
LIBRARIES AND TOOLS FOR VIEWING
AND EDITING BIOLOGICAL MAPS IN

SBGN

a thesis submitted to

the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements for

the degree of

master of science

in

computer engineering

By

Metin Can Siper

July 2017

LIBRARIES AND TOOLS FOR VIEWING AND EDITING BIO-

LOGICAL MAPS IN SBGN

By Metin Can Siper

July 2017

We certify that we have read this thesis and that in our opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Uğur Doğrusöz(Advisor)

Ercüment Çiçek

Tolga Can

Approved for the Graduate School of Engineering and Science:

Ezhan Karaşan
Director of the Graduate School

ii

ABSTRACT

LIBRARIES AND TOOLS FOR VIEWING AND
EDITING BIOLOGICAL MAPS IN SBGN

Metin Can Siper

M.S. in Computer Engineering

Advisor: Uğur Doğrusöz

July 2017

Information about cellular processes and pathways is becoming increasingly avail-

able in detailed, computable standard formats including Systems Biology Graphi-

cal Notation (SBGN). Effective visualization of this information is a key recurring

requirement for biological data analysis, especially for -omic data. Biological data

analysis is rapidly migrating to web based platforms; thus there is a substantial

need for sophisticated web based pathway viewing and editing tools that support

these platforms and other use cases.

We propose to develop a modular software architecture to meet this need. This

proposed architecture includes reusable web based libraries and easily customiz-

able and embeddable tools developed using these libraries. Our libraries include

SBGNViz.js, a Cytoscape.js based library providing a renderer and an API to

develop tools visualizing pathway models represented by SBGN Diagrams, and

ChiSE.js, an SBGNViz.js based library to visualize and construct pathway mod-

els represented in SBGN Diagrams, and miscellaneous Cytoscape.js extensions.

Our tools are built using these libraries and include SBGNViz Viewer and Newt,

which are sample applications for SBGNViz.js and ChiSE.js, respectively.

Newt is being developed to become a first web based, open source SBGN

editor with full support for compound structures such as molecular complexes

and compartment, advanced diagramming facilities including grid and alignment

guidelines, static and incremental layout, and complexity management of large

maps.

Keywords: Biological maps, pathways, information visualization, web based tools,

systems biology, pathway layout, complexity management, pathway viewer, path-

way editor, pathway curator, SBGN.

iii

ÖZET

SBGN İLE BİYOLOJİK HARİTALARIN GÖSTERİMİ
VE DÜZENLENMESİ İÇİN KÜTÜPHANE VE

ARAÇLAR

Metin Can Siper

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Danışmanı: Uğur Doğrusöz

Temmuz 2017

Hücresel prosesler ve yolaklar hakkında bilgi Systems Biology Graphical Notation

(SBGN) gibi hesaplanabilir standart formatlarda artarak daha ulaşılabilir bir hale

geliyor. Bu bilginin etkin olarak görselleştirilmesi biyolojik bilgi analizi için temel

bir gereklilik. Biyolojik bilgi analizi hızla web tabanlı platformlara taşınmakta;

bu yüzden bu platformları ve di ‘ger kullanım senaryolarını destekleyen çok yönü

web tabanlı yolak görselleyici ve düzenleyicilere büyük bir ihtiyaç var.

Bu ihtiyacı karşılamak için modüler bir yazılım mimarisi geliştirmeyi

öneriyoruz. Önerilen mimari yeniden kullanılabilir web tabanlı kütüphaneler

ve bu kütüphaneleri kullarak geliştirilen kolaylıkla uyarlanabilir ve gömülebilir

araçlar içeriyor. Kütüphanelerimiz SBGNViz.js, SBGN diyagramlarıyla

gösterimlenen yolak modellerini görselleştirmek için bir işleyici ve uygulama pro-

gramlama arayüzü sa ‘glayan Cytoscape.js tabanlı bir kütüphane, ve ChiSE.js,

SBGN diyagramlaryla gösterimlenen yolak modellerini görselleştirmek ve inşa

etmek için SBGNViz.js tabanlı bir kütüphane, ve çok yönlü Cytoscape.js eklenti-

lerinden oluşmakta. Bu kütüphaneleri kullanarak geliştirilen araçlarımız sırasıyla

SBGNViz.js ve ChiSE.js için birer örnek uygulama olan SBGNViz Viewer ve

Newt’i içermekte.

Newt, moleküler kompleksler ve kompartımanlar gibi bileşik yapıları,

örgü ve hizalama yönergeleri gibi ileri şemalaştırma olanaklarını, durgun ve

artımlı yerleştirme algoritmalarını, ve büyük haritalarda karmaşıklık yönetimini

destekleyen ilk web tabanlı araç olarak geliştirilmekte.

Anahtar sözcükler : Biyolojik haritalar, yolaklar, bilgi gösterimi, web ta-

banlı araçlar, sistem biyolojisi, yolak yerleştirme, karmaşıklık yönetimi, yolak

iv

v

görselleyici, yolak düzenleyici, yolak küratörü, SBGN.

Acknowledgement

I would like to express my special thankfulness to Prof. Uğur Doğrusöz for his

guidance and support throughout my graduate study. I have learned lots of things

from him in this period.

I would like to thank to Assist. Prof. Dr. Ercüment Çiçek and Assoc. Prof.

Dr. Tolga Can for reviewing and commenting on the manuscript of this thesis.

I would like to thank TÜBİTAK for their financial support during my thesis

within the context of the project numbered 113E161.

I would like to express my deepest thanks to my parents, İbrahim and Kadriye,

my brother Alper, and all other members of my family because they always

supported me.

I would like to thank all of my friends for their great friendship during and

before my graduate life.

vi

Contents

1 Introduction 1

1.1 Motivation . 3

1.2 Contribution . 3

2 Background Information and Related Work 5

2.1 Graph Visualization . 5

2.2 Biological Standards . 9

2.3 Related Tools, Libraries, and Resources 15

2.3.1 Cytoscape . 15

2.3.2 Pathway Commons . 19

2.3.3 PCViz . 19

2.3.4 ChiLay . 19

2.3.5 BioGene . 20

2.3.6 CySBGN . 21

vii

CONTENTS viii

2.3.7 VISIBIOweb . 22

2.3.8 Biographer . 23

2.3.9 SBGN-ED . 24

3 Tools and Libraries For Visualizing and Editing SBGN Maps 26

3.1 Cytoscape.js Extensions . 27

3.2 SBGNViz.js . 27

3.3 ChiSE.js . 33

3.4 SBGNViz Viewer . 41

3.5 Newt . 47

3.6 Overall System Architecture . 54

4 Conclusion 56

4.1 Future Work . 59

4.2 Availability . 60

List of Figures

1.1 Textual representation of a biological pathway (Activation of

NOXA and translocation to mitochondria) in PathwayCommons [1] 2

1.2 Visual representation of a biological pathway (Activation of NOXA

and translocation to mitochondria) in PathwayCommons [1] . . . 2

2.1 A sample directed (left) and undirected (right) graph with three

vertices: A, B, C and two edges that connects vertices to each other. 6

2.2 A compound graph with multiple levels of nesting 6

2.3 Graph representation of a social network [2] 7

2.4 Graph representation of a biological pathway 8

2.5 Visualization of the same graph before (left) and after (right) ap-

plying layout . 8

2.6 Visual representation of SBGN PD elements [3] 10

2.7 Metabolical pathway of IFN regulation visualized in PD. 12

2.8 Visual representation of SBGN AF elements [4] 13

ix

LIST OF FIGURES x

2.9 A sample SBGN-PD map (left) and its relevant representation in

SBGN-ML (right) . 14

2.10 Cytoscape.js architecture visualized by Cytoscape.js itself [5] . . 16

2.11 An example Cytoscape.js initialization code 18

2.12 A sample scene from PCViz . 20

2.13 Edge representation comparison between SBGN and CySBGN [6] 21

2.14 Random ordering of the nodes may affect the visualization of the

diagram [7] . 22

2.15 SBGN-PD representation of Amaranthin Biosynthesis pathway

produced by VISIBIOweb [8] . 23

2.16 SBGN-PD representation of the MAP kinase cascade in Biogra-

pher [9] . 24

2.17 SBGN-ED with two PD maps and the respective panel for editing

these type of SBGN maps [10] . 25

3.1 SBGNViz.js Architecture . 28

3.2 Visualization of neuronal muscle signalling pathway before (top)

and after (bottom) molecular compartment Synaptic Cleft is col-

lapsed through SBGNViz.js API 29

3.3 Neuronal muscle signalling pathway before (top) and after (bottom)

the selected macromolecule is hidden through SBGNViz.js API. . 30

3.4 A molecular reaction from CaM-CaMK dependent signaling to the

nucleus pathway when ports are considered (top) and omitted (bot-

tom) by SBGNViz.js renderer. 32

LIST OF FIGURES xi

3.5 Neuronal muscle signalling pathway before (top) and after (bottom)

myosin with blue background color is cloned using ChiSE.js API. 35

3.6 A group of nodes before (left) and after (right) creating a compart-

ment for them using ChiSE.js API. 36

3.7 A reaction created from template where four macromolecules are

combined together to create a complex using ChiSE.js API. 37

3.8 Neuronal muscle signalling pathway before (left) and after (right)

changing background color of all macromolecules to blue using

ChiSE.js API. 39

3.9 ChiSE.js Architecture . 40

3.10 A sample screen from SBGNViz Viewer 42

3.11 Visualization of a graph that includes many edge bend points in

SBGNViz Viewer. The bend point positions of the selected edge

are highlighted. 44

3.12 Further information about myosin obtained from BioGene [11] . . 44

3.13 Dialog box that enables querying Pathway Commons [1] web ser-

vice to get the paths between particular set of genes inside a specific

length limit . 45

3.14 SBGNViz Viewer Architecture . 46

3.15 A sample view from Newt . 48

3.16 Newt supports alignment guidelines by utilizing Cytoscape.js grid-

guide [12] extension . 49

3.17 Palette tab of Newt inspector . 50

LIST OF FIGURES xii

3.18 Map tab of Newt inspector . 51

3.19 Object tab of Newt inspector . 53

3.20 Newt Architecture . 54

3.21 Overall System Architecture . 55

List of Tables

4.1 Comparison of more advanced visualization and/or editing tools

that provide support for SBGN 58

xiii

Chapter 1

Introduction

A graph is a data structure which represents a set of objects as nodes and the

relations between those objects as edges. Graphs are regarded as one of the most

popular way of modelling complex relational information. Modeling relational

information using graphs promotes data validation, integration, querying, and

visualization.

Textual representation of relational information is easy but it generally ob-

structs deriving information (Figure 1.1). Therefore, there is a substantial need

for visualizing information which eases analysis and comprehension of data (Fig-

ure 1.2).

Systems Biology Graphical Notation (SBGN) [13] has been developed by a

community of biologists, curators and software developers to develop high qual-

ity, standard graphical languages for representing biological processes and inter-

actions. SBGN consists of process description (PD), entity relationship (ER),

and activity flow (AF) languages.

Information about cellular processes and pathways is becoming increasingly

available in detailed, computable standard formats including SBGN. The increase

in size of information creates a demand for powerful tools to visualize and edit

pathways.

1

Figure 1.1: Textual representation of a biological pathway (Activation of NOXA
and translocation to mitochondria) in PathwayCommons [1]

Figure 1.2: Visual representation of a biological pathway (Activation of NOXA
and translocation to mitochondria) in PathwayCommons [1]

2

1.1 Motivation

There are plenty of tools that visualize biological pathway information. While

some of these tools support visualization of networks with simplified notation [14,

15, 16], some others support SBGN [17, 18, 19, 20, 21, 22]. However, most of

these tools are desktop applications [18, 20, 23, 22], which require installation or

plugins for desktop use [21]. As for the ones which work on web browsers, they

lack interactive graph editing features [19], or are not designed to work on touch

enabled devices [17]. Furthermore, none has detailed diagramming capabilities

such as advanced editing of topology, style of map objects through an inspector

and, grid and alignment guidelines for easy manual layout of maps. Only a

few [17] has been designed as a library for easily developing an application for

viewing and editing of maps in SBGN and embedding in a web page. Last but

not least, these tools do not have full support for compound based structures such

as molecular complexes or compartments. Therefore, there is a need for an open

source, web based tool that enables visualizing and editing SBGN diagrams while

having full support for compound structures and utilizing advanced complexity

management techniques. This need led us to conduct this work.

1.2 Contribution

We designed and developed web based software libraries and tools based on these

libraries to visualize, analyze and edit SBGN diagrams. The main concern for

us was to ease research for scientists who work with SBGN diagrams. Our tools

and libraries are based on Cytoscape.js core and its extensions [24, 25, 26, 27,

28, 29, 12, 30, 31, 32, 33, 34, 35]. Some of these extensions are provided by us

to be used in this work [25, 26, 27, 29, 12, 30, 32, 33, 34, 35]. However, as they

are suitable for miscellaneous types of usage, many other Cytoscape.js users have

already started utilizing them in their Cytoscape.js based applications.

3

We turned a previously developed tool [36] into SBGNViz.js, a JavaScript li-

brary to visualize SBGN-PD and SBGN-AF diagrams. SBGNViz.js is based on

Cytoscape.js [5], an open-source JavaScript graph library for analysis and visual-

ization, which works with data in JSON format. Therefore, SBGNViz.js includes

an SBGN-ML [37] to JSON converter to load graphs from SBGN-ML files and it

includes a JSON to SBGN-ML converter to export the current network in SBGN-

ML format. The other main component in SBGNViz.js is the SBGNViz renderer.

SBGNViz renderer extends the renderer of Cytoscape.js to enable rendering of

SBGN specific nodes and edges. SBGNViz.js provides an easy to use API which

enables its users to create their own customized applications based on it. We also

created a sample application for SBGNViz.js called SBGNViz Viewer. Users are

free to edit and customize SBGNViz Viewer source codes as an alternative to

creating their applications based on SBGNViz.js from scratch.

SBGNViz.js is not merely a library for viewing SBGN diagrams, it also has

many features to enable complexity management operations on these diagrams.

These features includes hide-show, highlighting, expand-collapse of sub-maps to

enable the end users to focus on specific parts of the network, and ignore the

rest. These complexity management operations become vital especially in large

diagrams. In that sense, SBGNViz.js provides enough facilities to develop an

SBGN viewer application, but the editing facilities provided by SBGNViz.js does

not go beyond enabling the interactive repositioning of the nodes in the diagram.

Hence, we developed ChiSE.js, another JavaScript library to edit SBGN-PD and

SBGN-AF diagrams, by extending SBGNViz.js with advanced editing features.

ChiSE.js provides an API, which is structurally close to SBGNViz.js API. We also

created Newt, which is a sample application for ChiSE.js. ChiSE.js users have

options of creating their own SBGN editor application from scratch or modifying

the source code of Newt to customize it.

4

Chapter 2

Background Information and

Related Work

2.1 Graph Visualization

A graph G = (V,E) is a set of vertices (nodes) V and edges E. An edge e ∈ E

connects a pair of vertices (u, v) where u, v ∈ V .

In a directed graph G = (V,E) each edge e = (u, v) connects an ordered pair

of vertices u, v ∈ V where u is the source vertex and v is the target vertex.

However, in an undirected graph edges are associated with an unordered pair of

vertices (Figure 2.1).

An edge e = (u, v) is called a loop or self edge if u = v. If there is a group

of multiple edges connecting the same source and target vertices these edges are

called multi edges.

An edge e = (u, v) is in the outgoing edge list of vertex u and incoming edge

list of vertex v where u is the source of e and v is the target of e.

A vertex v is called a compound vertex if it includes any other vertices or edges

5

inside itself. A graph is called a compound graph if it contains any compound

vertex . Compound graphs have child-parent relationship. A compound vertex

v is parent of the vertices inside it and each vertex inside v is child of v. In a

compound graph a compound vertex may be child of another compound vertex,

such graphs define multiple levels of nesting (Figure 2.2).

Figure 2.1: A sample directed (left) and undirected (right) graph with three ver-
tices: A, B, C and two edges that connects vertices to each other.

Figure 2.2: A compound graph with multiple levels of nesting

Graphs are abstract structures which are not associated with any kind of ge-

ometric information required for visualization. However, visualization of graphs

is crucial to comprehend the underlying relational information in them. The

6

complexity and size of relational information represented by graphs has been in-

creasing. Therefore, the need for effective graph visualization techniques increases

to provide fine analysis and comprehension of underlying relational information

in graphs (Figure 2.3 and Figure 2.4).

Figure 2.3: Graph representation of a social network [2]

Graph visualization concerns with drawing graphs by defining geometry for

graph elements. This geometric information includes location, width, height, and

border along with its topological structure. Many aesthetic properties including

color, transparency, edge arrow shapes, border shapes are also regarded as as-

pects of graph visualization. Indeed, any visual attribute that affects viewers’

comprehension can be regarded as a graph visualization concept.

7

Figure 2.4: Graph representation of a biological pathway

Graph layout is another important concept of graph visualization. Graph lay-

out corresponds to the geometry of a graph, aiming visualization with aestheti-

cally pleasing results. The concept of aesthetically pleasing changes from one to

another. However, in the literature there are some commonly accepted criteria

for an aesthetically pleasing visualization of a graph [38]. According to the cri-

teria, the main aesthetics to obtain attractive drawings of graphs are inheriting

the topological symmetry of the graph, minimizing the crossing of edges, having

uniform edge lengths, distributing the vertices uniformly and avoiding bends in

edges. However, optimization of each individual criteria leads to an NP-hard

problem. Also, optimizing one of these aesthetics usually obstructs optimizing

the another one. Therefore, graph drawing approaches are usually heuristic. A

poor graph layout obstructs the analysis of a graph, while a good one enables

comprehension of the underlying relational information of the graph (Figure 2.5).

Figure 2.5: Visualization of the same graph before (left) and after (right) applying
layout

8

2.2 Biological Standards

Biological Pathway Exchange (BioPAX) has been developed to standardize the

representation of biological pathways at the molecular and cellular level and to

provide an opportunity for the exchange of pathway data [39].

Standard visual languages aid to speed up work by substantiating regular-

ity, eliminating ambiguity, and enabling software tool support for transmission

of complicated information. Circuit diagrams and Unified Modeling Language

diagrams are two well known standard visual language examples. Biology is one

of the fields having utmost rate of graphical to textual information, but it is

still destitute of standard graphical notations. Systems Biology Graphical Nota-

tion (SBGN) was developed as a visual language by a community of biochemists,

modelers and computer scientists to fill this deficiency [40, 13].

SBGN is formed by three complementary languages: process description (PD),

entity relationship (ER), activity flow (AF). Together these three languages pro-

vides scientists with facility of representing networks of biochemical interactions

in a standard, unambiguous way.

PD language indicates the temporary courses of biochemical interactions in a

network. In that sense it is convenient for showing all the molecular interactions

participating in a network of biochemical entities, with the same entity found

multiple times in the same diagram. ER language enables to show all relationships

where a given entity takes place. It does not consider temporary aspects. AF

language demonstrates the information flow between biochemical entities in a

network. It ignores information with regard to the state transitions of entities. It

is used to reflect the influence of perturbations. In this work we focused on PD

and AF languages.

In PD language, graphical elements are represented as demonstrated in Fig-

ure 2.6. Entity Pool Nodes (EPN) represents any physical or conceptual entity.

9

Figure 2.6: Visual representation of SBGN PD elements [3]

10

Unspecified entity, simple chemical, macromolecule, nucleic acid feature, and com-

plex are EPN glyphs representing material entities, while source, sink and per-

turbing agent are the ones representing conceptual entities [41].

PD defines auxiliary units that can be carried by EPNs. Auxilary units are the

gylphs that provide extra information about EPNs. There are 3 type of auxiliary

units in PD:

• Unit of Information: A decoration that is used to add some abstract infor-

mation about the entitys function that is not related to its structure.

• State variable: A decoration that represents different physical or informa-

tional structure of an entity.

• Clone marker : Indicates that an EPN is cloned and another occurrence of

it can be found in the map [42].

One or more EPNs can be transformed into one or more EPNs by process

nodes. Process, omitted process, uncertain process, association, dissociation, and

phenotype are process node types defined in SBGN PD language.

In PD language, compound structures are represented by complex and com-

partment nodes. A complex node is a biochemical entity that is composed of

other biochemical entities such as macromolecules, simple chemicals, multimers,

or other complexes. A compartment node is a logical or physical structure that

contains EPNs [41, 42].

In PD language, edges are defined to connect the nodes to each other. There

are 9 type of edges in PD. Symbols at the far end of edges indicates the sense of

edges in diagram (Figure 2.6).

Figure 2.7 represents a gene regulatory network where initially a complex is

associated with IRF1-GAS through an association to produce another complex

containing both of them. The input complex and IRF1-GAS are connected to

the association with a solid line representing a consumption while the output

11

complex is connected to the association with a solid line and a filled triangle at

the end of this line representing a production.

Figure 2.7: Metabolical pathway of IFN regulation visualized in PD.

In AF language, graphical elements are represented as demonstrated in Fig-

ure 2.8. An activity node (AN) represent the activities of an entity or an entity

pool. There are two defined ANs in AF namely, biological activity and pheno-

type [43].

A biological activity represents molecular activities of all types of biological

entities. The essence of the molecule from which the activity is derived can be

represented by the units of information. Therefore, the units of information asso-

ciated with a biological activity can be in form of macromolecule, simple chemical,

nucleic acid feature, unspecified entity, complex, of perturbation (Figure 2.8). On

the other hand, a phenotype is the type of biological process that is needed to

indicate observable or gaugeable outcome of the network.

12

Figure 2.8: Visual representation of SBGN AF elements [4]

13

Compartment is the merely container node type in AF. An AF compartment

is same with a PD compartment in shape (Figure 2.6 and 2.8). It represents a

physical structure where the function or activity is found. In contrast to a PD

compartment an AF compartment is not allowed to include another compart-

ment [43].

In AF edges are defined to connect the nodes like it was in PD. There are

6 defined types of edges in PD namely, positive influence, negative influence,

unknown influence, necessary stimulation, logic arc, and equivalence arc.

Although, SBGN offers a standard to represent biological pathways informa-

tion in an unambiguous way, it does not present a model to store diagrams.

Therefore, the diagrams can not be exchanged between tools that supports SBGN.

SBGNML, a dedicated, lightweight XML-based file format, is developed with the

hope of solving this problem [37]. SBGNML format covers all necessary informa-

tion to render the SBGN entities (Figure 2.9).

Figure 2.9: A sample SBGN-PD map (left) and its relevant representation in
SBGN-ML (right)

14

2.3 Related Tools, Libraries, and Resources

2.3.1 Cytoscape

Cytoscape project includes three well known graph visualization software, Cy-

toscape, Cytoscape Web, and Cytoscape.js.

Cytoscape [44] is an open source desktop application that is introduced to

visualize molecular interaction networks and biological pathways and integrating

these networks with annotations, gene expression profiles and other state data.

Although, Cytoscape was initially created to be used in biological research, cur-

rently it is converted into a general platform for complex network analysis and

visualization. Cytoscape core presents fundamental features to visualize and an-

alyze networks, and also extended features are presented by plugins, which are

called as app in Cytoscape context.

Cytoscape Web [45] was developed as an effort to create a basic web based

version of Cytoscape that acts as a reusable library rather than being a tool. It is

based on Flex/Flash technologies. Cytoscape Web project is no more maintained,

it is replaced by Cytoscape.js.

Cytoscape.js [5] is developed as the successor of Cytoscape Web. It is a plain

JavaScript library that visualizes interactive graphs on web browser without re-

quiring any third-party application. Cytoscape.js can be run headlessly or as a

visualization component using HTML5 canvas. Therefore, Cytoscape.js is conve-

nient to be used as both a client side and server side component [46].

Cytoscape.js enables users to visualize and regulate graphs interactively in

both desktop and touch enabled browsers. Interactive features of Cytoscape.js

includes panning, zooming, selecting/unselecting elements (nodes and edges), and

repositioning nodes.

Cytoscape.js provides an event driven core API. Cytoscape.js architecture in-

cludes core and collection components. Core is the base entrance into the library

15

for the developers. It stands for the whole graph. A Cytoscape.js user can per-

form operations on the graph as a whole with the help of core component. Core

component also includes functions to access graph elements as a collection. Cy-

toscape.js collections have their own API including facilities to traverse, filter

and perform operations on elements inside them. Also, Cytoscape.js introduces

an extension concept to provide users with the facility of extending its behaviours.

Layout, core and collection functions can be introduced with the help of exten-

sions without modifying library code directly. Figure 2.10 reflects the general

architecture of Cytoscape.js [46, 5].

Figure 2.10: Cytoscape.js architecture visualized by Cytoscape.js itself [5]

16

Cytoscape.js can easily be integrated into web application thanks to its plain

interface. Cytoscape.js defines cytoscape() function that enables users to initialize

the library. Cytoscape.js utilizes JSON format to exchange data with users.

Figure 2.11 reflects an example code segment which initializes a Cytoscape.js

instance.

Cytoscape.js adopts selector concept of CSS. In Cytoscape.js, selectors works

on Cytoscape.js elements similar to how CSS selectors works on HTML DOM

elements. Cytoscape.js selectors can be used in a collective way to create more

comprehensive queries. Cytoscape.js selectors are utilized in defining stylesheet

of a graph and filtering elements based on their properties. Also, some popular

graph theory algorithms such as breadth first search, depth first search, Dijkstra,

and page rank are adopted to Cytoscape.js to be operated on a collection of

elements [5, 46].

Cytoscape.js introduces parent-child relationship to support compound node

structures. Therefore, it is a favorable library for the applications where the data

to be visualized can be hierarchically structured.

Cytoscape.js provides several functions to perform a layout on the whole graph

or a set of elements. Users can choose between various layout algorithms including

Bread First, Grid, and CoSE.

Cytoscape.js is a library that is designed to analyze and visualize graphs. It

provides some basic graph editing facilities such as adding and removing elements,

as well as moving nodes to new parents, attaching edges to new source and target

nodes and interactively replacing nodes. However, the facilities that are provided

by Cytoscape.js are not enough to build a graph editor. They should be extended

with advanced editing techniques to build an editor around Cytoscape.js.

17

Figure 2.11: An example Cytoscape.js initialization code

18

2.3.2 Pathway Commons

Pathway Commons [1] is a platform, where publicly available pathway data is

gathered from multiple organizations. It consist of a web-based interface to

browse and search a collection of pathways from multiple sources, a web site

to download integrated pathway information, a web service to access and query

all data. Pathway Commons provides access to data collected from 21 databases

with more than 4,000 pathways, and 1,300,000 interactions, while it is consistently

growing [47, 1].

2.3.3 PCViz

PCViz [48] is an open-source web-based biological network visualization tool that

can be utilized to make queries to PatwayCommons and retrieve specifications

of genes and interactions between them (Figure 2.12). PCViz users are able to

extend the network by introducing new genes of interest, simplify the network by

filtering genes or interactions according to various criteria, see the frequency of

alteration for a gene by loading a cancer context, and export networks in different

formats.

PCViz uses a simplified non-starndard notation that yields very dense graphs

and it does not utilize compound structures to organize content. Therefore,

PCViz networks usually look like an hairball where there is a large number of

edge crossings.

2.3.4 ChiLay

Chisio Layout (ChiLay) is an open source Java component which provides an

automated layout facility for compound, clustered and simple graphs. Currently,

Compound Spring Embedder (CoSE) [49], Circular Spring Embedder (CiSE) [50],

and several other well known layout algorithms are available in ChiLay. ChiLay

19

Figure 2.12: A sample scene from PCViz

is available to be used locally, as a part of Java applications, or remotely through

an HTTP web server. As a part of this work, we ported CoSE layout from Java

to JavaScript to develop a Cytoscape.js extension of it [32].

2.3.5 BioGene

BioGene [11] provides a web-based tool and a web service to enable biological

researchers making queries about a gene function. Gene information can be

queried using a gene symbol or gene name as the key. The content for BioGene

is provided by Entrez Gene, a gene database provided by NCBI [51]. Some

gene details provided by BioGene are official symbol, name, aliases, chromosome

location and gene id.

20

2.3.6 CySBGN

CySBGN [21] is a Cytoscape plugin that enables visualization, editing and val-

idation of SBGN maps for Cytoscape users. It supports all of three SBGN lan-

guages: Process Description, Entity Relationship, and Activity Flow. Cytoscape

is a desktop application, so CySBGN is not available for online usage.

Figure 2.13: Edge representation comparison between SBGN and CySBGN [6]

CySBGN uses Cytoscape renderer to represent SBGN nodes and edges. How-

ever, Cytoscape support is not enough to present all SBGN nodes and edges

properly. Therefore, CySBGN does not totally satisfy SBGN specifications (Fig-

ure 2.13). CySBGN is not compatible with latest version of Cytoscape and this

limits its usability for Cytoscape users. More importantly, it lacks compound

node support, which is needed by an SBGN viewer and editing tool to represent

molecular complexes and compartments.

Also, CySBGN does not have a proper support for auxiliary units. In CySBGN

users need to represent auxiliary units by independent nodes. Therefore, when a

21

node is re-positioned its auxiliary units do not follow it. Besides this CySBGN

does not support setting z-index of elements that may obstruct properly rendering

auxiliary units and compound structures (Figure 2.14).

Figure 2.14: Random ordering of the nodes may affect the visualization of the
diagram [7]

2.3.7 VISIBIOweb

VISIBIOweb [19] is an open source software that offers web-based visualization

and layout support for BioPAX pathway models. It utilizes Google MAPS [52]

API on client side and Eclipse Graphical Editing Framework [53] in server side.

It renders the pathway models in SBGN-PD format and enables to save them in

the same format. It also provides facilities to navigate pathways by using zoom

and scroll tools and to inspect elements in the pathway (Figure 2.15). However,

it uses static images, and does not support interactive editing of pathways.

Additionally, VISIBIOweb offers an automatic layout component that can be

accessed by other tools through an HTTP web service that uses XML format to

exchange data.

22

Figure 2.15: SBGN-PD representation of Amaranthin Biosynthesis pathway pro-
duced by VISIBIOweb [8]

2.3.8 Biographer

Biographer [54, 17] is a web-based tool and library that offers rendering and

editing facilities for SBGN diagrams. Biographer introduces jSBGN, a JSON-

based exchange format. jSBGN format does not require to specify all properties

of all visible elements, unlike SBGNML format. In this manner, jSBGN files can

be created lightly and integrating Biographer into other software become easier

under favor of using jSBGN. Biographer enables importing files in SBML and

SBGNML formats as well.

Biographer supports all of three languages defined in SBGN: SBGN-PD,

SBGN-AF, and SBGN-ER. It also enables exporting a graph in jSBGN, SVG,

PDF, PNG and TIFF formats [54].

Biographer provides a partial support for compound node structures. When

a compound node is repositioned its children are also repositioned along with it.

However, when a node, which is inside a compound, is repositioned the geomet-

rical borders of the compound node are not updated accordingly. Therefore, the

child node stay out of its parent, like there is no parent-child relationship between

them. Also, Bigrapher does not offer any automatic graph layout facility that

23

respects compound structures.

Figure 2.16: SBGN-PD representation of the MAP kinase cascade in Biogra-
pher [9]

2.3.9 SBGN-ED

SBGN-ED [18] is a tool that offers to create and edit SBGN diagrams (Fig-

ure 2.17). It is compatible with all 3 SBGN languages: SBGN-PD, SBGN-AF,

SBGN-ER. Other utilities provided by SBGN-ED are validation of SBGN maps

in terms of syntax and semantics, transformation of networks which are obtained

from biological databases to SBGN, and exporting SBGN maps to specific file

formats. However, it does not provide a proper support for compound node

structures. In SBGN-ED nodes can be visually represented inside molecular com-

plexes, compartments or submaps. However, a parent-child relationship can not

be established between the nodes.

SBGN-ED is developed as an extension to VANTED, a Java desktop appli-

cation for the visualization and analysis of networks with related experimental

data [55]. Therefore, SBGN-ED is not available for online usage.

24

Figure 2.17: SBGN-ED with two PD maps and the respective panel for editing
these type of SBGN maps [10]

25

Chapter 3

Tools and Libraries For

Visualizing and Editing SBGN

Maps

Different user groups may have different needs and concerns while working on

pathway maps. For example, while complexity management operations are vital

for someone who works on large and complex diagrams, it might not be a big

concern for someone who works with simpler and smaller diagrams. Similarly,

having interactive editing facilities is essential for a pathway curator, while it

makes no sense for a person who just needs to view and analyze SBGN maps. In

that sense, for some group of users, certain parts of a tool only slows down the

initialization of the tool in a web browser, obstructing ease of use in vain. With

this motivation in mind, we decided to develop reusable libraries and tools based

on these libraries for viewing and editing of biological maps in SBGN instead of

just creating a tool that includes every feature that may be needed. Developers

can utilize our libraries to develop web-based tools according to basic needs of

their user profile. Also, we provide tools (sample applications) that can be utilized

directly or simplified and customized according to the needs of users.

26

3.1 Cytoscape.js Extensions

As it is mentioned before, Cytoscape.js introduces an extension concept to provide

users with the facility of extending its behaviours. These extensions can provide

visual cues at the top of Cytoscape.js canvas to enable user interaction, as well

as offering their own APIs accessible through Cytoscape.js.

Some general purpose Cytoscape.js extensions are designed and developed by

our research group to be used in this work [25, 26, 32, 27, 29, 35, 34, 12, 30, 33].

Some features of these extensions are dependant on each others.

Utilization of undo-redo extension [34] is a nice example of this. Many of

the extensions developed to be used in this work introduces a user option called

undo-able. Operations are performed in an undo-able way if this option is set

as true. However, to perform these operations in an undo-able way undo-redo

extension is needed, so it should be registered to Cytoscape.js. For example,

expand-collapse extension enables expanding and collapsing nodes by means of

visual cues rendered around nodes or through its API. In both cases, when a

group of nodes is to be expanded or collapsed undo-able option is considered and

the operation is performed accordingly.

3.2 SBGNViz.js

SBGNViz.js is a JavaScript library based on Cytoscape.js and its extensions for

visualization and complexity management of SBGN diagrams in PD and AF lan-

guages. It introduces SBGNViz renderer, an extension of Cytoscape.js renderer

component, to visualize SBGN specific shapes and offers set of functions to build

an SBGN viewer tool through its extendable API (Figure 3.1).

SBGNViz.js provides a set of functions to expand and collapse nodes. In

collapse operation, which operates on a node N , initially the inter-graph edges

whose one end is connected to any children of N are temporarily connected to N

27

Figure 3.1: SBGNViz.js Architecture

as meta edges and the children of N are removed. Also, the data of the removed

children and their inter-graph edges are attached to N to be restored back on

expand operation. Expand operation includes restoring the removed children of

N , removing meta edges connected to N , and restoring the removed inter-graph

edges of the children of N . In SBGNViz.js, style for collapsed nodes and meta

edges can be defined by users to differentiate them from regular elements in the

diagram (Figure 3.2). SBGNViz.js users are not only able to operate expand-

collapse operations on a set of nodes in a simple manner, but also they are

able to operate these operations on all complexes or all nodes in the map in a

recursive way. Expand-collapse facilities of SBGNViz.js can be customized by user

defined options such as performing layout after operation, requesting more screen

space for node to be expanded before expand operation by utilizing a fisheye lens

paradigm based approach that preserves orthogonal and proximal relationships

between nodes [56], rendering visual expand-collapse cues on nodes. Expand-

collapse facilities of SBGNViz.js use Cytoscape.js expand-collapse extension [29]

also written by our group.

sbgnviz.expandNodes(nodes)

28

sbgnviz.collapseNodes(nodes)

sbgnviz.expandComplexes()

sbgnviz.collapseComplexes()

sbgnviz.collapseAll()

sbgnviz.expandAll()

Figure 3.2: Visualization of neuronal muscle signalling pathway before (top) and
after (bottom) molecular compartment Synaptic Cleft is collapsed through SBGN-
Viz.js API

In SBGN-PD language a process should be regarded with its inputs and out-

puts, similarly a complex is invalid without its members. The complexity man-

agement operations such as hiding, showing, emphasizing a group of nodes should

consider these rules. Before, applying these complexity management operations

29

on a group of nodes, the node group should be expanded to satisfy the rules

above. SBGNViz.js offers functions to overcome this problem [36]. By using

these functions SBGNViz.js users can hide, show or emphasize a submap based

on selected nodes according to PD rules (Figure 3.3).

sbgnviz.hideNodesSmart(nodes)

sbgnviz.showNodesSmart(nodes)

sbgnviz.showAll()

sbgnviz.highlightNeighbours(nodes)

sbgnviz.highlightProcesses(nodes)

sbgnviz.removeHighlights()

Figure 3.3: Neuronal muscle signalling pathway before (top) and after (bottom)
the selected macromolecule is hidden through SBGNViz.js API.

30

Cytoscape.js uses JSON format to exchange data. Therefore, SBGNViz.js in-

cludes SBGN-ML to JSON Converter and JSON to SBGN-ML Converter com-

ponents. File Utilities component in SBGNViz.js uses these components to offer

functions for saving and loading SBGN maps. SBGN-ML to JSON converter is

utilized to load SBGN-ML graphs in SBGNViz.js while JSON to SBGN-ML con-

verter can be used to export the existing SBGN diagram into SBGN-ML format.

SBGNViz.js enables saving graphs as images in PNG and JPG formats as well

by means of file utilities component (Figure 3.1).

sbgnviz.loadSBGNMLFile(file)

sbgnviz.loadSample(filename, folderpath)

sbgnviz.saveAsSbgnml(filename)

sbgnviz.saveAsPng(filename)

sbgnviz.saveAsJpg(filename)

SBGNViz.js renderer can omit or consider ports for PD maps according to

user preferences. Users can switch between omitting and considering ports dy-

namically by using functions provided SBGNViz.js API (Figure 3.4).

sbgnviz.enablePorts()

sbgnviz.disablePorts()

sbgnviz.arePortsEnabled()

Though SBGNViz.js offers functions to create an SBGN viewer application

rather than an editor, it provides interactive node replacing and complexity man-

agement operations. Some users may want to perform these operations in an

undo-able way. Therefore, SBGNViz.js offers an option to set undo-able mode

where undo and redo operations are available. This feature is dependent on

Cytoscape.js undo-redo extension [34].

Element utilities is one of the most basic components in SBGNViz.js. It in-

cludes functions related to Cytoscape.js elements in SBGNViz. The functions

31

provided by it are utilized by other components such as main utilities, undo-redo

functions and renderer. Renderer needs to know about the features of elements

such as their expected shape, label, and label size to render them. It utilizes

element utilities to access such information. Undo-redo functions component in-

troduces undo-able versions of the functions in element utilities which alters data

field of an element group. In that sense, it uses the functions in element utilities

internally. If undo-able mode is active then SBGNViz.js registers undo-able ac-

tions to Cytoscape.js undo-redo extension. Actions registered to this extension

includes an action name, an operation to be performed when the operation is

undone, and an operation to be performed when the operation is done and re-

done. These operations are taken from undo-redo functions component. Main

utilities includes the main functions which will be exposed directly to be utilized

by SBGNViz.js users. Functions that are exposed in main utilities checks if undo-

able mode is active. If it is active the operation should be performed through

Cytoscape.js undo-redo extension. Otherwise, it should be performed through an-

other Cytoscape.js extension or calling the related function from element utilities

(Figure 3.1).

Figure 3.4: A molecular reaction from CaM-CaMK dependent signaling to the
nucleus pathway when ports are considered (top) and omitted (bottom) by SBGN-
Viz.js renderer.

32

3.3 ChiSE.js

ChiSE.js is a JavaScript library based on SBGNViz.js, which in turn is based on

Cytoscape.js, to visualize and edit SBGN diagrams represented by PD and AF

languages. ChiSE.js is developed by extending SBGNViz.js API with advanced

editing features for SBGN diagrams.

ChiSE.js keeps the map type of the SBGN diagram, which may be PD, AF

or unknown. In unknown mode the topological structure of the graph can be

changed without any validation as long as an edge is between a pair of nodes. If

a loaded file has both AF and PD elements or an AF element is added to a PD

map (or vice versa), then the map type is set to unknown. If the diagram is in

PD or AF mode, a validation test is performed before changing the topological

structure of graph. The validation test checks if the change to be done breaks

PD or AF rules and the changes can be applied if the test is successful. These

are basically regarding:

• if an interaction has valid source and target node type (e.g. a consumption

edge needs to have a source that is an EPN and a target that is a process

node).

• if a node is nested with a valid compound node

ChiSE.js offers many functions to change graph topology. ChiSE.js users can

add a new node to the root graph or inside a molecular complex or compartment

in the graph. They can add new edges which connects the the desired source and

target nodes. For deletion of elements ChiSE.js offers two facilities. In ChiSE.js

nodes can be removed from the map in a simple manner, or they can be removed

by considering SBGN-PD specific rules according to user preferences.

chise.addNode(id, x, y , nodeType, sbgnLanguage, parentId

, visibility)

chise.addEdge(id, sourceId, targetId, edgeType, sbgnLanguage

33

, visibility)

chise.deleteElementsSimple(eles)

chise.deleteNodesSmart(nodes)

Map curators often need to add elements with the same properties many times

to their diagram, because, especially in PD diagrams, it is heavily observed that

the same entity appears multiple times. To ease editing in that cases ChiSE.js

supports copy, paste and clone operations (Figure 3.5) by using Cytoscape.js

clipboard extension [33] and enables users to set default properties for a node

type. For example when default background color for macromolecules is set to

blue, then new macromolecules which will be added to the diagram later will have

blue background color by default.

chise.cloneElements(eles)

chise.copyElements(eles)

chise.pasteElements(eles)

chise.setDefaultProperty(elementType, propertyName, defaultValue)

ChiSE.js supports parent-child relationship between nodes upon elements cre-

ation and afterward. It delivers a function that enables creating a molecular

complex or compartment for a group of nodes (Figure 3.6) and a function that

enables moving a node inside another molecular complex or compartment.

chise.createCompoundForGivenNodes(nodes, compoundNodeType)

// posDiffX and posDiffY parameters indicates how the nodes

// should be replaced in x and y coordinates respectively after

// being moved to their new parent

chise.changeParent(nodes, newParent, posDiffX, posDiffY)

Process node types are vital in PD language because they represent processes

that converts an entity pool group into another entity pool group. Therefore,

34

Figure 3.5: Neuronal muscle signalling pathway before (top) and after (bottom)
myosin with blue background color is cloned using ChiSE.js API.

35

Figure 3.6: A group of nodes before (left) and after (right) creating a compartment
for them using ChiSE.js API.

ChiSE.js offers functions that ease creation of group of elements, at the center of

which a process takes place. ChiSE.js users have facility of creating a reaction

from template where an association combines a group of macromolecules into a

molecular complex, or a dissociation breaks a molecular complex into a group of

macromolecules (Figure 3.7). Also, ChiSE.js offers a method to enable creation

of a process with valid edges between an input and output node. In both of

these functions the edges created between input node and the process are in

consumption type while the edges between the process and the output nodes are

in production type.

chise.addProcessWithConvenientEdges(source, target , processType)

chise.createTemplateReaction(processType, macromoleculeList,

complexName, processPosition, edgeLength)

In SBGN-PD language, process nodes can have input and output ports where

source edges are attached to the input port and target edges are attached to the

output port. Hence, ChiSE.js offers a function to add, remove and set orientation

of ports.

// If ports orientation is ’none’ it means that the node has

// not any port. Hence, this function enables adding ports when

36

Figure 3.7: A reaction created from template where four macromolecules are
combined together to create a complex using ChiSE.js API.

// current orientation is ’none’ and removing existing ports

// when orientation parameter is ’none’.

chise.setPortsOrientation(nodes, orientation)

ChiSE.js supports auxiliary units in SBGN diagrams. In both PD and AF

languages, elements can have units of information, while PD elements can have

state variables, and clone markers as well. ChiSE.js offers functions to add a

new state variable and unit of information to a group of nodes. It also enables

removing state variables and units of information from a group of nodes and

updating properties of these auxiliary units. In PD language, a clone marker

indicates that an EPN is duplicated in the map. In ChiSE.js, users are provided

with the facility of setting status of a group of nodes to cloned or not cloned.

Besides having auxiliary units SBGN elements can be multimer as well. ChiSE.js

provides a function to convert a group of nodes into multimer or removing their

multimer status as well.

// Introduces a new state variable or unit of information

chise.addStateOrInfoBox(nodes, stateOrInfoBox)

// Removes state variable or unit of information at given index

chise.removeStateOrInfoBox(nodes, index)

// Updates state variable or unit of information at given index

// A state variable consists of value and variable fields.

// Considering this, type parameter indicates which one of these

37

// fields is subject to update

chise.changeStateOrInfoBox(nodes, index, value, type)

chise.setMultimerStatus(nodes, status)

chise.setCloneMarkerStatus(nodes, status)

Styling of elements is important for SBGN diagrams. Style properties are

different for nodes and edges. Background color, border color, border with, back-

ground opacity, and label are the well known style properties of nodes, while

line color and line width are popular style properties of edges. ChiSE.js provides

functions to change these style properties of elements (Figure 3.8). Along with

these basic style properties, ChiSE.js enables alteration of node labels, label font

properties, and node dimensions as well.

// In ChiSE.js elements are rendered according to their data

// fields. Hence, all basic style properties of elements can

// be updated by changing their data fields through this

// function.

chise.changeData(elements, name, value)

// Enables updating one or more font properties together

// in a batch

chise.changeFontProperties(nodes, properties)

In SBGN-PD language, edges can have cardinality labels that represent the

stoichiometry of the nodes which are connected to them, which are positive val-

ues. In SBGNViz.js there is a data field reserved for cardinality label. ChiSE.js

supports updating cardinality labels through chise.changeData() method.

ChiSE.js is developed as a library to support editing of SBGN diagrams. There-

fore, it provides an undo-able mode option, by which users are able to undo and

redo operations they performed before.

ChiSE.js is developed by extending SBGNViz.js API and its architecture is

very close to SBGNViz.js architecture (Figure 3.9 and Figure 3.1).

38

Figure 3.8: Neuronal muscle signalling pathway before (left) and after (right)
changing background color of all macromolecules to blue using ChiSE.js API.

39

Figure 3.9: ChiSE.js Architecture

Element Utilities is one of the most basic components in ChiSE.js. It extends

element utilities component in SBGNViz.js and offers more functions to access

and update data fields of Cytoscape.js elements. It is utilized by undo-redo action

functions and main utilities component (Figure 3.9). Editing of elements are done

through this component in ChiSE.js.

Undo-Redo Functions component is responsible for providing functions that

should be registered to Cytoscape.js undo-redo extension, if undo-able mode is

active. It extends undo-redo functions component of SBGNViz.js by introduc-

ing new functions that are undo-able versions of the functions in element util-

ities. Therefore, it uses the functions provided by element utilities internally

(Figure 3.9). As it is stated before, actions registered to Cytoscape.js expand-

collapse extension are supposed to include an action name, an operation to be

performed when the operation is undone, and an operation to be performed when

the operation is done and redone. These operations are provided by undo-redo

functions component.

40

Main utilies includes the main functions that are exposed directly to be utilized

by ChiSE.js users. It works similar to main utilities component of SBGNViz.js.

Functions that are exposed in this component checks if undo-able mode is active.

If it is active, the operation is performed through Cytoscape.js undo-redo exten-

sion. Otherwise, it is performed through another Cytoscape.js extension or by

calling the related function from element utilities component (Figure 3.9).

3.4 SBGNViz Viewer

SBGNViz Viewer is a web-based tool that enables visualization and complexity

management for SBGN diagrams represented by PD and AF languages (Fig-

ure 3.10). SBGN Viewer is based on SBGNViz.js and consequently Cytoscape.js.

It exposes pretty much all the functionality available in SBGNViz.js library.

SBGNViz Viewer accepts SBGN diagrams in SBGN-ML format by means of

SBGNViz.js. When a file is loaded in SBGNViz Viewer, data inside that file

is transmitted to SBGNViz.js. SBGNViz.js converts that data into JSON for-

mat from SBGN-ML format, because Cytoscape.js accepts data in JSON format.

Eventually, a Cytoscape.js graph is created using JSON representation of ele-

ments. Also, existing diagrams can be exported to SBGN-ML, JPG, and PNG

files.

SBGNViz Viewer supports interactive pan and zoom facilities under favor of

basic mouse events provided by Cyoscape.js core and a navigation bar provided

by Cytoscape.js panzoom extension [31].

41

F
ig

u
re

3.
10

:
A

sa
m

p
le

sc
re

en
fr

om
S
B

G
N

V
iz

V
ie

w
er

42

As it is discussed before, size of data in SBGN diagrams has been grow-

ing excessively and complexity management operations become vital to analyze

such data. Therefore, SBGNViz Viewer provides complexity management facil-

ities for SBGN diagrams by utilizing SBGNViz.js library, Cytoscape.js expand-

collapse [29], and Cytoscape.js view-utilities [35] extensions. Complexity man-

agement facilities offered by SBGNViz Viewer includes expanding, collapsing,

hiding, showing, and emphasizing a group of elements without destroying SBGN-

PD rules.

SBGNViz Viewer uses Cytoscape.js context-menus extension [26] to provide

a context sensitive menu that appears by right clicking on the graph root or

elements. The content of context menu is different for the root graph, and various

types of elements.

SBGN-ML file format provides geometrical information about edge bend

points. Therefore, a tool that accepts data in SBGN-ML format is incomplete

without having full support for edge bend points. Therefore, SBGNViz Viewer

provides facilities for rendering and interactive editing of edge bend points by

utilizing Cytoscape.js edge-bend-editing extension [27]. That extension renders

visual cues that represents bend point positions on a selected edge and users

can interactively edit bend point positions by dragging these cues (Figure 3.11).

They can also add and remove bend points by using context sensitive menu that

appears by right clicking on a selected edge.

Users may want to have further information about a specific gene. SBGNViz

Viewer accesses that information by querying BioGene [11] by gene name. The

information is available to users by right clicking on a gene and selecting ”BioGene

Properties” option from the context menu (Figure 3.12). Also, SBGNViz Viewer

provides users with the option of displaying full names of nodes or truncating

them so that they fit into node shape. Users can left click a node to see its

full name in case of it is truncated. SBGNViz Viewer uses Cytoscape.js qtip

extension [24] for both of these facilities.

SBGNViz Viewer provides a facility to get the paths between particular set

43

Figure 3.11: Visualization of a graph that includes many edge bend points in
SBGNViz Viewer. The bend point positions of the selected edge are highlighted.

Figure 3.12: Further information about myosin obtained from BioGene [11]

44

of genes inside a specific length limit with the help of Pathway Commons web

service [1]. The resulting pathway is visualized by using rendering facilities of

SBGNViz.js. Users can make queries through a simple dialog that allows them

to specify the list of gene symbols in a space delimited way and the length limit

(Figure 3.13).

Figure 3.13: Dialog box that enables querying Pathway Commons [1] web service
to get the paths between particular set of genes inside a specific length limit

SBGNViz Viewer provides an automated layout facility to automatically lay-

out the nodes in SBGN diagrams. On the other hand, one major characteristic

of SBGNViz Viewer is that it provides full support for compound nodes. In

SBGNViz Viewer, children of a compound node are always rendered inside its

boundaries, this rule is not broken when the compound node itself or a group of

its children are repositioned. Therefore, the layout algorithm that is utilized by

the tool should handle compound structures. CoSE [49] is such an algorithm and

we created and used a Cytoscape.js extension [32] that implements the CoSE al-

gorithm for this purpose. CoSE provides many user options including whether to

tile disconnected nodes to save space, whether to consider initial node positions

in layout to respect the users mental map and whether to perform an animation

during the layout. SBGN Viewer prompts the users to choose their layout options

through a convenient dialog box.

45

Operations are done in an undo-able way in SBGNViz Viewer by means of

Cytoscape undo-redo extension [34]. That is the operations can be undone and

redone. Whether the tool should work in undo-able mode is controlled by a flag

in a configuration file, the tool can be configured not to work in undo-able mode

by setting the value of that flag as false.

Figure 3.14: SBGNViz Viewer Architecture

SBGNViz Viewer is a tool that is based on SBGNViz.js library; hence

on Cytoscape.js. It needs to use Cytoscape.js API to register Cytoscape.js

extension libraries such as Cytoscape.js panzoom, Cytoscape.js undo-redo,

Cytoscape.js cose-bilkent, Cytoscape.js qtip, Cytoscape.js view-utilities, Cy-

toscape.js expand-collapse, Cytoscape.js edge-bend-editing, and Cytoscape.js

context-menus. SBGNViz.js library extends functions provided by API of

these extensions to be used in an SBGN specific way. SBGNViz Viewer uses

HTML5/CSS along with well known front end libraries including jQuery [57],

Backbone.js [58], Underscore.js [59], Bootstrap [60] and some other little

46

JavaScript libraries. Eventually, SBGNViz Viewer uses SBGNViz.js API to per-

form operations requested by the users, such as loading an SBGN-ML graph,

exporting the current network to various file formats, applying complexity man-

agement operations on graph elements, and running an automated layout on the

graph (Figure 3.14).

3.5 Newt

Newt is a web-based tool that offers editing facilities, in addition to visualiza-

tion capabilities, for SBGN diagrams represented by PD and AF languages (Fig-

ure 3.15). Newt is dependent on ChiSE.js, and indirectly dependant on SBGN-

Viz.js and Cytoscape.js.

Newt can be regarded as an SBGN editing tool that extends the features

in SBGN Viewer with advanced editing features with help from ChiSE.js. In

that sense, many facilities provided by SBGNViz are available in Newt with the

same user interface as well. Loading diagrams from SBGN-ML files, exporting

current network into various file formats, interactive panning and zooming, SBGN

specific complexity management operations, visualization and editing of edge

bend points, automated graph layout, querying the paths between particular set

of genes, context sensitive menus, and undo-able graph operations are among

such features.

Newt inherits maintaining map type feature from ChiSE.js as well. That is,

similar to ChiSE.js, map type may take values of unknown, PD or AF in Newt.

A user who attempts to add an AF element to a PD map or add a PD element

to an AF map is prompted with a warning informing that the map type will be

switched to unknown. If the user insists on adding the element then the map

type is switched to unknown. In unknown mode, SBGN rules specific to PD and

AF languages are omitted.

47

F
ig

u
re

3.
15

:
A

sa
m

p
le

v
ie

w
fr

om
N

ew
t

48

Newt enables creating a molecular complex or compartment for the selected

elements, creating a reaction from template, copying, pasting and cloning selected

elements, and removing selected elements from the map through simple menu

interactions. Since these facilities are introduced by ChiSE.js further information

about them can be found in earlier related section.

Users may need to align a set of nodes in horizontal or vertical order. Therefore,

Newt provides a facility to align selected nodes so that one of their horizontal top,

middle, bottom or vertical left, center, right positions become the same. Also,

often users need to align a node according to some nearby nodes manually, or

align some nodes in vertical or horizontal order in equal intervals. To meet this

need Newt supports alignment guidelines by utilizing Cytoscape.js grid-guide [12]

extension (Figure 3.16).

Figure 3.16: Newt supports alignment guidelines by utilizing Cytoscape.js grid-
guide [12] extension

In Newt, users can switch between select, add node, and add edge modes. In

49

select mode users can select and interactively reposition the elements. Add node

and add edges modes enable creation of new nodes and edges, respectively.

Newt introduces an inspector that allows alteration of properties of SBGN

elements and the general map, along with creation of new elements. The inspector

consists of palette, object and map tabs. Users can add new AF or PD elements

using palette tab of inspector (Figure 3.17).

Figure 3.17: Palette tab of Newt inspector

Map tab enables alteration of map properties such as enabling and disabling

ports, allowing compound node resize, fitting labels to nodes, rearranging af-

ter complexity management operations and applying color schemes on elements

according to their types (Figure 3.18).

Object tab allows visualization and alteration of properties of selected ele-

ments. It enables inspection of multiple elements together when more than one

element is selected in Newt. The node properties that can be updated by object

50

Figure 3.18: Map tab of Newt inspector

51

tab are label, width, height, border color, background color, border width, back-

ground opacity, font properties, list of state variables and units of information,

along with multimer and cloned status. As for edges, their line color, line width

and cardinality label can be updated from object tab. In addition, users can view

details about a gene provided by EntrezGene [51] database and attach custom

properties or MIRIAM [61] annotations to an element in object tab (Figure 3.19).

Newt enables transferring a node inside or outside of a molecular complex or

compartment interactively. Also, it offers an interactive user interface for creating

new edges, that is activated on edge creation mode and utilizes Cytoscape.js

edgehandles [28] extension. Besides these, Newt provides an interactive user

interface for utilizing convenient process creation operation that is offered by

ChiSE.js.

As mentioned before Newt enables resizing of nodes from the inspector. How-

ever, interactive node resize is a more straightforward way of resizing nodes when

the desired node sizes are not known explicitly. Therefore, Newt offers interac-

tive node resize facility under favor of Cytoscape node-resize [30] extension. In

interactive node resize, resize grapples are rendered around the node corners and

users can resize the node by dragging these grapples. In SBGN, some node types

such as processes, logical operators and source and sink should have the same

width and height dimensions. Considering this, Newt does not provide active

resize grapples in cardinal points for these type of nodes to disable resizing them

in only one direction.

Newt is a tool that is based on ChiSE.js, consequently dependant to SBGN-

Viz.js and Cytoscape.js as well. Its architecture is very close to SBGNViz Viewer

architecture. Newt utilizes many Cytoscape.js extensions [31, 26, 24, 25, 27, 28,

30, 34, 29, 12, 33, 32, 33] and it should access Cytoscape.js API to register these

extensions. SBGNViz.js and ChiSE.js libraries extends functions provided by API

of these extensions to be used in an SBGN specific way. Newt uses HTML5/CSS

together with popular front end libraries including jQuery [57], Backbone.js [58],

Underscore.js [59], Bootstrap [60] and some other relatively smaller JavaScript

libraries. Eventually, Newt uses ChiSE.js API to perform operations requested by

52

Figure 3.19: Object tab of Newt inspector

53

the users such as, adding new elements to the map, removing a group of elements,

changing parent of a node (Figure 3.20).

Figure 3.20: Newt Architecture

3.6 Overall System Architecture

In the previous sections the internal software architectures of the tools and li-

braries are discussed. This section explains the software architecture of overall

system.

In this work, we use Cytoscape.js for rendering SBGN diagrams. However,

Cytoscape.js renderer does not support some of SBGN specific shapes. Therefore,

we were in need of extending Cytoscape.js renderer.

SBGNViz.js renderer extends Cytoscape.js renderer to offer visaulization of

SBGN diagrams. It also provides an API for complexity management of SBGN

diagrams. ChiSE.js API extends SBGNViz.js API with advanced editing func-

tions. Both of ChiSE.js and SBGNViz.js utilizes Cytoscape.js API to manage

54

SBGN diagrams.

SBGNViz Viewer and Newt uses SBGNViz.js and ChiSE.js APIs respectively.

SBGN Viewer and Newt register Cytoscape.js extensions to Cytoscape.js core.

SBGNViz.js and ChiSE.js extend API functions provided by these extensions with

SBGN specific features. In this manner, SBGN Viewer and Newt utilize these

APIs implicitly, because they use SBGNViz.js and ChiSE.js APIs (Figure 3.21).

Figure 3.21: Overall System Architecture

55

Chapter 4

Conclusion

In this thesis, we designed and developed tools and libraries that enable visual-

ization and editing of SBGN diagrams represented in AF and PD languages.

We turned a previously developed tool SBGNViz [36] into SBGNViz.js, a Cy-

toscape.js based library providing a renderer and an API for visualization and

complexity management of SBGN Diagrams represented by AF and PD lan-

guages. Then, we developed ChiSE.js, an SBGNViz.js based library to visualize,

create and edit SBGN diagrams represented by AF and PD languages. We also

developed SBGNViz Viewer and Newt that are sample applications for SBGN-

Viz.js and ChiSE.js, respectively.

There are many tools that offer visualization and editing facilities for SBGN

diagrams. SBGN-ED [18] is an SBGN editor that enables creation and editing

of pathways in all of three SBGN languages. It supports all SBGN symbols in

SBGN specifications as well as offering transition of non-SBGN networks from

various biological databases to SBGN. However, it is a Java desktop application

that is not open source and does not provide support for compound structures,

attaching custom annotations to nodes, and alignment guidelines. It provides

complexity management facilities such as hiding and showing nodes, but it does

not offer any facility for expanding and collapsing nodes. Biographer [54] is an

56

open source, web-based tool and library that provides rendering and editing fa-

cilities for SBGN diagrams. Though it is a powerful tool that supports all of

three SBGN languages and enables importing pathways from various databases,

it does not provide full support for compound structures. In Biographer geo-

metrical borders of a compound node are not updated when any of its children

is repositioned. Also, it does not support alignment guidelines and complexity

management operations. It provides automatic layout facilities but none of them

respect compound structures. Biographer allows adding custom annotations to

the network as regular nodes, but they can not be associated with other nodes.

CellDesigner [20] is an outstanding tool that can display rich pathway informa-

tion. Besides supporting PD language, it enables importing pathway models from

various databases and attaching custom annotations to the elements. However,

CellDesigner does not provide full support for compound structures. Parent-child

relationship between the nodes is respected during automatic graph layout and

when a compound node itself is replaced, but it is ignored while replacing any

child of a compound node. Also, CellDesigner is a desktop application that is

not open source and does not support alignment guidelines and complexity man-

agement operations. CySBGN [21] has support for all of three SBGN languages.

It enables querying pathway databases and attaching custom annotations to el-

ements from custom annotation files under favor of Cytoscape [62]. However, it

is a deskop application and does not totally satisfy SBGN specifications. Also,

it does not support compound structures, and alignment guidelines. CySBGN

provides simple complexity management facilities to hide and show nodes, but

it does not support expanding and collapsing compound nodes. Among these

tools Biographer does not support exporting graphs to SBGN-ML files, while

CellDesigner does not offer importing SBGN-ML files. Hence, Newt is a unique

web-based, open source SBGN editor that provides full support for compound

structures, and utilizes advanced complexity management, layout, and alignment

techniques. Besides, Newt has a customizable and extendable architecture which

allows building new tools based on it (Table 4.1). A research group at Oregon

Health and Science University (OHSU) has been developing a curation tool [63]

based on Newt making use of the Share.js [64] library to resolve real-time conflicts

and enable collaborative editing.

57

Web-based

Open Source

Editing Support
PD
ER
AF

Compound Support

Automatic Layout Support

Alignment Guidelines
Custom Annotations

SBGNML Import/Export

Query to Pathway Database

Complexity Management

Convenient Customization

N
ew

t
+

+
+

+
-

+
F

u
ll

+
+

F
u
ll

B
ot

h
+

F
u
ll

+

S
B

G
N

-E
D

-
-

+
+

+
+

-
+

-
-

B
ot

h
+

B
as

ic
-

B
io

gr
ap

h
er

+
+

+
+

+
+

B
as

ic
+

-
P

ar
ti

al
Im

p
or

t
+

-
+

C
el

lD
es

ig
n
er

-
-

+
+

-
-

B
as

ic
+

-
F

u
ll

E
x
p

or
t

+
-

-

C
y
S
B

G
N

-
+

+
+

+
+

-
+

-
F

u
ll

B
ot

h
+

B
as

ic
-

“+
”

su
p

p
or

te
d

,
“-

”
n

ot
su

p
p

or
te

d

T
ab

le
4.

1:
C

om
p
ar

is
on

of
m

or
e

ad
va

n
ce

d
v
is

u
al

iz
at

io
n

an
d
/o

r
ed

it
in

g
to

ol
s

th
at

p
ro

v
id

e
su

p
p

or
t

fo
r

S
B

G
N

58

4.1 Future Work

Our tools and libraries provide basic facilities to visualize, analyze, and edit

SBGN diagrams in PD and AF languages. However, the facilities provided by

them could be extended with the following features:

• Support for SBGN-ER language: Our tools support PD and AF languages

of SBGN. Support for ER language could be added. However, adding this

is tricky since ER makes heavy use of ports /connection points, and edge to

edge connections, which are hard to support with the current graph model

inherited from Cytoscape.js.

• SBGN-PD specific layout support: Our tools utilize CoSE [49] algorithm to

automatically layout the graph elements. However, a general purpose algo-

rithm like CoSE may not be sufficient to automatically layout PD elements,

because it does not respect some domain specific constraints like substrates

and products of a process being on opposites sides of a process. Therefore,

CoSE algorithm could be extended with PD support.

• Export to SVG support: Currently our tools enable exporting existing

graphs into SBGN-ML, PNG and JPG files. On the other hand, SVG file

format is mostly preferred by biologist, because SVG images can be edited

after their creation in contrast to PNG and JPG images. Hence, support

for exporting graphs to SVG files could be added.

• Support for interactively editing information boxes: Information boxes,

state variables and units of information, can be added, removed, or updated

in Newt through inspector. However, a facility to edit them interactively

could be added.

• Support for overlay of experimental data on the maps, such as those from

high-throughput experiments, would be nice to have.

59

4.2 Availability

Source code of SBGNViz.js, ChiSE.js, SBGNViz Viewer and Newt can be found

in their GitHub repositories [65, 66, 67, 68]. Also, as mentioned earlier, some

miscellaneous Cytoscape.js extensions are developed by our research group to be

used in this work. Source code of these extensions as well can be found in their

GitHub repositories [25, 26, 32, 27, 29, 35, 34, 12, 30, 33].

60

Bibliography

[1] “Pathway Commons.” http://www.pathwaycommons.org/, Accessed in

July 2017.

[2] “Social network analysis benefits, quotes from the key to living the law of

attraction.” https://williamjturkel.files.wordpress.com/2011/08/

fig-5-niche-twitter-followers-20110421.jpg, Accessed in July 2017.

[3] “Systems Biology Graphical Notation Reference Card.” https:

//raw.githubusercontent.com/sbgn/process-descriptions/

b2904462d11bd8d65e9c7a1318d95d468048cb50/templates/PD_L1V1.

3.png. (Accessed on 07/06/2017).

[4] “Systems Biology Graphical Notation Reference Card.”

https://raw.githubusercontent.com/sbgn/activity-flows/

ba30544ba494f76a7177b06bb6516be9ff29fc18/images/refcard.png.

(Accessed on 07/06/2017).

[5] “Cytoscape, Network Data Integration, Analysis, and Visualization in a

Box.” http://www.cytoscape.org. (Accessed in July 2017).

[6] http://media.springernature.com/full/springer-static/image/

art\%3A10.1186\%2F1471-2105-14-17/MediaObjects/12859_2012_

Article_5745_Fig3_HTML.jpg, Accessed in July 2017.

[7] http://media.springernature.com/full/springer-static/image/

art\%3A10.1186\%2F1471-2105-14-17/MediaObjects/12859_2012_

Article_5745_Fig2_HTML.jpg, Accessed in July 2017.

61

[8] http://bcbi.bilkent.edu.tr/pvs/VW-biocyc.png, Accessed in July

2017.

[9] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3661053/figure/

btt159-F1/. (Accessed on 08/06/2017).

[10] https://oup.silverchair-cdn.com/oup/backfile/Content_

public/Journal/bioinformatics/26/18/10.1093/bioinformatics/

btq407/2/btq407f1.jpeg?Expires=1499643772&Signature=

HKFfzZn53ttPpQyQb7Dd4YYJ2LhSVAB1WciUKgglKApllfY6NryY1dVER67OxiNReJG9RirNnyyj0Lx-Wrvo2OYtzoJcz60r31SECIkUsk65jh6lCY6~rVA~mY1ObHaS4t~UGbiC60xVRfDq0cPz6JkLqilE2ebH19ZOJog9zoXVwyX1YQwBYLA2dthCGc0ICPGAC7Slb6JMY47i9Mt4FRfiO1bPUHwi0tVdOMZQpfSwflO~Zay3fqwWhU2ioMw4-w2GEfQMoIYNNLQUAUwMBtv3OeqwPtI5dMHcGQtkqQJEZrtChYaVN3~YYbPoKym~BGjIUrpMisGKxo0K~q0-Iw_

_&Key-Pair-Id=APKAIUCZBIA4LVPAVW3Q. (Accessed on 08/06/2017).

[11] “Biogene.” http://cbio.mskcc.org/biogene/, Accessed in July 2017.

[12] “A Cytsocape.js extension to provide a framework for grid interactions

such as grid lines and snapping to grid, and guidelines and snap sup-

port for alignment of nodes..” https://github.com/iVis-at-Bilkent/

cytoscape.js-grid-guide, Accessed in July 2017.

[13] “Main Page - sbgn.org.” http://www.sbgn.org/Main_Page. (Accessed on

08/03/2016).

[14] “The cBioPortal for Cancer Genomics provides visualization, analysis

and download of large-scale cancer genomics data sets..” http://www.

cbioportal.org/public-portal/, Accessed in July 2017.

[15] “STRING-DB: Known and Predicted Protein-Protein Interactions.” http:

//string-db.org/, Accessed in July 2017.

[16] “GeneMANIA.” http://www.genemania.org/, Accessed in July 2017.

[17] “Biological network layout and visualization tool.” https://github.com/

biographer/biographer, Accessed in July 2017.

[18] T. Czauderna, C. Klukas, and F. Schreiber, “Editing, validating and trans-

lating of sbgn maps,” Bioinformatics, vol. 26, no. 18, p. 2340, 2010.

62

[19] “VISIBIOweb, web-based pathway visualization and layout services software

for BioPAX.” http://bcbi.bilkent.edu.tr/pvs.html, Accessed in July

2017.

[20] “CellDesigner, A modeling tool of biochemical networks.” http://www.

celldesigner.org/, Accessed in July 2017.

[21] “CYSBGN, SBGN diagrams in Cytoscape.” http://www.ebi.ac.uk/

saezrodriguez/cysbgn/index.html, Accessed in July 2017.

[22] “Athena: Modular CAD / CAM Software for Synthetic Biology.” http:

//athena.codeplex.com/, Accessed in July 2017.

[23] “Arcadia, A visualisation tool for metabolic pathways.” http://

arcadiapathways.sourceforge.net/, Accessed in July 2017.

[24] “A Cytoscape.js extension that wraps the QTip JQuery library.” https:

//github.com/cytoscape/cytoscape.js-qtip, Accessed in July 2017.

[25] “A Cytsocape.js extension to automatically pan when nodes are out

of canvas bounds..” https://github.com/iVis-at-Bilkent/cytoscape.

js-autopan-on-drag, Accessed in July 2017.

[26] “A Cytoscape.js extension to provide context menu around elements

and core instance..” https://github.com/iVis-at-Bilkent/cytoscape.

js-context-menus, Accessed in July 2017.

[27] “A Cytoscape.js extension enabling interactive editing of edge

bend points..” https://github.com/iVis-at-Bilkent/cytoscape.

js-edge-bend-editing, Accessed in July 2017.

[28] “Edge creation UI extension for Cytoscape.js..” https://github.com/

cytoscape/cytoscape.js-edgehandles, Accessed in July 2017.

[29] “A Cytsocape.js extension to expand/collapse nodes for better man-

agement of complexity of compound graphs..” https://github.

com/iVis-at-Bilkent/cytoscape.js-expand-collapse, Accessed in July

2017.

63

[30] “A Cytoscape.js extension to provide grapples to resize nodes..” https://

github.com/iVis-at-Bilkent/cytoscape.js-node-resize, Accessed in

July 2017.

[31] “Panzoom extension for Cytoscape.js..” https://github.com/cytoscape/

cytoscape.js-panzoom, Accessed in July 2017.

[32] “The CoSE layout for Cytoscape.js by Bilkent with enhanced com-

pound node placement..” https://github.com/cytoscape/cytoscape.

js-cose-bilkent, Accessed in July 2017.

[33] “A Cytoscape.js extension to provide copy-paste utilities..” https:

//github.com/iVis-at-Bilkent/cytoscape.js-clipboard, Accessed in

July 2017.

[34] “A Cytoscape.js extension to provide an undo-redo framework..” https:

//github.com/iVis-at-Bilkent/cytoscape.js-undo-redo, Accessed in

July 2017.

[35] “A Cytoscape.js extension to provide miscellenaous view utilities such

as highlighting nodes/edges..” https://github.com/iVis-at-Bilkent/

cytoscape.js-view-utilities, Accessed in July 2017.

[36] M. Sari, I. Bahceci, U. Dogrusoz, S. O. Sumer, B. A. Aksoy, O. Babur, and

E. Demir, “SBGNViz: A Tool for Visualization and Complexity Management

of SBGN Process Description Maps,” PLoS ONE, vol. 10, pp. 1–14, 06 2015.

[37] M. P. van Iersel, A. Villger, T. Czauderna, S. E. Boyd, F. T. Bergmann,

A. Luna, E. Demir, A. A. Sorokin, U. Doğrusöz, Y. Matsuoka, A. Funahashi,

M. I. Aladjem, H. Mi, S. L. Moodie, H. Kitano, N. L. Novre, and F. Schreiber,

“Software support for sbgn maps: Sbgn-ml and libsbgn.,” Bioinformatics,

vol. 28, no. 15, pp. 2016–2021, 2012.

[38] P. Eades and R. Tamassia, “Algorithms for drawing graphs: An annotated

bibliography,” tech. rep., Brown University, Providence, RI, USA, 1988.

[39] E. Demir, M. P. Cary, S. Paley, K. Fukuda, C. Lemer, I. Vastrik, G. Wu,

P. D’Eustachio, C. Schaefer, J. Luciano, F. Schacherer, I. Martinez-Flores,

64

Z. Hu, V. Jimenez-Jacinto, G. Joshi-Tope, K. Kandasamy, A. C. Lopez-

Fuentes, H. Mi, E. Pichler, I. Rodchenkov, A. Splendiani, S. Tkachev,

J. Zucker, G. Gopinath, H. Rajasimha, R. Ramakrishnan, I. Shah, M. Syed,

N. Anwar, O. Babur, M. Blinov, E. Brauner, D. Corwin, S. Donald-

son, F. Gibbons, R. Goldberg, P. Hornbeck, A. Luna, P. Murray-Rust,

E. Neumann, O. Reubenacker, M. Samwald, M. van Iersel, S. Wimalaratne,

K. Allen, B. Braun, M. Whirl-Carrillo, K.-H. Cheung, K. Dahlquist,

A. Finney, M. Gillespie, E. Glass, L. Gong, R. Haw, M. Honig, O. Hubaut,

D. Kane, S. Krupa, M. Kutmon, J. Leonard, D. Marks, D. Merberg, V. Petri,

A. Pico, D. Ravenscroft, L. Ren, N. Shah, M. Sunshine, R. Tang, R. Wha-

ley, S. Letovksy, K. H. Buetow, A. Rzhetsky, V. Schachter, B. S. So-

bral, U. Doğrusöz, S. McWeeney, M. Aladjem, E. Birney, J. Collado-Vides,

S. Goto, M. Hucka, N. L. Novere, N. Maltsev, A. Pandey, P. Thomas, E. Win-

gender, P. D. Karp, C. Sander, and G. D. Bader, “The biopax community

standard for pathway data sharing,” Nature Biotechnology, vol. 28, no. 9,

pp. 935–942, 2010.

[40] N. L. Novére, M. Hucka, and H. e. a. Mi, “The systems biology graphical

notation,” Nature Biotechnology, vol. 27, pp. 735–741, Aug 2009.

[41] S. Moodie, N. Le Novère, E. Demir, H. Mi, and A. Villger, “Systems Biol-

ogy Graphical Notation: Process Description language Level 1 Version 1.3,”

Journal of Integrative Bioinformatics, 2015.

[42] “Systems Biology Graphical Notation: Process Description language Level

1 - User Manual.” https://github.com/sbgn/process-descriptions/

blob/master/UserManual/sbgn_PD-level1-user-public.pdf/. (Ac-

cessed on 14/07/2017).

[43] H. Mi, F. Schreiber, S. Moodie, T. Czauderna, E. Demir, R. Haw, A. Luna,

N. Le Novère, A. Sorokin, and A. Villger, “Systems Biology Graphical No-

tation: Activity Flow language Level 1 Version 1.2 ,” Journal of Integrative

Bioinformatics, 2015.

[44] “Cytoscape, Network Data Integration, Analysis, and Visualization in a

Box.” http://www.cytoscape.org. (Accessed in July 2017).

65

[45] “Easily embed interactive networks in your website with Cytoscape Web.”

http://cytoscapeweb.cytoscape.org. (Accessed on 07/07/2017).

[46] M. Franz, C. T. Lopes, G. Huck, Y. Dong, O. Sumer, and G. D. Bader,

“Cytoscape.js: a graph theory library for visualisation and analysis,” Bioin-

formatics, vol. 32, no. 2, p. 309, 2016.

[47] E. G. Cerami, B. E. Gross, E. Demir, I. Rodchenkov, . Babur, N. Anwar,

N. Schultz, G. D. Bader, and C. Sander, “Pathway commons, a web resource

for biological pathway data,” Nucleic Acids Research, vol. 39, p. D685, 2011.

[48] “PCViz.” http://www.pathwaycommons.org/pcviz/, Accessed in July

2017.

[49] U. Dogrusoz, E. Giral, A. Cetintas, A. Civril, and E. Demir, “A layout

algorithm for undirected compound graphs,” Inf. Sci., vol. 179, pp. 980–994,

Mar. 2009.

[50] U. Dogrusoz, M. E. Belviranli, and A. Dilek, “CiSE: A Circular Spring Em-

bedder Layout Algorithm,” IEEE Transactions on Visualization and Com-

puter Graphics, vol. 19, no. 6, pp. 953–966, 2013.

[51] D. Maglott, J. Ostell, K. D. Pruitt, and T. Tatusova, “Entrez gene: gene-

centered information at ncbi,” Nucleic Acids Research, vol. 33, p. D54, 2005.

[52] “Google Developers.” https://developers.google.com/maps/?csw=1,

Accessed in July 2017.

[53] “GEF.” http://www.eclipse.org/gef/, Accessed in July 2017.

[54] F. Krause, M. Schulz, B. Ripkens, M. Flttmann, M. Krantz, E. Klipp, and

T. Handorf, “Biographer: web-based editing and rendering of sbgn compliant

biochemical networks,” Bioinformatics, vol. 29, no. 11, p. 1467, 2013.

[55] B. Sommer and F. Schreiber, “Integration and virtual reality exploration of

biomedical data with cmpi and vanted,” it - Information Technology, Sep

2016.

66

[56] M.-A. D. STOREY, F. FRACCHIA, and H. A. MLLER, “Customizing a

fisheye view algorithm to preserve the mental map,” Journal of Visual Lan-

guages & Computing, vol. 10, no. 3, pp. 245 – 267, 1999.

[57] “jQuery.” http://jquery.com/, Accessed in July 2017.

[58] “Backbone.js.” http://backbonejs.org/, Accessed in July 2017.

[59] “Underscore.js.” http://underscorejs.org/, Accessed in July 2017.

[60] “ Bootstrap The world’s most popular mobile-first and responsive front-end

framework..” http://getbootstrap.com/, Accessed in July 2017.

[61] N. L. Novre, A. Finney, M. Hucka, U. S. Bhalla, F. Campagne, J. Collado-

Vides, E. J. Crampin, M. Halstead, E. Klipp, P. Mendes, and et al.,

“Minimum information requested in the annotation of biochemical models

(miriam),” Nature Biotechnology, vol. 23, no. 12, p. 15091515, 2005.

[62] “Cytoscape User Manual/Annotation - Cytoscape Wiki.” http://wiki.

cytoscape.org/Cytoscape_User_Manual/Annotation/, Accessed in July

2017.

[63] F. Durupinar-Babur, M. C. Siper, U. Dogrusoz, I. Bahceci, O. Babur,

and E. Demir, “Collaborative workspaces for pathway curation,” in

ICBO/BioCreative, 2016.

[64] “ShareJS.” https://github.com/share, Accessed in July 2017.

[65] “A web based visualization tool for process description maps in

SBGN.” https://github.com/iVis-at-Bilkent/sbgnviz.js. (Accessed

on 14/07/2017).

[66] “A web application to visualize and edit the pathway models repre-

sented by SBGN Process Description Notation.” https://github.com/

iVis-at-Bilkent/chise.js. (Accessed on 14/07/2017).

[67] “A sample application for SBGNViz.” https://github.com/

iVis-at-Bilkent/sbgnviz.js-sample-app/. (Accessed on 14/07/2017).

67

[68] “A web application to visualize and edit the pathway models repre-

sented by SBGN Process Description Notation.” https://github.com/

iVis-at-Bilkent/newt. (Accessed on 14/07/2017).

68

