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ABSTRACT 

A MICROFLUIDIC BASED DIFFERENTIAL ELECTROCHEMICAL SENSOR 

Özge Akay 

M.S. in Physics 

Supervisor: Asst. Prof. Dr. Coşkun Kocabaş 

January, 2013 

Lab-on-a-chip systems aim to integrate analytical techniques on a single chip to 

achieve high-throughput measurements with little reagent. Microfluidic devices use the 

advantage of fluid dynamics in microscale to generate new physical phenomena which 

are less familiar in macroscale. Laminar flow is one of these emergent phenomena in 

microscale dimensions. Fluids flowing in a microchannel with low Reynolds number 

(Re), have small inertial effects which suppress the turbulent mixing. Ability to control 

liquids without turbulent mixing provides new tools for integration of analytical 

techniques on a single chip. In this work we present a new type of electrochemical 

device based on hydrodynamic modulation in a microfluidic channel. The presented 

microfluidic device is a kind of hydrodynamic modulation voltammetry (µ-HMV) that 

uses a periodic modulation of two laminar streams of buffer and analyte solutions in a 

micro channel. The periodic modulation of the laminar flow generates periodic 

variation of mass transport to the electrode surface. The generated periodic 

electrochemical current is detected by a phase-sensitive detector. The differential 

electrochemical sensor eliminates charging and other transient background current and 

provides high sensitivity with a detection limit of 10 nM. This technique provides a 

convenient hydrodynamic electrochemical detection with a relatively simple and 

compact instrument which does not require any moving mechanical parts.   
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ÖZET 

MİKROAKIŞKAN TABANLI DİFERANSİYEL ELEKTROKİMYASAL SENSOR 

Özge Akay 

Fizik Yüksek Lisansı 

Tez Yöneticisi: Yard. Doç. Coşkun Kocabaş 

Ocak, 2013 

Lab-on-a-chip sistemlerin amacı,  küçük reaktif(tepki daha doğru gibi geldi burda ) ile 

yüksek verimlilik ölçümleri elde etmek için analitik teknikleri tek bir yonga üzerinde 

birleştirmektir.  Mikroakışkan cihazlar makro ölçekte daha az  bilinen  yeni fiziksel 

olayları oluşturan mikro ölçekteki sıvı dinamiğinin avantajını kullanır.  Tabakalı akış  

bu mikro ölçekli boyutta çıkan  yeni olaylardan birisidir. Düşük Reynolds sayısı (Re) 

ile bir mikro kanal içinde akan sıvılar, türbülans karışımını bastıran küçük durağan 

(inertial)  etkilere sahiptir. Türbülans olmadan sıvıları kontrol etme yeteneği,  analitik 

tekniklerin tek bir yonga üzerinde entegrasyonu  ile oluşan yeni araçlar sağlar. Biz bu 

çalışma da bir mikroakışkan kanal içinde  hidrodinamik modülasyona dayalı  yeni bir 

elektrokimyasal cihaz  sunuyoruz. Bu sunulan mikroakışkan cihaz,  bir mikro kanal 

içinde iki laminar akış olan analit ve bufferın periyodik modülasyonunu kullanan,  

mikroakışkan tabanlı  hidrodinamik modülasyonu voltametre(μ-HMV) türüdür. 

Tabakalı  akışın periyodik modülasyonu, elektrot yüzeyinde toplu taşımayı periyodik 

olarak değiştirir.. Oluşturulan periyodik elektrokimyasal akım,  faz-duyarlı detektör 

tarafından tespit edilir. Diferansiyel elektrokimyasal sensor  yükleme  ve diğer geçici  

arka plan akımı ortadan kaldırır ve 10 nM bir algılama sınırı ile yüksek hassasiyet 

sağlar. Bu teknik, herhangi bir hareketli mekanik parça gerektirmeden nispeten basit 

ve kompakt cihaz ile uygun hidrodinamik elektrokimyasal algılama sağlar. 
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CHAPTER 1 

1. Introduction 

Lab-on-a-chip systems aim to integrate analytical techniques on a single chip to 

achieve high-throughput measurements with little reagent. Microfluidic devices use the 

advantage of fluid dynamics in microscale to generate new physical phenomena which 

are less familiar in macroscale. Laminar flow is one of these emergent phenomena in 

microscale dimensions. Fluids flowing in a microchannel with low Reynolds number 

(Re), have small inertial effects which suppress the turbulent mixing[1][1]. Ability to 

control liquids without turbulent mixing provides new tools for integration of 

analytical techniques on a single chip[2]. Hydrodynamic modulation voltammetry 

(HMV) uses modulated convection to increase the mass transport to the working 

electrode[3]. The primary aim of HMV is to increase the detection sensitivity and 

potential window of voltametric measurements under well-defined transport 

conditions. A periodic modulation of mass transport either varying the rate of flow 

over the electrode or moving the electrode itself, generates alternating electrochemical 

current[4]. This alternating current is immune of background signal generated by non-

Faradaic effects[5]. Many types of modulation techniques have been implemented for 

HMV. Stopped flow [6, 7], chopped flow [8], oscillating jet [9] and ultrasonic 

modulation [10] are examples for varying rate of flow type HMV, on the other hand 

rotating [11, 12] and vibrating electrodes [13, 14] are good examples for moving 

electrode type HMV. A detailed comparative analysis of these techniques can be found 

in [6-14]. The main drawback of flow modulation methods is the relatively low mass 

transport rate and low modulation frequency (<1Hz), whereas the electrode motion 
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modulation techniques are limited by the inertia and response time of the mechanical 

parts. Microfluidics could provide new perspective for HVM to reduce diffusion time 

and analyte volume and to increase detection sensitivity [15, 16].   

In this work we present a new type of hydrodynamic voltammetry based on a 

microfluidic system. The device incorporates the concept of laminar flow in a 

microfluidic channel to control the mass transport to an electrode surface fabricated in 

the microchannel. The device integrates an electrochemical cell with a phase sensitive 

detector to measure periodic current. Phase sensitive detection is a powerful technique 

for recovering weak signals buried under a noisy background.  The technique is based 

on modulation of signal of interest at a particular frequency and detecting the 

modulated signal using a band pass filter. With this technique, the modulated signal 

can be selectively amplified and the uncorrelated noisy background is filtered out.  The 

working principle of the microfluidic hydrodynamic modulation voltammetry (µ-

HMV) is based on periodic modulation of mass transport to a microelectrode 

fabricated in a microchannel. The periodic control of laminar flow of buffer and 

analyte in a microchannel provides a convenient means of controlling mass transport to 

the working electrode thus allows a sensitive electrochemical detection. We believe 

that the presented microfluidic device which has relatively fast response time (<100 

ms) with no moving mechanical parts provide an ease-of-use hydrodynamic 

modulation technique together with higher detection sensitivity.  

In this thesis, a new type of microfluidic based electrochemical sensor is presented. 

The thesis is organized in 5 chapters. First chapter involves general information about 

previous studies regarding microfluidic devices and analytical techniques integrated in 

lab-on-a-chip system. In chapter 2, a review of theoretical background of physics of 

fluids in microscale is presented. Dimensionless numbers are discussed to characterize 

flow in microchannels. In chapter 3, electrochemistry and electroanaltical methods are 

explained. Electrochemical cell is studied to understand formation of electrochemical 

current between solution and electrode surface. In order to understand modulation of 
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mass transport to electrode surface, HMV method is studied. In chapter 4, fabrication 

procedure of electrochemical cell is given.  Fabrication procedure is divided into two 

parts, these are fabrication of the microfluidic channel and fabrication of the 

electrodes. The phase sensitive detection using a lock in amplifier is studied to detect 

periodic electrochemical current generated in the electrochemical cell. Finally in 

chapter 5 the obtained results are presented. Future work and possible applications are 

discussed as a conclusion. 
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CHAPTER 2  

 

2. Physics of fluids 

2.1   Dimensionless Numbers in Microfluidics 

Fluids are classified as Newtonian  and non-Newtonian fluids based on their behavior 

under an external force. A Newtonian fluid has a linear stress- strain curve. The slope 

of this curve is known as viscosity (µ). Therefore a Newtonian fluid has constant 

viscosity under a stress. Water is an example for Newtonian fluids. Non-Newtonian 

fluids have shear rate dependent viscosity. The viscosity changes with the applied 

shear force. Ketchup is an example of non-Newtonian fluids. In this thesis, we will 

work with Newtonian fluids. We can model these fluids as continuum materials. There 

are two important physical parameters for characterizing liquids; density ( ), and 

viscosity (µ). The velocity profile of Newtonian liquids whose viscosity and density 

are constant, complies with the Navier-Stokes equation (2.1)  and continuity equation 

(2.2)  as 

 
 (

  

  
     )             

(2.1) 

 

       (2.2) 
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where P is the pressure,   is the density,    is the viscosity of the fluid and g is the  

gravitational force. Using the incompressibility condition that is the case in which the 

density of fluid does not change, the solution of continuity equations is expressed as 

Eqn. (2.3).  

 

   

  
              

(2.3) 

  

The Newton’s second law of motion, 

     (2.4) 

 

is also identical  to Eqn. 2.3 to represent the velocity field of  fluid. 

The left hand side of  Eq.2.3  represents  the product of acceleration and mass and  the 

right hand side shows the  total force which are  frictional force (     ) , pressure (P), 

and gravitational force (g). 

 Dimensionless numbers are useful quantities that their associated physical units are 

excluded in order to simplify and parameterize the solutions of Eq. 2.3 for various 

conditions. There are different dimensionless numbers, some of them are  listed in 

Table 2.1. These numbers characterize different physical phenomena occurring in 

microfluidic devices. Some of these numbers are discussed in detail below. 

2.1.1  The Reynolds number 

The Reynolds number (Re) is the most important dimensionless number in fluid 

mechanics.  The Reynolds number is defined as the ratio of inertial forces to viscosity 

forces.  The former is defined as the resistance to move or change and the latter is 

defined as  ability of materials to stick together. According to this definition, Reynolds 
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number can be derived by using two examples shown in Figure 2.1. A fluid element 

flows with velocity     in a corner of a microchannel whose width is w (Fig.2.1.a). 

While turning the corner, it loses momentum density,    ,  throughout the turn time 

      ⁄  and  the inertial centrifugal force density can be written  by using the 

conservation of momentum as showed in Eq.2.5. 

 

 

     
   

  ⁄      
  ⁄  (2.5) 

Considering the second example ( Fig.2.1.b ), a fluid flowing in a channel with a 

length of   . The velocity, rising as     (    ⁄ ) brings about a fluid element to gain 

momentum at a rate given in Eqn.2.6. 

 

 
 
  

  
     

  

  
    

  ⁄  
(2.6) 
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Figure 2.1  Inertial forces exerted by accelerating fluid elements in two different 

microchannel. Changing the direction of a fluid element (a), Or accelerating on 

element (b) brings inertial forces onto microfluidic channels. 

As can be concluded from these two examples, inertial forces of fluids are independent 

of direction of  flow.  The viscous forces are characterized by using viscous stress, T 

and expressed in Eqn. 2.7.   The viscous force density is given by Eqn. 2.8.  

 

 

 
   

  

  
 

(2.7) 

 

 

 

              
 ⁄  (2.8) 

 

 where L0 is the typical length scale of the system. According to the definition of 

Reynolds number, it can be easily be obtained from the ratio of these two forces, 
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    ⁄  

       
 

     
(2.9) 

 

based on the Reynolds number, behavior of fluids can be classified in these regimes; 

(1) If Re< 2000, laminar flow regime holds that fluids travel in straight lines along 

the direction of flow. 

(2) If 2000    4000, transient flow regime holds that flows may fluctuate 

between laminar and turbulent flow. 

(3) If Re > 4000, turbulent flow regime holds that flows have no uniform motion at 

the certain level. 

 

 

2.1.2 The Péclet Number 

The Péclet number (Pe) is a dimensionless number that is related to transport 

phenomena in fluid mechanics so it is defined to be the ratio of convection to diffusion 

of physical quantities. Two fluids, entering to the T- junction from A ports and B ports, 

respectively, flow through the channel as in Fig. 2.2.  The necessary time scale for 

diffusion of particles across the entire channel is expressed in Eqn. 2.10.  

       ⁄  (2.10) 

 

where w is the channel width, D is the diffusion coefficient. 

Through this time, in order to achieve complete mixing, one has to consider the 

distance of stripe movement through channel. This can be calculated by using Eqn. 
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2.11, then the number of channel widths for complete mixing can be found using Eqn. 

2.1.2. [2] 

 

      
  ⁄  (2.11) 

 

 

  

 
 
   

 ⁄      
(2.12) 

 

 

Figure 2.2 The flow profile for a T- junction channel. The graded region is the 

diffusion zone. 
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Table 2.1 Dimensionless numbers used to characterize  fluid flow. 

Reynolds Number (Re)      
 

 
inertial/viscous 

Péclet Number (Pe)     
 

 
convection/diffusion 

Capillary Number  (Ca)    

 
 

viscous/interfacial 

Weissenberg Number 

(We) 

 ̇    polymer relaxation time/shear rate 

time 

Deborah Number (De)   

     
 

polymer relaxation time/flow time 

Elasticity Number (El)    

   
 

elastic effects/ inertial effects 

Grashof Number (Gr)      
 

 
Re for buoyant flow 

Rayleigh Number (Ra)     

 
 

Pe for buoyant flow 

Knudsen Number (Kn)  

  
 

slip length/macroscopic length 
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CHAPTER 3 

3. Electrochemistry and Electroanalytical 

Methods 

Electrochemistry is a physical measurement of electron movement in chemical 

reactions, in other words, it is interested in transformation of electrons between the 

electrode surface and solution. This transformation depends on making and breaking of 

chemical bonds such as covalent bonds. In electrochemistry, the major chemical 

reactions are oxidation and reduction, which are called redox reactions. Oxidation 

means loss of electrons while reduction means gain of electrons.[17] These two 

reactions are represented by eq. 3.1 and Eq. 3.2 as, 

 

 B
a+

             A
(a+n)+

 + ne
-
   (Oxidation)                                                                    (3.1) 

 

  A
a+

  +ne
-
  A

(a-n)   
(Reduction)                                                                    (3.2) 

 

There are several electrochemical methods in electrochemical analytical science such 

as voltammetry, potentiometry, conductimetry that are defined later in section 3.3. The 

major purposes of all these methods are extending the detection limit of electroactive 

species and increasing the potential window of a given solvent due to the raise of 

interval of characterizing information of addressable species.  
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Furthermore, being inexpensive and yielding information about activities instead of 

concentration  of chemical species, makes electrochemical methods preferred in 

eletroanalytical science[18]. 

3.1 Electrochemical cell 

An electrochemical cell is a system, which contains chemical reactions that are based 

on redox reactions. It is composed of two or three electrodes that are embedded in 

suitable electrolyte solution. In order to develop current in a cell, these electrode must 

be connected to one another externally by conducting  wires and in solution by ionic 

transport[18]. There are two or more charge transfer occurs at different electrodes in 

opposite directions in a cell.  Figure (3.1) shows an example of standard 

electrochemical cell.[19]. According to Figure 3.1, there are  two electrodes called 

anode where the oxidation reaction occurs and cathode where the reduction reaction 

occurs in the electrochemical cell. Moreover, there is a salt bridge in electrochemical 

cell  in order to provide charge transfer along the solutions and prevent mixing of the 

solutions[20]. In the cell, two half-cell reactions occur in the two electrodes separately. 

Potential of the electrochemical cell is varied  by the activities  of these half-cell  

chemical reactions. Due to these chemical activities, there is a voltage difference 

carried out between two electrodes and  called electromotive force,   (Emf)[21]. Emf  

is defined as the standard electrode potential  under standard conditions that are  1 M 

H
+ 

 in 25C
o
 at 1 atm (  ). To obtain the equilibrium reduction  voltage  of a  half cell 

or total electrode potential of the  electrochemical cell, Nernst equation (3.3)  is used. 

Nernst equation defines the balance between the concentration gradient to the electric 

gradient.  According to reaction given in eqn.(3.3),  Nernst equation  is written as Eqn. 

3.4. 

 

aA + ne
-
  bB                                                                                               (3.3)                           
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 Nernst equation can be written, 

 

 
     

   

  
    

 

(3.4) 

 

where n is the number of electrons, F is the Faraday constant ( 96,487 coul mol
-1

), R is 

the gas constant (8,3143 V coul deg
-1

 mol
-1

) , T is temperature (Kelvin) and Q is the 

reaction quotient[20] and expressed in Eq. 3.5. 

 

 
  

    

    
 

(3.5) 

Nernst equation for total voltage of electrochemical cell is given by Eq. 3.6 

 
           

  
   

  
    

 

(3.6) 

 

The  potential difference between the cathode electrode potential and the anode 

electrode potential is the potential of the electrochemical cell, and expressed in Eqn. 

3.7. 

                       (3.7) 
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Figure 3.1An example of a simple electrochemical cell 

 

There are two types of electrochemical cell. First type is galvanic cell  (voltaic cell), in 

which the chemical reactions take place spontaneously and   produce electrical energy 

[22]. It is generally used for transforming chemical energy to electrical energy. Battery 

is  one of the most common examples for galvanic cells. The second type is called 

electrolytic cell. To obtain current  in this type of cell, voltage difference  must be 

applied  or non-spontaneous chemical reactions to occur. Electrolytic cells are used in 

order to fulfill indented chemical reactions by way of expanding electrical energy. The 

favorite example of electrolytic cell is electrolysis of water.[17]  
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3.2 Faradic and Non-Faradic Currents 

In electrochemical cells, two kinds of processes occur at the surface electrodes. First 

process is the direct transfer of electrons through an electrode-solution interface, which 

is  formed as a result of oxidation or reduction reactions. Due to being controlled redox 

reactions by Faraday’s law, this process is called faradic process and corresponding 

current is called  Faradic current[18]. Under certain conditions, there is no charge 

transfer between electrode-solution interface but some absorption and desorption can 

occur due to thermodynamic and kinetic reasons and an electrode-solution interface 

may show a variation in structure with a potential or solution composition [21]. When 

applying voltage to electrode surface, the electrode is polarized and the solution that is 

adjacent to an electrode forms layers which have different potentials according to 

distribution of charge carriers. These processes are called non-faradic processes and 

the resulting current is called non-faradic current. For example, if positive voltage is 

applied to electrodes, the positive charges are gathered out the electrode solution-

interface and two charge layer are formed in the solution near the electrode surface as 

shown in Figure 3.2. The inner layer is defined as  inner compact layer (X0 to X1) and 

the second layer is defined as  diffuse layer. According to increase of distance to 

electrode, potentials of these two layers decrease linearly in  the   inner compact layer 

and exponentially in the diffuse layer as showed in Figure 3.2 [18].  As a result of that 

while characterizing currents of type, the traveling of electron is examined. If an 

electron  of electrodes remains at the electrode surface and causes  to form of double 

layer , it contributes to non-faradic process, however if  it  breaks up electrode surface 

and reacts with the species in the solution, it can be considering  as a  Faradic 

current.[18].  In electrochemical cells, not only Faradic current but also non-faradic 

currents are formed  in electrode  at the same time. While obtaining information and 

associated reaction by using electrochemical data, both type of currents should be 

taken in to  consideration[22] .  
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Figure 3.2 Electrode double layer at positive potential near an electrode surface. 

. 

3.3 Mass transport 

Mass transport is defined as the variation of material location inside a solution. This 

movement is resulted from diffusion that is the transfer of material from high 

concentration to low concentration. Migration is the movement of charged particles 

related to electrical field, and convection is the movement of particles due to the 
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hydrodynamic forces [23].  The total mass transport is defined by the Nernst-Planck 

equation for one dimension and given in Equation 3.8 [24]. 

  

  
              

3.8 

 

where D is the diffusion coefficient of  solution species, u is the velocity of species, 

and c is the concentration of species. 

3.4 Electrochemical analysis methods   

There are several electroanalytical   methods to measure electrical properties of 

species. Potentiometry is one of these methods. Potentiometry is used to define 

concentration of species in the analyte by the means of measuring potential of 

electrode system. The other method is coulometry which is used to measure the total 

charge that is consumed throughout  an electrolysis reactions. Amperometry, as the 

name implies, is employed for measuring the electric  current that passes among a 

solution to lead to oxidation or reduction of the analyte [25] . Conductimetry is used to 

measure conductivity of solution by use of motions of ions in the solution. 

Voltammetry is the most common and essential analysis method that is used to 

measure current resulted from electrode by applying various potential[20]. 

3.5 Voltammetry 

As mentioned in the above, voltammetry is widely used by chemist because of  using 

extra electrode, which is called reference electrode in order to make quantitative  

analytical measurement. Voltammetric cell is composed of three electrodes, they are 

working electrode where oxidation and reduction occur, counter (auxiliary) electrode 

which polarizes the working electrode, and reference electrode that keeps the potential 

of the liquid stable. A circuit diagram of a voltammetry is given in Figure 3.3. As 

shown Figure 3.3, there is an operational amplifier in the system in order to control the 

potential on the working electrode. In voltammetric cell, the voltage is carried out 
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between the working and the counter electrodes and the current is saved as a function 

of working electrode potential. The potential of working electrode is measured 

according to potential of reference electrode [20]. In a voltammetry, generally 

microelectrodes can be used to reduce sample consumption and detection time. 

 

Figure 3.3 Schematic diagram of a voltammetry 

There are also similar  type of measurement  techniques in voltammetry such as linear 

sweep voltammetry, cyclic voltammetry. These methods provides some degree of 

improvement of  sensitivity of the voltammetry. 

3.6 Linear sweep and cyclic voltammetry 

 In  linear sweep  voltammetry (LSV), the voltage of working electrode is scanned 

linearly in a fixed potential range with time as shown in figure 3.4a. The applied 

potential at a certain   time is can be written, 
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          (3.9) 

 

where     is the electrode potential at time t,    is the starting potential, ʋ is the sweep 

rate. According to direction of potential scan, the sign of Eqn (3.9) is changed[26]. The 

sweep rate (ʋ) ,the chemical reactivity of the electroactive species, and  the electron 

transfer reaction rate influence the characteristics  of linear sweep voltammetry[22]. 

                

 

                      (a)                                                                                 (b)                

Figure 3.4 Graphs of  potential as a function of time (a) linear sweep voltammetry, (b) 

for cyclic  voltammetry. 

In cyclic voltammetry, the voltage is swept between two values at a constant rate but 

when the voltage reaches to its extreme value, it sweeps this same interval with 

reversed direction. The applied voltage at any time is calculated by using Equation 

3.10.  

 

              (3.10) 

 



21 

 

where     is switching time[26]. 

 

 

 

3.7 Hydrodynamic modulation voltammetry 

 Hydrodynamic modulation voltammetry ( HMV ) methods present high sensitivities 

in the field of electroanalytical chemistry. HMV comprises a mass transfer rate of 

species on to the electrode surface in order to lead to higher current and 

reproducibility. This transfer rate  is obtained by oscillating periodically  as means of 

modulating  the flow of  solution over the static electrode or motion of electrode with 

regard to solution.[27, 28].  In this method, phase sensitive detector can be used  to  

extract alternating current (ac) component therefore it allows us  to detect  mass-

transport limited current that is separated from the current signal resulted from 

background processes[28]. Moreover, hydrodynamic modulation voltammetry makes 

it  possible to enable high modulation frequency  which provides to decrease detection 

time[27]. There are so many hydrodynamic modulation voltammetry methods in 

electroanaltical technology such as rotating disc electrode, stopped channel flow, 

vibrating electrode ,ultrasonic modulation. The main  purpose of all these methods is 

to achieve to  decrease analysis time and  increase the sensitivity of detection.  
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CHAPTER 4 

4. Fabrication of Electrochemical Cell 

Shrinking of microfluidic devices has been the main goal to enhance the performance 

and to increase the sensitivity of analytical devices. Moreover, this shrinkage provides 

many advantages such as decreasing fabrication cost, sample consumption, analysis 

time [29]. In this chapter of the thesis, the fabrication process of the electrochemical 

sensor will be given in a detailed manner. The sensor consists of a three-electrode 

electrochemical cell, an elastomeric microfluidic channel, and electronic circuit and 

flow controllers.  First we fabricated the microfluidic channels by molding an 

elastomeric channel from a master and then sealed the channel on the electrodes 

fabricated on a glass slide.  

4.1. Molding of  Microfluidic channels from PDMS 

The fabrication procedure of molding microfluidic channels consist of three parts; (1) 

fabrication of the mold, (2) molding the elastomeric channel, (3) fabrication of the 

microfluidic channels. Figure 4.1 shows the schematic drawing of fabrication process 

microfluidic channel. 

4.1.1  Fabrication of the mold 

The first step of the fabrication process is the preparation of the mold. We used  SU-8 

photoresist to fabricate the molds. It is a kind of photoresist that is widely used in 

molding processes of microfluidic applications [30, 31].  We used a silicon wafer as a 

substrate. First of all, in order to prevent any defect and contamination in the wafer, it 

was cleaned in a piranha solution (H2O2:H2SO4) (1:3)  for 15 minutes before coating of 

photoresist. SU-8 was coated by spin coating on the wafer followed by a soft bake. 
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The wafer with 25 µm thick SU-8 coating was baked about 5 minutes at 95  . Y 

junction channel pattern are obtained by using photolithography. After the 

illumination, soft exposure bake was done at 95  for 5 minutes. At last, the 

photoresist was developed with MR-600 for 8 minutes. Y junction pattern on silicon 

wafer was ready for molding. 

4.1.2  Preparation of microchannels by molding 

PDMS (polydimethylsiloxane)  is a soft  polymer, widely used to make microfluidic 

channels. There are many advantages to use it commonly such as being transparent, 

compatible, and peals easily from substrates[32]. While preparing PDMS, we put 

PDMS and curing agent that is mixed 10:1 ratio,  in a  petri dish and stirred strongly in 

order to mix them completely. Then to remove air bubble, we placed it in a vacuum 

chamber. Then we poured the PDMS solution to the silicon wafer with SU-8 pattern. 

Then, silicon wafer with PDMS  was baked the oven at 75   about 40 min to 1h to 

cure PDMS. Once the PDMS is cured, PDMS was pealed from silicon wafer, we cut 

the PDMS carefully  around the channel  by using bistouries. We sealed the PDMS 

cahnnels on the glass slide using O2 plasma. At last step, by using sharp hollow wires, 

we made two inlet and one outlet holes on heads of  channels, showed in figure 5.d  in 

order to  allow entering and exiting of fluids through the microfluidic channels. 
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Figure 4.1 Schematic drawing of molding microfluidic channels from PDMS, 

a)photoresist ( SU-8) coating ,b) photolithography, c) casting PDMS, d) molding 

PDMS. 
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4.2. Fabrication of Electrodes  

Electrode fabrication process start with a cleaning step. We used a glass slide as a 

substrate and slide was cleaned by using a standard cleaning process that contains 

acetone- isopropanol-water respectively. The fabrication procedure of electrodes is 

shown at Figure 4.3. Photolithography was implemented for patterning of electrodes to 

microscope slide. The  figure 4.2 shows the mask  of electrodes that is used in mask 

illumination. According to mask, the width of the electrodes ( working electrode, 

counter electrode)  are 0.5mm, the gap of electrodes is 0.5mm, the size of reference 

electrode is 1mm and the size of pads are 3 mm/5 mm.  AZ5214E   (image reversal 

photoresist)  was used for patterning of electrodes. We used gold for electrode metals 

since gold has a high electrical conductivity. However, there is a problem about the 

adhesion between gold and glass. In order to solve this problem, Ti was coated on the 

glass   by sputtering as the adhesive layer. Ti/Au  (5-6 nm/ 100 nm) were grown on the 

glass slide by sputtering and thermal evaporation respectively. Finally, lift-off was 

implemented to remove metal from place, where covered with photoresist by 

immersing in acetone about 1 hour. 

 

 

 

Figure 4.2 Transparent mask  used for UV-photolithography 

  

Reference electrode 

Working electrode 
Counter electrode 
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Figure 4.3 The schematic drawing of fabrication of electrodes, a) photoresist 

(AZ5214E) coating , b) photolithography, c) metallization (Ti/Au, 6/100 nm), d) gold 

electrodes. 
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4.3. Sealing of PDMS Channel and Electrodes  

Before sealing the PDMS channels with electrodes, the PDMS surface and  the 

electrodes surface must be chemically activated by exposing them to O2 plasma. 

Therefore, a reactive ion etching ( RIE) was used  for O2 plasma with conditions that 

are showed in Table 4. The role of O2 plasma is twofold, (1) it cleans the surface of 

the glass and (2) it activates the surface of PDMS by removing the organic parts and 

leaving broken oxygen bonds.  After activating the PDMS surface we aligned the 

electrodes to the channel and sealed the channels by heating at 150 degree for 5 

minutes.  

 

Table 4.1 RIE condition for oxygen plasma 

O2 plasma  

Power 100 Watts 

Pressure 25µbar 

O2 20sccm 

Duration 10 seconds 

 

4.4. Voltammetry 

Voltammeter is a kind of electrochemical cell with three electrodes. This is an 

effective electroanalytical method for doing  quantitative  analytical measurement. We 

started to set-up with establishing electrical circuit. Figure 4.4 depicts the schematic 

representation of electrical circuit. Our electrical circuits contain two operational 

amplifiers (OP07CR, very low offset single bipolar operational amplifier). One of 

them was connected to microfluidic device for holding the  voltage of electrochemical 

cell constant. The other was used to convert current of the working electrode to voltage 

by using 2.66 kOhm feedback resistance. Solenoid valve is used for changing the 

pressure of fluids that are in microfluidic channels at 3 Hertz. The circuit also 
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contained a lock- in amplifier which will be discused in section (4.5)  to detect the 

generated ac current on the working electrode. IA lock-in amplifier is a kind of phase 

sensitive detector  that can remove the carrier wave which is a signal from an 

extremely noisy environment. Therefore it eliminates noise and background current 

significantly in the  electrochemical cell and increase the sensitivity of microfluidic 

devices.  

Electrochemical current occurred in electrochemical cell is controlled and measured by 

using LabVIEW program. Figure 4.5 shows the LabVIEW block panel and front  panel 

respectively that was used to control electrochemical current. 

  

 

    

Figure 4.4 The circuit diagram of the electrochemical cell integrated with a 

voltammetry and a phase sensitive detector.  

OP07CR 
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figure 4.5 An image of the data acquisition program for electrochemical sensor  written using  

labVIEW  (a) front panel, (b) block panel 
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4.5. Phase sensitive detection: Lock-In Amplifier 

Phase sensitive detection (PSD) is a very powerful method in many scientific 

experiments with the offer of two useful opportunities which are its ability to reduce 

noise and perform phase detection in frequency domain. The lock-in is a signal 

recovery technique. The signal of interest is modulated at a given frequency and the 

generated signal is demodulated by nonlinear circuits. Lock-in amplifier uses a 

reference signal at a specific frequency sensitive detection [33, 34]. The lock-in 

amplifier is an instrument that measures signals in and the phase in order to eliminate 

uncorrelated noise signal that is signal at frequencies other than the reference 

frequency. Lock-In  amplifier generates own reference signal by using a phase locked 

loop (PLL) or  reference signal is provided by excitation source called external 

reference source such as  function generator[35].  

 

 

Figure 4.6 Schematic representation of lock-in amplifier 
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The working  principle of a lock-in amplifier is given in figure 4.5. Firstly, we have an 

ac input signal (Eq.4.1) and a reference signal (Eq.4.2), 

  ( )       (    ) (4.1) 

 

   ( )        (4.2) 

 

Then, when we multiply these two signals using a nonlinear circuit element then we 

obtain two AC signals at different frequencies (   ) and (   ) (Eq.4.3) . 

 

              

If the input signal has different frequency from frequency of reference signal ( ), the 

output signal is an AC signal and eliminated while passing through a low pass filter. 

But, if the frequency of the input and the reference signals are the same (   ), then 

one of the components of the output signal will be a DC signal (Eq.4.4).  

 

 

 

Then, by adding a second PSD, the phase dependence can be eliminated and therefore 

there are two output signals occur, 

 

          (4.5) 

 

                                      (4.6) 

 

 Where   is a phase difference between reference and output signals.  
 
 
   √            (4.7) 

 
    ( )  ( )

  
 
 {    (   )         (   )    } 

(4.3) 

 
 ( )  ( )  

  
 
 {   ( )      (  )    } 

(4.4) 
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Vsig  is a signal amplitude. It is independent of phase differences between reference and 

input signal. 

 

In the lock-in amplifier, the low pass filter is used for eliminating the different 

frequency components of the noise signal, which are different than reference 

frequency[33]. The working principle of low pass filter is shown in figure 4.6. Low 

pass filter allow to pass signal at a certain frequency interval close to reference 

frequency. This interval is called bandwidth.  

 The input signal is a sine wave with different amplitudes and Fourier’s theorem 

provide to be representing this input signal as the sum of sine waves with different 

amplitudes and phases. 

 

 

 

 

Figure 4.7 A representative frequency response of low pass filter 
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4.6. Electrochemical reactions 

In the electrochemical cell, we used  0.1 M LiClO4  (lithium perchlorate)  as a buffer 

and 10  mM  K3[Fe(CN)6] (potassium ferricyanide)  as an  analyte  solved in distilled 

water.  Redox reactions occur in the cell. (  (  )  
   (ferricyanide) is reduced and 

turned (  (  )  
    (ferrocyanide) ion. This redox  couple is reversible as showed in 

eq.(4.8). 

 

    (  )   
  

           (  )     (4.8) 

 

The standard reduction  potential of the redox reaction in aqueous solutions  is 0.36 V 

at 298K [36]. We used LiClO4   in order to  have  high ionic strength with potassium 

ferricyanide  and wide potential window. Potential window is a potential range 

between which the substance does not get oxidized nor reduced so it is an important 

parameter for choosing a convenient buffer for electrochemical reactions. The potential 

window of potassium ferricyanide is ±0.5V .The potential window of lithium 

perchlorate is from -3.0 to 2.4 V for platinum electrode and this range is changed due 

to electrode that is used. In our work we used gold electrode and we expect that 

potential window range is decreased compared to platinum electrode. 

We scanned the voltage of working electrode linearly with a scan rate of   0.01Vs
-1 

  

between  -1V and 1V voltage range.  
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CHAPTER 5 

5. Microfluidic Hydrodynamic     

Voltammetry 

In this chapter we will summarize the results obtained using fabricated device. Figure 

5.1 shows the schematic drawing of the µ-HMV. The microfluidic channel has Y-

junction geometry. The laminar flows of buffer and analyte solutions were injected to 

the electrochemical cell with three-electrode configuration. The rate of flow of the 

buffer was modulated by changing the pressure using a three way solenoid valve 

(LFAA1201418H, The Lee Corporation). As the rate of flow of buffer oscillates, the 

mass transport of analyte on the working electrode is periodically modulated at a 

frequency around 3Hz. The alternating current generated on the working electrode is 

detected by a lock-in amplifier (Stanford Research, SR830). The lock-in amplifier 

(LIA) works as a very narrow-band-pass filter (band width of 0.1Hz ) around the 

reference frequency. Periodic electrochemical signals pass through the filter and 

uncorrelated current in the electrochemical cell due to charging and other transient 

background current are filtered out. A homemade potentiostat controls the voltage of 

the working and counter electrodes and send the current generated on the working 

electrode to the input of the LIA. The time constant of the LIA is set to 1 sec to 

achieve steady state electrochemical current.  The output of the LIA provides the 

steady state current at the modulation frequency. To obtain the steady state voltagrams, 

we swept the voltage linearly and recorded the output of the LIA.      
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Figure 5.1 Schematic representation of the fabricated microfluidic device to measure 

differential electrochemical current.  Three gold thin film electrodes (working, counter 

and reference electrodes) were fabricated on a glass slide. The Y-junction microfluidic 

channel sealed on the glass slide has two inlets named as A and B. The buffer solution 

is injected to the inlet A and the analyte injected to the inlet B. A solenoid valve is 

used to control the pressure of the buffer. The pressure of inlet A oscillates between P1 

and P2 at a frequency of 3Hz. The pressure of inlet B is kept at P3. The alternating 

electrochemical current on the working electrode is detected with a lock-in amplifier 

operating at current detection mode. The  voltage of counter and reference electrodes 

are controlled by a homemade potentiostat.  

An schematic of the fabricated microfluidic device is shown in Figure 5.2.a. The 

fabrication process consists of two main steps; (1) fabrication of elastomeric channels 

and (2) fabrication of microelectrodes. The elastomeric channels were fabricated using 

PDMS  (Polydimethylsiloxane) based rapid prototyping. We used 50 um thick SU8-

2025 photoresist to fabricate the masters. The electrodes were defined by a standard 

UV photolithography. After the metallization of 100 nm thick gold film and lift-off 

process, we sealed the PDMS microfluidic channel on the metal electrodes using 

oxygen plasma. After attaching the wiring with a conductive epoxy, we connected the 
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electrodes to the homemade potentiostat. Figure 5.2.b shows the flow profile in the 

channel with Y-junction geometry. The flow profile in the channel junction which is 

called node, is not laminar. Far from the channel junction, the laminar low profile 

applies. The fractional filling of the channel is determined by the rate of flow from 

channel A and channel B. We fabricated the electrodes downstream from the channel 

junction where we have steady state profiles.  Figure 5.3.a and 5.3.b illustrates the 

working principle of the device.  We injected analyte (potassium ferrocyanide in 0.1 M 

LiClO4) and buffer (0.1 M LiClO4) from the upper and bottom channels. We 

controlled the rate of the buffer by modulating the pressure using a solenoid valve. The 

flow profile inside the microchannel oscilates between the two cases shown in Figure 

5.3.a and 5.3.b. The detected electrochemical current due to the oxidation of 320 nM 

potassium ferrocyanide is shown in Figure 5.3.c. As the pressure of the buffer 

oscillates, the generated electrochemical current changes between 1.12x10
4
 mA to 

3.6x10
5
  mA.  Figure 5.3.d shows the decay of the electrochemical current after 

switching the pressure. The decay time is around 100 msec. The time response is 

defined by the rate of mass transport.    
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Figure 5.2 (a) An image of the fabricated microfluidic device. The three thin film 

electrodes are registered to the Y-junction microchannel. The area of counter electrode 

is chosen to cover the entire microchannel to increase electron transfer. The wires are 

connected to the chip with a conductive epoxy. (b) The flow profile of in a Y-junction 

microchannel. Two fluids are introduced from channels A and B. The upper and lower 

channels have rate of flow of Q1 and Q2. The fractional filling of the channel 

downstream of the junction area is w1 and w2 which are linear functions of Q1 and 

Q2.   
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Figure 5.3 (a.b) Schematic drawing of the working principle of the device. As the 

pressure of the buffer changes, the microchannel is periodically filled by the buffer and 

analyte.  The periodic change of flow of the buffer stream generate periodic 

modulation of the mass transport to the  working electrode resulting in a periodic 

electrochemical current.  (c) Time trace of the mass transport limited electrochemical 

current generated by the oxidation of (Fe(CN) 6 )
+4

 while the working electrode is held 

at +1V. Here 0.1 M LiClO4 acts as supporting electrolyte.  (d) The time decay of the 
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electrochemical current after switching the buffer solution. The response time of the 

system is around 100 msec. 

 

We obtained steady state voltammograms for oxidation of  320 nM  ferrocyanide, by 

scanning the voltage of the working electrode with a scan rate of 0.01Vs
-1

. The 

modulation frequency is set to 3Hz and the time constant of the LIA is set to 1sec. The 

obtained steady-state voltammograms for oxidation of 320 nM ferrocyanide in 0.1 M 

LiClO4 buffer for several values of hydrodynamic modulation frequencies are given in 

Figure 5.4.a. In Figure 5.4.b, we plot the frequency dependence of the generated 

electrochemical current at -1V. The current is constant up to 4 Hz and decays as the 

modulation frequency increases.  The power spectrum of the electrochemical current 

with a hydrodynamic modulation frequency of 3Hz is given in Figure 5.3.c. We 

measured the power spectrum by changing the internal frequency of the lock-in 

amplifier while keeping the modulation frequency constant at 3Hz.   
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Figure 5.4 (a) Steady-state voltammograms for oxidation of 320 nM ferrocyanide in 0.1 M 

LiClO4 buffer recorded at a scan rate of 0.01Vs
-1

 for several values of hydrodynamic 

modulation frequencies. (b) Dependence of current amplitude upon frequency of modulation. 

The rate of flow is 290 µL/min. (c) Power spectrum of the electrochemical current with a 

hydrodynamic modulation frequency of 3Hz. The power spectrum is recorded by changing the 

internal frequency of the lock-in amplifier while keeping the modulation frequency constant at 

3Hz.   
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After characterization of the working principle of the microfluidic device, we will 

demonstrate the detection limit of differential electrochemical sensor. This device 

present a clear advantage for trace level detection because of elimination of current due 

to background processes. The modulation frequency is limited to low frequencies due 

to the response time of the flow inside the microchannel. To determine low 

concentration of analyte, we used the modulation frequency of 3Hz. Figure 4a shows 

steady state voltammograms for low concentration of ferrocyanide in 0.1 M LiClO4 

buffer. These measurements were recorded with the same experimental setup and 

parameters described in Figure 5.4. The maximum current recorded at analyte 

((Fe(CN) 6 )
+4

) concentration of 20 nM is 180 pA. Even for these low concentrations 

the signal-to-noise ratio is very high. The limiting background current in these 

measurements are around 40pA. Figure 5.5b shows the maximum current for wide 

concentration range of analyte.  
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Figure 5.5 (a) Steady state voltammograms for low concentration of ferrocyanide in 0.1 M 

LiClO4  buffer. (b) The measured maximum electrochemical current as a function of analyte 

concentration.   
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CHAPTER 6 

6. Conclusion 

As a conclusion we demonstrate a microfluidic based hydrodynamic voltammatery by 

combining modulation of laminar flow pattern of analyte and buffer solutions on an 

electrode surface integrated in the microchannel. The periodic modulation of mass 

transport to a microelectrode electrode surface is achieved by controlling the pressure 

of the buffer solution.  This periodic mass transport generates a periodic 

electrochemical current that is detected by a phase sensitive detector. Since the phase 

sensitive detector detects only correlated signal at the modulation frequency, it rejects 

the uncorrelated current due to non-Faradaic effects. By combining microfluidics and 

electroctrochemical techniques, we were able to measure 10 nM concentration of 

potassium ferrocyanide in water. This technique provides a convenient hydrodynamic 

electrochemical detection with a relatively simple and compact instrument which does 

not require any moving mechanical parts. The presented microfluidic based 

hydrodynamic voltammetry could provide a sensitive detection technique for lab-on-a-

chip systems.    
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