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Abstract An integer is called y-rough if it is composed solely of primes > y. Let �.�
be the floor function. In this paper, we exhibit an asymptotic formula for the counting
function of integers n � x such that �nc� is y-rough uniformly for a range of y that
depends on 1 < c < 2229/1949.
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1 Introduction

Piatetski-Shapiro was the first to show that the primes in the sequences of the form
{�nc�}n∈N obeys an asymptotic law whenever 1 < c < 12/11 (see [8]), hence the
name. Since then, the admissible range of such values of c has been extended by many
authors, and currently the best known result is 1 < c < 2817/2426 due to Rivat and
Sargos [9] (see also [10])

In this paper, our motivation is to study a slightly general problem: the distribu-
tion of rough values of Piatetski-Shapiro Sequences. We advertise this problem as a
generalization of counting primes in Piatetski-Shapiro sequences, because, there is a
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B Yıldırım Akbal
yildirim.akbal@bilkent.edu.tr

1 Department of Mathematics, Bilkent University, Bilkent, 06800 Ankara, Turkey

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00605-016-0993-y&domain=pdf


2 Y. Akbal

trivial one-to-one correspondence between integers 1 < �nc� � x such that �nc� is
x1/2-rough and those primes of the form �nc� lying in the interval (x1/2, x].

To state the theorem, some notation is in order.
For c > 1 non-integral and for �xc� > y � 2 real numbers, we define

�c(x, y) = #{n � x : P−(
⌊
nc

⌋
) > y},

where P−(n) denotes the least prime divisor of nwith the convention that P−(1) = ∞.
We let

�(x, y) = #{n � x : P+(n) � y},
where P+(n) denotes the largest prime divisor of n with the convention that P+(1) =
0. Given ε > 0, we set

Hε,c = {
(x, y) : x > x0(ε, c), exp{(log log xc)5/3+ε} � y � xc

}
.

For u = (log x)/(log y) � 0, we let w(u) be the Buchstab’s function (see [12, Sect.
III.6]), and let ρ(u) be the Dickman’s function (see [12, Sect. III.5]). We let

Wc(x, y) =
{

(xw(cu) − y1/c) eγ

ζ(1,y) , in Hε,c,
x

ζ(1,y) , otherwise,

where γ is the Euler–Mascheroni constant and

ζ(1, y) =
∏

p: prime
p�y

(1 − p−1)−1.

We put H(u) = exp(u/ log2(u + 2)).
In our setting, we first derive an asymptotic for �c(x, y) holding uniformly for a

range of y depending on 1 < c < 2229/1949 = 1.14366 . . .

Theorem 1 For 1 < c < 2229/1949 fixed, there are positive numbers ρ and η such
that for any 0 < ε < ρ the following asymptotic formula holds

�c(x, y) = W(x, y) + O(max{x1−η, Rc(x, y)}) (1)

uniformly for

2 � y <

{ �xc� , when 1 < c < 2509/2229,
x (1669−1389c)/280−ε, when 2509/2229 � c < 2229/1949,

(2)

where

Rc(x, y) =
{
xρ(cu)(log y)−1(H(cu)−a + exp(−(log y)3/2−ε)), in Hε,c,

log x
(
maxxc�t�y tδ−1�(t, y)

)
, otherwise.

for some absolute constant a > 0.
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Rough values of Piatetski-Shapiro sequences 3

Here we note that the error term in (1) is not sensitive to very small values of y.
To illustrate this, given 1 < c < 2229/1949, we take y = logA(xc), for A > c. Then
tδ−1�(t, y) � xδ−1/A+o(1) (see [7]) uniformly for every xc � t � y, and for large x .

�c(x, y) − x

ζ(1, y)
� max

{
x1−η, x1−

c
A+o(1)

}
.

Picking A sufficiently close to c and x large, we see that x1−η dominates the other
term in the maximum above.

We also remark that if c � 2229/1949 one may use sieve methods. It is not hard
to show that

⌊
nc

⌋ ≡ 0 (mod d) ⇐⇒
{
nc

d

}
<

1

d
.

Thus by Erdős–Turán inequality ([2, Theorem 2.1]), it follows that

#
{
n � x : ⌊

nc
⌋ ≡ 0 (mod d)

} = x

d
+ Ec(x, d)

where Ec(x, d) satisfies ∑

d�xα

|Ec(x, d)| � x1−ε

for some α = α(c) by either van-der Corput’s or Vinogradov’s exponential sum
estimates. Hence using Brun’s Sieve we obtain

�c(x, y) 
 x

log y

uniformly for 2 � y � xβ , where β depends only on c. Furthermore with some work
it can be shown that, using for instance Heath-Brown’s recent kth derivative test (see
[4]), one has β ∼ a/c2 for some a > 0 fixed. Since this result is rather weak compared
to Theorem 1, we do not pursue this here.

Manuplating the Euler product of Dirichlet series of integers that are free of primes
� y, one arrives at the convolution identity

∑

d|n
P+(d)�y

μ(d) =
{
1, if P−(n) > y,
0, otherwise.

(3)

By Lemmas 1 and 2, the proof of the theorem reduces to exponential sums over rough
numbers. Using the identity (3), one converts these exponential sums into exponential
sums over integers that are free of large prime factors, in turn by Lemma 4, creating
multinomial exponential sums of type (7). Treatment of these exponential sums differs
depending on the size of y; that is, when y is small, we use Lemma 9; when y is large,
we take into account the variation of the related parameters by combining Lemmas 9
and 10.
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4 Y. Akbal

1.1 Preliminaries and notation

1.1.1 Notation

Given a real number x , we write e(x) = e2π i x , {x} for the fractional part of x and �x�
for the greatest integer not exceeding x . The notation ‖x‖ is used to denote the distance
from the real number x to the nearest integer. We write n ∼ N to mean that n lies in
a specified subinterval of (N , 2N ]. Furthermore, c > 1 is a fixed real number and we
put δ = 1/c. Throughout of this paper p always denotes a prime number. We recall
that for functions F and real nonnegative G the notations F � G and F = O(G)

are equivalent to the statement that the inequality |F | � αG holds for some constant
α > 0. Further we use F 
 G to indicate that both F  G and F � G hold. We put

ψ(x) = x − �x� − 1/2, and �ψ(x) = ψ(−(x + 1)δ) − ψ(−xδ).

In a slight departure from convention, we shall frequently use ε and η to mean small
positive numbers possibly not the same at each occurrence.

1.1.2 Preliminaries

In this section we state several lemmata that are to be used to reduce the proof of
Theorem 1 to exponential sums.

Lemma 1 Let c > 1. Suppose {an} is a sequence of complex numbers with norm at
most one. Then

∑

n�x

a�nc� =
∑

n�xc
anδn

δ−1 +
∑

n�xc
an�ψ(n) + O(1)

where the implied constant depends only on c.

Proof The equalitym = �nc� holds precisely whenm � nc < m+1, or equivalently,
when −(m + 1)δ � n < −mδ . Hence,

∑

n�x

a�nc� =
∑

m�xc
am

(⌊−mδ
⌋ − ⌊−(m + 1)δ

⌋) + O(1).

The desired result follows upon recalling the facts

(m + 1)δ − mδ = δmδ−1 + O(mδ−2) (m � 1)

and ∑

m�xc
amm

δ−2 = O(1).

��
To deal with the penultimate term in Lemma 1, we use the following Lemma.
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Rough values of Piatetski-Shapiro sequences 5

Lemma 2 Suppose 1 < y < z. Let HN � 1 be a real number. Then

∑

N<n�N ′
an�ψ(n) � NH−1

N + H1/2
N N δ/2 + H−1

N log HN N
1−δ

+ N δ−1 max
N�N ′′�2N

∑

1�h�HN

∣∣∣
∣

∑

N<n�N ′′
ane(hn

δ)

∣∣∣
∣

for every N < N ′ � 2N, where the implied constant depends only on δ.

Proof The proof follows using standard arguments, see e.g. [5, Sect. 4]. ��
Lemma 3 For H2 � H � H1 � 1, let

L(H) =
m∑

i=1

Ai H
ai +

n∑

j=1

Bj H
−b j ,

where Ai , Bj , ai and b j are positive real numbers. Then

max
H1�H�H2

L(H) �
m∑

i=1

Ai H
ai
1 +

n∑

j=1

Bj H
−b j
2 +

m∑

i=1

n∑

j=1

(
A
bj
i Bai

j

)1/(ai+b j )

where the implied constants depends only on m and n.

Proof See [5, Lemma 2.4.]. ��
The following lemma allows one to factorize friable numbers in a convenient

manner.

Lemma 4 Suppose that 2 � y � R � n � x, with P+(n) � y. Then there is a
unique triple (p, u, v) with,

(i) n = puv

(ii) p � y
(iii) R/p < v � R with P−(v) � p and P+(v) � y
(iv) u � x/pv with P+(u) � p

Proof See e.g. [13, Lemma 10.1.]. ��
Lemma 5 For any integer κ � 3, and every real number ε > 0, there is an exponent
pair given by

(k, l) =
(

2

(κ − 1)2(κ + 2)
, 1 − 3κ − 2

κ(κ − 1)(κ − 2)
+ ε

)

Proof See [6, Theorem 2]. ��
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6 Y. Akbal

1.1.3 Exponential sums with monomials

For H, K and L positive integers, X > 0 a real number; moreover a(h, n) and b(m)

complex numbers with norm at most one, we define

S =
∑

H<h�2H

∑

K<n�2K

a(h, n)
∑

L<m�2L

b(m)e

(
X

hβnγmα

HβK γ Lα

)
.

The following theorem is well-known result of Robert and Sargos (see e.g. [11]).

Lemma 6 Suppose α, β and γ be real numbers such that α(α − 1)βγ �= 0. Then for
every ε > 0

S � (HK L)1+ε

{(
X

HK L2

)1/4

+ 1

(HK )1/4
+ 1

L1/2 + 1

X1/2

}
.

where the implied constant depends only on α, β, γ and ε > 0.

Lemma 7 Suppose α, β and γ be real numbers such that α(α − 1)βγ �= 0. Further
suppose b(m) is an indicator function of a subinterval of (L , 2L]. Then

S � (HK L)1+ε

{(
X

HK L2

)1/4

+ 1

L1/2 + 1

X

}
,

where the implied constant depends only on α, β, γ and ε > 0.

Proof See [11, Theorem 1]. ��
The next result is a generalization of themethod of estimating so called Type II sums in
[6]. This was later generalized by Roger Baker (see e.g. [1]) to arbitrary exponent pairs
under the assumption X � HK . Here we reprove his theorem in a slightly general
manner.

Lemma 8 Let (k, l) be an exponent pair. Suppose α < 1, and αβγ �= 0. Then

S � HLK log(2HK L)

{(
Xk

L1+k−l HkK k

)1/2(k+1)

+ 1

(HK )1/2
+ 1

X1/2

+ 1

L(1+k−l)/2(k+1)

}

where the implied constant depends only on α, β, γ and (k, l).

Proof We may assume Xk

L1+k−l Hk K k < 1 and X � 3, otherwise the result is trivial. By
Cauchy–Schwarz inequality one has

S2 � L
∑

L<m�2L

∣∣∣∣
∑

H<h�2H

∑

K<n�2K

a(h, n)e

(
X

hβnγmα

HβK γ Lα

) ∣∣∣∣

2

.
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Rough values of Piatetski-Shapiro sequences 7

We now use [9, Lemma 5] with the choices xi = hβ
1 n

γ
1

2β+γ+1HβK γ and zi = X hβnγ mα

HβK γ Lα

yielding

S2 � L

η

∑

h1,h2∼H
n1,n2∼K
|�|<η

∣∣∣∣
∑

m∼L

e

(
2γ+β+1X�

mα

Lα

) ∣∣∣∣

where � = hβ
1 n

γ
1 −hβ

2 n
γ
2

2β+γ+1HβNγ , and 1/2 > η > 0 to be determined later. We next suppose
η � 1/X and estimate the innermost sum trivially by L whenever |�| < 1/X , which
by [3, Lemma 1] gives rise to a contribution

� E := log(2HK )

{
L2HK

η
+ H2K 2L2

ηX

}
.

Applying the exponent pair (k, l) whenever 1
X � |�| < η, it follows that

S2 � L

η

∑

h1,h2∼H
n1,n2∼K
1
X �|�|<η

{
Xk |�|k Ll−k + L

X |�|
}

+ E � I1 + I2 + E

whereI1 andI2 denote the contribution of first and second terms in braces respectively.
It is not too hard to see that splitting up the interval 1

X � |�| < η into � log X �
log(2HK L) dyadic intervals and applying [3, Lemma 1] on each such interval, one
has I2 � log(2HK L)E . Furthermore, by [3, Lemma 1], it follows that

I1 log−1(2HK ) � ηk−1L1+l−k Xk HK + ηk L1+l−k Xk H2K 2.

Choosing 1
X � η < 1/2 optimally by Lemma 3, one gets

S2 log−2(2HK L) � L2HK + H2K 2L2

X
+ L1+l−k Xk HK + L1+l−k H2K 2

+ L
1+l+k
1+k H

2+k
1+k K

2+k
1+k X

k
1+k + H2K 2L

1+l+k
1+k + L1+l−k Xk H2−k K 2−k,

hence the claimed result follows on using the assumptions that were made in the
beginning.

The following result is useful when dealing with small y’s in Theorem 1.

Lemma 9 Suppose 1 < c < 2229/1949. Then for every exponent pair (k, l) and
every ε > 0, there is a positive number η = η(c, ε, (k, l)) > 0 such that

∑

1�n�xc

P−(n)>y

�ψ(n) � Ic(k, l, x, y)xε + x1−η, (4)
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8 Y. Akbal

where Ic(k, l, x, y) is defined in (13) and the implied constant depends only on c, ε
and (k, l).

Proof Let 0 < κ < /100 be a small constant to be determined. Fixing 1 < c <

2229/1949, we may assume that y � x
c

c+κ , otherwise the result is trivial because of
the factor x1/2y in Ic(k, l, x, y). Let 2 � y � M � x

c
c+κ be a parameter to be chosen.

Then ∑

1�n�xc

P−(n)>y

�ψ(n) =
∑

Mc+κ<n�xc

P−(n)>y

�ψ(n) + O(Mc+κ). (5)

We next divide the interval (Mc+κ , xc] into intervals of the form (N , N ′], where
N ′ = max{2N , xc}. Let 0 < η < 1/1000 be a constant to be chosen. Using Lemma
2 with HN = N 1−δ+η on each such interval, we end up with estimating

N δ−1 max
N<N ′�2N

∑

1�h�HN

εh
∑

N<n�N ′
P−(n)>y

e(hnδ) + N δ−η (6)

for some complex numbers εh not exceeding 1 inmodulus and for allMc+κ < N � xc.
To estimate the double sum above, we first use the convolution identity in (3) so as

to convert it into

S(N ) :=
∑

1�h�HN

εh
∑

d f ∼N
P+(d)�y

μ(d)e(h(d f )δ).

On splitting ranges of h, d, f into � log3 N dyadic intervals one has

S(N ) �
∑

H=2k�HN
K=2l�N
L=2r�N
K L
N

|S(K , L , H)|

where
S(K , L , H) =

∑

h∼H

εh
∑

d∼K
f ∼L

d f ∼N
P+(d)�y

μ(d)e(h(d f )δ). (7)

Our first task is to show that, whenever 1 < c < 2229/1949

S(K , L , H) � N 1−2η+ε′
provided that K � N δ−5η

uniformly for every y.
Let ε′ > 0 be a small number. A straightforward application of Lemma 7 yields

S(K , L , H) � N 1−2η+ε′
provided that K � N 3δ−2−12η (8)
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Rough values of Piatetski-Shapiro sequences 9

uniformly for all y. As for the case N δ−5η � K > N 3δ−2−12η: using the elementary
estimate

∫ 1/2

−1/2

∣
∣∣∣

∑

m∈IN
e(αm)

∣
∣∣∣dα �

∫ 1/2

−1/2
min

{
1

||α|| , N
}
dα � log 2N (N � 1), (9)

holding for any sub-interval of IN ⊂ [N , 2N ), it follows that for some complex
numbers a(h, f ) and b(d) not exceeding 1 in modulus, one has

S(K , L , H) =
∫ 1/2

−1/2

∑

h∼H

∑

f∼L

a(h, f )
∑

d∼K

b(d)e(−αd)e(h(d f )δ)
∑

m∼N/ f

e(αm)dα

� log N sup
α∈[−1/2,1/2]

∣∣∣
∣
∑

h∼H

∑

f ∼L

a(h, f )
∑

d∼K

b(d)e(−αd)e(h(d f )δ)

∣∣∣
∣.

(10)

Lemma 8 yields

S(K , L , H) log−2 N � (
H1/2
N N 1−δ/2 + H1/2

N N 1/2K 1/2

+ HN NK−(1+k−l)/(2(k+1)) + HN N
(2+k(δ+1))/(2(k+1))K−(1−l)/2((1+k))),

where (k, l) is an exponent pair. Examining the worst scenario, we derive that

S(K , L , H) � N 1−2η log2 N (11)

holds whenever

N (1−δ)(k+2)/(1−l)+6η(k+1)/(1−l) � K � N δ−5η.

In order that this last estimate is applicable whenever K > N 3δ−2−12η, we should
have

3δ − 2 − 12η > (1 − δ)(k + 2)/(1 − l) + 6η(k + 1)/(1 − l).

This is satisfied if 1 < c < k−3l+5
k−2l+4 and that η sufficiently small. To get 1 < c <

2229/1949, we pick (k, l) = B(1/162, 359/378 + ε) = (85/189 + ε, 41/81). Here
the exponent pair (1/162, 359/378 + ε) is obtained by taking κ = 7 in Lemma 5.

To handle the case K > N δ−5η, we choose κ = 5ηc/(δ −5η) so that the inequality
(δ − 5η)(c + κ) = 1 is satisfied, yielding

y � M � M (c+k)(δ−5η) � N δ−5η � K < d � 2K .
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10 Y. Akbal

It hence follows by Lemma 4 that

S(K , L , H) =
∑

h∼H

εh
∑

f ∼L

∑

p�y

∑

M/p<v�M
P+(v)�y
P−(v)�p

∑

u∼K/pv
u∼N/pv f
P+(u)�p

μ(puv)e(h(uvp f )δ).

Here it is clear that the presence of the factorμ(puv)makes the inequalities P+(u) �
p and P−(v) � p strict, allowing one to split the möbius function:

−S(K , L , H) =
∑

h∼H

εh
∑

f∼L

∑

p�y

∑

M/p<v�M
P+(v)�y
P−(v)>p

∑

u∼K/pv
u∼N/pv f
P+(u)<p

μ(u)μ(v)e(h(uvp f )δ).

On splitting the ranges of p, v, u into dyadic intervals, we are to estimate

S(K , L , H,U, V, P) :=
∑

h∼H
f∼L
u∼U

εhμ(u)
∑

p∼P
v∼V

P+(u)<p
uv f p∼N
uvp∼K

a(v, p)e(h(uvp f )δ).

for some a(v, p) complex numbers not exceeding one in modulus. We next note that
S(K , L , H,U, V, P) is

∫ 1/2

−1/2

∫ 1/2

−1/2

∑

h∼H
f ∼L
u∼U

εhμ(u)
∑

p∼P
v∼V

a(v, p)e(h(uvp f )δ + αpv + βp)

∑

n f u∼N
nu∼K

e(−αn)
∑

m∼P
P+(u)<m

e(−mβ)dαdβ

for some a(v, p) complex numbers not exceeding one inmodulus.Here the last expres-
sion, by (9), equals

� log2 N
∑

h∼H
f∼L
u∼U

∣
∣∣∣
∑

p∼P
v∼V

a′(v, p)e(h(uvp f )δ)

∣
∣∣∣

for some |a′(v, p)| � 1. Grouping the terms r = u f and r ′ = pv, it follows that
S(K , L , H,U, V, P) is

�
∑

h∼H
r
LU

c(r)

∣∣
∣∣

∑

r ′
PV

c′(r ′)e(h(rr ′)δ)
∣∣
∣∣
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Rough values of Piatetski-Shapiro sequences 11

for some |c(r)|, |c′(r ′)| � d(r), where d(r) is the divisor function. Using the bound
d(r) � rε and the relations LU PV 
 N , M/P � V � M , Lemma 8 yields

S(K , L , H,U, V, P)N−2ε � HN
k(δ+1)+2
2(k+1) M− 1−l

2(k+1) + H1/2N 1/2P1/2M1/2

HNM− 1+k−l
2(k+1) + H1/2N 1−δ/2,

thus

S(K , L , H)N−3ε � HN
k(δ+1)+2
2(k+1) M− 1−l

2(k+1) + H1/2N 1/2P1/2M1/2 (12)

HNM− 1+k−l
2(k+1) + H1/2N 1−δ/2

whenever K � N δ−5η.
Summing over K , L and H subject to the bounds in (8), (11), (12) and plugging

the resulting estimate into (6), finally summing over N , we get

∑

1�n�xc

P−(n)>y

�ψ(n) � x3ε+η

(
x

k(c+1)+2c
2(k+1) M− 1−l

2(k+1) + x1/2y1/2M1/2

+ xcM− 1+k−l
2(k+1) + Mc

)
+ x1−η.

Choosing y � M � x
c

c+κ optimally by Lemma 3 we get

∑

1�n�xc

P−(n)>y

�ψ(n) � x4ε
(
x

k(c+1)+2c+1−l
2(k+1) + x1/2y + xc−

(1+k−l)
2(k+1) + yc + x

2c2(k+1)
2c(k+1)+1+k−l

x
c(k(c+1)+2c)
2(k+1)c+l−1 + x

c(k+2)+k+1−l
2(2+k−l) y

1−l
2(2+k−l) + x

1+k−l+2c(k+1)
2(2+2k−l) y

1+k−l
2(2+2k−l)

)

+x1−η

:= x4εIc(k, l, x, y) + x1−η. (13)

Replacing 4ε by ε the desired result follows. ��
If y � x4/5 (say), Lemma 9 provides no usefull information. Hence, for large values

of y we use the following lemma.

Lemma 10 Suppose 1 < c < 2. Then for every ε > 0, there is a positive real number
η = η(ε, c) such that

∑

1�n�xc

L<P−(n)�y

�ψ(n) � xε

{
x

3c+1
4 L−1/4 + x

2c+1
4 y1/4 + xcL−1/2

}
+ x1−η,

uniformly for every 1 � L < y � xc.
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12 Y. Akbal

Proof We split the sum into � log x dyadic sums of the form (N , N ′], where N ′ =
max(2N , xc), then apply Lemma 2 with HN = N 1−δ+η. Thus for N � 2 we are to
estimate

S(N ) =
∑

1�h�HN

∣
∣∣∣

∑

N<n�N ′
L<P−(n)�y

e(hnδ)

∣
∣∣∣ =

∑

1�h�HN

∣
∣∣∣

∑

L<p�y

∑

N/p<n�N ′/p
P−(n)�p

e(hpδnδ)

∣
∣∣∣

=
∑

1�h�HN

εh
∑

L<p�R

∑

N/p<n�N ′/p
P−(n)�p

e(hpδnδ)

for some εh complex number with modulus at most 1. We next divide all the ranges
of h, p and n into dyadic intervals:

S(N ) =
∑

H�HN
H=2k

∑

L<P�y
P=2s

∑

N/P<X�2N ′/P
X=2m

S(X, P, H)

where
S = S(X, P, H) =

∑

h∼H

∑

n∼X

∑

p∼P
np∼N

P−(n)�p

εhe(hn
δ pδ).

The conditions P−(n) � p and np ∼ N may be omitted as before, yielding

S � log P sup
α∈[−1/2,1/2]

∣∣∣∣
∑

h∼H

∑

n∼X

∑

p∼P

a(n, h)e(αp)e(hnδ pδ)

∣∣∣∣

for some complex numbera(n, h)withmodulus atmost 1.ApplyingLemma6 together
with the relation PX 
 N and summing over H, X and P yields

S(N )N δ−1−ε/2 � N δ−1
(
HN N

3+δ
4 L−1/4 + H3/4

N N 3/4y1/4

+ HN NL−1/2 + H1/2
N N 1−δ/2

)
.

The desired result now follows by summing over N . ��

1.2 Proof of Theorem 1

Proof Lemma 1 implies

�c(x, y) =
∑

n�nc

P−(n)>y

δnδ−1 +
∑

n�xc

P−(n)>y

�ψ(n) + O(1).
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Rough values of Piatetski-Shapiro sequences 13

We first obtain the main term. Combining [12, Theorem 7] and [12, Entry 51]
together with the partial summation formula, one obtains

∑

n�xc

P−(n)>y

δnδ−1 = x

ζ(1, y)
+ O

(
log x

(
max

xc�t�y
tδ−1�(t, y)

) )
,

hence the desired result when (x, y) /∈ Hε,c.
For the case (x, y) ∈ Hε,c, we first record the following result.

Lemma 11 Suppose a � 0, and let 1 < c < 2 be a fixed number. For every (x, y) ∈
Hc,ε the following estimate holds

∫ xc

y

tδ−1

Ha
( log t
log y

)ρ

(
log t

log y

)
dt � xρ (cu)

Ha
(
cu

) .

Proof We may assume that y � xc/3, otherwise, since ρ(v) and H(v) are uniformly
bounded, the result is trivial.

Let f (t) = tδ−1/2

Ha
(
log t
log y

)ρ
(
log t
log y

)
be defined for all xc � t � y. It is suffices to show

that the relation
f (t) � C f (xc) (14)

holds for some constantC independent of y. Assume xc � t � y3. Using [12, Lemma
8.1] and [12, Corollary 8.3], it follows that

f ′(t) = tδ−3/2ρ(v)H−a(v)

{
δ − 1/2 − log(v log v)

log y

(
1 + O

(
log log v

log2 v

))
− a

H ′(v)

H(v) log y

}

where v = log t/ log y � 3. Thus for any fixed 1 < c < 2, given ε > 0 and x large
f ′(t) > 0 is satisfied when (x, y) ∈ Hε,c. This proves (14) uniformly in y, whenever
xc � t � y3. As for the case: xc � y3 � t � y, (14) is satisfied uniformly, since
ρ(v) and H(v) are bounded, we have

f (t) � C ′ f (y3) � CC ′ f (xc)

for some constant C ′, hence the result. ��
Riemann–Stieltjes integration together with [12, Corollary 7.5] implies that

∑

n�nc

P−(n)>y

δnδ−1 = 1

ζ(1, y)

∫ xc

y
δtδ−1w

(
log t

log y

)
dt

+ 1

ζ(1, y) log y

∫ xc

y
δtδ−1w′

(
log t

log y

)
dt +

∫ xc

y−
δtδ−1d[R(t, y)]

(15)
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14 Y. Akbal

where

R(t, y) = xρ(log t/ log y)

log2 y

{
H−a(log t/ log y) + exp{(log y)−3/2+ε}

}

Noting the upper bound w′(u) � ρ(u)H−a′
(u) for some a′ > 0 and for every u � 0

(see [12, Theorem 6])), partial summation and Merten’s theorem (see [12, Theorem
11]) yield

1

ζ(1, y)

∫ xc

y
δtδ−1w

(
log t

log y

)
dt = (xw(cu) − yδ)

eγ

ζ(1, y)

+ O

(
1

log2 y

∫ xc

y

tδ−1

Ha
(
log t
log y

)ρ

(
log t

log y

)
dt

)
.

Lemma 11 now implies that,

∑

n�nc

P−(n)>y

δnδ−1 − (xw(cu)− yδ)
eγ

ζ(1, y)
� xρ(cu)

log2 y
{H−a(cu)+exp{(log y)−3/2+ε}}.

Having derived the main term, we are now required to show that

∑

n�xc

P−(n)>y

�ψ(n) � x1−η

holds uniformly for aforementioned ranges of y depending on c. We shall do this in
two steps. In the first step, we use Lemma 9 with (k, l) = (85/189+ε, 41/81) giving

∑

n�xc

P−(n)>y

�ψ(n) � xε

(
yc + x1/2y + x

1389c+535
2204 y

70
551 + x

1644c+535
2714 y

535
2714

)
+ x1−η

+ xε

(
x

1389c2+255c
1644c+280 + x

1644c2
1644c+535 + x

926c−25
1644 + x

1644c−535
1644

)

(16)

uniformly for every y � xc. Here, the last four terms may be eliminated at the cost of
assuming 1 < c < 1.1719.

If 2509/2229 � c < 2229/1949, only the third term survives, thereby proving
Theorem 1 for the second range in (2).

To prove Theorem 1 for the first range in (2), we may assume that y >

�x3(c−1)+10η�, otherwise it is easy to see that the left hand side of (16) is x1−η whenever
y � �x3(c−1)+10η�.
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Rough values of Piatetski-Shapiro sequences 15

We note that

∑

n�xc

P−(n)>y

�ψ(n) =
∑

n�xc

P−(n)�L

�ψ(n) −
∑

n�xc

y�P−(n)>L

�ψ(n)

=
∑

n�xc

P−(n)>L

�ψ(n) −
∑

n�xc

y�P−(n)>L

�ψ(n) + O(xc/L) (17)

where the error is due to the possible sum
∑

n�xc

P−(n)=L
� xc/L .

We may choose L = �x3(c−1)+10η� making the first sum � x1−η. With this choice
of L , by Lemma 10, the second sum and the third term above is � x1−η, provided
that y � x3−2c−ε and that 1 < c < 2509/2229.

To get the range y � �xc�, we note that for xc > y � xc/2 one has

∑

n�xc

P−(n)>y

�ψ(n) = O(1) +
∑

p�xc
�ψ(p) −

∑

p�y

�ψ(p) � x1−η, (18)

by [9, Theorem 1] whenever 1 < c < 2817/2426. Since 3 − 2c > c/2, the desired
result follows. ��
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