12,16,17].
Specifically, sharing knowledge among several tasks via exploiting
the similarities between different problems may improve the gen-
eralisation capability of each learner, and decrease the number of
observations needed for training, as well as the number of itera-
tions to achieve a specific level of performance. Accordingly,
multi-target learning is identified as a compelling technique of
inductive transfer, that improves generalisation by making use of
domain specific information inherent in the training samples of
several tasks as an inductive bias [18]. This goal is very often
achieved through a simultaneous learning of several problems,
while utilising a shared input representation. For a multi-task
learning, if a known structure exists between target variables, it
may be directly deployed to enhance the prediction performance.
Nevertheless, in many real-world learning problems, the depen-
dencies among output variables are not known in advance. This
necessitates the design of learning mechanisms to capture and
model any possible dependencies between outputs using the avail-
able training data. In this context, there has been a large body of
research to model dependencies between target variables for
multi-target regression. The current approaches presume a non-
linear input–output relation but typically model the inter-target
dependencies using linear models. As a result, in these methods,
each output variable is formed as a linear mixture of all
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intermediate target variables. We argue that despite the appealing
properties of this modelling formalism including, for instance, sim-
pler models and learning procedures, in many real-world applica-
tions, assuming a linear relationship between multiple output
variables is neither realistic nor sufficient. A linear inter-target
assumption limits the representational capacity of these methods
by discarding non-linear dependencies between multiple targets.
Very often in practice, different outputs correspond to higher level
concepts that give rise to highly complex relationships that
demand effective non-linear output structure learning machines.

In this study, we address the multi-target regression problem
and propose an output structure learning approach that not only
learns non-linear relationships between the inputs and the outputs
but is also capable of capturing non-linear inter-target relations.
For this purpose, we approach the multi-target regression problem
in a principled way and pose it as one of learning a vector-valued
composition function in the RKHSvv (Reproducing Kernel Hilbert
Space for Vector-Valued functions) [19]. In the proposed method,
an input kernel is responsible for relating the inputs to outputs
while the output kernel captures inter-target dependencies. By
choosing the output kernel as an admissible non-linear kernel,
the proposed method learns a non-linear structure among target
variables. Needless to say that, if desired, by selecting the output
kernel as a linear kernel, the proposed method simplifies to a linear
structure learning technique. From this perspective, our approach
is a generalisation of the structure learning methods in the RKHSvv
and can handle both linear and non-linear structure learning
problems.

1.1. Our Contributions

The current study makes the following contributions:

� We cast multi-target regression as one of non-linear output
structure learning in the context of composition functions in
RKHSvv and formulate the learning problem as an optimisation
task, encoding both data fidelity and regularisation;

� We propose an effective method for the optimisation of the cost
function associated with the proposed approach with guaran-
teed convergence;

� We present an evaluation of the proposed multi-target regres-
sion technique on different databases and provide a comparison
to other techniques.

1.2. Organisation of the Paper

The rest of this paper is structured as described next. In Sec-
tion 2, a review of multi-target regression methods with a focus
on the output kernel learning algorithms is presented. In Section 3,
once a background on vector-valued functionals in the Hilbert
space and multi-target regression is provided, we introduce our
non-linear output structure learning approach. In Section 4, we
describe an alternating optimisation approach to optimise the
objective function associated with the proposed method. In Sec-
tion 5, after introducing the datasets used in the experiments,
the results of an evaluation of the proposed method along with a
comparison to the state-of-the-art techniques from the literature
on several datasets are discussed. Finally, Section 6 provides
conclusions.
2. Prior Work

There exists a diverse set of different approaches developed for
multi-target regression. For instance, in [20], the authors propose
an approach for multiple-target regression that models the struc-
2

ture through covariance estimation of the hidden model parame-
ters in addition to the conditional structure represented as
covariance matrix of the observed targets. Other work [21], pro-
poses a method to model the correlation between the output vari-
ables via a sparse modelling of a multi-output regression
coefficient matrix. The method incorporates a penalised likelihood
term and simultaneously estimates the covariance structure and
the regression coefficients. In [22], a different approach is pre-
sented that adjusts the regularisation for each individual regres-
sion problem according to its noise level so that it
simultaneously achieves enhanced finite-sample performance
and insensitivity to tuning.

In [23], the so-called clustered multi-target learning (CMTL)
method is presented, assuming that different problems can be
grouped into clusters, and that the problems within each cluster
possess similar weight vectors. A novel spectral norm is then intro-
duced which captures this deductive assumption, without using
the prior information regarding the cluster of problems into
groups, yielding a convex optimisation problem for multi-task
inference. In [24], a novel method for CMTL, dubbed flexible clus-
tered multi-task (FCMTL), is proposed, where the group structure
is inferred through identification of representative problems. In
contrary to its counterpart, the proposed method possesses higher
flexibility as it does not need disjoint clusters and the problems
within each cluster do not need to perform an information sharing
at the same level. Furthermore, the method automatically infers
the number of problem clusters directly from data.

Ensemble-based approaches have been also proposed for the
multi-target regression analysis. As an instance, the work in [25],
presents the fitted rule ensembles (FIREs) method to enhance
multi-output regression performance by including linear base
learners into the ensemble. Nevertheless, the performance of this
algorithm is slightly worse than that of the multi-objective random
forests method [26]. In [27], a symbolic regression approach based
on Gene Expression Programming is proposed for the multi-target
regression problem. The method can estimate the inter-target cor-
relations using some genetic operators. Moreover, three ensemble
approaches are proposed to better utilise the inter-output and
input–output relations.

In another work [28], the objective function for multi-task
learning is represented in terms of a linear fusion of two groups
of eigen-functions so that the eigen-functions of a problem supply
extra information to the other problem and assist to enhance its
performance. Other study in [29] develops a two-layer method to
concurrently learn hidden features that are shared between differ-
ent tasks and a multi-target approach drawing on the Gaussian
process formalism. In [30], a novel prototype selection mechanism
for multi-output regression data sets is proposed where a multi-
objective evolutionary technique is deployed for prototype selec-
tion. Other work [31] proposes an aim-object driven neuro-fuzzy
asymmetric multi-target regression technique and a hybrid learn-
ing method that fuses the whale optimization and the recursive
least-square estimator to train the model.

In [15], for exploiting the solution of a suitable regularisation
task in a RKHSvv, an output kernel learning approach is proposed.
For optimisation, a block-wise coordinate descent approach is pro-
posed which efficiently utilises the structure of the multiple prob-
lems. Other work [13], considers multi-target learning by showing
that several problems and the structure between them may be
effectively inferred by solving a convex optimisation problem
using a block coordinate optimisation method. In a more recent
study [12], the authors present a multi-output regression tech-
nique through learning low-rank matrices. Using matrix elastic
nets, this method can capture inter-response dependencies in a
structure matrix. In another study [16] a multi-target sparse latent
regression model is proposed to capture inherent inter-output
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dependencies and non-linear complex relationships between the
inputs and the outputs. In this method, inter-target dependencies
are modelled using l2;1-norm-based sparse learning. A different
study [17], uses the RKHSvv theory to account for the structure
in the observations, while also utilising kernels in the input sample
space.

Motivated by their outstanding modelling capability, deep neu-
ral networks have recently attracted attention for learning highly
complex functions, in particular in the analysis of audio-visual data
[32]. While such methods have proven to be effective for modelling
non-linear functions, nevertheless, their applicability is typically
limited to the problems where large amount of training data is
available as such networks typically possess a large number of free
parameters that should be tuned using the training samples. One
strong alternative to the deep learning approaches is that of
kernel-based methods [12,13]. In comparison to the deep learning
methods, kernel-based approaches typically require less training
data and are based on well understood mathematical principles.
The proposed approach in this work falls into the kernel-based
group of multi-target regression techniques. One may consult
[33] for a more detailed review of the related work on the multi-
target regression problem.

3. Methodology

In this section, once a brief introduction to the vector-valued
functions in the Hilbert space and multi-output regression is pro-
vided, the proposed multi-target regression approach shall be
introduced.

3.1. Hilbert Space Vector Functions

Let’s suppose there exist M scalar learning problem, each of
which is provided with a data set Dm of nm input-response samples
Dm ¼ ðxmi ; rmi Þ

� �nm
i¼1 for training where xmi 2 X stands for the input

observation while rmi 2 R corresponds to the output response,
and m 2 f1; . . . ;Mg indexes a specific problem. Considering an
objective function O : R� R ! Rþ which gauges per-task predic-
tion errors, the goal in inferring functions with vector values in a
Hilbert space is to determine a functional Bð:Þ that simultaneously
optimises the errors associated with different learning tasks, i.e.
B�ð:Þ ¼ arg minB2HP, where P is given as

P ¼
XM
m¼1

1
nm

Xnm
i¼1

Oðrmi ; bmðxmi ÞÞ þRðBÞ ð1Þ

where RðBÞ enforces a regularisation in the Hilbert space on the
functional Bð:Þ, whose scalar elements are bm.

A sub-category of the problems in vector-valued function learn-
ing corresponds to kernel space multi-output regression where the
loss functional O captures a sum of squared losses in the Hilbert
space. In this formalism, a widely used simplifying hypothesis cor-
responds to the separability of input–output relationships, that
results in expressing Bð:Þ through a kernel which is a separable
function. Separable functions correspond to kernels expressible
in the form of Lðx1; x2Þ ¼ jðx1; x2ÞP, where P denotes a symmetric
M �M matrix, which is positive semi-definite, and captures the
correlations between the outputs while j denotes a reproducing
kernel that is a scalar function with the domain of X�X and a
range of R. jð:; :Þ encodes similarities among the input samples.
Function Bð:Þ can then be expressed as

Bð:Þ ¼
Xn
i¼1

jðxi; :ÞPki ð2Þ
3

where n is the total number of training instances from all tasks, i.e.
n ¼PM

m¼1nm and ki represents the coefficients. In this case, using
matrix notation, the corresponding outputs for the training samples
may be obtained as KKP, and hence, the regularised objective func-
tion in Eq. 1 can be written as

P ¼ kKKP� Rk22 þRðK;K;PÞ ð3Þ

where Kn�n stands for the inputs kernel matrix while Kn�M denotes
the coefficients matrix, R represents a matrix of the true outputs

and k:k22 stands for the matrix Frobenius norm. For the class of sep-
arable kernels, when P corresponds to an identity matrix, the
responses for all observations shall be regarded as independent
and the multi-target learning task will simplify to solving each indi-
vidual problem independently. Under the condition that the struc-
ture matrix P differs from the identity matrix, different problems
are considered as being correlated and solving for the optimal func-
tional Bð:Þ is formulated as the problem of learning K and P, simul-
taneously, subject to some regularisation constraints. The general
functional form of the objective P in Eq. 3 can be assumed as the
widely used formulation of the multi-output regression task in
the literature, where regularisation choices for R may be driven
by distinct a priori assumptions, giving rise to different instances
of the task. Considering the separable kernel exposition of the
multi-output regression problem, the responses of a multi-output
method may be regarded as computing the intermediate outputs
for each separate task using KK which are then mixed together
using a dependency encoding approach to generate the outputs.
From this viewpoint, the outputs can be regarded as the responses
of a composition functional Bð:Þ ¼ hðgð:ÞÞ, where gð:Þ generates
intermediate outputs, whereas hð:Þ applies a mixing of the interme-
dial outputs to produce the responses. In this context, the relation in
Eq. 2 represents a non-linear projection functional gð:Þ that is for-
mulated in terms of a non-linear kernel jð:; :Þ and the relevant coef-
ficients K, while function hð:Þ is expressed as a linear fusion
function, specified via P. Most of the existing methods for the
multi-target regression problem is concentrated on modelling hð:Þ
as a linear function.

3.2. The proposed approach

In this study, we address the problem of simultaneously learn-
ing multiple regression tasks, where each problem is characterised
as a kernel regression, modelling the individual predictions in
terms of the elements of a vector functional. The loss function pro-
posed may be represented as

P ¼ khðKKÞ � Rk22 þRðK;K;PÞ ð4Þ
In contrast to the existing approaches, we assume hð:Þ to be a non-
linear (kernel) composition function to capture the non-linear rela-
tional structure of multiple regression problems and draw on a gen-
eric Representer theorem for composition functions in the
reproducing kernel Hilbert space given in [34]. The proposed struc-
ture of the learning machine is depicted in Fig. 1. In the proposed
approach, after producing the intermediate responses of different
tasks (ym’s, for m ¼ 1; . . . ;M) for a data point x, the generated
responses as a whole are considered as one vectorial sample (i.e.
y) and fed to the second layer. In the next stage, the generated
response vector by the first layer, i.e. y, is non-linearly projected
onto the space induced by a Gaussian kernel and finally fused using
P to generate the ultimate outputs for each regression task. As such,
the training/test data samples for the second layer correspond toM-
dimensional intermediate outputs collected into vectors where M
stands for the number of regression tasks. Assuming j1ð:; :Þ and



Fig. 1. The proposed Non-linear Output Structure Learning (NOSL) machine for
multi-target regression.
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j2ð:; :Þ as the kernel functions associated with the first (the one clo-
ser to the input) and the second layers respectively, the function
Bð:Þ in the proposed non-linear structure learning approach can
be represented as

Bð:Þ ¼
Xn
i¼1

j2

Xn
j¼1

j1ðxj; :Þkj;
Xn
j¼1

j1ðxj; xiÞkj
 !

Pi ð5Þ

where Pi denotes the transpose of the ith row of the second-layer
coefficient matrix Pn�M while the coefficients of the first layer are
the M-element vectors kj’s. The second-layer kernel matrix J is con-
structed using j2ð:; :Þ fed with the intermediate outputs Y ¼ KK
where K denotes a matrix collection of kj’s and K represents the ker-
nel matrix associated with the first layer which is built using j1ð:; :Þ.
Using a Gaussian kernel function for the second layer, i.e.
j2ðyi; yjÞ ¼ expð�hyi � yjÞ, we have

J ¼ exp �h ðI� KKK>KÞ1þ 1>ðI� KKK>KÞ> � 2KKK>K
h i� �

ð6Þ

where � denotes the Hadamard product while 1 represents a
matrix of 1’s. The RBF kernel width in the second layer is controlled
by the scalar parameter h. Based on the definition of Bð:Þ in Eq. 5 and
using the relation for J in Eq. 6, using a matrix notation the
responses over all training observations are given as JP. In other
words, the nonlinear function hðKKÞ in Eq. 4 for the proposed
approach may be explicitly expressed as

hðKKÞ ¼ exp �h ðI� KKK>KÞ1þ 1>ðI� KKK>KÞ> � 2KKK>K
h i� �

P

ð7Þ

In the proposed approach for learning the non-linear structures
between multiple regression problems, the unknown first-layer
coefficient matrix K and the second-layer coefficient matrix P are
determined through optimising the loss function P that corresponds
to a regularised kernel regression defined in terms of J. The merits of
the proposed non-linear structure learning approach, when com-
pared to the commonly used linear structure learning approaches,
can be justified from the viewpoint that the conventional linear
structure operates as a linear regressor on the intermediate outputs,
while the proposed method depicted in Fig. 1 represents a non-
linear kernel regression.
4

3.3. Regularisation

Tikhonov is a widely used regularisation scheme in the context
of regularised regression. A Tikhonov regularisation in the non-
linear multi-target formulation promotes coefficients that generate
outputs, which are produced from the intermediate responses
through smooth functions by imposing a penalty on larger magni-
tude parameters and therefore generating a more parsimonious
coefficient. For a Tikhonov regularisation, the objective for the pro-
posed model depicted in Fig. 1, is given as

P ¼ kJP� Rk22 þ c1traceðK>KKÞ þ c2traceðP>JPÞ ð8Þ
where J and K represent the second- and the first-layer kernel
matrices, respectively. Note that the traceð:Þ operator imposes a
Tikhonov regularisation on the coefficients of the first and the sec-
ond layers. The data fidelity term, as discussed above, corresponds
to a kernel regression loss function (sum of squared errors) fed with
the responses generated by the first layer.

3.4. Relation to Stacking Ensembles

In the stacking ensemble methods [35], once a number of first-
level learners are trained, a second-layer learner is trained on the
predictions of the base learners to combine and improve on the
prediction performance of the base learners. From this perspective,
the proposed approach (and also all output kernel learning meth-
ods) operates in a similar fashion, as the predictions of first-layer
regressors are combined by the second-layer learner. However,
there exists a subtle difference between such stacking ensemble
techniques and the proposed method. In the stacking ensemble
framework, the second-layer learner only combines the first-
layer predictions. If there exists a prediction error, the base learn-
ers have no means of being informed and updated to correct for the
wrong prediction. However, in the proposed method, due to the
optimisation that involves the parameters of both layers recur-
sively, the second-layer learner not only combines the first-layer
predictions but also provides an effective mechanism to adjust
the parameters of the first-layer base learners, as discussed next.

4. Alternating Optimisation

For minimising the objective function in the proposed
approach, a block coordinate descent technique that alternates
between optimising the first-layer and the second-layer parame-
ters is used in this work, as explained in the next section.

4.1. Fix P to Optimise K

The first direction for the optimisation of the loss function P cor-
responds to K. The partial derivatives of the first regularisation
term, i.e. traceðK>KKÞ with respect to K are readily derived as

@traceðK>KKÞ
@K

¼ 2KK ð9Þ

By representing other terms in P as P1 ¼ kJP� Rk22 þ c2traceðP>JPÞ,
we will compute its partial derivative with respect to K. None of the
terms in P1 depend on K, except the second-layer kernel matrix J
(recall that J models the similarities between M-dimensional inter-
mediate responses y’s). To derive the partial derivatives of P1 with
respect to K, let us first define the following matrices:

C ¼ YY>D ¼ ðI� CÞ1þ 1>ðI� CÞ> � 2C ð10Þ
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where � denotes the Hadamard product while 1 represents a
matrix of 1’s. Using the definitions above, the second-layer kernel
matrix J can be written as

J ¼ exp½�hD� ð11Þ
where the RBF kernel width in the second layer is controlled by the
scalar parameter h. The partial derivatives of P1 with respect to the
kernel matrix J are

@P1

@J
¼ 2ðJP� RÞP> þ c2PP> ð12Þ

The partial derivatives @P1=@D; @P1=@C; @P1=@Y are

@P1
@D ¼ ð�hJÞ � @P1

@J

@P1
@C ¼ In � @P1

@D þ @P1
@D

>� �
1>

� �
� 2 @P1

@D

@P1
@Y ¼ @P1

@C þ @P1
@C

>� �
Y

ð13Þ

For the computation of @P1=@K we note

dP1 ¼ trace
@P1

@Y

>
dY

� �
¼ trace

@P1

@K

>
dK

� �
ð14Þ

Since Y ¼ KK, one obtains dY ¼ KdK. Substituting dY by KdK in Eq.
14 gives

dP1 ¼ trace
@P1

@Y

>
KdK

� �
¼ trace

@P1

@K

>
dK

� �
ð15Þ

and hence

@P1

@K
¼ K

@P1

@Y
ð16Þ

Summarising the procedure described above, for computing
@P1=@K, first @P1=@J should be computed followed by
@P1=@D; @P=@C and @P1=@Y, respectively, and then @P1=@K. Ulti-
mately, @P=@K ¼ @P1=@Kþ 2c1KK.

4.2. Fix K to Optimise P

In order to optimise the regularised error over multiple prob-
lems, represented by P with respect to P, one can set its partial
derivative @P=@P to 0:

@P
@P

¼ 2J>ðJP� RÞ þ 2c2JP ¼ 0 ð17Þ

which results in

P ¼ ðJþ c2InÞ�1R ð18Þ
Lastly, the partial derivatives of the cost function P w.r.t. h are

@P
@h

¼ trace
@P
@J

>
ð�J� DÞ

� �
ð19Þ

To minimise the objective function in h and K, a gradient descent
approach may be utilised. The proposed method is summarised in
Algorithm 1, where gh and gA stand for the step sizes for h and K,
in the gradient descent procedure, respectively. It is worth noting
that in Algorithm 1, in Step 6, one must update the second-layer
kernel matrix J using the most recent updated values for K and h.
In general, in all kernel-based methods utilising a Gaussian kernel,
the kernel width parameter (h) is required to be a non-negative sca-
lar. Assuming h P 0, the two extreme values for J ¼ expð�hDÞ
would be 0 and 1. In our experiments, we have used a line search
to determine the step sizes to guarantee a decrease in the objective
function value when updating h. In these cases, h always stayed pos-
itive, in spite of the fact that we did not explicitly enforce a zero
lower bound for h. In other words, using suitable gradient step sizes,
5

the optimal value for h was never negative. In a more general set-
ting, however, one may impose an explicit non-negativity con-
straint on h by projecting it onto the positive orthant to ensure
the stability of the Gaussian term if required.

Algorithm 1: The Proposed Multi-Target Regression Method

1: K ¼ ðKþ c1InÞ�1R
2: h ¼ 1=mD

3: Repeat
4: K ¼ K� gA

@QN
@K

5: h ¼ h� gh
@QN
@h

6: J ¼ JðK; hÞ
7: P ¼ ðJþ c2InÞ�1R

8: Until jPtþ1 � Ptj < f
4.3. Initialisation

During the initialisation step of the proposed multi-target
approach, parameter h that tunes the RBF kernel width in the sec-
ond layer of the proposed structure learning approach is set to 1
over the average Euclidean distance between all training observa-
tions, i.e. h ¼ 1=mD wheremD stands for the mean of D. To initialise
K, all problems are learned independently with the intermediate
outputs (denoted as Y in Fig. 1) set to the expected responses, i.e. R.

4.4. Analysis of the Algorithm

A number of observations on the dynamics of the proposed
multi-target learning approach may be made. In the proposed
structure learning technique, the interaction between the two
groups of parameters K and P is realised through the second-
layer kernel matrix, i.e. through J (Step 6, Algorithm 1). In this
respect, after updating the first-layer coefficient matrix K, the
intermediate outputs are generated via Y ¼ KK. The second-layer
kernel matrix can then be produced by using the most recently
updated intermediate outputs Y and h. P would then be computed
using the recently updated J. Any changes to P would then affect
the parameter K during the next iteration.

In the operational stage of the proposed approach, once a test
observation x arrives, the intermediate responses (ym’s for
m ¼ 1; . . . ;M) for all tasks are generated through the initial layer.
By considering the intermediate outputs as the elements of a vec-
tor y ¼ ½y1; . . . ; yM�>, its similarity to the second layer training
observations, i.e. to yi’s for i ¼ 1; . . . ;n, is gauged using an RBF ker-
nel, and finally, mixed together using the corresponding matrix P
to generate the final outputs.

4.5. Convergence

The loss function in the advocated approach in each step of the
proposed alternating optimisation approach does not increase. This
is true, since the optimisation w.r.t. P is performed exactly, and
hence, guaranteeing not to increase the loss function. By choosing
suitable step sizes gA and gh (e.g. via a line search), the optimisa-
tion of the loss function with respect to K and h, is guaranteed
not to increase it. As a consequence we have

. . . P PðKt ;Pt ; htÞ P PðKtþ1;Pt ; htÞ P PðKtþ1;Pt ; htþ1Þ
P PðKtþ1;Ptþ1; htþ1Þ P . . . ð20Þ

As the data fidelity term is a Frobenius norm of a matrix, it is
bounded from below by zero. Moreover, since the constraints
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impose Tikhonov regularisation on task-specific coefficients
(through matrix traces), they are also bounded by zero from below.
Consequently, the loss function is bounded from below by zero.
Therefore, the sequence generated by the proposed alternating opti-
misation is convergent in the limit by virtue of the theorem of
monotone convergence.
Table 1
Statistics of the datasets used.

Dataset Samples Input (d) Target (T)

JURA 359 15 3
SLUMP 103 7 3
ANDRO 49 30 6
EDM 154 16 2
ENB 768 8 2
SCM20d 8966 61 16
5. Experimental Analysis

In this section, first, the datasets and the performance metric
used in the experiments are introduced. Next, a comparison of
the proposed Non-linear Output Structure Learning (denoted as
’NOSL’) method to the state-of-the-art algorithms is presented
and the convergence behaviour of the proposed method is
analysed.

5.1. Datasets

The datasets used in the experiments are briefly introduced
next.

5.1.1. Jura
The Jura [36] database incorporates measurements relating to a

close gathering of 7 heavy metals including chromium, nickel, cad-
mium, zinc, cobalt, lead and copper that are measured in 359 dif-
ferent places in a region of Switzerland. The usage type of the
land including Meadow, Forest, Tillage, Pasture, as well as the type
of rock (such as Quaternary, Argovian, Portlandian, Sequanian,
Kimmeridgian) are measured for each particular place. In a
multi-target regression setting [37], one is interested in predicting
the concentration of more expensive metals, which are considered
as the primary variables based on the measurements of cheaper
metals considered as input variables. In this work, copper, lead
and cadmium are considered as targets and all the remaining met-
als in addition to the land usage type, type of rock and the locations
of each place are employed as predictive inputs.

5.1.2. Slump
The concrete slump database [38] considers the prediction of

three attributes of concrete, namely, flow, slump as well as com-
pressive strength as a dependent vector variable of 7 concrete com-
ponents including blast furnace slag, super plasticizer, cement,
water, fly ash, fine aggregate and the coarse aggregate.

5.1.3. Andro
This database [39] considers the prediction of six future water

quality values including the oxygen, pH, temperature, salinity, tur-
bidity and conductivity in Thessaloniki, Greece. The target variable
recordings are obtained from sensors placed under water whose
sampling interval is nine seconds. These measurements are aver-
aged to obtain a single record related to each variable on each
specific day. The specific database that is commonly used is gener-
ated using a time-window of five days. In other words, the attri-
butes relate to six water quality measurements for up to five
previous days with a lead of five days. That is, the values of each
variable for the six days ahead are predicted.

5.1.4. EDM
The Electrical Discharge Machining database [40] corresponds

to a two-output regression task. The goal in this dataset is to make
the machining performed faster via mimicking a human operator
behaviours that supervises two output responses. Each output
may take three different numeric values of �1, 0, or 1 and there
exist sixteen continuous input features.
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5.1.5. ENB
The Energy Building database [41] is concerned with the energy

efficiency problem by predicting the heating and cooling load
demands associated with buildings in terms of a function of 8
parameters such as roof area, overall height and glazing area,
among others.

5.1.6. SCM20d
The Supply Chain Management database is gathered from the

Trading Agent Competition in Supply Chain Management tourna-
ment. The data preprocessing and normalisation methods are
detailed in [42]. The SCM20d dataset relates to the ”Product
Future” type of prediction. Each row in the dataset represents
one observation day in the tournament where each game lasts
for a total of 220 days and there are eighteen games in a tourna-
ment. The input features correspond to the observed prices for a
single day in the tournament. Additionally, four time-delayed sam-
ples are incorporated for each observed component and product to
facilitate anticipation of the ongoing trends. The SCM20d dataset
for each product relates to the mean price over twenty coming
days.

The statistics of the databases employed in this work are sum-
marised in Table 1.

5.2. Performance Metric

In order to facilitate a benchmarking with state-of-the-art tech-
niques, the performance of different approaches are gauged in
terms of the Relative Root Mean Squared Error (RRMSE) which is
computed as

RRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ðxj ;yjÞ2Dtest

ðyj � ŷjÞ2

X
ðxj ;yjÞ2Dtest

ðyj � �yÞ2

vuuuuuut ð21Þ

where ðxj; yjÞ denotes the jth sample xj with ground truth target yj.
The prediction of yj is ŷj and �y corresponds to the average of the out-
puts over the training samples. The average RRMSE (aRRMSE) over
all outputs within the test set is computed to provide a single per-
formance metric for each algorithm. As the aRRMSE corresponds to
an error estimate, a lower value for aRRMSE suggests a superior per-
formance. The Tikhonov regularisation parameters c1 and c2 in the
proposed approach are determined using cross validation on the
training set from a grid of 10�5:1:2 by tuning one with the others
fixed. The kernel function used for both layers in the proposed
approach is a radial basis function.

5.3. Convergence Analysis

In this section, we examine the convergence characteristics of
the proposed alternating optimisation approach. The convergence
curves for two representative datasets, namely, the EBN and the
Slump datasets are depicted in Fig. 2. As may be observed, the pro-



Fig. 2. Convergence curves corresponding to the proposed alternating optimisation
approach on two sample datasets: ENB (left panel); SLUMP (right panel).

Table 3
Mean ranks of different algorithms using
the Friedman’s test. (p ¼ 8:6502e� 07).

Algorithm Ranking

MTSC 6.67
STL 5.91
RLC 5.25
ERC 4.58
mSVR 8.83
MORF 5.75
MTFL 10.00
MMR 2.16
OKL 6.83
MROTS 9.66
mKRR 11.33
NOSL 1.00
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posed approach monotonically optimises the objective functions.
During the initial iterations, the improvements in the cost func-
tions are relatively notable, possibly due to large deviations of
the initial parameters from their optimal values, which motivates
taking larger steps in the negative direction of the gradient. As
the optimisation method proceeds, the optimisation algorithm
makes finer adjustments to the parameters, and hence, smaller
changes in the objective function values are observed. The pro-
posed optimisation approach converges within almost 100 itera-
tions on both datasets. It should be noted that on the other
datasets a similar behaviour has been observed.

5.4. Comparison to Other Techniques

The proposed technique is compared to other state-of-the-art
multi-target regression methods in this section. These include mul-
tidimensional support vector regression (mSVR) [43], output ker-
nel learning (OKL) [15], MROTS [20] and multi-task feature
learning (MTFL) [44]. The multi-object random forests (MORF), sin-
gle task learning (STL), the corrected multi-target stacking (MSTC),
random linear target combinations (RLC) and ensemble of regres-
sor chains (ERC) methods are also included to enable a comprehen-
sive comparison due to their outstanding performance as observed
in [9]. The multi-target regression drawing on low-rank learning
(MMR) [12], which represents the state-of-the-art technique, is
also included among the compared methods. The kernel ridge
regression model (mKRR), which is formulated in the reproducing
kernel Hilbert space and estimates each target independently, is
included to serve as a baseline.

For a fair comparison, we follow the evaluation settings in [12]
and use a 10-fold cross validation to benchmark against other algo-
rithms. The results of the comparison to other methods are tabu-
lated in Table 2. From this table, one may observe that on all
databases examined the proposed method outperforms other
methods. More specifically, compared to the best reported method,
the proposed approach substantially improves the state-of-the-art
on a number of datasets such as Andro and EDM. Specifically, while
the previous best reported result on the Andro dataset was 52:7%,
the aRRMSE of the proposed approach on this dataset is 35:3%.
Table 2
Comparison of the proposed method with the state-of-the-art multi-target regression techn
in bold)

MTSC STL RLC ERC mSVR MORF

JURA 59:1 58:9 59:6 59:0 61:1 59:7
SLUMP 69:5 68:8 69:0 68:9 71:1 69:4
ANDRO 57:9 60:2 57:0 56:7 62:7 51:0
EDM 74:0 74:2 73:5 74:1 73:7 73:4
ENB 12:1 11:7 12:0 11:4 22:0 12:1
SCM20d 47:5 47:5 44:3 39:4 49:3 48:2
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That is, more than thirty percent relative improvement in the
aRRMSE. On the EDM dataset, the best reported result is 71:6%
whereas the proposed method obtains an aRRMSE of 50:1% which
again corresponds to more than a thirty percent improvement in
the aRRMSE. Although the proposed formulation in this work
which is based on Tikhonov regularisation demonstrates superior
modelling capability, as future directions of investigation one
may investigate other regularisation schemes to further boost the
performance.

An average ranking of different algorithms using the Friedman’s
test is provided in Table 3. From the table it is evident that the pro-
posed method (NOSL) ranks better than other alternatives. The sec-
ond best performing method is MMR [12].
5.5. Computational Complexity

Updating the second-layer parameters P requires a matrix
inversion operation. A matrix inversion operation for an n� n
matrix incurs a time complexity of Oðn3Þ. Nevertheless, using the
Sherman’s March algorithm and the incremental Cholesky decom-
position [45,46], the complexity of matrix inversion may be
reduced to Oðn2Þ. The gradient descent update for K and h requires
matrix multiplication operations with a time complexity of Oðn3Þ.
As a result, the complexity of the proposed approach scales cubi-
cally in the number of training observations.

However, the Oðn3Þ complexity applies to a ”serial” implemen-
tation of the matrix multiplication operation for the gradient des-
cent update. One particularly advantageous feature of the
proposed approach is that it may be implemented in a ”parallel”
fashion. In this context, the matrix multiplication operations may
easily benefit from parallel processing units such as GPU’s to
obtain large speed-ups. Similarly, a parallel computation of the
matrix inversion operation is viable to achieve remarkable gains
in the computation time [47,48]. To examine this, the GPU and
CPU computation times are measured for the matrix multiplication
and for the matrix inversion operations for different numbers of
observations on CPU and on GPU. The results are visualised in
iques on different datasets in terms of aRRMSE (%). (Best performances are indicated

MTFL MMR OKL MROTS mKRR NOSL

60:8 58:2 59:9 62:5 63:3 57:8
68:1 58:7 69:9 77:8 78:9 54:4
80:3 52:7 55:3 63:5 63:9 35:3
85:1 71:6 74:1 81:2 83:3 50:1
31:6 11:1 13:8 25:7 26:3 8:0
64:3 38:9 44:3 45:6 49:8 34:1



Fig. 3. Speedup gains obtained using a parallel processing of the proposed approach compared to a serial implementation..
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Fig. 3 for a 64-bit machine with a 32 GB memory, 4 GHz CPU, using
a GeForce GTX 1080Ti graphical processing unit operating in Mat-
lab R2021a using Windows 10. From the figures, one may observe
that a parallel processing on a GPU yields significant improve-
ments in the running times corresponding to different steps of
the proposed approach which enables the proposed method to be
applied to larger sets of data. In particular, the speedup gain for the
matrix multiplication operation reaches a 15� speedup for matri-
ces larger than 8000-by-8000 while the relative speedup gain for
the matrix inversion operation is also significant and reaches a
6� speedup. It should be noted that the speed-up gains observed
correspond to a common GPU used on an ordinary PC. In problems
of larger scales, an array of GPUs may be deployed to process a
large amount of data which could deliver even larger speedup
gains.

6. Conclusion

We considered the multi-target regression problem through
learning a vector-valued composition function in a RKHS. In con-
trary to the existing approaches that try to capture inter-target cor-
relations linearly, by virtue of a non-linear inter-target kernel, the
proposed method facilitated non-linear structure learning among
multiple outputs. For training, we presented an alternating min-
imisation approach with convergence guarantees. The experimen-
tal assessment of the proposed technique on standard multi-target
regression datasets illustrated the benefits of the proposed
approach as compared with existing approaches. The superior per-
formance of the proposed technique can be attributed to the pro-
posed non-linear learning of structural relationships between
multiple targets which is able to captures real-world dependencies
among multiple outputs considerably better.

Motivated by its widespread use as an effective regularisation
mechanism, in this study, we employed a Tikhonov regularisation
scheme. As future directions of investigation one may consider
other regularisation mechanisms such as ðr; pÞ-norms.
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