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DETECTION OF UNDERDEVELOPED HAZELNUTS FROM

FULLY DEVELOPED NUTS BY IMPACT ACOUSTICS

I. Onaran,  T. C. Pearson,  Y. Yardimci,  A. E. Cetin

ABSTRACT. Shell-to-kernel weight ratio is a vital measurement of quality in hazelnuts as it helps to identify nuts that have
underdeveloped kernels. Nuts containing underdeveloped kernels may contain mycotoxin-producing molds, which are linked
to cancer and are heavily regulated in international trade. A prototype system was set up to detect underdeveloped hazelnuts
by dropping them onto a steel plate and recording the acoustic signal that was generated when a kernel hit the plate. A feature
vector comprising line spectral frequencies and time-domain maxima that describes both the time and frequency nature of
the impact sound was extracted from each sound signal and used to classify each nut by a support-vector machine.
Experimental studies demonstrated accuracies as high as 97% in classifying hazelnuts with underdeveloped kernels.

Keywords. Aflatoxin, Classification, Detection, Nut, Sound.

azelnuts (Corylus avellana) are widely used in
chocolate and flavored coffee products. One of
the main attributes that determine quality in raw
bulk hazelnuts is the ratio of kernel weight to shell

weight. Empty hazelnuts and hazelnuts containing underde-
veloped kernels negatively affect this ratio. If the ratio of ker-
nel weight to gross weight is less than 0.5, buyers may reject
the produce. Occasionally, plant stress from dehydration or
lack of nutrients causes a hazelnut shell to develop without
a kernel. In addition, insect damage can stunt the maturation
process and prevent a kernel from developing fully by harvest
time. A nut with an underdeveloped kernel appears like a nor-
mal hazelnut from the outside. Currently, raw hazelnuts are
processed by an “airleg,” which is a pneumatic device that
separates underdeveloped hazelnuts from fully developed
nuts. These devices, however, have high classification error
rates. There remains a need for more advanced systems to im-
prove the segregation of underdeveloped from fully devel-
oped hazelnuts. In addition, hazelnuts containing under-
developed kernels may also contain the mold Asperguillus
flavus, which produces aflatoxin, a known carcinogen
(Marklinder et al., 2005). Accordingly, a more accurate clas-
sification of hazelnuts will also contribute to improved food
safety for consumers.
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Fully developed hazelnuts can be distinguished from
underdeveloped hazelnuts by weighing the nuts individually
or by shelling each nut, neither of which is economically
viable. A high-throughput, low-cost acoustical system for
sorting pistachio nuts has been developed to separate nuts
with closed shells from those with cracked shells (Pearson,
2001; Cetin et al., 2004a, 2004b). In this system, pistachio
nuts were dropped onto a steel plate and the sound of the
impact was analyzed in real-time. As expected, nuts with
closed shells produced a different sound than those with
cracked shells. Classification accuracy of this system was
approximately  97%, with a throughput rate of approximately
20 to 40 nuts per second, and the system works reliably in a
food processing environment and requires little maintenance
or skill for its operation. An air valve is used to separate
closed-shell from open-shell nuts in the processing stream. A
similar prototype system is proposed for hazelnuts based on
impact acoustics. It was observed that the algorithms
described by Pearson (2001) and Cetin et al. (2004a, 2004b)
did not produce high classification accuracy in hazelnuts.
The purpose of this study is to explore other signal processing
techniques such as line spectral frequencies, discrete Fourier
transforms (DFTs), and some time domain parameters to
determine the most accurate method for classifying full and
underdeveloped hazelnuts.

MATERIALS AND METHODS
EXPERIMENTAL APPARATUS

A prototype system that dropped nuts onto a steel plate and
processed the acoustic signal generated when nuts hit the
plate was developed. The system was able to process and
reject 20 to 40 nuts per second. An air valve removed
underdeveloped nuts; however, the study did not take this
into consideration in determining the feasibility of this
method.

The prototype included a chute, inclined 60° above the
horizontal,  on which hazelnuts slid down and were projected
onto an impact plate, and the acoustic signals were recorded
from the impact. The impact plate was a polished block of
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stainless steel with a depth of 2 cm. The mass of the impact
plate was much larger than the hazelnuts in order to minimize
vibrations from the plate interfering with acoustic signals
from the kernels. A unidirectional condenser microphone
sensitive to frequencies up to 20 kHz was used to capture
impact sounds. The sound card in a typical personal computer
was used to digitize the microphone signals at a sampling rate
of 48 kHz and 16-bit resolution and then store the microphone
signals for analysis.

Two varieties of hazelnuts were used in the experiments:
“Levant” hazelnuts from the Duzce region of Turkey, and
“Giresun” hazelnuts from the Ordu region of Turkey. All
experiments were conducted using 492 impact sounds
comprising 231 underdeveloped and 261 full Levant-type
hazelnuts and 572 impact sounds of 282 underdeveloped and
290 full Giresun-type hazelnut impact sounds. Levant and
Giresun type hazelnuts come from the eastern and western
Black Sea regions, respectively. Giresun-type hazelnuts are
relatively larger compared to Levant-type hazelnuts. These
two varieties cover the range of sizes that a hazelnut
classification system would encounter.

SIGNAL PROCESSING

Several features were extracted from the impact sound signal
using five different methods: (1) modeling of the signal in the
time domain, (2) computing time domain signal variances in
short-time windows, (3) maxima values in short-time windows,
(4) analysis of the frequency spectra magnitudes, and (5) line
spectral frequencies (LSFs). Each of these methods is discussed
below. Combinations of several of these features were tested for
their ability to yield high classification accuracy.

Time-Domain Signal Modeling
Typical signals from a full hazelnut and from an

underdeveloped hazelnut are shown in figure 1. The extreme
amplitudes of the signals are quite variable, but in general,
the extremes of full hazelnuts are higher than the extremes of
underdeveloped hazelnuts. Additionally, the duration of
signals emanating from nuts with full kernels tends to be
longer than the signals emanating from underdeveloped
hazelnuts. To characterize these types of signal responses,
each signal was modeled in the time domain after transform-
ing it in the following steps:

1. Rectify the signal by taking the absolute value at all
points.

2. Filter the signal in a non-linear way by replacing the
center data point with the maximum value in a seven-
point window.

3. Estimate the four parameters of the Weibull function,
shown in equation 1, which has a shape similar to the
envelope of the processed time domain signal:
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The Weibull parameters a, b, c, and R2 (the coefficient of
multiple determinations for curve fitting) were used as
classifying features. Figure 2 shows rectified and filtered
sound signals and the corresponding Weibull functions.

Figure 1. Typical impact sound signals from an underdeveloped hazelnut (left) and a full hazelnut (right). The extreme value of a full hazelnut is usually
higher than that of an underdeveloped hazelnut. Sound amplitudes ranged between a minimum of −1 V and a maximum of 1 V.

Figure 2. The rectified signal (black line) and non-linear filtered signal (dashed line) corresponding to the sound signals are shown against the estimated
Weibull functions (gray line). The Weibull function captures the envelope of the sound signals.
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Short-Time Variances in Frames of Data
In addition to the Weibull function based on envelope

modeling of impact sounds, variances of these signals were
also computed in short-time windows. The Weibull function
captures the shape of the recorded signal globally, and the
short-time variance information characterizes the local
time-domain variations in the signal. The short-time win-
dows were 50 points in duration and increased in increments
of 30 points so that each window overlapped by 20 points.
The first window began 40 points in front of the maximum of
each signal. Eight short-time windows were computed to
cover the entire duration of all impact signals. After all
variances were computed, they were normalized by the sum
of all eight variances as follows:

 
∑
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where �2
ni and �2

i are the normalized and computed vari-
ances from window i, with i = 1 being the first window and
i = 8 being the last. This method takes into account the in-
creased duration of the signals from underdeveloped hazel-
nuts. As can be seen from figure 3, the average normalized
variances of the last three windows are greater for underde-
veloped hazelnuts compared with full hazelnuts.

Maxima in Short-Time Windows
A window comprising 165 samples starting from 30th

sample after the peak sound magnitude was divided into 11

non-overlapping time-domain windows, and the maximum
value of each window was selected as a feature value.
Maxima in short-time windows also capture the envelope of
the impact sound similar to the variances in short-time
windows.

Frequency Domain Processing
A 256-point discrete Fourier transform (DFT) was

computed from each signal using a Hamming window. The
256-point window covers the impact sound of hazelnuts
starting at about 80 data points before the signal maximum
slope, which corresponds to the moment of impact for the
kernel. The magnitude of each spectrum was computed and
then low-pass filtered using a 20-tap finite impulse response
(FIR) filter that was applied to remove jagged spikes in the
spectra. The low-pass filter had a cutoff frequency of �/4 in
the normalized DFT domain. As can be seen in figure 4, the
frequency spectrum of underdeveloped nuts has a single
sharp peak between 1 and 10 kHz. On the other hand, full
hazelnuts generally have two peaks, one sharp peak and
another broader peak, in the same frequency range. In this
example, peaks of the spectra of full hazelnuts and underde-
veloped hazelnuts are clearly distinguishable; however, there
are significant numbers of examples in which twin peaks of
full hazelnuts are not clearly visible, possibly due to noise.
The frequency corresponding to the peak magnitude in the
frequency spectra was saved as a potential discriminating
feature. In addition, the 15 magnitude values before the peak
and 15 points after the peak were saved and normalized by the
peak magnitude.

Figure 3. Variances of short-time windows of the time domain signals in figure 1 (left) and average variances from short-time windows of the time do-
main signals (right).

Figure 4. Example frequency spectra magnitudes for an underdeveloped hazelnut (left) and a full hazelnut (right). Vertical lines correspond to phase
angles of line spectral frequencies for each nut.
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Line Spectral Frequencies
Linear predictive modeling techniques are widely used in

various speech coding, synthesis, and recognition applica-
tions (Quatieri, 2001). Linear minimum mean square error
(LMMSE) prediction-based data analysis is equivalent to
auto-regressive (AR) modeling of the data. Line spectral
frequency (LSF) representation of the linear prediction (LP)
filter was introduced by Itakura (1975) and used in common
cell phone communication systems, including the GSM and
MELP speech coding systems (Quatieri, 2001). In LMMSE
analysis, it is assumed that sound data can be modeled using
an mth order linear predictor, i.e.:

 ][]2[]1[][ 21 mnxanxanxanx mp −++−+−= K  (3)

where x[n − k] is the sound sample at time instant (n − k)Ts,
and xp[n] is the estimated sound sample at time instant nTs (Ts
is the sampling period). The error signal at index n is e[n] =
x[n] − xpn. The filter coefficients (ak) are determined by mini-
mizing the mean square error: �2

e = E[(x[n] − xp[n])2] (Mitra,
2002, 11.4.2: 776-779). The following set of linear equations
are obtained by taking the partial derivative of E[(x[n] −
xp[n])2] with respect to the filter coefficients (ak) and setting
the results to zero:
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where r[k] represents the autocorrelation sequence of the
zero mean sound data: r[k] = E[x[n]x[n − k]]. In practice, the
autocorrelation sequence is directly estimated from the data,
i.e.:
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where N is the number of sound samples. In some cases, the
above sum is normalized by (N − k) instead of N leading to
an unbiased estimate of the autocorrelation sequence. Line
spectral coefficients are computed from the linear prediction
filter coefficients. The so-called mth order inverse polyno-
mial Am(z) is defined as:

Am(z) = 1 + a1z −1 + ... + amz − m (6)

The polynomial Am(z) is used not only in LSF computation
but also in spectrum estimation. Notice that �2

e/Am(eiw) is
called the auto-regressive spectrum estimate of the sound
data. In speech processing, m = 10 is selected for speech
coding and recognition applications at a sampling frequency
(fs) of 8000 Hz.

This article uses LSFs as feature parameters to represent
impact sounds. The LSF polynomials of order m + 1, Pm+1(z),
and Qm+1(z) are constructed by setting the (m+1)st reflection
coefficient to 1 or −1. In other words, the polynomials
Pm+1(z) and Qm+1(z) are defined as:

 Pm+1(z) = Am(z)+ z −(m+1) Am(z−1) (7)

 Qm+1(z) = Am(z)−z −(m+1) Am(z−1) (8)

Zeroes of Pm+1(z) and Qm+1(z) are called the line spectral
frequencies (LSFs), and they all lie on the unit circle in the
complex z-domain. Zeroes of Pm+1(z) and Qm+1(z) uniquely
characterize  the LPC inverse filter Am(z); that is, one can
uniquely construct the LP filter coefficients from the LSFs.
Phase angles of the LSFs tend to concentrate around
spectrum peaks, as shown in figure 4. In these plots, phase
angle range [0, �] is mapped to range [0, 24 kHz] because the
sampling frequency was 48 kHz. Due to this interesting
property, LSFs concisely represent the spectrum of the
impact sound, and that is why they are selected as a set of
sound features in this article. Additionally, computation of
the LSFs is not intensive and can be carried out in real-time
(Itakura, 1975).

CLASSIFIER

Support-vector machines (SVMs) have been used in a
number of applications, including isolated handwritten digit
detection (Cortes and Vapnik, 1995; Schölkopf et al., 1995,
1996, 1997), object recognition (Blanz et al., 1996), and face
detection in images (Osuna et al., 1997). SVMs were used in
this study to identify and distinguish underdeveloped hazel-
nuts from fully developed hazelnuts. SVMs can be briefly
explained by comparing them to the well-known method of
linear discriminant analysis (LDA). With LDA, a training set
is used to estimate variances and co-variances, which are
used to compute Mahalanobis distances from an unknown
sample to the centroid of each class (Huberty, 1994). The
unknown sample is then classified into the group associated
with the smallest Mahalanobis distance to the group centroid.
The line where the Mahalanobis distance from each group is
equal marks the decision boundary between the groups. This
method assumes Gaussian distributions of data, and it works
well when the data are fairly well clustered. In a two-class
problem, however, data far away from the decision boundary
(such as on opposite sides of the centroids) are given just as
much importance as data near the decision boundary (or
in-between centroids of the two classes). Sometimes these
data that are far from the decision boundary contribute to
higher variance within a class and lead to non-optimal
placement of the decision boundary and erroneous classifica-
tions.

In contrast, SVMs (Burges, 1998; Hearst, 1998; Schölkopf
et al., 1999) seek to define a boundary between classes that
maximizes the distance between training set samples from
different classes that happen to lie near each other, and they
give little importance to samples far away from the decision
boundary. For example, figure 5 shows two hypothetical
training sets that might be taken from a two-class training set.
SVMs seek to define a boundary between two classes as a line
that intersects the minimum distance between the hulls
(dotted line) between two groups. Thus, classification by
SVM is concerned only with data from each class near the
decision boundary, called support vectors. Another advan-
tage of SVMs is that no assumption needs to be made about
the distribution of the data. The data need not be normally
distributed nor even continuously distributed. Algorithms to
compute the boundary line as a polynomial, a sigmoid, or a
radial basis function have been developed.

The radial base function (RBF) or kernel function was
used in this study to detect underdeveloped hazelnuts. The
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Figure 5. Decision boundary determination by SVM using a linear kernel.
Black dots indicate feature vectors of the first class, and white circles indi-
cate feature vectors of the second class. Lines (or hyperplanes in higher
dimensions) separate the decision regions of the first and second classes.

SVM classification was performed using a free software
package called LIBSVM (Chang and Lin, 2001). This pack-
age scales the features between −1 and 1. The SVM was
trained and tested on randomly selected data subsets of equal
sizes. Four groups of test and training sets were constructed
by random selection four different times. The SVM was
trained and tested on these four groups, and the final classifi-
cation results reported are the average of the four training set
classification results. The LIBSVM package is written for
many programming languages; however, the C version of the
package was used for this study.

RESULTS
Classification results using each type of feature are

summarized separately in tables 1 and 2for both Levant and
Giresun type hazelnuts. Results using a combination of
different feature types are summarized in table 3. The
features comprising the eight short-time variances had the
lowest classification performance: 89.9% and 93.7% for
Levant and Giresun type hazelnuts, respectively. While this
feature characterizes the duration of the impact sound, like
the Weibull parameters it does not characterize the overall
shape of the signal in the time domain as well. The set of
short-time maxima alone or the set of Weibull parameters
(a, b, c, and R2) had accuracies nearly as high as any other
single feature or combinations of features. This is due to their
ability to model the shape of the signal in the time domain
closely. However, computation of Weibull parameters is
rather computationally intensive, while short-time maxima
are not. Short-time maxima had the highest classification
accuracy for Levant-type hazelnuts and the second highest
for Giresun-type hazelnuts. Given the high classification
accuracy of short-time maxima features and the simple
computations required to generate these, the set of short-time
maxima features are likely the best single feature type. The
two frequency-based features, spectrum magnitudes and
LSFs, also had similar classification accuracies and are easy
to compute. The m = 10 LSFs had the highest classification
accuracy for Giresun-type nuts by a slight margin over the set
of short-time maxima. For Giresun-type nuts, the two

Table 1. Classification accuracies (%) obtained by different feature
vectors for Levant and Giresun type hazelnuts. Results are listed
from lowest to highest classification accuracy for each nut type.

Feature

Under-
developed

(%)
Full
(%)

Overall
(%)

Levant Short-time variances 87.5 91.8 89.8
m = 10th order LSFs 93.8 92.7 93.2
Spectrum magnitudes 94.6 93.1 93.8
Weibull 95.9 94.7 95.2
Short-time maxima 95.5 96.2 95.9

Giresun Short-time variances 92.9 94.5 93.7
Spectrum magnitudes 95 97.2 96.2
Weibull 98.6 96.6 97.6
Short-time maxima 100 95.2 97.6
m = 10th order LSFs 97.9 97.9 97.9

Table 2. Classification accuracies (%) obtained by various
orders of LSFs for Levant and Giresun type hazelnuts.

Order

Under-
developed

(%)
Full
(%)

Overall
(%)

Levant m = 8 94 88.9 91.3
m = 9 95.7 88.7 92
m = 10 93.8 92.7 93.2
m = 11 94 89.1 91.4
m = 12 92.2 91.8 92

Giresun m = 8 95 93.1 94.1
m = 9 95.7 95.9 95.8
m = 10 97.9 97.9 97.9
m = 11 97.2 97.2 97.2
m = 12 97.2 96.6 96.9

Table 3. Classification accuracies (%) obtained by composite feature
vectors containing various features for Levant and Giresun

type hazelnuts. Feature sets are listed from lowest
to highest accuracy for each nut type.

Feature Vector

Under-
developed

(%)
Full
(%)

Overall
(%)

Levant Weibull and LSFs 96.6 95.4 96.0
Maxima and LSFs 96.1 97.1 96.7
Weibull and maxima 96.1 97.7 97.0

Giresun Weibull and maxima 99.3 96.6 97.9
Weibull and LSFs 99.3 97.9 98.6
Maxima and LSFs 100 99.3 99.7

frequency spectra based features had higher accuracies for
full nuts (table 1), probably due to their ability to detect the
shape of the sharp peak in the frequency spectrum.

All possible combinations of feature parameters in a SVM
machine were studied. Combining feature types improved
accuracies slightly. The three feature parameters for each nut
type are listed in table 3. Overall accuracies over 97% were
achieved for both Levant-type and Giresun-type hazelnuts
using various combinations of features, as shown in table 3.
Similar results were obtained with SVMs using sigmoid and
polynomial kernel functions. The feature vector comprising
LSFs and time-domain maxima information produced a
96.7% classification accuracy for Levant-type hazelnuts and
99.7% for Giresun-type nuts. The slightly lower accuracy for
Levant-type nuts might be due to these nuts being of smaller
size and weight and therefore not producing sound with as
much energy. Feature vectors comprising Weibull parame−
ters and LSFs had high classification accuracies for both nut
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types (table 3). However, computation of Weibull parameters
is computationally intensive, as stated earlier. Algorithms
that are more computationally efficient exist for the other fea-
ture parameters, which can all be computed in real-time to
realize a system capable of processing more than 40 nuts per
second. Therefore, a feature vector combining LSFs and
time-domain maxima appears to be the best for classifying
underdeveloped and full hazelnuts in real-time applications.
This vector carries information related to both time and fre-
quency of impact sounds.

CONCLUSIONS
This article describes an effective and low-cost impact

sound-based classification system to distinguish between full
and underdeveloped hazelnuts. Impact sounds of hazelnuts
were analyzed, and feature parameters describing time and
frequency domain characteristics of the acoustic signals were
extracted and combined into feature vectors. The feature
vector comprising LSFs and time-domain maxima, having
both time and frequency information of the impact sound,
enabled underdeveloped and full hazelnuts to be classified
with over 96% accuracy by using an SVM-based classifier for
Levant-type hazelnuts. The prototype classification system
used computationally efficient features and methods that are
efficient to compute and that require only modest computing
hardware. The proposed system has the potential to process
more than 40 nuts per second in real-time.
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