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Abstract

We discuss the application of fractional Fourier transform-based filtering configurations to image representation and
compression. An image can be approximately represented (and stored or transmitted) as the coefficients of the mini-
mum mean square filtering configuration approximating the image matrix. An order of magnitude compression is
possible with moderate errors with the raw method. While inferior to commonly available compression algorithms, the
results presented correspond to the basic method without any refinement or combination with other techniques, sug-
gesting that the approach may hold promise for future development. Regardless of its practical usefulness, the fact that
the information inherent in an image can be decomposed or factored into fractional Fourier domains is of considerable
conceptual significance. The information contained in the image is distributed to the different domains in an unequal
way, making some domains more dispensible than others in representing the image. © 2001 Published by Elsevier

Science B.V.

There has been a tremendous amount of work
on data compression in general and image com-
pression in particular, leading to efficient com-
pression algorithms. In this paper we discuss a
novel way of representing images based on frac-
tional Fourier-domain filtering configurations [1,
2], leading to a method for compressing images.

Space- and frequency-domain filtering are spe-
cial cases of fractional Fourier-domain filtering
(Fig. 1(a)—(c)) [3,4]. Fractional Fourier-domain
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filtering consists of (i) taking the fractional Fourier
transform of the input signal, (ii)) multiplication
with a filter function, and (iii) taking the inverse
fractional Fourier transform of the result. The
fractional version of the optimal Wiener filtering
problem has been studied in detail in Ref. [4].
Fractional Fourier-domain filtering has been fur-
ther generalized to multi-stage and multi-channel
filtering (Fig. 1(e) and (f)). In multi-stage filtering
[2,5] the input is first transformed into the a;th
domain, where it is multiplied by a filter 4;. The
result is then transformed back into the origi-
nal domain. This process is repeated M times.
Denoting the diagonal matrix corresponding to
multiplication by the kth filter by A;, we can write
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Fig. 1. (a) Fourier-domain filtering, (b) space-domain filtering,
(c) ath order fractional Fourier-domain filtering, (d) fractional
Fourier domains, (e) multi-stage filtering, (f) multi-channel fil-
tering.

the following expression for the overall effect of
the multi-stage filtering configuration:

Tms = [FiaMAhM A FazialAthal], (1)

where T, is a matrix representing the overall
multi-stage filtering configuration and F* denotes
the discrete fractional Fourier transform matrix
[6]. Multi-channel filtering circuits [2,7] consist of
M single-stage blocks in parallel. For each channel
k, the input is transformed to the a;th domain,
multiplied by a filter 4, and then transformed
back. Now we can write the following expression
for the overall effect of the multi-channel filtering
configuration:

Tpe = : (2)

M
Z F %A F%
k=1

where Ty 1S a matrix representing the overall
multi-channel filtering configuration. It is possible
to further generalize these filtering configurations
by using parallel and series arrangements together;
such systems have been called generalized filtering
circuits [1,2].

Fractional Fourier transform has found many
applications in optics in general [8] and fractional
Fourier transform-based filtering circuits have
found applications in optical and digital signal and
image restoration, signal and system synthesis,
synthesis of mutual intensity distributions, and
fast implementation of shift-variant linear systems
[1,2,5,7].

In multi-stage and multi-channel filtering con-
figurations, there are two categories of unknowns,
the fractional Fourier transform orders and the
filter coefficients. The problem of finding the op-
timal filter coefficients, given the transform orders
has been solved in Refs. [2,4,5] using a minimum
mean square error approach. On the other hand,
the problem of optimizing multiple orders has not
yet been addressed, and in most cases the orders
have been chosen uniformly. In this paper we have
attempted to optimize over the orders for multi-
channel filtering by first finding the optimal filter
coefficients for a larger number of uniformly cho-
sen orders and then maintaining the most impor-
tant ones.

In Refs. [2,5,7] fractional Fourier transform-
based filtering configurations have been used for
synthesizing linear space-variant systems, repre-
sented by some matrix T. It was shown that for
many such systems encountered in various appli-
cations, it is possible to approximate the system
with a multi-stage or multi-channel configuration
with acceptable mean square error, by using a
small or moderate number (M) of stages or chan-
nels. Since the cost of implementing the fractional
Fourier transform (optically or digitally) is similar
to the cost of implementing the ordinary Fourier
transform, this leads to a fast implementation of
the space-variant system in question. For instance,
for digital systems, the cost becomes O(MN log N),
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which should be compared to the cost O(N?) for
direct implementation of linear systems.

In this paper we interpret the matrix T not as
representing a linear system, but as representing a
two-dimensional signal or image. Thus the filtering
coefficients in the multi-stage or multi-channel
approximation of this matrix, can be used to ap-
proximately represent and reconstruct this matrix
and the associated image. In other words, the
optimal filtering coefficients minimizing the mean
square error between the original matrix and its
multi-stage and multi-channel approximation, are
taken as the compressed version of the image. The
cited work on synthesis of space-variant systems
for fast implementation shows that satisfac-
tory approximations are possible with moderate
numbers of filters and hence large reductions in
implementation cost. Therefore, it seems worth
investigating whether similar approximations with
similar reductions in cost (measured by the com-
pression ratio) is possible when these configura-
tions are used for image compression. Since the
original image has N2 pixels and the compressed
data has NM pixels, the compression ratio is N/M.

In the multi-channel case it is possible to ana-
lytically find the optimal filter coefficients, pro-
vided the transform orders have been chosen. In
practice, however, an iterative method is preferred.
In the multi-stage case it is not possible to find
analytic solutions, so an iterative method must be
used to begin with. The criterion of optimality in
approximating T with T, or T, iS minimum
mean square distance.

In the multi-channel filtering case, we have also
considered the improvement of optimizing over
the orders by first finding the optimal filter coeffi-
cients for a larger number of uniformly chosen
orders and then maintaining the most important
ones. More specifically, we start with several times
the number of orders M we are eventually going to
use. Then, the M orders resulting in filters with the
highest energy are chosen, and the other branches
of the multi-channel configuration are eliminated.
Finally, with the orders thus chosen, we re-opti-
mize the filter coefficients as before.

The compression method proposed is tested on
the 128 x 128 image shown in Fig. 2(a). Fig. 2(b)
shows the trade-off between the reconstruction

Compression ratio

e 102

10

10’ — ,
10 10' 10
Inverse normalized error

(d)

Fig. 2. (a) Original image, (b) compression ratio vs inverse
normalized error: multi-channel (dashed line), multi-stage (solid
line), multi-channel with optimized orders (bold line). (c) Re-
constructed images with compression ratio 32, (d) 21.3, (e) 8, (f)
5.3. Parts (c) and (d) represent too much error to be considered
compressed versions of the original image. However, they have
been shown to illustrate the dependence of the error on the
number of coefficients used.

error and compression ratio. The mean square
error has been normalized by the energy of the
original image. The horizontal axis of the plot is
the inverse of this normalized error. We see that
the multi-channel and multi-stage configurations
give comparable results, though the multi-stage
configuration is slightly better. Optimizing over
the orders for the multi-channel case results in
tangible improvements.

Fig. 2(c)—(f) shows illustrative results obtained
with the multi-stage configuration. Although the
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order-optimized multi-channel case yields smaller
errors, we present results for the multi-stage con-
figuration so as to illustrate the performance of the
method in its rawest, most basic form. Whereas we
observe that nearly an order of magnitude com-
pression is possible with moderate errors, larger
compression ratios are accompanied by larger er-
rofs.

Unfortunately, we observe that the use of frac-
tional Fourier-domain filtering configurations
for image compression, does not yield results as
good as those obtained when they are used for
synthesis and fast implementation of shift-variant
linear systems. In its present form, the proposed
idea does not yield better results than presently
available compression algorithms. However, we
emphasize that the results presented reflect the
performance of the basic method in its rawest and
barest form; we merely represent the image with
the filter coefficients which make the forms given
in Egs. (1) and (2) as close as possible to the image
matrix. Further refinement and development of
the method and its combination and joint use with
other techniques may lead to full-fledged com-
pression algorithms with better performance. (One
way of generalizing the method, which can lead to
potentially higher compression ratios with similar
errors is to employ filtering circuits based on linear
canonical transforms, rather than fractional Fou-
rier transforms [9].)

Moreover, regardless of the performance that
can ultimately be obtained with improvements of
the present idea, the fact that the information in-
herent in an image can be decomposed or factored
into fractional Fourier domains in the manner
described is of considerable conceptual signifi-
cance. In a sense, these domains “span” a cer-
tain space which is a subset of the image space,
although the precise nature of this is difficult
to ascertain in the nonlinear multi-stage case.
The information contained in the image is dis-
tributed to the different domains in an unequal
way, making some domains more dispensible
than others in representing the image. Exploring
and exploiting these issues seem potentially re-
warding.
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