
iiäÜ ί'Γί • # ïîJ·.. ;Τ· *!Ι'' ■•■ρ 4¿ji'4ibi ifc.rtr«fi .T-· :k·. r;:
1? ·Γί · . .:кі SS! t if. ü; ÎI !r;w· ;іі:. ΐ!ι·. ‘IKS. J, iil- V if .*Π i) V lıijl «Λ»· 1» ιι»ι . Itt.« <$. . :.i m .-'ll·*, a w. V.IVÍ .»klk 'ЧГ̂ ·1Μ<· a.

:: â n .Vf d·· a . 8̂ ·; jii::· ·;■ f ·Ϊ
«1. Jİ1 ·»:.·»«. Ät α I». ur*.
£! »V .Λ η ШІІ .JJ.

9 β
-Κβ7
Э 9 І І .

TAG GING A N D M ORPHOLOGICAL
D ISA M B IG U A T IO N OF T U R K ISH TEXT

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER

ENGINEERING AND INFORMATION SCIENCE

AND THE INSTITUTE OF ENGINEERING AND SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By
Ilker Kuruoz

July, 1994 JM B.L..

f

1 3 3 t ,

^ 0 2 4 3 7 2

11

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Kemal Oflazer (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

i

Asst. Prof. Ilyas Çiçekli

Approved for the Institute of Engineering and Science:

Prof. Mehmet Ba'riiy
Director of the Institute

ABSTRACT

TAGGING AND MORPHOLOGICAL
DISAMBIGUATION OF TURKISH TEXT

İlker Kuruöz
M.S. in Computer Engineering and Information Science

Advisor: Asst. Prof, Kemal Oflazer
July, 1994

A part-of-speech (POS) tagger is a system that uses various sources information
to assign possibly unique POS to words. Automatic text tagging is an impor
tant component in higher level analysis of text corpora. Its output can also be
used in many natural language processing applications. In languages like Turk
ish or Finnish, with agglutinative morphology, morphological disambiguation
is a very crucial process in tagging as the structures of many lexical forms are
morphologically ambiguous. This thesis presents a POS tagger for Turkish text
based on a full-scale two-level specification of Turkish morphology. The tag
ger is augmented with a multi-word and idiomatic construct recognizer, and
most importantly morphological disambiguator based on local lexical neigh
borhood constraints, heuristics and limited amount of statistical information.
The tagger also has additional functionality for statistics compilation and fine
tuning of the morphological analyzer, such as logging erroneous morphological
parses, commonly used roots, etc. Test results indicate that the tagger can
tag about 97% to 99% of the texts accurately with very minimal user inter
vention. Furthermore for sentences morphologically disambiguated with the
tagger, an LFG parser developed for Turkish, on the average, generates 50%
less ambiguous parses and parses almost 2.5 times faster.

Keywords: Tagging, Morphological Analysis, Corpus Development

111

ÖZET

TÜRKÇE METİNLERİN İŞARETLENMESİ VE
BİÇİMBİRİMSEL ÇOKYAPILILIK ÇÖZÜMLEMESİ

İlker Kuruöz
Bilgisayar ve Enformatik Mühendisliği, Yüksek Lisans

Danışman: Yrd. Doç. Dr. Kemal Oflazer
Temmuz, 1994

Sözcük türlerinin işaretlenmesi için kullanılan sistemler metin bilgilerini kulla
narak o metinde bulunan her sözcüğü tek bir tür ile işaretlemeye çalışırlar.
Otomatik olarak işaretleme, metinlerin üst düzey çözümlemesi açısından
önemli bir adımdır ve bu adımın çıktıları pek çok doğal dil işleme uygula
masında kullanılabilir. Türkçe ve Fince gibi çekimli ve bitişken biçimbirimlere
sahip dillerde, sözcükler çoğunlukla biçimbirimsel olarak çokyapılı olduğu için
biçimbirimsel çokyapılılık çözümlemesi önemli bir işlemdir. Bu tez, Türkçe’nin
tam kapsamlı iki aşamalı biçimbirimsel tanımlamasına dayanılarak geliştirilen
bir sözcük türü işaretleyicisini sunmaktadır, işaretleyici aynı zamanda çok
kelimeli ve deyimsel yapıları tanımlayabilmekte, daha önemlisi sözcüklerin
komşularının biçimbirimsel bilgileri ve bir kısım sezgisel bilgiler (heuristics) kul
lanarak biçimbirimsel çokyapılılık çözümlemesi yapabilmektedir, işaretleyici
istatistiksel bilgiler toplamak, biçimbirimsel çözümleyicinin bazı hatalarını
düzeltmek gibi ek işlevlere de sahiptir. Deney sonuçları, işaretleyicinin
metinlerin %97 ila %99’unu çok az kullanıcı yardımı alarak doğru işaretlediğini
göstermiş, bir başka deneyde ise biçimbirimsel çokyapılılık çözümlemesi yapılan
cümlelerin Türkçe için geliştirilen sözcüksel-işlevsel gramer (LFG) sözdizimsel
çözümleyicisi tarafından işlenmesi sonucunda yarıya yakın daha az çözüm
yapısı üretildiği ve bu işlemin 2.5 kez daha hızlı gerçekleştiği gözlenmiştir.

Anahtar Sözcükler: işaretleme, Biçimbirimsel inceleme

IV

ACKNOWLEDGEMENTS

I would like to express my deep gratitude to my supervisor Dr. Kemal Oflazer
for his guidance, suggestions, and invaluable encouragement throughout the
development of this thesis.

I would like to thank Dr. Halil Altay Güvenir and Dr. Ilyas Çiçekli for
reading and commenting on the thesis.

I am grateful to my family, my wife and my friends for their infinite moral
support and help.

Aile’me ve eşim Işıl’a

VI

C ontents

1 Introduction 1

2 Text Tagging 5

2.1 An Example of Tagging P rocess... 5

2.2 Previous Work 8

2.2.1 Rule-based Approaches.. 9

2.2.2 Statistical A pproaches.. 13

3 Morphosyntactic Ambiguities in Turkish 17

4 The Tagging Tool 22

4.1 Functionality Provided by the T o o l ... 22

4.2 Rule-based Disambiguation ... 24

4.3 The Multi-word Construct P ro cesso r... 25

4.3.1 The Scope of Multi-word Construct Recognition.............. 26

4.3.2 Multi-word Construct Specifications.............................. . 27

4.4 Using Constraints for Morphological Ambiguity Resolution . . . 31

4.4.1 Example Constraint Specifications..................................... 32

Vll

CONTENTS viii

4.4.2 Rule C ra ftin g .. 42

4.4.3 Limitations of Constraint-based Disambiguation.............. 43

4.5 Text-based Statistical Disambiguation... 47

5 Experiments with the Tagger 48

5.1 Impact of Morphological Disambiguation on Parsing Performance 50

6 Conclusions and Future Work 51

A Sample Tagged Output 56

A.l Sample T e x t.. 56

A. 2 Tagged O u tp u t .. 58

B Sample Specifications 85

B. l Multi-word Construct Specifications.. 85

B.2 Constraint Specifications... 88

List o f Figures

2.1 Morphological analyzer output of the example sentence............... 7

2.2 Tagged form of the example sentence.. 8

4.1 The user interface of tagging t o o l .. 23

4.2 Output of morphological analyzer for “AH işini tamamlar
tamamlamaz gitti”. ... 29

4.3 Output of morphological analyzer for “Ahmet’ten önce Ali gitti”. 33

4.4 Output of morphological analyzer for “..benim devam etmek..”. . 46

IX

List o f Tables

1.1 Some statistics on morphological ambiguity in a sample Turkish
text... 3

5.1 Statistics on texts tagged... 49

5.2 Tagging and disambiguation results... 49

5.3 Impact of disambiguation on parsing performance.......................... 50

Chapter 1

Introduction

Natural Language Processing (NLP) is a research discipline at the juncture of
artificial intelligence, linguistics, philosophy, and psychology that aims to build
systems capable of understanding and interpreting the computational mecha
nisms of natural languages. Research in natural language processing has been
motivated by two main aims:

• to lead to a better understanding of the structure and functions of human
language, and

• to support the construction of natural language interfaces and thus to
facilitate communication between humans and computers.

The main problem in front of NLP which has kept it from full accomplish
ment is the sheer size and complexity of human languages. However, once ac
complished, NLP will open the door for direct human-computer dialogs, which
would bypass normal programming and operating system protocols.

There are mainly four kinds of knowledge used in understanding natural
language: morphological, syntactic, semantic and pragmatic knowledge. Mor
phology is concerned with the forms of words. Syntax is the description of the
ways in which words must be ordered to make structurally acceptable sentences
in the language. Semantics describe the ways in which words are related to
the concepts. It helps us in selecting correct word senses and in eliminating
syntactically correct but semantically incorrect analysis. Finally, pragmatic
knowledge deals with the way we see the world.

1

CHAPTER 1. INTRODUCTION

Though it seems to be a very difficult task to develop computational systems
that process and understand natural language, considerable progress has been
achieved.

In this thesis automatic text tagging, which is an important step in dis
covering the linguistic structure of large text corpora, will be explored. Basic
tagging involves annotating the words in a given text with various pieces of
information, such as part-of-speech (POS) and other lexical features. POS
tagging is an important practical problem with potential applications in many
areas including speech synthesis, speech recognition, spelling correction, proof
reading, query answering, machine translation and searching large text data
bases. It facilitates higher-level analysis essentially by performing a certain
amount of ambiguity resolution using relatively cheaper methods. This, how
ever, is not a very trivial task since many words are in general ambiguous in
their part-of-speech for various reasons. In English, for example a word such
as table can be a verb in certain contexts (e.g.. He will table the motion.) and
a noun in others (e.g.. The table is ready). A program which tags each word
in an input sentence with the most likely part-of-speech, would produce the
following output for the two example sentences just mentioned:

• He/PPS will/MD table/VB the/AT motion/NN ./.

• The/AT table/NN is/BEZ ready/ADJ ./.

where, PPS = subject pronoun, MD = modal, VB = verb (no inflection), AT
= article, NN = noun, BEZ = present 3rd person singular form of “to be” and
ADJ = adjective.

In Turkish, there are ambiguities of the sort above. However, the aggluti
native nature of the language usually helps resolution of such ambiguities due
to restrictions on morphotactics. On the other hand, this very nature intro
duces another kind of ambiguity, where a lexical form can be morphologically
interpreted in many ways. Table 1.1 presents distribution of the number of
morphological parses in a sample Turkish text. For example, the word evin,
can be broken down as:'

^Output of the morphological analyzer is edited for clarity.

CHAPTER 1. INTRODUCTION

Table 1.1. Some statistics on morphological ambiguity in a sample Turkish
text.

No. of
Words

Morphological Parse Distribution
0 1 2 3 4 > 5

7004 3.9% 17.2% 41.5% 15.6% 11.7% 10.1%

Note: Words with zero parses are mostly proper names which are not in the
lexicon of the morphological analyzer.

evin Gloss POS English
1. ev+in N(ev)+2SG-P0SS N your house
2. ev+[n]in N(ev)+GEN N of the house
3. evin N(evin) N wheat germ

If, however, the local context is considered it may be possible to resolve the
ambiguity as in:

senin evin your house
PN(you)+GEN N(ev)+2SG-P0SS

evin kapısı
N(ev)+GEN N(door)+3SG-P0SS

door of the house

As a more complex case we can give the following:

alınmış Gloss POS English
1. al+ın-f[y]mış ADJ(al)-t-2SG-POSS V it was your

-|-NtoV()-|-NARR-|-3SG2 red one
2. al-f-[n]m+[y]mış ADJ(al)+GEN+NtoV() V it belongs to

-1-NARR-I-3SG ■ the red one
3. alin-f-mi§ N(alm)+NtoV()-t-NARR-|-3SG V it was a forehead
4. ai-f-ın+mış V(al)-l-PASS+VtoAdj(mış) ADJ a taken object
5. al+m+mış V(al)-|-PASS+NARR-f3SG V it was taken
6. alın+mış V(alm)-|-VtoAdj(mış) ADJ an offended person

7. alııı+rnış V(ahn)+NARR-t-3SG V s/he was offended

It is in general rather hard to select one of these interpretations without
doing substantial analysis of the local context, and even then one can not fully
resolve such ambiguities.

^In Turkish, all adjectives can be used as nouns, hence with very minor differences adjec
tives have the same morphotactics as nouns.

CHAPTER 1. INTRODUCTION

In this thesis, a part-of-speech tagger for Turkish text is presented. It
is based on a full-scale two-level Turkish morphological analysis, augmented
with a multi-word and idiomatic construct recognizer, and most importantly
morphological disambiguator, based on local lexical neighborhood constraints
and heuristics. Test results indicate that the tagger can tag about 97% to 99%
of the texts accurately with very minimal user intervention, i.e., almost only
1% of the text is left ambiguous. Tagging accuracy is very important because
on a corpus of about one million words, a tagger with a 98% accuracy leaves
20,000 words wrongly tagged, which then has to be manually tagged.

As mentioned earlier, part-of-speech tagging facilitates higher level analy
sis, such as syntactic parsing. We tested the impact of morphological disam
biguation on the performance of a LFG parser developed for Turkish [6, 7].
The input to the parser was disambiguated using the tool developed and re
sults were compared to the case when the parser had to consider all possible
morphological ambiguities. For a set of 80 sentences we observed that morpho
logical disambiguation enables almost a factor of two reduction in the average
number of parses generated and over a factor of two speed-up in time.

The outline of the thesis is as follows: Chapter 2 contains an extensive
review of previous work and an example of tagging process. In Chapter 3, an
overview of morphosyntactic ambiguities in Turkish is presented. In Chapter
4, functionality of the tool with the implementation details are described. Ex
periments conducted with the tool are described and the results are discussed
in Chapter 5. And finally. Chapter 6 contains the conclusions with suggestions
for further research.

Chapter 2

Text Tagging

In every computer system that accepts natural language input, it is a must to
decide on the grammatical category of each input word. In almost all languages,
words are usually ambiguous in their parts-of-speech. They may represent
lexical items of different categories, or morphological structures depending on
their syntactic and semantic context.

A part-of-speech tagger is a system that uses any available (contextual,
statistical, heuristic etc.) information to assign possibly unique parts-of-speech
to words in a text. Several methods have been developed to do this task.

2.1 An E xam ple of Tagging Process

We can describe the process of tagging by showing the analysis for the following
sentence,

I§ten döner dönmez evimizin yakınında bulunan derin gölde yüzerek
gevşemek en büyük zevkimdi.

(Relaxing by swimming the deep lake near our house, as soon as I
return from work was my greatest pleasure.)

CHAPTER 2. TEXT TAGGING

which we assume has been processed by the morphological analyzer with the
output^ given in Figure 2.1.

Although there are a number of choices for tags for the lexical items in
the sentence, almost all except one set of choices give rise to ungrammatical
or implausible sentence structures.^ There are a number of points that are of
interest here:

• the construct döner dönmez formed by two tensed verbs, is actually a
temporal adverb meaning ... as soon as .. return(s) hence these two
lexical items can be coalesced into a single lexical item and tagged as a
temporal adverb.

• The second person singular possessive (2SG-P0SS) interpretation of
yakınında is not possible since this word forms a simple compound noun
phrase with the previous lexical item and the third person singular pos
sessive functions as the compound marker.

• The word derin (deep) is the modifier of a simple compound noun derin
göl {deep lake) hence the second choice can safely be selected. The ver
bal root in the third interpretation is very unlikely to be used in text,
let alone in second person imperative form. The fourth and the fifth
interpretations are not plausible, as adjectives from aorist verbal forms
almost never take any further inflectional suffixes. The first interpreta
tion (meaning your skin) may be a possible choice but can be discarded
in the middle of a longer compound noun phrase.

• The word era preceding an adjective indicates a superlative construction
and hence the noun reading can be discarded.

• However, there exists a semantic ambiguity for the lexical item bulunan.
It has two adjectival readings having the meaning something found and
existing respectively. Among this two readings one can not resolve the
ambiguity, as long as he/she does not have any idea about the discourse.
Contextual information is not sufficient and the ambiguity should be left
pending to the higher level analysis.

* Upper-case letters in the morphological break-downs represent some specific classes of
vowels, e.g., A stands for low-round vowels e and a, H stands for high vowels i,i,u and
and D = {d,t).

^Although, the final category is adjective the use of possessive (and/or case, number)
suffixes indicate nominal usage, as any adjective in Turkish can be used as a noun.

^The correct choices of tags are marked with -f.

CHAPTER 2. TEXT TAGGING

İşten
1. iş+DAn

Gloss
N(iş)+ABL

POS
N+

döner
1. döner
2. dön+Ar
3. dön+Ar

N(döner)
V(dön)+AOR+3SG
V (dön)+Vto Adj (er)

N
v+
ADJ

dönmez
1. dön-hmA-fz
2. dön-f-mAz

V(dön)+NEG+A0R+3SG
V (dön)+V toAdj (mez)

v+
ADJ

evimizin
1. ev-f HmHz-fnlIn N(ev)+lPL-POSS+GEN N+

yakınında
1. yakın+sH+nDA
2. yakm-j-Hn+DA

ADJ(yakın)+3SG-P0SS+L0C
ADJ(yakın)+2SG-P0SS+L0C N

bulunan
1. bul-fHn+yAn
2. bulun+yAn

V(bul)+PASS+VtoADJ(yan)
V(bulun)+VtoADJ(yan)

ADJ
ADJ+

derin
1. deri-f-Hn
2. derin
3. der+yHn
4. de+Ar+Hn
5. de-f-Ar+nHn

N(deri)+2SG-P0SS
ADJ (derin)
V(der)+IMP+2PL
V(de)+VtoADJ(er)+2SG-P0SS
V(de)+VtoADJ(er)+GEN

N
ADJ+
V
N
N

gölde
1. göl+DA N(göl)+LOC N+

yüzerek
1. yüz+yArAk V(y üz)+ V to AD V (yerek) ADV+

gevşemek
1. gevşe+m Ak V(gev§e)+INF v+

en
1. en
2. en

N(en)
ADV(en)

N
ADV+

büyük
1. büyük ADJ (büyük) ADJ+

zevkimdi
1. zevk+Hm-fyDH N(zevk)+lSG-POSS+NtoV()+PAST+3SG v+

Figure 2.1. Morphological analyzer output of the example sentence.

CHAPTER 2. TEXT TAGGING

işten

döner dönmez

evimizin

yakınında

bulunan

derin

gölde

yüzerek

gevşemek

en

büyük

zevkimdi

Gloss

N(iş)+ABL

ADV(döner dönmez)

N(ev)+lPL-POSS+GEN

ADJ(yakın)+3SG-P0SS+L0C

V(bul)+PASS+VtoADJ(yan)
V(bulun)+VtoADJ(yan)

POS

N

ADV

N

N

ADJ
ADJ

ADJ(derin) ADJ

N(göl)+LOC N

V(yüz)+VtoADV(yerek) ADV

V(gevşe)+INF V

ADV(en) ADV

ADJ (büyük) ADJ

N(zevk)+lSG-POSS+NtoV()+PAST+3SG V

Figure 2.2. Tagged form of the example sentence.

The tagger should essentially reduce the possible parses to the minimum,
employing various constraint rules, heuristics and usage and other statistical
information. A sample output for the example sentence would be as given in
Figure 2.2.

2.2 Previous Work

There has been two major paradigms for building POS taggers:

• rule-based approaches,

• statistical approaches.

Early approaches to part-of-speech tagging and disambiguation of prose
texts were rule-based ones. After 1980’s, statistical methods became more
popular. But nowadays, researchers from both camps are trying to improve

the accuracy of their approaches to the maximuni extent possible. In the
following sections an extensive review of work done in both approaches will be
presented.

2.2.1 R ule-based Approaches

CHAPTER 2. TEXT TAGGING 9

The earliest rule-based approach is due to Klein and Simmons [10]. They
describe a method directed primarily towards the task of initial categorical
tagging, rather than disambiguation. Their primary goal was to avoid the
labor of constructing a very large dictionary.

Klein and Simmons’s algorithm uses a set of 30 POS categories, and claims
an accuracy of 90% in tagging. The algorithm first seeks each word in dic
tionaries of about 400 function words, and of about 1,500 words which are
exceptions to the computational rules used. The program then checks for suf
fixes and special characters as clues. Finally, context frame tests are applied.
These work on scopes bounded by unambiguous words. However, Klein and
Simmons impose an explicit limit of three ambiguous words in a row. For each
such span of ambiguous words, the pair of unambiguous categories bounding
it, is mapped into a list. The list includes all known sequences of tags oc-
curing between the particular bounding tags; all such sequences of the correct
length become candidates. The program then matches the candidate sequences
against the ambiguities remaining from earlier steps of the algorithm. When
only one sequence is possible, disambiguation is successful.

The samples used for calibration and testing were limited. First, Klein
and Simmons performed hand analysis of a sample of Golden Book Encyclo
pedia text. Later, when it was run on several pages from that encyclopedia, it
correctly and unambiguously tagged slightly over 90% of the words.

Klein and Simmons asserted that “original fears that sequences of four or
more unidentified parts-of-speech would occur with great frequency were not
substantiated in fact”. This readiness, however, is a consequence of following
facts. First, the relatively small set of categories reduces ambiguity. Second,
a large sample would contain both low frequency ambiguities and many long
spans with a higher probability.

Later, Greene and Rubin [5] developed TAGGIT for tagging the Brown

CHAPTER 2. TEXT TAGGING 10

Corpus. They used 86 POS tags. It is reported that this algorithm correctly
tagged approximately 77% of the million words in the Brown Corpus (the
tagging was then completed by human post-editors). Although this accuracy
is substantially lower than that reported by Klein and Simmons, it should be
remembered that Greene and Rubin were the first to attempt so large and
varied a sample.

TAGGIT divides the task of category assignment into initial (potentially
ambiguous) tagging, and disambiguation. Tagging is carried out as follows;
first, the program consults an exception dictionary of about 3,000 words.
Among other items, this contains all known closed-cleiss words. It then handles
various special cases, such as words with initial “$”, contractions, special sym
bols, and capitalized words. A word’s ending is then checked against a suffix
list of about 450 strings, that was derived from lexiostatistics of the Brown
Corpus. If TAGGIT has not assigned some tag(s) after these several steps,
the word is tagged as a noun, a verb and an adjective, i.e., being three way
ambiguous, in order that the disambiguation routine may have something to
work with.

After tagging, TAGGIT applies a set of 3,300 context frame rules. Each
rule, when its context is satisfied, has the effect of deleting one or more candi
dates from the list of possible tags for one word. If the number of candidates
is reduced to one, disambiguation is considered successful subject to human
post-editing. Each rule can include a scope of up to two unambiguous words
on each side of the ambiguous word to which the rule is being applied. This
constraint was determined as follows:

In order to create the original inventory of Context Frame Tests, a 900
sentence subset of the Brown University. Corpus was tagged, and ambiguities
were resolved manually. Then the program was run and it produced and sorted
all possible Context Frame Rules which would have been necessary to perform
this disambiguation automatically. The rules generated were able to handle
up to three consecutive ambiguous words preceded and followed by two non-
ambiguous words. However, upon examination of these rules, it was found that
a sequence of two or three ambiguities rarely occured more than once in a given
context. Consequently, a decision was made to examine only one ambiguity at
a time with up to two unambiguously tagged words on either side.

CHAPTER 2. TEXT TAGGING 11

From 1989 to 1992, a group of researchers from the Research Unit for Com
putational Linguistics at the University of Helsinki participated to an ESPRIT
II project to make an operational parser for running English text mainly for
information retrieval purposes. Karlsson [8] proposed a parsing framework,
known as Constraint Grammar. In this formalism, for each input word mor
phological and syntactic descriptions are encoded with tags, and all possible
readings of them provided as alternatives by a morphological analyzer, called
ENGTWOL.

One of the most important steps of Constraint Grammar formalism was
context-dependent morphological disambiguation. For this purpose, Vouti-
lainen [15] wrote a grammar for morphological disambiguation, called ENGCG.
The task of this grammar is to discard all and only the contextually illegitimate
alternative morphological readings. The disambiguator employs an unordered
set of linguistic constraints on the linear order of ambiguity-forming morpho
logical readings. This grammar contains 1,100 constraints based on descriptive
grammars and studies of various corpora. This rule-based approach has given
encouraging results. After the application of disambiguation, of all words, 93-
97% becomes unambiguous. There is also an optionally applicable heuristic
grammar of 200 constraints that resolves about half of the remaining ambigu
ities 96-97% reliably, with 96-98% precision.

Among those rule-based part-of-speech taggers, the one built by Brill [1] has
the advantage of learning tagging rules automatically. As it will be explored
in the next section, research in trainable part-of-speech taggers has also used
stochastic methods. While these taggers obtain high accuracy, linguistic infor
mation is captured indirectly, typically in tens of thousands of lexical and con
textual probabilities. In 1992, Brill applied transformation-based error-driven
learning to part-of-speech tagging, and obtained performance comparable to
that of stochastic taggers. In this work, the tagger is trained with the follow
ing process: First, text is tagged with an initial annotator, where each word is
assigned with the most likely tag. Once text is passed through the annotator,
it is then compared to the correct version, i.e., its manually tagged counter
part, and transformations, that can be applied to the output of the initial state
annotator to make it better resemble the truth , can then be learned.

During this process, one must specify the following; (1) the initial state
annotator, (2) the space of transformations the learner is allowed to examine,
and (3) the scoring function for comparing the corpus to the truth.

CHAPTER 2. TEXT TAGGING 12

In the first version, there were transformation templates of the following
example forms:

Change tag a to tag b when:
1. The preceding (following) word is tagged z.
2. The preceding (following) word is tagged z and the word two
before (after) is tagged w.

where a, b, z and w are variables over the set of parts-of-speech. To learn a
transformation, the learner applies every possible transformation, counts the
number of tagging errors after that transformation is applied, and chooses that
transformation resulting in the greatest error reduction. Learning stops when
no transformations can be found whose application reduces errors beyond some
prespecified threshold. Once an ordered list of transformations is learned, new
text can be tagged by first applying the initial annotator to it and then applying
each of the learned transformations, in order.

Later in 1994, Brill extended this learning paradigm to capture relation
ships between words by adding contextual transformations that could make
reference to the words as well as part-of-speech tags. Some examples of this
transformation templates are:

Change tag a to tag b when:
1. The preceding (following) word is w.
2. The current word is w and the preceding (following) word is x.
3. The current word is w and the preceding (following) word is
tagged z.

where w and x are variables over all words in the training corpus, and z is a
variable over all parts-of-speech.

This tagger has remarkable performance. After training the tagger with
the corpus of size 600K, it produces 219 rules and generates 96.9% accuracy in
the first scheme. Moreover, after the extension, number of rules increases to
267 and accuracy increases to 97.2%.

CHAPTER 2. TEXT TAGGING 13

2.2.2 S tatistica l Approaches

Marshall [11] describes the Lancaster-Oslo-Bergen (LOB) Corpus tagging al
gorithm, later named CLAWS, as similar to TAGGIT program. The tag set
used is very similar, but somewhat larger, at about 130 tags. The dictionary
used is derived from the tagged Brown Corpus, rather than from the untagged
version. It contains 7,000 rather than 3,000 entries, 700 rather than 450 suf
fixes. CLAWS treats plural, possessive, and hyphenated words as special cases
for purposes of initial tagging.

The LOB researchers began by using TAGGIT on parts of the LOB Corpus.
They noticed that, while less than 25% of TAGGIT’s context frame rules are
concerned with only the immediately preceding or succeeding word, these rules
were applied in about 80% of all attempts to apply rules. This relative overuse
of minimally specified contexts indicated that exploitation of the relationship
between successive tags, coupled with a mechanism that would be applied
throughout a sequence of ambiguous words, would produce a more accurate
and effective method of word disambiguation.

The main innovation of the CLAWS is the use of a matrix of collocational
probabilities, indicating the relative likelihood of co-occurrence of all ordered
pairs of tags. This matrix can be mechanically derived from any pre-tagged
corpus. CLAWS used a large portion of the Brown Corpus, with 200,000 words.

The ambiguities contained within a span of ambiguous words define a pre
cise number of complete sets of mappings from words to individual tags. Each
such assignment of tags is called a path. Each path is composed of a number of
tag collocations, i.e., tags occuring side by side, and each such collocation has
a probability which may be obtained from the collocation matrix. One may
thus approximate each path’s probability by the product of the probabilities
of all its collocations. Each path corresponds to a unique assignment of tags
to all words within a span. The paths constitute a span network, and the path
of maximal probability may be taken to contain the best tags.

There are several advantages of this general approach over rule-based ones.

First, spans of unlimited length can be handled. Although earlier re
searchers have suggested that spans of length over 5 are rare enough to be
of little concern, this is not the case. The number of spans of a given length is
a function of that length and the corpus size, so long spans may be obtained

CHAPTER 2. TEXT TAGGING 14

merely by examining more text. Second, a precise mathematical definition
is possible for the fundamental idea of CLAWS. Whereas earlier efforts were
based primarily on ad hoc sets of rules and descriptions, and employed sub
stantial exception dictionaries. This algorithm requires no human intervention
for set-up, it is a systematic process.

During the tagging process of the LOB Corpus a program called IDIOM-
TAG is used as an extension to CLAWS. IDIOMTAG is applied after initial tag
assignment and before disambiguation. It was developed as a means of deal
ing with idiosyncratic word sequences which w'ould otherwise cause difficulty
for the automatic tagging. For example, in order that is tagged as a single
conjunction. Approximately 1% of running text is tagged by IDIOMTAG.

CLAWS has been applied to the entire LOB Corpus with an accuracy of
between 96% and 97%. Without the idiom list, the algorithm was 94% accu
rate on a sample of 15,000 words. Thus, the preprocessing of 1% of all tokens
resulted in a 3% change in accuracy; those particular assignments must there
fore have had a substantial effect on their context, resulting in changes of two
other words for every one explicitly tagged.

However, CLAWS is time- and storage-inefficient in the extreme. Since
CLAWS calculates the probability of every path, it operates in time and space
proportional to the product of all the degrees of ambiguity of the words in the
span. Thus, the time is exponential in the span length.

Later in 1988, DeRose [4] attempted to solve the inefficiency problem of
the CLAWS and proposed a new algorithm called VOLSUNGA. The algo
rithm depends on a similar empirically-derived transitional probability matrix
to that of CLAWS, and has a similar definition of optimal path. The tag set is
larger than TAGGIT’s, though smaller than CLAWS, containing 97 tags. The
ultimate assignments of tags are much like of those of CLAWS.

The optimal path is defined to be the one whose component collocations
multiply out to the highest probability. The more complex definition applied
by CLAWS, using the sum of all the paths at each node of the network, is not
used. By this change VOLSUNGA overcomes complexity problem.

VOLSUNGA does not use tag triples and idioms. Because of this, manually
constructing special-case lists is not necessary. Application of the algorithm
to Brown Corpus resulted with the 96% accuracy, even though idiom tagging

CHAPTER 2. TEXT TAGGING 15

were not used.

A form of Markov model has also been widely used in statistical approaches.
In this model it is assumed that a word depends probabilistically on just its
part-of-speech category, which in turn depends solely on the categories of the
preceding two words. Two types of training have been used with this model.
The first makes use of a tagged training corpus. The second method of training
does not require a tagged training corpus. In this situation the Baum-Welch
algorithm can be used. Under this regime, the model is called a Hidden Markov
Model (HMM), as state transitions (i.e., part-of-speech categories) are assumed
to be unobservable.

In 1988, Church [2] built a tagger using the first training regime. He ex
tracted all possible readings of each word and their usage frequencies from
previously tagged Brown Corpus. The lexical probabilities were estimated
in the obvious way. For example, the probability that “I” is a pronoun,
Proh{PPSS\"I"), is estimated as the freq(PP SS\"I")/freq{"I"). The con
textual probability, the probability of observing part-of-speech X given the
following two parts-of-speech Y and Z, is estimated by dividing the trigram
frequency XYZ by the bigram frequency YZ. Thus, for example, the probabil
ity of observing a verb before an article and a noun is estimated to be the ratio
of freq{VB, AT, N N) over the freq{AT, NN) .

A search is performed in order to find the assignment of part-of-speech tags
to words that optimizes the product of the lexical and contextual probabilities.
Conceptually, the search enumerates all possible assignments of parts-of-speech
to input words. Each sequence is then scored by the product of the lexical
probabilities and the contextual probabilities, and the best sequence is selected.
In fact, it is not necessary to enumerate a,II possible assignments because the
scoring function can not see more than two words away. In other words, in
the process of enumerating part-of-speech sequences, it is possible in some
cases to know that some sequence can not possibly compete with another and
can therefore be abandoned. Because of this fact, only 0{n) paths will be
enumerated. Church states that, “The program performance is encouraging.
95-99% correct, depending on the definition of the correct”. But he does not
provide any definitions.

Cutting et al. [3] built a tagger using an HMM, which permits complete
flexibility in the choice of training corpora. Text from any desired domain can

CHAPTER 2. TEXT TAGGING 16

be used, and the tagger can be tailored for use with a particular text databcise
by training on a portion of that database. The HMM model they used is quite
a complicated one the details of which are not necessary here. They claim that,
they have produced reasonable results training on a few as 3,000 sentences.

Statistical models have the advantage of automatic training. Required pa
rameters for tagging can be extracted automatically, on a sufficiently large
previously tagged corpus, whereas rule-based taggers require a large effort for
rule crafting. This major drawback of rule-based models seems to be overridden
with the employment of new learning mechanisms, like transformation-bcised
error-driven learning proposed by Brill [1].

Chapter 3

M orphosyntactic A m biguities in
Turkish

Turkish is an agglutinative language with word structures formed by productive
affixations of derivational and inflectional suffixes to the root words. Extensive
use of suffixes results in ambiguous lexical interpretations in many cases [12, 13].
As shown earlier in Table 1.1 almost 80% of each lexical item has more than
one interpretation. In this section, the sources of morphosyntactic ambiguity
in Turkish is explored.

• Many words have ambiguous readings even though they have the same
morphological break-down. These ambiguities are due to different POS
of roots. For example the word yana has three different readings:*

yana Gloss POS English
1. yan-hyA V(yan)-bOPT-b3SG V let it burn
2. yan-l-yA N(yan)-t-3SG+DAT N . to this side
3. yana POSTP(yana) POSTP

The first and the second readings have the same root and derived
the same suffix, but since the root word yan has two different readings,
one verbal and one nominal, morphological analyzer produces ambiguous
output for the same break-down. Moreover, yana has a third postposi
tional reading without any affixation.

Another example is the word en.

 ̂Among the possible readings of words produced by the morphological analyzer, ones
which are irrelevant to the example case are discarded.

17

CHAPTER 3. MORPHOSYNTACriC AMBIGUITIES IN TURKISH 18

en Gloss
1. en N(en)+3SG+N0M
2. en ADV(en)

POS English
N width
ADV most

It is two way ambiguous without any derivation due to two different
parts-of-speech of the root.

• In Turkish, there are many root words which are prefix of another root
word. This also creates ambiguous readings under certain circumstances.
An example is:

Of the two root words, uymak and uyumak, uy is a prefix of uyu and
when the morphological analyzer is fed with the word uyuyor, it outputs
the following:

uyuyor Gloss POS English
1. uy+Hyor V(uy)+PR-C0NT+3SG V it suits
2. uyu+Hyor V(uyu)+PR-C0NT+3SG V

There are several other examples of this kind,

e.g., hara ¡haram
haram Gloss

1. hara+Hm N(hara)+3SG+lSG-POSS+NOM
2. haram ADJ(haram)+3SG+NOM

e.g., devaj devam
devam Gloss

1. deva+Hm N(deva)+3SG+lSG-P0SS+N0M
2. devam N(devam)+3SG+N0M

• Nominal lexical items with nominative, locative or genitive case, have
verbal/predicative interpretations. For example, the word evde is the
locative case of the root word ev. And the morphological analyzer pro
duces the following output for it.

evde Gloss POS English
1. ev-l-DA N(ev)+3SG4-LOC N
2. ev-f-DA N(ev)+3SG+LOC-t-NtoV()+PR-CONT V

s/he is sleeping

POS English
N my horse farm
ADJ unlawful

POS English
N my cure
N continuation

at home
(smt.) is at home

For the following sentences:^

Ev-de şeker kal-ma-mi§.
home-fLOC sugar exist+NEG-fNARR

(There is no sugar at home.)

 ̂Example sentences are given with their morphological break-down for clarity.

CHAPTER 3. MORPHOSYNTACTIC AMBIGUITIES IN TURKISH 19

Bütün kitap-lar-im ev-de.
all book+PLU+lSG-POSS home+LOC

(All of my books are at home.)

evde has a nominative reading in the first sentence and a predicative
reading in the second one.

• There are morphological structure ambiguities due to the interplay be
tween morphemes and phonetic change rules. Following is the output of
morphological analyzer for the word evin:

evin Gloss POS English
1. ev-fHn N(ev)+3SG-f2SG-POSS+NOM N your house
2. ev-hnlln N(ev)-|-3SG-t-GEN N of the house

Since the suffixes have to harmonize in certain aspects with the word
affixed, the consonant “n” is deleted in the surface realization of the
second reading of evin, causing it to have same lexical form with the first
reading.

Another example is the surface form realization of accusative and either
third person singular possessive (3SG-P0SS) or third person plural pos
sessive (3PL-P0SS) form of nomináis.

eli Gloss POS English
1. el-t-sH N(el)+3SG-|-3PS-POSS N his/her hand
2. el-hyH N(el)-f3SG-|-ACC N hand (accusative)

• Within a word category, e.g., verbs, some of the roots have specific fea
tures which are not common to all. For example, certain reflexive verbs
may also have passive readings. Consider the following sentences:

Çamaşır-lar dün yika-n-di.
cloth-hPLU yesterday wash-fPASS-l-PAST

(Clothes were washed yesterday.)

Ali dün yika-n-di.
Ali yesterday wash-f-REFLEX-f PAST

(Ali washed himself yesterday.)

Following is the morphological break-down of yıkandı:

CHAPTER 3. MORPHOSYNTACTIC AMBIGUITIES IN TURKISH 20

yıkandı Gloss POS
1. yika+Hn+DH V(yika)+PASS+PAST+3SG V
2. yika+ii+DH V(yika)+REFLEX+PAST+3SG V

English
got washed
s/he had a bath

From the same verbal root ytka two different break-downs are produced.
Passive reading of yıkandı is used in the first sentence and the reflexive
reading is used in the second sentence.

• Some lexicalized word formations can also be re-derived from the original
root and this is another source of ambiguity. The word mutlu has two
parse with the same meaning, but different morphological break-down.

mutlu Gloss POS English
1. mut-flH N(mut)+NtoADJ(li)-|-3SG-(-NOM ADJ happy
2. mutlu ADJ(mutlu)-f3SG-f\OM ADJ happy

mutlu has a lexicalized adjectival reading where it is considered as a root
form as seen in the second reading. However, the same surface form is
also derived from the nominal root word mut, meaning happiness, with
the suffix +li, and this form also has the same meaning.

• Plural forms may display an additional ambiguity due to drop of a second
plural marker. Consider the example word evleri.

evleri Gloss POS English
1. ev+lAr-fsH N(ev)-b3PL+3PS-POSS N his/her houses
2. ev+lArH N(ev)+ЗSG+ЗPL·POSS N their house
3. ev+lArH N(ev)+ЗPL-^ЗPL·POSS N their houses
4. ev+lAr+yH N(ev)-b3PL-fACC N houses (accusative)

In the first and the second reading there is only one level of plurality,
where either the owner or the ownee is plural. However, the third read
ing contains a hidden suffix, where both of them are plural. Since it is
not possible to detect which one is plural from the surface form, three
ambiguous readings are generated.

Considering all these cases, it is apparent that the higher level analysis of
Turkish prose text will suffer from this considerable amount of ambiguity. On
the other hand as mentioned in the introduction, available local context might
be sufficient to resolve some of these ambiguities. For example, if we can trace
the sentential positions of nominal forms in a given sentence, their predicative
readings might be discarded, i.e., within a noun phrase it is obvious that they
can not be predicative.

CHAPTER 3. MORPHOSYNTACTIC AMBIGUITIES IN TURKISH 21

In the next chapter, the answer to the question ''How can ice eliminate
these ambiguities?^^ will be elaborated.

Chapter 4

The Tagging Tool

The tagging tool for Turkish developed in this thesis integrates a number of
functionalities with a user interface as shown in Figure 4.1. The user interface
is implemented under X-windows, and enables tagger to be used interactively,
though user interaction is optional.

4.1 Functionality Provided by th e Tool

The tagger uses a morphological analyzer for acquiring all readings of each
word in a given Turkish prose text. The morphological analyzer [12] has a full-
scale two-level description which has been implemented using the PC-KIMMO
environment and it is based on a root word lexicon of about 23,000 root words.
The phonetic rules of contemporary Turkish have been encoded using 22 two-
level rules while the morphotactics of the agglutinative word structures have
been encoded as finite-state machines for verbal, nominal paradigms and other
categories.

The morphological analyzer returns all legitimate morphological break
downs of each word. This output is usually ambiguous due to the reasons
explained in the previous section. So the main purpose of the tagger is to
assign unique grammatical roles to each word by performing a certain amount
of ambiguity resolution. For this purpose tagger utilizes following sources of
information:

1. description of multi-word and idiomatic construct patterns,

22

CHAPTER 4. THE TAGGING TOOL 23

m y.·■;>·> >ağ>et':

(File y) Taflged File show. 1.txt (Stat file y) Statistics File Global (Tagging Rules v } (SD
d oG rusu a1 - m l s l r l n [4 CONS C la C la C93a] : C m ls Ir + n H n · (C C A T * N) (* R * 'm I s I r '!) (* A C R · 3 S C)(*C A S E · C E N)))

i . - a n a v a ta n ı [3 CONS C93a C5aJ : C a n a v a ta n + s H * (C C A T * N) (* R * ’ a n a v a t a n ·)(» A C R * 3 S C)(*P 0 S S ·
k r i s t o f A 3 S G)C C A S E · NO M)))
kolofflb - o la r a k [1] : C o H y A r A k · (C C A T · V) (* R * 'o l •) C S U B C A T * N0M)C*C0NV· ADV " y a r a k *) (*S U B · A H)))

j n i s i r l ▼ - g ö s t e r i le n [2 CONS C93b] : C g O s te r + H l+ y A n * (C C A T * V) (* R · ‘ g O s t o r ·) (‘ V O IC E · P A S S) (* C 0 N V N) J
^ I k • y a n ') (* A C R · 3 S G)(*C A S E · N O M)))
k a z - y e r (5 CONS C93a C93a C93a C22a] : C y e r * (C C A T · N) (* R · ■ ye r‘) C A C R · 3 S G)C *C A S E· N C H)))
b u ra d a - , [1] : (■ ,* ((‘ C A T · P U N C D C R · ' /)))
gOrmUS - buQUnkU [2 CONS C93b] : C b u g U n k U ' C C C A T · N) (* R · *bugUN •) (‘ SUB· T E №) (* C 0 N V · A O J

• k i ’) C A C R · 3 S G)(‘ C A S E· N O M)))
a m e rik a - a d l y la [1] : C a d l + y l A ’ ((‘ C A T · N) (* R · •a d / n a m e *)(*P O S S · 3 S G)C *C A S E· I N S)))
y e r l i l e r i n i - k a r a y i p l e r [R U LE H 2 7] : (C C A T · N) (* R · • k a r a y i p l e r ') (* S U B · P R O P))
adamdan - . (1 J : (■ .· (C C A T · P U N C D C R · * . ·)))
s a p a y a n - daha [1] : C d a h a ' (C C A T · A O V) C R · *d a h a ‘) C S U B · C O № A R A n W E)C S U B · T E №)))
a n ia y l S a - doCrusu [2 CONS C93b] : C d o C r u + s H · ((‘ CA T· A D J) (* R · *d o C ru ’) C S U B · Q U A D C A C R · 3 S C)(‘ P0SS·
gOre 3 S O C C A S E · N O M)))
m is ir - , i l l : (■ ,· ((‘ C A T· P U N C D C R · · /)))

- k r i s t o f k o lo n * [R U LE M27] : ((‘ C A T * N) (‘ R · ’ k r i s t o f k o l o n * ') (‘ SUB· P R O P))
bundan r13
Skip Parses Less Than 2___ Text «recessed <^ps!------------------- ,---------,--------- ,------'Zp

0 100
StaL O.OX Rule. 5.7» Cons. 58.5X User O.Ot Unamb. 35.8» Amb. O.Q>

(Statistics Setup^ (C Setur.)

No of parses: 0 7 (13.2»

Word Parsed misirl_______

1 19(35.8» 2 16 (30.2» 3 7(13.2» 4 8(15.1» S and more 1 (1.9»

____ (Si5:-'r7rm~?) (Step) (Stop o X s ta t opr v) s u L □ Off Rules ^ On Cons. B Í On User B Í On

Errors

□ [21STA

□ t2]

Parses

B Í (0.67) CmlSlr+sH' ((*CAT* N)(*R* "mlSlOCAGR· 35G)(*POSS* 3SG)(^AS£· NOM)))

□ (0.33) CmlsIr+yH· ((*CAT· N)CR· *mlslr*)CAGR· 3SG)(*CASE· ACC)))

□ None

(0 1994, İlker KURUOZ Bilkent University

Figure 4.1. The user interface of tagging tool

CHAPTER 4. THE TAGGING TOOL 24

2. a set of constraint rules and heuristics to eliminate illegitimate readings,

3. user assistance if all above fails.*

The first and the second sources of information is processed by a rule-based
subsystem.

4.2 R ule-based D isam biguation

Multi-word and idiomatic construct recognition and constraint-based morpho
logical disambiguation are implemented as a rule-based subsystem in which
one can write rules of the following form:

C2 IA1 ; C2 -A2 I . . . Cfi’.kf i .

where each C, is a set of constraints on a lexical form, and the corresponding
A, is an action to be executed on the set of parses dissociated with that lexical
form, only when all the conditions are satisfied.

Conditions refer to any available morphological or positional information
associated with a lexical form such as:

• Absolute or relative lexical position (e.g., sentence initial or final, or 1
after the current word, etc.)

• root and final POS category,

• derivation type,

• case, agreement (number and person), and certain semantic markers, for
nominal forms,

• aspect and tense, subcategorization requirements, verbal voice, modal-
ity,and sense for verbal forms

• subcategorization requirements for postpositions.

*They are all optional sources. If user does not want to assist, ambiguities are left pending.

CHAPTER 4. THE TAGGING TOOL 25

Conditions may refer to absolute feature values or variables (as in Prolog,
denoted by the prefix _ in the following examples) which are then used to link
conditions. All occurrences of a variable have to unify for the match to be
considered successful. This feature is powerful and necessary for a language
like Turkish with agglutinative nature where one can not limit the tag set and
has to use the morphological information. Using this we can specify rather
general ways long distance feature constraints in complex NPs, PPs and VPs.
This is a feature of our system that differentiates it from others.

The actions are of the following types:

• Null action: Nothing is done on the matching parse.

• Delete: Removes the matching parse if more than one parse for the
lexical form are still in the set associated with the lexical form.

• O u tpu t: Removes all but the matching parse from the set effectively
tagging the lexical form with the matching parse.

• Com pose: Composes a new parse from various matching parses, for
multi-word constructs.

These rules are ordered, and applied in the given order and actions licensed
by any matching rule are applied. One rule formalism is used to encode both
multi-word constructs and constraints.

4.3 T he M ulti-word C onstruct Processor

As mentioned before, tagging text on lexical item basis may generate spuri
ous or incorrect results when multiple lexical items act cis single syntactic or
semantic entity. For example, in the following sentence:

Şirin mi şirin
pretty ques^ pretty
ko§-a koş-a gel-di.
run-f-AOR run-hAOR come-fPAST

(A very cute dog came running.)

bir köpek
dog

CHAPTER 4. THE TAGGING TOOL 26

The fragment “şirin mi şirin” constitutes a duplicated emphatic adjective
in which there is an embedded question suflRx “mi" (written separately in
Turkish),^ and the fragment “koşa koşa” is a duplicated verbal construction
which has the grammatical role of manner adverb in the sentence, though both
of the constituent forms are verbal constructions. The purpose of the multi
word construct processor is to detect and tag such constructs in addition to
various other semantically coalesced forms such as proper nouns, etc.

4.3.1 T he Scope o f M ulti-word C onstruct R ecognition

Following list is a set of multi-word constructs for Turkish that we handle in our
tagger. This list is not meant to be comprehensive, they are the ones we have
encountered during the design of a parser for Turkish, obviously new construct
specifications can be easily added. It is conceivable that such a functionality
can be used in almost any language.

1. duplicated optative and 3SG verbal forms functioning as manner adverb,
e.g., koşa koşa (running as in “he came running*'),

2. aorist verbal forms with root duplications and sense negation functioning
as temporal adverbs, e.g., yapar yapmaz (as soon as (one) does (some
thing)),

3. duplicated verbal and derived adverbial forms with the same verbal root
acting as temporal adverbs, e.g., gitti gideli (ever since (one) went),

4. duplicated compound nominal form constructions that act as adjectives,
e.g., güzeller güzeli (very beautiful),.

5. adjective or noun duplications that act as manner adverbs, e.g., htzh hızlı
(in a rapid manner), ev ev (house by house),

6. emphatic adjectival forms involving the question suffix, e.g., güzel mi
güzel (very beautiful),

7. word sequences with specific usage whose semantics is not compositional,
e.g., yam sıra (in addition to), hiç olmazsa (in any case).

 ̂“mi” is a question particle which is written separately in Turkish.
however, the adjective “şirin” was not repeated, then we would have a question

formation.

CHAPTER 4. THE TAGGING TOOL 27

8. proper nouns, e.g., Jimmy Carter^ Topkapi Sarayı (Topkapi Palace),

9. idiomatic forms which are never used singularly, e.g., gürül gürül,

10. other idiomatic forms, such as ipe sapa gelmez (worthless) which is only
used as an adjective.

11. compound verb formations which are formed by a lexically adjacent, di
rect or oblique object and a verb, which for the purposes of parsing may
be considered as single lexical item, such saygı durmak (to pay respect),
kafayı yemek (literally to eat the head - to get mentally deranged), etc.
The rare cases where some other lexical item intervenes between the ob
ject and the verb, have to be dealt at the syntactic level.

4.3.2 M ulti-word Construct Specifications

In our tagger, multi-word constructs are specified using the previously defined
rule format. However, among those actions only Com pose is available.

The main idea is to apply multi-word specifications on each word to find
a matching pattern. If any matching pattern is found, the involved words are
discarded and a new composite lexical entry as specified in the compose action
created.

Rule ordering is important for specifications and they are applied in the
given order. This property is vital for recognition of patterns which are
superset'* of some other rules. Proper nouns with more than one constituents
are good examples of this case, e.g., there are several combinations of usage
for the proper noun “Mustafa Kemal Atatürk” like “Mustafa Kemal”, “Kemal
Atatürk” and “Atatürk”. If they are not specified in the order from the longest
one to shortest one, it may not be possible to recognize the longer usages, since
a shorter one can be matched before the longer specification applied.® Assume
“Mustafa Kemal” is specified before “Mustafa Kemal Atatürk”, in a given text
if we encounter the word sequence .. Mustafa Kemal Atatürk Samsun’a .. the
first two words will be matched by the smaller specification and coalesced into

'’A rule is a superset of another one, if available feature-value pairs satisfying the con
straints of the rule also satisfies the other one, but the reverse does not hold.

®The specification of “Mustafa Kemal Atatürk” is a superset of the specification of
“Mustafa Kemal”.

CHAPTER 4. THE TAGGING TOOL 28

a single lexical item and the tagger will miss to match the longer one ‘‘Mustafa
Kemal Atatürk”.

E xam ple Specifications

Here we present some examples of multi-word construct specifications.®

First specification example;

(Cl) Lex = _W1, Root = _R1, Cat = V, Aspect = AOR,
Agr = 3SG, Sense = POS:

(Al) Null;
(C2) Lex = _W2, Root = _R1, Cat = V, Aspect = AOR,

Agr = 3SG, Sense = NEG:
(A2) Compose = ((*CAT* ADV)(*R* "_W1 _W2 (_R1)")(*SUB* TEMP))

This rule would match any adjacent verbal lexical forms with the same root,
both with the aorist aspect, and 3SG agreement, e.g., yapar yapmaz. The
first verb must have a positive and the second one must have a negative sense.
When such two adjacent lexical items found, a composite lexical form with
an temporal adverb part-of-speech is then generated. The original verbal root
may be recovered from the root of the composed form for any subcategorization
checks at the syntactic level.

For the following sentence,

Ali i§-i-ni tam am lar
Ali duty-f3SG-POSS+ACC complete-fAOR
tam am lam az g it-ti.
complete-|-NEG-fAOR go-pPAST

(Ali went as soon as he completed his task.)

The output of morphological analyzer is given in Figure 4.2.

®The output of the morphological analyzer is actually a feature-value list in the standard
LISP format.

CHAPTER 4. THE TAGGING TOOL 29

("all"
("alî " ((*CAT* N)(+R* "ali")(*SUB* PROP)

(*AGR* 3SG)(*CASE* NOM)))
)

("işini
("iş+sH+nH" ((*CAT* N)(*R* "iş")(*AGR* 3SG)

(*POSS* 3SG)(*CASE* ACC)))
("iş+Hn+yH" ((*CAT* N)(*R* "iş")(*AGR* 3SG)

(♦POSS* 2SG)(*CASE* ACC)))
)

("tamamlar"
("taraam+lAr" ((*CAT* N)(*R* "tamam")(*R0LE* ADJ)

(*AGR* 3PL)(*CASE* NOM)))
("tamam+lAr" ((*CAT* N)(*R* "tamam")(*R0LE* ADJ)

(*AGR* 3PL)(*CASE* NOM)(*C0NV* V "")
(♦ASPECT* PR-CONT)(*AGR* 3SG)))

("tamamla+Hr" ((*CAT* V)(*R* ’’tamamla”)
(♦SENSE* POS)(*ASPECT* AOR)
(*AGR* 3SG)))

("tamamla+Hr" ((*CAT* V) (*R* "tamcimla")
(♦CONV* ADJ "ir")))

)

("tamamlamaz"
("tamamla+mA+z" ((*CAT* V)(*R* ’’tamamla”)

(♦SENSE* NEG)(*ASPECT* AOR)
(*AGR* 3SG)))

)

("gitti"
("gid+DH" ((*CAT* V)(*R* "git")(*ASPECT* PAST)

(*AGR* 3SG)))
)

Figure 4.2. Output of morphological analyzer for “AH işini tamamlar tamam
lamaz gitti”.

CHAPTER 4. THE TAGGING TOOL 30

For the consecutive words “tamamlar tamamlamaz'’, when the rule is ap
plied to the fourth reading of “tamamlar” and the av'ailable single reading of
“tamamlamaz”, we see that variable references to their roots, i.e., _R1, they
unify, since both word have the same root. They both have aorist aspect, third
person singular agreement and the first one has a positive sense and the second
one has a negative sense. Therefore, the compose action is applied, both words
are dropped and a new lexical item with temporal adverb part-of-speech is
generated.

("tamamlar tamamlamaz"
((♦CAT* ADV) (*R* "tamamlar tameunlcimaz (tamamla)")
(*SUB* TEMP))

)

Note that variable references to surface lexical forms of each word are uti
lized as the output generated.

The next example is for recognition of emphatic adjectival forms with a
question suffix in between, e.g., güzel mi güzel.

(Cl) Lex = _W1, Root = _R1, Cat = ADJ;
(Al) Null;
(C2) Lex = _W2, Root = mi , Cat = QUES:
(A2) Null;
(C3) Lex = _W3, Root = _R1, Cat = ADJ:
(A3) Compose = ((*CAT* ADJ)(*R* "_W1 _W2 _W3 (_R1)")).

This rule would match any consecutive three words, where the first and the
third have the same root and adjectival readings and there is a question suffix
in between. If such a combination is found they are coalesced into a single
lexical form with adjectival part-of-speech.

This multi-word construct recognition facility is very efficient for the recog
nition of proper nouns. Following rule is written for recognition of the proper
noun “Mustafa Kemal Atatürk”.

(Cl) Lex = Mustafa

CHAPTER 4. THE TAGGING TOOL 31

(Al) Null;
(C2) Lex = Kemal :
(A2) Null;
(C3) Lex = Atatürk :
(A3) Compose = ((*CAT* N)(*R* "Mustafa Kemal Atatürk")

(*SUB* PR0P)$).

In this rule we are only concerned with the surface form of each word. In
a given text if there are three adjacent words with the given lexical surface
form they are combined to make a single lexical item, the $ sign at the end
of compose action implies applicability of inheritance, i.e., if the text contains
a word sequence like ... Mustafa Kemal Atatürk’ün evi ... it is apparent that
Atatürk has a genitive case, hence when the sequence is matched the output
generated should indicate that the new lexical item has the genitive case, and
the output will be:

("Mustafa Kemal Atatürk"
((♦CAT* N)(*R* "Mustafa Kemal Atatürk")(*SUB* PROP)
(♦CASE* GEN))

)

This inheritance property is available only for the last word in the sequence.

4.4 U sing C onstraints for M orphological A m biguity

R esolution

Morphological analysis does not have access to syntactic context, so when the
morphological structure of a lexical form has several· distinct analyses, it is
not possible to disambiguate such cases except maybe by using root usage
frequencies. For disambiguation one may have to use to usage information
provided by sentential position and the local morphosyntactic context.

In our tagger, constraint rules are specified by using the previously defined
rule format, in a way very similar to specification of multi-word constructs. Use
of variables, operators and actions are same except that the compose action
does not make sense here.

CHAPTER 4. THE TAGGING TOOL 32

The task of morphological disambiguator is to discard all and only the
contextually illegitimate alternative morphological readings. It employs an
ordered set of linguistic constraints on the linear order of ambiguity forming
morphological readings. Constraint rules are applied on each word, and re
quires recognition of a sequence of forms with certain morphological features,
sentential positions (i.e., sentence beginning or final) on it and its neighbors.
Constraint rules contain some very general linguistic rules, a set of heuristics
and some biased preferences on some words depending on the corpus we use.

Since there is a rule order, rule crafting requires attention to rule order
ing, but this ordering enables us to handle exceptions and impose our biased
preferences on the readings of some words.

So far, about 250 constraint rules have been written, and they disambiguate
98% to 99% of a given text automatically with 97% to 99% accuracy. Detailed
information on the results of the experiments will be given in the next chapter.

In the next section, several examples of constraint rules will be presented.

4.4.1 Exam ple Constraint Specifications

The following constraint is used to select the postpositional reading of certain
word when it is preceded by a yet unresolved nominal form with a certain case.

(Cl) LP = 0, FinalCat != V , Case = _C : (Al) Output;
(C2) LP = 1, Cat = POSTP, Subcat = _C : (A2) Output.

For example, for the following sentence,

Ahm et’ten önce Ali git-ti.
Ahmet-t-ABL before Ali go-fPAST

(Before Ahmet, Ali went.)

the morphological analyzer outputs the break-downs given in Figure 4.3:

If the rule is applied to the word sequence “Ahmet’ten önce”, the postpo
sitional reading of “önce” is chosen and the others are discarded. Since, the

CHAPTER 4. THE TAGGING TOOL 33

("ahmet'ten"
("ahmet'+DAn" ((*CAT* N)(*R* "ahmet") (*SUB* PROP)

(♦CASE* A BL)))
)

("önce"
("önce" ((*CAT* N)(*R* "önce")(*AGR* 3SG)(*CASE* NOM)))
("önce" ((*CAT* N)(*R* "önce")(*AGR* 3SG)(*CASE* NOM)

(*C0NV* V "")(*ASPECT* PR-CONT)(*AGR* 3SG)))
("önce" ((*CAT* ADV)(*R* "önce")(*SUB* TEMP)))
("önce" ((♦CAT* POSTP)(*R* "önce")

(♦SUBCAT* A BL)))
)

("all"
("all'" ((*CAT* N)(*R* "ali")(*SUB* PROP)(*CASE* NOM)))
("all'" ((*CAT* N)(*R* "ali")(*SUB* PROP)(*CASE* NOM)

(*C0NV* V "")(*ASPECT* PR-CONT)(+AGR* 3SG)))
)

("gitti"
("gid+DH" ((*CAT* V)(*R* "git")(*ASPECT* PAST)

(*AGR* 3SG)))
)

Figure 4.3. Output of morphological analyzer for “Ahmet’ten önce Ali gitti”.

CHAPTER 4. THE TAGGING TOOL 34

only requirement is that the case of the nominal form agrees with the sub
categorization requirement of the following postposition. (LP = 0 refers to
current word, LP = 1 refers to next word.)

This one constraint disambiguates almost all of the postpositions and their
arguments, the exceptions being nominal words which semantically convey the
information provided by the case (such as words indicating direction, which
may be used as if they have a dative case), e.g., yukarı doğru. Following is the
morphological analyzer’s output.

("yukarı"
("yukarı" ((*CAT* N)(*R* "yukarı")

(♦SEMCASE* DAT)(*AGR* 3SG)
(♦CASE* NOM)))

("yukarı" ((*CAT* N)(*R* "yukarı")(*SEMCASE* DAT)
(*AGR* 3SG)(*CASE* NOM)(*C0NV* V "")
(♦ASPECT* PR-CONT)(*AGR* 3SG)))

("yukarı" ((*CAT* ADV)(*R* "yukarı")(*SUB* DIR)))
("yukarı" ((*CAT* POSTP)(*R* "yukarı")(*SUBCAT* ABL)))

)

("doğru"
("doğru" ((*CAT* ADJ)(*R* "doğru")(*SUB* QUAL)

(*AGR* 3SG)(*CASE* NOM)))
("doğru" ((*CAT* ADJ)(*R* "doğru")(*SUB* QUAL)

(*AGR* 3SG)(*CASE* N0M)(*C0NV* V "")
(♦ASPECT* PR-CONT)(*AGR* 3SG)))

("doğru" ((*CAT* POSTP)(*R* "doğru")
(♦SUBCAT* DAT)))

)

Following rule handles this cases.

(Cl) LP = 0, FinalCat != V, SemCase = _C : (Al) Output;
(C2) LP = 1, Cat = POSTP, Subcat = _C: (A2) Output.

CHAPTER 4. THE TAGGING TOOL 35

Some of the postpositions have exceptional cases of its own. For example,
postpositional readings of “sonra” and “once" do not require any agreement
between its sub-categorization requirement and the previous nominal’s case if
the nominal indicates a temporal unit.

(Cl) LP = 0, FinalCat = N, Sub = TEMP-UNIT, Case = NOM:
(Al) Output;
(C2) LP = 1, Cat = POSTP, R = önce :
(A2) Output.

Example;

AH on gün önce gel-di.
Ali ten day ago come-f-PAST

(Ali came ten days ago.)

In this sentence, “önce” has a postpositional reading even though its sub
categorization requirement does not agree with the Ccise of “gün”. Consider
the following morphological break-down for the fragment “gün önce”.

("gün"
("gün" ((*CAT* N)(*R* "gün")

(*SUB* TEMP-UNIT)(*AGR* 3SG)
(♦CASE* NO M)))

("gün" ((*CAT* N)(*R* "gün")(*SUB* TEMP-UNIT)
(*AGR* 3SG)(*CASE* NOM)(*C0NV* V "")
(♦ASPECT* PR-CONT)(*AGR* 3SG)))

)

("önce"
("önce" ((*CAT* N)(*R* "önce")(*AGR* 3SG)

(♦CASE* NOM)))
("önce" ((*CAT* N)(*R* "önce")(*AGR* 3SG)

(♦CASE* N0M)(*C0NV* V "")(*ASPECT* PR-CONT)
(*AGR* 3SG)))

CHAPTER 4. THE TAGGING TOOL 36

("önce" ((*CAT* ADV)(*R* "önce")(*SUB* TEMP)))
("önce" ((*CAT* PO STP)(*R* ’’önce”)

(♦SUBCAT* ABL)))
)

The first two constraint specifications given earlier disambiguate almost all
postpositions, but they have to be complemented with the rules for handling
exceptional cases, which are word specific as in the case of “önce’\ i.e., they can
not be generalized to a group of words. If none these rules can assert that the
word is a postposition, the postpositional reading is deleted with the following
rule.^

(Cl) LP = 0, Cat = POSTP, R != ile : (Al) Delete;

Recognition of noun phrases makes the disambiguation of their components
easier. For this purpose, we have implemented a set of rules to disambiguate
words which are constituents of noun phrases.

In the simplest case, a Turkish NP can be a possessive or non-possessive
noun, a possessive or non-possessive adjective, a proper noun, a pronoun etc.
But, it is somewhat hard to use this single word noun phrases for disambigua
tion purposes. So the recognition of noun phrases consisting of two or more
components might be useful. In Turkish, noun phrases can be divided into two
categories which are nominal compounds and adjectival compounds.

Nominal compounds are classified into definite and indefinite nominal com
pounds. Moreover, definite nominal compounds can be further classified cis
genitive-possessive compounds and possessive-compounds, since they have dif
ferent syntactic properties.

In Turkish, a noun phrase with genitive suffix can modify a noun with pos
sessive suffix to form a genitive-possessive construction, we can give examples
as benim evim (my house), çocuğun kitabı (the child’s book). The genitive
suffix indicates that the noun which it is attached is possessor of some other
noun. The possessive suffix indicates that the noun to which it is attached is
possessed by other noun. Such examples are handled with the following rule.

 ̂“He” is a special postposition and hard to disambiguate. It might be better to leave it
ambiguous.

CHAPTER 4. THE TAGGING TOOL 37

(Cl) LP = 0, FinalCat
(Al) Output;
(C2) LP = 1, FinalCat
(A2) Output.

= N, Case = GEN, Agr = _A1

= N, Poss = _A1 :

Following is the morphological break-down for “çocuğun kitabı”.

("çocuğun"
("çocuk+Hn" ((*CAT* N)(*R* "çocuk")(*AGR* 3SG)

(♦POSS* 2SG)(*CASE* NOM)))
("çocuk+Hn" ((*CAT* N)(*R* "çocuk")(*AGR* 3SG)

(♦POSS* 2SG)(*CASE* NOM)(*C0NV* V "")
(♦ASPECT* PR-CONT)(*AGR* 3SG)))

("çocuk+nHn" ((*CAT* N)(*R* "çocuk")
(*AGR* 3SG)(*CASE* GEN)))

("çocuk+nHn" ((*CAT* N)(*R* "çocuk")(*AGR* 3SG)
(♦CASE* GEN)(*C0NV* V "")
(♦ASPECT* PR-CONT)(♦AGR* 3SG)))

)

("kitabı"
("kitab+sH" ((*CAT* N)(*R* "kitap") (*AGR* 3SG)

(*POSS* 3SG)(*CASE* NOM)))
("kitab+sH" ((*CAT* N)(*R* "kitap")(*AGR* 3SG)

(♦POSS* 3SG)(*CASE* NOM)(*C0NV* V "")
(♦ASPECT* PR-CONT)(*AGR* 3SG)))

("kitab+yH" ((*CAT* N)(*R* "kitap")(*AGR* 3SG)
(♦CASE* ACC)))

)

Other definite nominal compounds that do not fit to the syntax of the
genitive-possessive constructions are called as possessive compounds. Some
examples are kitap kapağı (book cover), at arabası (horse cart). The following
rule handles these NPs.

CHAPTER 4. THE TAGGING TOOL 38

(Cl) LP = 0, FinalCat
(Al) Output;
(C2) LP = 1, FinalCat
(A2) Output.

= N, Case = NOM, Agr = 3SG

N, Poss = 3SG :

Components of indefinite nominal compounds like çelik карг (steel door),
аШп bilezik (golden bracelet), due to their uninflected morphological structure,
do not have ambiguous readings except for the predicative readings, and we
can resolve them using certain heuristics.

An adjective modifying a noun, precedes the noun to form an adjectival
compound. Simple adjectival compounds are composed of two words like
kırmızı kalem where the modifier is an adjective and the modified is a noun.
But there are other adjectival compounds where the modifier adjective is de
rived form another form, like bahçedeki, where the final reading is again an
adjective. Consider the following morphological break-down of bahçedeki ağaç
(the tree in the garden).

("bahçedeki"
("bahçe+DA+ki" ((+CAT* N)(*R* "bahçe")(*AGR* 3SG)

(♦CASE* L0C)(*CONV* A D J ”ki”)
(♦AGR* 3SG)(*CASE* NOM)))

("bahçe+DA+ki" ((*CAT* N)(*R* "bahçe")(*AGR* 3SG)
(♦CASE* L0C)(*C0NV* ADJ "ki")
(♦AGR* 3SG)(*CASE* NOM)(*C0NV* V "")
(♦ASPECT* PR-CONT)(*AGR* 3SG)))

)

("ağaç"
("ağaç" ((*CAT* N)(*R* "ağaç") (*AGR* 3SG)

(♦CASE* NOM)))
("ağaç" ((*CAT* N)(*R* "ağaç")(*AGR* 3SG)(*CASE* NOM)

(♦CONV* V "")(*ASPECT* PR-CONT)(*AGR* 3SG)))
)

Such compound nouns are disambiguated with the following rule:

CHAPTER 4. THE TAGGING TOOL 39

(Cl) LP = 0, FinalCat = ADJ : (Al) Output;
(C2) LP = 1, FinalCat = N : (A2) Null.

Indeed, NPs can have arbitrary length by intervening modifiers in Turkish.
So we must be able handle these cases also, for this purpose, we have imple
mented some other specifications for the disambiguation of NPs like sm t’s ADJ
smt, sm t’s N srnt, e.g, evin yeşil kapısı (green door of the house), evin demir
kapısı (iron door of the house). On the other hand, in practice we have not
encountered very complex noun phrases of length six or seven.

(Cl) LP = 0, FinalCat = N, Case = GEN, Agr = _A1
(Al) Output;
(C2) LP = 1, FinalCat = ADJ :
(A2) Output;
(C3) LP = 2, FinalCat = N, Poss = _A1 :
(A3) Output.

(Cl) LP = 0, FinalCat = N, Case = GEN, Agr = _A1
(Al) Output;
(C2) LP = 1, FinalCat = N :
(A2) Output;
(C3) LP = 2, FinalCat = N, Poss = _A1 :
(A3) Output.

Since our purpose is not to analyse the syntactic structure of noun phrases,
the recursive nature of NPs, i.e., two or more NPs combined together to form
another NP, helps us to disambiguate very long forms by disambiguting their
smaller components with the previously defined rules.

These rules are selected examples from the set of rules we have specified
for disambiguating components of noun phrases. The complete set contains a
number of other rules to handle some exceptions, and proves a reliable perfor
mance.

Our rule specification contains various heuristics besides these linguistic
generalizations. For example, the following rule deletes the sentence final ad
jectival readings derived from verbs, effectively preferring the verbal reading.
This heuristic relies on the property that Turkish is an SOV language.

CHAPTER 4. THE TAGGING TOOL 40

(Cl) LP = 0, Cat = V, FinalCat = ADJ, SP = END :
(Al) Delete.

In the sentence

Mektup zaman-in-da ulaş-ır.
mail time+3SG-POSS+LOC arrive+AOR

(Mail arrives in time.)

the word ulaşır has a verbal POS, but the morphological analyzer produces an
ambiguous output including an adjectival POS;

("ulaşır"
("ulaş+Hr" ((*CAT* V)(*R* "ulaş")(♦ASPECT* AOR)

(*AGR* 3SG)))
("ulaş+Hr" ((*CAT* V)(*R* "ulaş")

(*CONV* ADJ ”ir”)))

)

and the second reading is discarded by this rule.

Another heuristic is to discard second person singular possessive forms,
since they can be observed usually in the dialogs. If the text does not contain
any dialog this rule plays an efficient role.

(Cl) LP = 0, FinalCat = ?, Poss = 2SG : (Al) Delete.

The question mark for the final category value means any feature value is valid,
i.e., don’t care. Consider the following sentence.

Ahmet ev-in-de uyu-yor
Ahmet home+3SG-POSS+LOC sleep+PR-CONT

(Ahmet is sleeping at his home.)

Among those readings of “evin’\ we can discard the second person singular
possessions.

CHAPTER 4. THE TAGGING TOOL 41

("evinde"
("ev+sH+nDA" ((*CAT* N)(*R* "ev")(+AGR* 3SG)

(*POSS* 3SG)(*CASE* LOG)))
("ev+sH+nDA" ((*CAT* N)(*R* "ev")(*AGR* 3SG)

(*P0SS* 3SG)(*CASE* LOG)(*C0NV* V "")
(*ASPEGT* PR-GGNT)(*AGR* 3SG)))

("ev+Hn+DA" ((*GAT* N)(*R* "ev")(*AGR* 3SG)
(*POSS* 2SG)(*GASE* LOG)))

("ev+Hn+DA" ((*GAT* N)(*R* "ev")(*AGR* 3SG)
(*POSS* 2SG)(*GASE* L0G)(*G0NV* V "")
(*ASPEGT* PR-GONT)(*AGR* 3SG)))

)

Bearing the same idea in mind, i.e., there is no dialog in the text, we can
discard imperative and optative readings of words. Following two rule handle
these cases.

(Gl) LP = 0 , Finalcat = V , Aspect = OPT: (Al) Delete.

(Gl) LP = 0 , Finalcat = V , Aspect = IMP: (Al) Delete.

Consider following examples.

Bu A hm et’in kaz-i.
this Ahmet+GEN duck+3SG-POSS

(This is Ahmet’s duck.)

In this sentence “kazı” has the following break-down:

("kazı"
("kaz+sH" ((*GAT* N)(*R* "kaz")(*AGR* 3SG)

(*P0SS* 3SG)(*GASE* NOM)))
("kaz+sH" ((*GAT* N)(*R* "kaz")(*AGR* 3SG)

(♦POSS* 3SG)(*GASE* NOM)(*G0NV* V "")

CHAPTER 4. THE TAGGING TOOL 42

(♦ASPECT* PR-CONT)(*AGR* 3SG)))
("kaz+yH" ((*CAT* N)(*R* "kaz")(*AGR* 3SG)(*CASE* ACC)))
("kazı" ((*CAT* N)(*R* "kazı")(*AGR* 3SG)(*CASE* NOM)))
("kazı" ((*CAT* N)(*R* "kazı")(*AGR* 3SG)(*CASE* NOM)

(*C0NV* V "")(*ASPECT* PR-CONT)(*AGR* 3SG)))
("kazı" ((*CAT* V)(*R* "kazı")

(♦ASPECT* IMP)(*AGR* 2SG)))

Final imperative reading can be safely deleted.

Ahmet soru-yu çöz-me-ye çahş-ıyor.
Ahmet question+ACC solve+VtoN+DAT try+PR-CONT

(Ahmet is trying to solve the question.)

“çözmeye” has two possible readings.

("çözmeye"
("çöz+mA+yA" ((*CAT* V)(*R* "çöz") (*SENSE* NEG)

(♦ASPECT* OPT)(*AGR* 3SG)))
("çöz+mA+yA" ((*CAT* V)(*R* "çöz")(*C0NV* N "ma")

(*AGR* 3SG)(*CASE* DAT)))
)

And the optative reading is obviously not possible.

4.4.2 Rule Crafting

Some selected examples from our current constraint rules are given in the
previous section. It is probably noticable that they contain a set of linguistic
generalizations, some exception handling rules and a set of heuristics.

All these rules have been specified after experimenting with a number of
texts. The important topic here is the ordering of these specifications, since
the rules are applied on each word in the given order. We preferred to give the

CHAPTER 4. THE TAGGING TOOL 43

generalizations first, with rules handling their exceptions. Then the heuristics
and our biased-preferences on some words, like prefering connective reading of
“ama”(but) since it is very rare to meet its nominal reading (blind).

Apparently, many rules have side effects to other ones, and there is no
automatic way of perfect ordering. Therefore, we have tried some different
orderings for rules which interact by means of side effects to reach out a rea
sonable ordering.

4.4.3 L im itations o f C onstraint-based D isam biguation

Throughout the tests we have faced some language specific and some formalism
specific problems.

One of the major problems with Turkish is the semantic ambiguities due
to agglutinative nature of the language. For example, the word kazanlar has
two nominal readings with same POS, yet different morphological breakdown.

1 .

kazanlar Gloss POS English
kazan-flar N (kazan)-|-3 P L-f-N 0 M N boilers
kaz-f-[y]an+lar V(kaz) -b V toN (yan) N ones who are

-b3PL+NOM digging

Even though the second one is derived from a verbal root they both have the
same final category and inflectional feature values. In English each word can
have several readings with the same category, but their semantic ambiguity is
not supplied by the morphological analyzer. In this case, however, choosing one
of these readings as correct means resolution of a semantic ambiguity, although
it is not one of the tasks of tagger.

One solution to this problem is to change the semantics of output action
from remove all but the matching parse to remove all but the matching parses.
This plurality means leaving the ambiguity pending, and moreover, increasing
the number of words left ambiguous. In this version of tagger we preferred to
resolve such ambiguities by writing some rules to dictate our biased preferences
on the readings of some pre-determined words and some other rules to eliminate
ambiguities due to such derivations.

CHAPTER 4. THE TAGGING TOOL 44

Many sentences contain sub-ordinate clauses combined with a coordinating
conjunctions like ve (and). Some of the ambiguities can not be resolved with
the available formalism. For example, in the following sentence fragment:

Vazolar süslenmiş ve güzel masaların üzerinde duruyor.

This is tough to disambiguate the word süslenmiş. Whether it is a verb or
an adjective which is a part of a noun phrase can not be decided easily. One
possibility may be to write arbitrarily long rules to catch whether it is a part of
noun phrase or not, but the length of the specification can not be predictable
since there can be several other intervening words, and even noun phrases
to which it can be attached, thus leading a wrong disambiguation. Another
solution might be to add nondeterminism to constraint matching mechanism
to check arbitrary distance away words in specified aspects to make decisions,
but this may increase the complexity of rule matching mechanism upto the
cost of syntactic parsing, which should be avoided.

Application of constraint specifications in the given linear order have a
number of drawbacks, beside its advantages. One of the major one is the early
disambiguation of certain lexical items. In the following sentence,

Ordu üs-ler-i bombala-n-di.
army base+PLU-H3SG-P0SS bomb-h PA SS-f-PAST

(Army bases have been bombed.)

recognition and disambiguation of the noun phreise “ordu üsleri” (army bases)
leads to a correct disambiguation within this discourse. However, if we convert
the previous sentence to following form:

Ordu iis-ler-i bombala-di.
army base-fPLU-f ACC bomb-f-PAST

(Army bombed the bases.)

disambiguation of the fragment “ordu üsleri” as the noun phrase army bases
leads to an incorrect interpretation. Next sentence also contains an example
of this case.

CHAPTER 4. THE TAGGING TOOL 45

A slında benim devanı
in fact my attendance
b ir niyet-im yok.
a intention+lSG-POSS exist+NEG

(In fact, I do not have any intention to continue.)

e t-m ek gibi
do+INF as

For the following piece of sentence “..benim devam etmek..” morphological
analyzer produces the output given in Figure 4.4. As seen, “benim devam” will
be disambiguated by one of the noun phrase I'ecognizing rules as a noun phrase
(my cure), therefore the tagger will miss the verb group “devam etmek’\ov will
not have any chance to evaluate this possibility. With the current formalism
there seems to be no good solution to this problem.

Another major problem with the formalism is that it can not handle the
word-order freeness of Turkish. The place of a constituent in a sentence may
be changed according to various considerations like focus, topicalization etc.
However, all constraints are applied in the given order on the linear order of
the input text, so misplacement of constituents may decrease the performance
of the tagger in two respects: The first and the most common one is that
ambiguity can not be resolved, and the second one is the tagger may choose
a wrong interpretation. Luckily, a straight forward prose text not containing
dialogs ususally contains sentences which have the standard SOV order.

As repeated in the above cases, this rule formalism has certain limitations.

• One of the major problem is to find a reasonable ordering where the side
effects of each rule to other rules are minimized.

• Another problem rises from the application of constraint rules in the
given order leading to disambiguation of lexical items promptly when
constraints are satisfied, and blocking application of other rules to assert
different interpretations.

• This formalism can not capture the word-order freeness yet.

One solution to these above problems might be to use a different inference
mechanism where disambiguation decisions do not depend solely on the actions
of constraint rules, but on a scoring they made, i.e., application of constraint

CHAPTER 4. THE TAGGING TOOL 46

("benim"
("ben+Hm" ((*CAT* N)(*R* "ben")(*AGR* 3SG)(*POSS* ISG)

(♦CASE* NOM)))
("ben+Hm" ((*CAT* N)(*R* "ben")(*AGR* 3SG)(*POSS* ISG)

(*CASE* N0M)(*C0NV* V "")(*ASPECT* PR-CONT)
(*AGR* 3SG)))

("ben+yHm" ((*CAT* N)(*R* "ben")(*AGR* 3SG)
(♦CASE* NOM) (*CONV* V "")
(♦ASPECT* PR-CONT)(*AGR* ISG)))

("ben+yHm" ((*CAT* PN)(*R* "ben")(*AGR* ISG)
(♦CASE* NOM)(*CONV* V "")(*ASPECT* PR-CONT)
(*AGR* ISG)))

("benim" ((*CAT* PN) (*R* "ben")(*AGR* ISG)
(♦CASE* G E N)))

)

("devam"
("deva+Hm" ((*CAT* N)(*R* "deva")(*AGR* 3SG)

(*POSS* 1SG)(*CASE* NOM)))
("deva+Hm" ((*CAT* N)(*R* "deva")(*AGR* 3SG)

(♦POSS* 1SG)(*CASE* NOM)(*C0NV* V "")
(♦ASPECT* PR-CONT)(*AGR* 3SG)))

("devam" ((*CAT* N)(*R* "devam")(*AGR* 3SG)
(♦CASE* NOM)))

("devam" ((*CAT* N)(*R* "devam")(*AGR* 3SG)
(♦CASE* NOM)(*CONV* V "”)(*ASPECT* PR-CONT)
(*AGR* 3SG)))

)

("etmek"
("ed+mAk" ((*CAT* V)(*R* "et")(*C0NV* INF "mak")

(♦CASE* NOM)))
("ed+mAk" ((*CAT* V)(*R* "et")(*C0NV* INF "mak")

(♦CASE* N0M)(*C0NV* V "")(*ASPECT* PR-CONT)
(*AGR* 3SG)))

)

Figure 4.4. Output of morphological analyzer for “..benim devam etmek..”.

CHAPTER 4. THE TAGGING TOOL 47

rules assigns scores to each readings of a word and the final decision is given on
the overall scoring obtained. This modification will have two consequences: It
eases the rule crafting, since the rule ordering will not be important. Moreover,
each rule will have a chance to evaluate possible readings of lexical items, cis
none of them is disambiguated before the last rule is applied.

4.5 T ext-based S tatistica l D isam biguation

A common practice in statistical language analysis is to generate statistics
from a tagged, heterogeneous corpus like Brown and LOB,® and apply these
statistics in the analysis of the new texts. If the new text is different from
the statistical model of the source corpus, the analyzer is likely to perform less
satisfactorily.

A new possibility is to use the analyzed corpus itself both as a source of
generalizations and an object of the analyzer based on these generalizations.
For this purpose, the tagger compiles root usage statistics from the fully dis
ambiguated part of the text, and if any of the previous techniques can not
resolve the ambiguity, optionally the tagger can use these statistics to select
proper analysis according to some user specified thresholds. However, we have
not implemented this yet.

^So far, there is no such a big tagged corpus for Turkish

Chapter 5

E xperim ents w ith the Tagger

Throughout the development of tagger we made various tests on different texts,
and developed a database of approximately 250 constraint and hundreds of
multi-word construct specifications. Some of these constraints are very gen
eral (e.g. the disambiguation of postpositions) while some are geared towards
recognition of noun phrases of various sorts and the rest apply certain syntactic
heuristics and our biased-preferences. The multi-word construct specifications
contain the examples given in chapter 4 and lots of proper noun specifications.

We have performed some preliminary experiments with small texts to assess
the effectiveness of our tagger, and to fine-tune the constraint specifications
along with their orderings. Although the texts that we have experimented with
are rather small, the results are encouraging in the sense that our approach
is effective in disambiguating morphological structures and hence POS with
97-98% accuracy and with minimal (1.0%) user intervention[14].

At a final reasonable state of our specifications, we tested the performance of
tagger with three small texts, which are articles from different newspapers, and
an additional larger text, which is a document on Anatolian archeology with
about 7000 words. Table 5.1 presents statistics of morphosyntactic ambiguity
distribution in the texts, and it is observable that almost 70 to 80% of the
sample texts contain ambiguous words.

Table 5.2 presents morphological disambiguation and tagging results. It is
evident that the tagger provided a reliable result, and tagged the texts between
98.4% to 99.1% accuracy with very little user intervention. Among those cor
rectly tagged words almost 96.7% to 98.5% of them are tagged automatically

48

CHAPTER 5. EXPERIMENTS WITH THE TAGGER 49

Table 5.1. Statistics on texts tagged.

Text Words Morphological Parse Distribution
0 1 2 3 4 > 5

1 468 7.3% 28.7% 41.1% 11.1% 7.1% 4.7%
2 533 3.8% 24.8% 38.1% 19.1% 9.2% 5.0%
3 573 1.0% 30.2% 37.3% 13.1% 11.1% 7.3%
4 7004 3.9% 17.2% 41.5% 15.6% 11.7% 10.1%

Note: Words with zero parses are the ones which are not in the lexicon of the
morphological analyzer, and they are mostly proper nouns. If their specifica
tion is available, they are tagged as proper nouns by the multi-word construct
processor.

Table 5.2. Tagging and disambiguation results.

Text Correctly Automatically Disambiguation by
size Tagged Tagged Multi-word

rules
Constraints User

468 99.1% 98.5% 10.1% 67.7% 0.6%
533 98.9% 97.8% 7.5% 74.5% 1.1%
573 98.8% 98.5% 3.1% 74.4% 0.3%
7004 98.4% 96.7% 4.2% 75.9% 1.7%

Note: Disambiguated by user means the tagger couldn’t resolve the ambiguity.

by the tagger and the remaining 0.3% to 1.7% of the words are left ambiguous
to be resolved by user. This user interaction is optional as stated before, and we
turned this option off for these tests to see whether the remaining ambiguous
words still contain the correct readings, or the correct readings are discarded
by some constraints. The results are very encouraging in the sense that, even
though 0.9 to 1.6% of the texts are tagged with a wrong reading, all of the
remaining ambiguous words still contain the legitimate reading.

Currently, the speed of the tagger is limited by essentially that of the mor
phological analyzer, but the morphological analyzer has been ported to the
XEROX TWOL system developed by Karttunen and Beesley [9]. This system
which can analyze Turkish word forms at about 1000 forms/sec on Sun Spare-
Station lO’s. We intend to integrate this to our tagger soon, improving its
speed performance considerably. The constraint checking mechanism does not
create a bottleneck with this amount of constraints. However, if the constraint
size increases in the multiples of lO’s, a more efficient constraint evaluation

CHAPTER 5. EXPERIMENTS WITH THE TAGGER 50

mechanism will be required.

5.1 Im pact of M orphological D isam biguation on Pars
ing Performance

We have tested the impact of morphological disambiguation on the performance
of an LFG parser developed for Turkish [6, 7]. The input text fed to the parser
was disambiguated using the tool developed and the results were compared to
the case when the parser had to consider all possible morphological ambiguities.
For a set of 80 sentences considered we obtained the results, shown in Table
5.3.

Table 5.3. Impact of disambiguation on parsing performance.

No disambiguation With disambiguation Ratios
Avg. Length
of sentences

Avg.
parses

Avg.
time (sec)

Avg.
parses

Avg.
time (sec) parses speed-up

5.7 5.78 29.11 3.30 11.91 1.97 2.38

Note: The ratios are the averages of the sentence by sentence ratios.

It can be seen that, morphological disambiguation enables almost a factor
of two reduction in the average number of parses generated and over a factor
of two speed-up in time, which is encouraging in the sense that the higher level
analysis of Turkish text will benefit from the functionality output of the tagger.

Chapter 6

Conclusions and Future W ork

In this thesis, we have presented the design and implementation of a part-
of-speech tagger for Turkish text along with various issues that come up in
disambiguating among morphological parses of Turkish words. This is the first
effort in tagging Turkish text including morphological disambiguation. In lan
guages like Turkish or Finnish, with heavily inflected agglutinative morphology,
morphological disambiguation is a crucial process in tagging since the structure
of many lexical forms are morphologically ambiguous.

In the literature, we can observe two major paradigms for building part-
of-speech (POS) taggers, rule-based approaches and statistical approaches. In
this work, we prefered to use a rule based approach where one can write a
set of constraint rules to discard all and only the contextually illegitimate
alternative morphological readings. This functionality is complemented with
a rule-based multi-word and idiomatic construct recognizer to detect multiple
lexical items that act as single syntactic or semantic entity and to coalesce them
into a single lexical form with a unique POS. The tool also provides additional
functionalities, like statistics compilation, for fine-tuning of the morphological
analyzer and the tagger itself.

Our constraint database contains almost 250 constraint specifications.
Some of these constraints are very general as the disambiguation of postpo
sitions, while some are geared towards recognition of noun phrases of various
sorts and the rest apply certain syntactic heuristics and our biased-preferences.
The multi-word construct recognition database contains hundreds of specifica
tions where some of them are for the recognition of specific word patterns, like
yapar yapmaz, gelir gelmez and koşa koşa, ztpIaya zıplaya, and the rest is for

51

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 52

the recognition of lots of proper nouns, like Mustafa Kemal Atatürk.

We have performed several experiments to assess disambiguation perfor
mance of our tagger and noted that the use of constraints is very effective in
morphological disambiguation. In these experiment the tagger proved 98.4 to
99.1% accuracy with very minimal user intervention, i.e., 96.7 to 98.5% of the
texts are tagged automatically and remaining 0.3 to 1.7% of the texts are left
ambiguous.

Furthermore, we have performed another experiment to assess the impact
of morphological disambiguation to higher level analysis of texts. For this
purpose, a set of 80 sentences have been disambiguated by the tagger and
an LFG parser for Turkish is fed with the disambiguated sentences. The LFG
parser , on the average, generated 50% less ambiguous parses and parsed almost
2.5 times faster.

The current constraint based disambiguation formalism, beside its reliable
performance, has certain limitations.

• Constraint rules are applied in the given linear order and rule crafting
requires heavy effort for reasonable ordering.

• Immediate application of the actions of constraint rules block other rules
to evaluate different possibilities.

• This formalism can not capture the word-order freeness.

One solution to these problems might be to use a different inference mechanism
where disambiguation decisions do not depend solely on the immediate appli
cation of the actions of constraint rules, instead each constraint rule vote for
their preferences on matching words and the final global vote tally determines
the assignments.

While experimenting with different texts, we have observed that there are
quite many words which are not recognized by the morphological analyzer.
Many of these words are proper nouns and if they are in our multi-word con
struct specifications they are classified. On the other hand, if we miss to
recognize these unknown words performance of the tagger degrades. Hence,
we need a mechanism to recognize unknown words by analyzing affixations of
words.

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 53

Automatic rule acquisition is one of the open ended research topics in rule-
based disambiguation, and this is the major weakness of rule-based methods
against statistical ones. First attempt for automatic rule ac’̂ uisition came from
Brill [1]. In his work, Brill uses a new learning paradigm called transformation-
based error-driven learning and gets reasonable performance. We also need to
find a mechanism for automatic rule acqusition which will make the life easier.

Bibliography

[1] E. Brill. A simple rule-based part-of-speech tagger. In Proceedings of the
Third Conference on Applied Computational Linguistics, Trento, Italy,
1992.

[2] K. W. Church. A stochastic parts program and noun phrase parser for
unrestricted text. In Proceedings of the Second Conference on Applied
Natural Language Processing (ACL), pages 136-143, 1988.

[3] D. Cutting, J. Kupiec, J. Pedersen, and P. Sibun. A practical part-of-
speech tagger. Technical report. Xerox Palo Alto Research Center, 1993.

[4] S. J. DeRose. Grammatical category disambiguation by statistical opti
mization. Computational Linguistics, 14:31-39, 1988.

[5] B. B. Greene and G. M. Rubin. Automated grammatical tagging of En
glish, 1971.

[6] Z. Giingordu. A Lexical-Functional Grammar for Turkish. Master’s thesis.
Department of Computer Engineering and Information Sciences, Bilkent
University, Ankara, Turkey, July 1993.

[7] Z. Gungordii and K. Oflazer. Parsing Turkish using the lexical-functional
grammar formalism. In Proceedings of COLING-94, the 15th International
Conference on Computational Linguistics, Kyoto,Japan, 1994. To appear.

[8] F. Karlsson. Constraint grammar as a framework for parsing running
text. In Proceedings of COLING-90, the 13th International Conference
on Computational Linguistics, volume 3, pages 168-173, Helsinki, Finland,
1990.

[9] L. Karttunen and K. R. Beesley. Two-level rule compiler. Technical Re
port, XEROX Palo Alto Research Center, 1992.

54

BIBLIOGRAPHY 55

[10] S. Klein and R. F. Simmons. Computational approach to grammatical
coding of English words. JACM, 10:334-47, 1963.

[11] I. Marshall. Choice of grammatical word-class without global syntactic
analysis: Tagging words in the LOB corpus. Computers in Humanities,
17:139-150, 1983.

[12] K. Oflazer. Two-level description of Turkish morphology. In Proceedings
of the Sixth Conference of the European Chapter of the Association for
Computational Linguistics, April 1993. A full version appears in Literary
and Linguistic Computing, Vol.9 No.2, 1994.

[13] K. Oflazer and H. C. Boz§ahin. Turkish Natural Language Processing
Initiative: An overview. In Proceedings of Third Turkish Symposium on
Ai'tificial Intelligence and Neural Networks. Middle East Technical Uni
versity, 1994.

[14] K. Oflazer and 1. Kuruoz. A tool for tagging Turkish text. In Proceed
ings of Third Turkish Symposium on Artificial Intelligence and Neural
Networks. Middle East Technical University, 1994.

[15] A. Voutilainen. Three studies of grammar-based surface parsing of un
restricted English text. PhD thesis. Department of General Linguistics,
University of Helsinki, Helsinki,Finland, May 1994.

A ppendix A

Sam ple Tagged O utput

A .l Sam ple Text

(Milliyet 7.12.92 Olaylar ve insanlar Hasan Pulur)

Kadınlar çok şey istiyor... Kadınlar ne istiyor? Çok şey istiyorlar! Yalnız
“çok şey istiyorlar!” dedik diye, “bu kadınlar da ipin ucunu kaçırdı!” gibi bir
anlam çıkarılmamalı, eşitlik istiyorlar o kadar...

Kadınlar, 1926 tarihli Medeni Kanun’un, 1990’lı dünyanın gereklerine uy
durulmasını istiyorlar... Elbette, 1926 tarihinde. Medeni Kanun, o yılların
toplumsal ve kültürel anlayışının sonucu olarak kadın erkek eşitliğine dayalıydı,
lâkin o günden bugüne köprülerin altından, kadın haklarından, kadın-erkek
eşitliğinden yana çok sular geçtiği için. Medeni Kanun’un da, diğer ülkelerin
kanunları gibi değiştirilmesi gerekiyor...

Peki, kadınlar ne istiyorlar? İstanbul Üniversitesi Kadın Sorunları
Araştırma ve Uygulama Merkezi, Medeni Kanun’da neler istediklerini
gerekçeleriyle açıkladı...

Yürürlükteki Medeni Kanun’a göre, ailenin reisi kocadır, ev seçimini o ya
par, nerede oturulacağına o karar verir, karısını ve çocuklarını o uygun bir
biçimde geçindirir... Kadınların hazırladığı yeni tasarıda, eşler arasında eşitlik
esas kabul edildiği için erkeğin reisliği kaldırılmış, oturulacak ev için, iki tarafın
anlaşması gerekiyor, anlaşamıyorlarsa, hakime gidecekler... Şimdi erkekler
diyecekler ki: “Aile reisliği gitti, ev seçme hakkımız da kalktı, peki, bu aileyi

56

APPENDIX A. SAMPLE TAGGED OUTPUT 57

kim geçindirecek?” Kadınlar ev geçindirmede de eşitlik istiyorlar... Şöyle diy
orlar: “Eşlerden her biri evliliğin sorumluluğuna ve aile birliğinin ihtiyaçlarım
karşılamasına güçleri oranındakatkıda bulunacaklardır.” Şimdi davudi sesli
erkek itirazlarını duyuyoruz: “Kadın, hangi gücü oranında ailenin ihtiyacını
karşılayacak?” Kadın, dışarıda çalışıp para kazanmıyor ya! Peki, evde çalışan
kadının aileye katkısı yok mudur? Hem de ne katkı?

Bir de, soyadı meselesi var! Erkek isterse, karısının, kadın da isterse, ko
casının soyadını taşıyacak, ya da bekarlık soyadlarını da kullanabilecekler...
Kadınlar kusura bakmasınlar ama, bu biraz ayrıntı, karı-koca ayrı ayrı soyad
ları taşıyacaklar, biraz garip değil mi, şekilcilik değil mi? Diyelim taşıdılar,
ne olacak, temel sorunları çözülecek mi? Ama bir kadın isterse, erkek de uy
gun görürse, evlendikten sonra kızlık soyadını da kocasının soyadıyla birlikte
taşıyabilmeli...

Şimdi gelelim en önemli maddeye... Siz ne derseniz deyin, mal canın yon
gasıdır... Yürürlükteki kanuna göre, bizde “mal ayrılığı” vardır. Yani kadının
malı kadınındır, erkeğin malı erkeğin... Aslında ilk bakışta “mal ayrılığı”
kadm-erkek eşitliğine uygun görülebilir. Fakat, Türkiye’deki uygulamada ev
kadınlarının hakkı yenmektedir. Kadın kuruluşları “mal birliği” isteyerek şöyle
demektedirler: “Mal ayrılığı, görünüşte, kadın erkek eşitliğine uygun bir re
jimdir. Ancak uygulamada, özellikle ev kadını diye tanımlanan insanların
durumunu ağırlaştırmaktadır. Milyonlarca kadın tarlada çalışarak veya evde
en ağır işleri görerek yarattıkları artı değere sahip olamamaktadır. Evlilik
dönemi elde edilen taşınmaz mallar, genellikle kocanın adına tapuya kaydol
makta ve gelirler kocanın banka hesabına geçirilmektedir. Evliliğin boşanma
veya ölüm ile sona ermesi halinde, kadın ortada kalmaktadır. Kadının çabası
her zaman gözle görülen bir kazanç veya gelir şeklinde ortaya çıkmayabilir.
O nedenle, bugünkü düzen, sosyal adalet ye eşitlik ilkesine aykırıdır. Ayrıca,
boşanma ve miras hukukunda yapılan son değişiklikler, kadın haklarının ko
runmasını daha da zorunlu kılmaktadır. Kaldı ki, eğer evlilik birliği esnasında
alman mallar kadının üzerine tapulanmışsa, o takdirde de, boşanma halinde
erkek mağdur olabilmektedir. Bunun dışında, mal ayrılığı, hileli iflaslarda veya
geri ödenmemesi durumlarında alacaklıları güç durumda bırakabilmektedir.
Eşlere mal rejimi sözleşmesi yapma hakkı da tanınmıştır. Yeni kanun re
jimi, eşlerin mal rejimi sözleşmesi ile kanunda belirtilen diğer rejimlerden birini
seçemedikleri takdirde geçerlidir. Evlenmeden önce sahip olunan mallar, mal
ayrılığı esasına tabidir. Evlenmeden sonra edinilen mallar için ortak katılım,
kanuni rejim olarak kabul edilmiştir.”

APPENDIX A. SAMPLE TAGGED OUTPUT 58

Kadınlar daha çok şey istiyor... Biz içlerinden bir-ikisini seçtik, diğerlerini
öğrenmek istiyorsanız ve açtıkları imza kampanyasını desteklemek istiyorsanız,
aşağıdaki telefon numarasına ve adrese başvurabilirsiniz, ille de kadın olmanız
şart değil... Biliyoruz, başta aile reisliği, çok şeylerden vazgeçmek erkekler için
kolay değil... Değil ama, oturup anlatmak, uzlaşmak da var... ille de vazgeçmek
değil!

A .2 Tagged O utput

The following is the tagged output of the previous sample text.^

- ([!] : ("(" ((♦CAT* PUNCT)(*R* '·(··)))
- milliyet [2 COHS] :

(••milliyet" ((*CAT* i)(«R* "milliyet·') (♦AGR* 3SG)(*CASE* lOM)))
- 7 [1] :

("7·· ((♦CAT^ IUH)(«R» "7··)))
- . [1] ; (··.·· ((♦CAT* PÜICT)(+R* ".")))
- 12 [1] :

(••12·· ((♦CAT^ IUM)(*R* "12··)))
- . [1] : (".·· ((*CAT* PUiCT)(*R* ".")))
- 92 [1] :

("92·· ((*CAT* HUM)(^R* "92'·)))
- olaylar [3 COIS] :

(••olay+lAr" ((♦CAT* H)(*R* •'olay'·) («AGR* 3PL)(*CASE» lOH)))
- ve [1] :

(••ve·· ((♦CAT* C0I)(+R* •'ve·')))
- insanlar [3 COHS] :

("insan+lAr" ((♦CAT* I)(*R* "insan")(*AGR* 3PL)(*CASE* lOM)))
- haşan pulur [RULE] :

((♦CAT* I)(*R* "haşan pulur")(*SUB* PROP))
-) [1] : (")" ((♦CAT* PUHCT)(*R* ")")))
- kadınlar [3 COIS] :

("kadIn+lAr" ((»CAT* I)(*R* "kadin")(*R0LE* ADJ)(*AGR* 3PL)(*CASE* NOH)))
- Cok [3 COIS] :

("Cok" ((♦CAT* ADJ)(*R* "Cok")(*SUB* QTY-U)(*AGR* 3SG)(*CASE* lOM)))
- Sey [2 COIS] :

("Sey" ((♦CAT* !)(♦!♦ "Sey")(*AGR* 3SG)(*CASE* lOM)))
- istiyor [1] :

("iste+Hyor" ((♦CAT^ V)(^R* "iste")(»ASPECT* PR-COIT)(*AGR* 3SG)))
- . Cl] : (" ." ((*CAT* PUICT)(*R* ".")))
- . Cl] : (" .·· ((*CAT* PUICT)(*R* ··.")))
- . Cl] : (".,·· ((♦CAT* PUICT)(*R* ··.")))
kadınlar [3 COIS] :

("kadIn+lAr" ((♦CAT* I)(*R* "kadin")(*R0LE* ADJ)(*AGR* 3PL)(*CASE* lOM)))

 ̂Among those words, the ones tagged with an illegitimate POS are marked with “X”,
and the ones left ambiguous are marked with

APPENDIX A. SAMPLE TAGGED OUTPUT 59

- ne [4 COIS] ;
("neY" ((»CAT» ADV)(»R» "ne")(»SUB» QUES)))

- İstiyor [1] :
(’•iste+Hyor·· ((♦CAT* V)(*R* "iste") (♦ASPECT* PR-COIT) (*AGR* 3SG)))

- ? [1] : ("?" ((*CAT* PUICT)(*R* "?")))
- Cok [3 COIS] :

("Cok" ((*CAT* ADJ)(*R* "Cok")(*SUB* QTY-U)(*AGR* 3SG)(*CASE* lOH)))
- Sey [2 COIS] :

("Sey" ((*CAT* I)(*R* "Sey")(*AGR* 3SG)(*CASE* lOM)))
- istiyorlar [1] :

("iste+Hyor+lAr" ((*CAT* V)(*R* "iste")(*ASPECT* PR-COIT)(*AGR* 3PL)))
- ! [1] : ("!" ((*CAT* PUICT)(*R* "·")))
- yalniz [4 COIS] :

("yalniz" ((*CAT* C0I)(*R* "yalniz")))
- " [1] : (.. ((*CAT* PUICT)(*R* ..)))
- Cok [3 COIS] :

("Cok" ((*CAT* ADJ)(*R* "Cok")(*SUB* QTY-U)(*AGR* 3SG)(*CASE* lOH)))
- Sey [2 COIS] :

("Sey" ((*CAT* I)(*R* "Sey")(*AGR* 3SG)(*CASE* lOM)))
- istiyorlar [1] :

("iste+Hyor+lAr" ((*CAT* V)(*R* "iste")(*ASPECT* PR-COIT)(*AGR* 3PL)))
- ! [1] : ("Î" ((*CAT* PUICT)(*R* "!")))
- " [1] : (... ((*CAT* PUICT)(*R* .)))
- dedik [1] :

("de+DH+k" ((*CAT* V)(*R* "do")(*ASPECT* PAST)(*AGR* IPL)))
- diye [2 COIS] :

("diye" ((*CAT* P0STP)(*R* "diye")))
- , [!] : (",·’ ((»CAT* PUICT)(*R* ",")))
- " [1] : (... ((*CAT* PUICT)(*R* .)))
- bu [3 COIS] :

("bu" ((*CAT* ADJ)(*R* "bu")(*AGR* 3SG)(*SUB* DEMO)))
- kadinlar [3 COIS] :

("kadln+lAr" ((*CAT* I)(*R* "kadin")(*R0LE* ADJ)(*AGR* 3PL)(*CASE* lOM)))
- da [1] :

("da" ((*CAT* C0I)(*R* "do")))
- ipin [4 COIS] :

("ip+nHn" ((*CAT* I)(*R* "ip")(*AGR* 3SG)(*CASE* GEI)))
- ucunu [2 COIS] :

("uC+sH+nH" ((*CAT* I)(*R* "uC")(*AGR* 3SG)(*P0SS* 3SG)(*CASE* ACC)))
- kaCIrdI [3 COIS] :

("kaJ+Hr+yDH" ((*CAT* V)(*R* "kaC")(*ASPECT* A0R)(*TEISE* PAST)(*AGR* 3SG)))
- ! [1] : ("!" ((*CAT* PUICT)(*R* "!")))
- " [1] : (""" ((*CAT* PUICT)(*R* ..)))
- gibi [1] :

("gibi" ((*CAT* P0STP)(*R* "gibi")(*SUBCAT* lOM)))
- bir [2 COIS] :

("bir" ((*CAT* ADJ)(*R* "bir")(*SUB* IUM)(*VALUE* 1)(*AGR* 3SG)(*CASE* lOM)))
- anlam [2 COIS] :

("anlam" ((*CAT* I)(*R* "anlam")(*AGR* 3SG)(*CASE* ION)))
- Clkarllmamall [1] ;

("CIK+Ar+Hl+mA+mAlH" ((*CAT* V)(*R* "Clk")(*V0ICE* CAUS)(*Y0ICE* PASS)
(♦SEISE* IEG)(*ASPECT* IECES)(*AGR* 3SG)))

- , [!] : ('·." ((*CAT* PUICT)(*R* ",")))

APPENDIX A. SAMPLE TAGGED OUTPUT 60

- e S i t l i k [2 COHS] :

("eSit+lHk" ((*CAT^ ADJ)(*R* "eS if) («SU B * QUAL)(*C0IV« I "lik")(♦AGR* 3SG)(*CASE* lOH)))
- i s t i y o r l a r [1] :

("iste+Hyor+lAr·· ((*CAT* V)(*R* " i s t e ") (*ASPECT* PR-COIT)(*AGR* 3PL)))
- o [4 COIS] :

("0" ((*CAT* PI)(*R* "o")(*AGR* 3SG)(*CASE* lOM)))
- kadar [3 COHS] :

("kadar" ((*CAT* I)(*R* "kadar")(*AGR* 3SG)(*CASE* iOH)(*COIV* V "")
(♦ASPECT* PR-COHT)(*AGR* 3SG)))

- . [1] : (" ." ((*CAT* PUICT)(*R* " .")))

- . [1] : (" ." ((*CAT* PUICT)(*R* " .")))
- . [1] : (" ." ((*CAT* PUICT)(*R* " .")))

“ kad ln lar [3 COHS] :

("kadln+lAr" ((*CAT* H)(*R* "kadln")(*R0LE* ADJ)(*AGR* 3PL)(*CASE* HOM)))
- , [!] : (··," ((*CAT* PÜHCT)(*R* " ,")))
- 1926 [1] :

("1926" ((*CAT* HUM)(*R* "1926")))

- t a r i h l i [2 COHS] :
("tarih+lH" ((*CAT* H)(*R* " ta r ih ") (*AGR* 3SG)(*C0HV* ADJ "li")(*SUB* QUAL)

(♦AGR* 3SG)(*CASE* HOM)))

- medeni kanun’un [RULE] :
((♦CAT* H)(*R* "medeni kanun")(*SUB* PROP)(*AGR* 3SG)(*CASE* GEH))

- , [1] : (" ," ((*CAT* PUHCT)(*R* " ,")))
- 1990’1I [1] :

("1990’1I" ((*CAT* HUM)(*R* "1990»1I")))
- dUnyanln [4 COHS] :

("dUnya+nHn" ((*CAT* H)(*R* "dUnya")(*AGR* 3SG)(*CASE* GEH)))

- g e r e k le r in e [4 COHS] :
("gerek+lAr+sH+nA" ((*CAT* H)(*R* "gerek")(*AGR* 3PL)(*P0SS* 3SG)(*CASE* DAT)))

- uydurulmaslnl [1] :
("uy+DHr+Hl+mA+sH+nH" ((*CAT* V)(*R* "uy")(*VOICE* CAUS)(*VOICE* PASS)

(♦COHV* H "ma")(*AGR* 3SG)(*P0SS* 3SG)(*CASE* ACC)))

- i s t i y o r l a r [1] :

("iste+Hyor+lAr" ((*CAT* V)(*R* " i s t e ") (*ASPECT* PR-COHT)(*AGR* 3PL)))

- . [1] : (" ." ((*CAT* PÜHCT)(*R* " .")))

- . [1] : (" ." ((*CAT* PÜHCT)(*R* " .")))

- . [1] : (" ." ((*CAT* PÜHCT)(*R* " .")))

- e l b e t t e [1] :
(" e lb e t te " ((*CAT* ADV)(*R* " e l b e t t e ") (*SUB* SEHT)))

- , [1] : (" ." ((♦CAT* PUHCT)(*R* " ,")))
- 1926 [1] :

("1926" ((*CAT* HUH)(*R* "1926")))

- ta r ih in d e [6 COHS] :

("tarih+sH+nDA" ((*CAT* H)(*R* " ta r ih ") (*AGR* 3SG)(*P0SS* 3SG)(*CASE* LOC)))

- , [1] : (" ," ((♦CAT* PUHCT)(*R* " ,")))
- medeni kanun [RULE] :

((♦CAT* H)(*R* "medeni kanun")(*SUB* PROP)(*AGR* 3SG)(*CASE* HOM))

- , [1] : (" , ” ((*CAT* PUHCT)(*R* " ,")))
- o [4 COHS] :

("o" ((*CAT* ADJ)(*R* "o")(*AGR* 3SG)(*SUB* DEMO)))

■ y l l l a r l n [4 COHS] :

("yll+lAr+nHn" ((*CAT* H)(*R* "yIl")(*SUB* TEMP-UHIT)(*AGR* 3PL)(*CASE* GEH)))

- toplumsal [2 COHS] :

APPENDIX A. SAMPLE TAGGED OUTPUT 61

(••toplumsal" ((♦CAT* ADJK’t'R* ••toplumsal") (»AGR« 3SG)(*CASE* lOM)))
- ve [1] :

(••ve·· ((«CAT* C0I)(*R* ‘•ve··)))
- kUltUrel [2 COIS] :

(••kUltUrel·· ((♦CAT* •'kUltUrel··) (*AGR* 3SG)(*CASE* lOH)))
- anlaylSInln [8 COIS] :

(••anlaylS+sH+nHn" ((*CAT^ I)(^R* ••anlaylS··) (*AGR* 3SG)(*P0SS* 3SG)(*CASE* GEI)))
-- sonucu [3 COIS] :

C'sonuC+sH·· ((*CAT* I)(*R* ••sonuC··) («AGR* 3SG)(*P0SS* 3SG)(*CASE* lOH)))
- olarcLk [1] :

C'ol+yArAk·· ((*CAT* V)(»R* ’•ol") (♦SUBCAT* I0M)(*C0IV* ADV ••yarak·') («SUB* ATT)))
- kadin [2 COIS] :

("kadin" ((♦CAT* !)(♦!♦ "kadln") («ROLE* ADJK+AGR« 3SG)(*CASE* lOH)))
- erkek [2 COIS] :

("erkek" ((♦CAT* !)(♦!♦ "erkek")(«ROLE* ADJ)(+AGRt« 3SG)(*CASE^ lOH)))
- eSitlíGine [2 COIS] :

("eSit+lHk+sH+nA" ((*CAT* ADJ)(*R* "eSit")(♦SUB* QUAL)(^C0IV* I "lik")(*AGR* 3SG)
(♦POSS* 3SG)(*CASE^ DAT)))

- dayallydl [1] :
("dayall+yDH" (i*CkT* ADJ)(»R* "dayall")(»AGR* 3SG)(*CASE* I0H)(«C0IV* V "")

(♦ASPECT* PAST)(*AGR* 3SG)))
- , [1] : ("," ((*CkT* PUICT)(*R* ",")))
- lakin [1] :

("lakin" ((+CAT* C0I)(*R* "lakin")))
- o [4 COIS] :

("o" ((♦CAT* ADJ)(*R* "o")(*AGR* 3SG)(*SUB^ DEMO)))
- gUnden [1] :

("gUn+DAn" ((*CkT* I)(*R* "gUn")(^SÜB* TEMP-UIIT)(*AGR* 3SG)(*CASE» ABL)))
- bugUne [1] :

("bugUn+yA" ((»CAT* !)(♦!♦ "bugUn")(*SUB* TEMP)(*AGR* 3SG)(«CASE* DAT)))
- kOprUlerin [4 COIS] :

("kOprU+lAr+nHn" ((♦CAT* I)(^R* "kOprü")(«AGR* 3PL)(«CASE* GEI)))
- a l t ın d a n [4 COIS] :

("alt+sH+nDAn" ((«CAT* I)(*R* "alt")(*R0LE* ADJ)(*AGR* 3SG)(«P0SS» 3SG)(*CASE« ABL)))
- , [1] : ("," ((*CAT* PUICT)(«R* ",")))
- kadin [2 COIS] :

("kadin·· ((«CAT* !)(♦!♦ "kadln'·) (♦ROLE* ADJ)(*AGR* 3SG)(*CASE* lOH)))
- haklarından [2 COIS] :

("haklar+sH+nDAn" ((»CAT^ I)(^R* "hak")(*AGR* PL)(*P0SS^ 3SG)(»CASE* ABL)))
- , [1] : (··,·' ((*CAT* PUICT)(«R* ",")))
- kadin [2 COIS] :

("kadin" ((*CkT* I)(*R» "kadin")(*R0LE* ADJ)(*AGR* 3SG)(+CASE* lOH)))
- - [1] : ("-'· ((*CAT* PUICT)(*R* "-")))
- erkek [2 COIS] :

("erkek" ((*CAT* I)(*R» "erkek")(»ROLE* ADJ)(*AGR* 3SG)(*CASE^ lOH)))
- eSitliGinden [2 COIS] :

("eSit+lHk+sH+nDAn" ((»CAT* ADJ)(*R* "eSit")(♦SUB* QUAL)(*C0IV^ I "lik")
(♦AGR* 3SG)(*P0SS* 3SG)(*CASE* ABL)))

- yana [3 COIS] :
("yana" ((»CAT* P0STP)(^R* "yana")(«SUBCAT* ABL)))

- Cok [3 COIS] :
("Cok" ((»CAT* ADJ)(*R· "Cok")(»SÜB* QTY-U)(*AGR^ 3SG)(*CASE* lOM)))

- sular [5 COIS] :

APPENDIX Л. SAMPLE TAGGED OUTPUT 62

("sula+Hr" ((*CkT* V)(*R^ " su la ’·) (*COIV* ADJ " i r ")))
- geCtiGi [2 COIS] :

("geJ-i-DHk+sH" ((♦CAT* V)(*R* "geC") (♦COiV* ADJ "dik") (*P0SS* 3SG)(*CASE* lOH)))
- iCin [6 COIS] :

(••iJ+nHn" ((*CAT* I)(*R* '‘iC")(*R0LE* ADJ)(*SUB* SPATIAL) (*AGR* 3SG)(*CASE* GEI)))

- , [!] : (··," ((*CAT* PUICT)(*R* " , ")))
- medeni kanun’un [RULE] :

((♦CAT* I)(*R* "medeni kanun")(*SUB* PR0P)(*CASE* GEI))
- da [1] :

("da" ((*CAT* COI)(*R* "de")))

- , [!] : (" ," ((*CAT* PUICT)(*R* " .")))
- diGer [2 COIS] :

("diGer" ((*CAT* ADJ)(*R* "diGer")(*AGR* 3SG)(*CASE* lOM)))

- Ü lk e le r in [4 COIS] :

("Ulke+lAr+nHn" ((*CAT* I)(*R* "Ulke")(*AGR* 3PL)(*CASE* GEI)))
- kanunları [7 COIS] :

("kanun+lArH" ((*CAT* I)(*R* "kanun")(*AGR* 3SG)(*P0SS* 3PL)(*CASE* lOH)))

- g i b i [1] :

("g ib i" ((*CAT* P0STP)(*R* "gibi")(*SUBCAT* lOM)))

- d e G iS t ir i lm e s i [2 COIS] :
("deGiS+DHr+Hl+mA+sH" ((*CAT* V)(*R* "deGiS")(*V0ICE* CAUS)(*VOICE* PASS)

(♦COIV* I "ma")(*AGR* 3SG)(*P0SS* 3SG)(*CASE* lOH)))

- gerek iy o r [1] :

("gereK+Hyor" ((*CAT* V)(*R* "gerek")(*ASPECT* PR-COIT)(*AGR* 3SG)))

- . [1] : (".," ((*CAT* PUICT)(*R* ".")))
- . [1] : (". " ((*CAT* PUICT)(*R* ".")))
- . [1] : (". " ((*CAT* PUICT)(*R* ".")))
- peki [1]

("peki" ((*CAT* ADV)(*R* "peki")(*SUB* YAIIT)))
-,[!]: (”," ((*CAT* PUICT)(*R* ",")))
- kadınlar [3 COIS] :

("kadIn+lAr" ((*CAT* I)(*R* "kadin")(*R0LE* ADJ)(*AGR* 3PL)(*CASE* HOM)))
- ne [4 COIS] :

("neY" ((*CAT* ADV)(*R* "ne")(*SUB* QUES)))
■ istiyorlar [1] :

("iste+Hyor+lAr" ((*CAT* V)(*R* "iste")(*ASPECT* PR-COIT)(*AGR* 3PL)))
• ? [1] : ("?" ((*CAT* PUICT)(*R* "?")))
• İstanbul Üniversitesi [RULE] :

((♦CAT* I)(*R* "İstanbul Üniversitesi")(*SUB* PR0P)(*AGR* 3SG)(*P0SS* 3SG)(*CASE* lOM))
kadin [2 COIS] :

("kadin" ((*CAT* I)(*R* "kadin")(*R0LE* ADJ)(*AGR* 3SG)(*CASE* lOM)))
sorunlar! [7 COIS] :

("sorun+lAr+sH" ((*CAT* I)(*R* "sorun")(*AGR* 3PL)(*P0SS* 3SG)(*CASE* lOM)))
araStIrma [3 COIS] :

("araStIr+mA" ((*CAT* V)(*R* "araStIr")(*COIV* I "*a")(*AGR* 3SG)(*CASE* lOM)))
ve [1] :

("ve" ((*CAT* C0I)(*R* "ve")))
uyguleuna [S COIS] :

("uygulama" ((*CAT* I)(*R* "uygulana")(*AGR* 3SG)(*CASE* lOM)))
merkezi [5 COIS] :

("merkez+sH" ((*CAT* I)(*R* "merkez")(*AGR* 3SG)(*P0SS* 3SG)(*CASE* lOM)))
, [1] : ("," ((*CAT* PUICT)(*R* ",")))
medeni kanun Ma [RULE] :

APPENDIX A. SAMPLE TAGGED OUTPUT 63

((♦CAT* I)(»R* "medeni kanun") (»SUB« PROP)(*AGR* 3SG)(*CASE» LOO)
- neler [3 COIS] :

("neY+lAr" ADJ)(*R* "ne")(«SUB* QUESK^AGR^ 3PL)(*CASE* İOM)))
- istediklerini [4 COIS] :

("iste+DHk+lAr+sH+nH" ((*CAT* V)(*R* "iste")(♦COIV* ADJ "dik")(^AGR* 3PL)
(♦POSS* 3SG)(«CASE« ACC)))

- gerekçeleriyle [3 COIS] :
("gerekCe+lAr+sH+ylA" ((♦CAT* I)(*R* "gerekCe")(«AGR* 3PL)(*P0SS« 3SG)(*CASE^ IIS)))

- aCIkladI [1] :
("aCIkla+DH" ((♦CAT* V)(*R* "aCIkla")(*ASPECT* PAST)(*AGR* 3SG)))

- . [1] : ("." ((#CAT* PUICT)(#R# ".")))
- . [1] : ("." ((»CAT# PUICT)(*R* ".")))
- . [1] : ("." ((«CAT* PUICT)(#R* ".··)))
- yUrUrlUkteki [2 COIS] :

("yUrUrlük+DA+ki" ((*CAT* I)(*R^ "yUrUrlUk")(*AGR* 3SG)(*CASE* LOC)
(*COIV* ADJ "ki")(*AGR* 3SG)(»CASE* lOH)))

- medeni kanunca [RULE] :

((♦CAT* IK^R·*« "medeni kanun") (*SUB* PR0P)(*AGR» 3SG)(*CASE* DAT))
- gOre [2 COIS] :

("gOre" ((♦CAT* P0STP)(*R* "gOre")(♦SUBCAT+ DAT)))

- , [!] : (·■,” ((♦CAT» PÜICT)(*R* " ,")))
“ a i l e n i n [4 COIS] :

("aile+nHn" ((*CkT* I)(*R* "aile")(%AGR* 3SG)(*CASE* GEI)))

- r e i s i [3 COIS] :

("reis+sH" ((*CkT* !) (♦ ! ♦ "reis")(♦AGR* 3SG)(*P0SS* 3SG)(*CASE* lOH)))
- kocadir [2 COIS] :

("koca+DHr" ((«CAT* I)(*R* "koca") (»ROLE* ADJK^AGR* 3SG)(*CASE* lOM)
(♦COIV* V "")(*ASPECT* PR“COIT)(*AGR* 3SG)(*HISC* COPU)))

- , [1] : ((*CAT^ PUICT)(*R* ",")))
- ev [2 COIS] :

("ev" ((»CAT* I)(*R* "ev")(*AGR* 3SG)(*CASE* lOH)))

- seCimini [2 COIS] :
("seCim+sH+nH" ((*CAT* I)(*R* "seCim")(»AGR* 3SG)(*P0SS* 3SG)(*CASE^ ACC)))

- o [4 COIS] :
("o" ((*CkT* PI)(*R* "o")(*AGR* 3SG)(*CASE* lOM)))

- yapar [2 COIS] :
("yap+Ar" ((♦CAT* V)(*R^ "yap")(»COIV* ADJ " ir ")))

- , [!] : ((*CAT* PUICT)(*R* " ,")))
- nerede [2 COIS] :

("nere+DA" ((*CAT* PI)(*R* "nere")(*SUB ♦QUES)(♦AGR* 3SG)(»CASE* LOC)))

- oturulacaGIna [2 COIS] :
("otur+Hl+yAcAk+sH+nA" i(*CkT* V)(»R» "otur")(♦VOICE* PASS)(*C0IV* ADJ "yacak")

(♦AGR# 3SG)(*P0SS* 3SG)(#CASE* DAT)))

X o [4 COIS] :
("o" ((#CAT* ADJ)(#R# "o")(*AGR# 3SG)(*SUB* DEMO)))

- karar [7 COIS] :
("karar" ((*CAT* I)(#R# "karar")(«ROLE* ADJ)(#AGR* 3SG)(*CASE# lOM)))

- v e r i r [2 COIS] :
("ver+Hr" ((#CAT# V)(#R# "ver")(«COIV* ADJ " ir ")))

- , [!] : (",·' ((*CAT* PUICT)(#R* " ,")))

- k a r i s i n i [1] :

("karl+sH+nH" ((»CAT# I)(*R* "kari")(#AGR* 3SG)(*P0SS* 3SG)(*CASE* ACC)))

- ve [1] :

APPENDIX A. SAMPLE TAGGED OUTPUT 64

("ve·· ((*CAT* COH)(*R* ••ve··)))
- Gocukların! [4 COIÎS] :

(••Cocuk+lAr+sH+nH·· ((♦CAT* I)(^R^ ••Gocuk··) (*AGR* 3PL)(»P0SS* 3SG)(*GASE* AGG)))
- o [4 GOIS] :

(••o·· ((«GAT* PI)(*R« ••o^)̂(#AGR* 3SG)(*GASE* ROM)))
- uygun [4 GOIS] :

(••uygun·* ((*CkT* ADJ)(*R* ••uygun·') («AGR* 3SG)(*GASE* lOM)))
- b i r [2 GOIS] :

(••bir·· ((*GAT* ADJ)(*R* ••bir’̂)(»SUB« IUM)(*VALUE* 1)(*AGR* 3SG)(»GASE* lOH)))
- biGimde [2 GOIS] :

(••biGim+DA·' ((♦GAT* l)(^R * ••biGim··) (♦AGR* 3SG)(*GASE* LOG)))
- goG in d ir ir [2 GOIS] :

(••goGin+DHr+Hr·· ((»GAT^ V)(*R* ••goGin··) (♦VOIGE* GAUS) («ASPEGT ̂ A0R)(*AGR* 3SG)))

- . [1] : c..·· ((*CAT* PUIGT)(*R* ".")))
- . [1] : (".," ((*GAT* PUIGT)(*R* ".")))
- . [1] : (··.·' ((*GAT* PUIGT)(*R* ".")))
- kadlnlarln [4 COBS] :

(••kadIn+lAr+nHn·· ((*CkT* l)(*R* •'kadin··) (♦ROLE* ADJ)(*AGR* 3PL)(*GASE* GEI)))
- hazIrladlGI [2 GOIS] :

(••hazIrla+DHk+sH·· ((♦GAT* V)(*R* ••hazirla··) (*G0IV* ADJ ••dik··) (*P0SS* 3SG)(*GASE* lOH)))
X yeni [5 GOIS] :

C'yen+sH·· ((*GAT* l)(*R* ••yen··) (*AGR* 3SG)(*P0SS* 3SG)(*GASE* lOH)))
- tasarida [2 GOIS] :

(••tasarl+DA·· ((*GAT* l)(*R* ••tasar!··) (*AGR* 3SG)(*GASE* LOG)))
“ , [1] : C ’,“ ((*GAT* PUIGT)(*R* ··/·)))
X eSler [5 GOIS] :

(••eSle+Hr·· ((*GAT* V)(*R* ••eSle··) (♦GOlV* ADJ ••ir·*)))
- aras!nda [3 GOIS] :

(••ara+sH+nDA·· ((*GAT* I)(*R* •'ara··) (*R0LE* ADJ)(*SUB* TEMP-POÜT) (♦SÜB* SPAT!AL)
(♦AGR* 3SG)(*P0SS* 3SG)(*GASE* LOG)))

- eşitlik [2 GOIS] :
(••eSit+lHk·· ((*GAT* ADJ)(*R* ••eSif) (*SUB* QUAL)(*G0IV* I ••lik··) (*AGR* 3SG)(*GASE* lOH)))

- esas [2 GOIS] :
Cesas·· ((*GAT* l)(*R* ••esas··) (*AGR* 3SG)(*GASE* lOH)))

- kabul edildiGi [RULE] :
((♦GAT* V)(*R* ••hak ef) (*V0!GE* PASS)(*P0SS* 3SG)(*GASE* lOM))

- iGin [6 GOIS] :
(••iGin·· ((♦GAT* P0STP)(*R* ••iGin··) (*SUBGAT* lOM)))

- erkeGin [4 GOIS] :

(••erkek+nHn·· ((*GAT* l)(*R* ••erkek·') (*R0LE* ADJ)(*AGR* 3SG)(*GASE* GEI)))
- reisliGi [3 GOIS] :

Creislik+sH·· ((*GAT* l)(*R* "reislik")(*AGR* 3SG)(*P0SS* 3SG)(*GASE* lOM)))
- kaldlrllmlS [3 GOIS] :

("kald!r+Hl+mHS" ((*GAT* V)(*R* "kaldir")(♦VOİGE* PASS)(*G0IV* ADJ "mis··)
(♦AGR* 3SG)(*GASE* lOM)))

- , [1] : C,·’ ((*GAT* PUIGT)(*R* ",")))
“ oturulacak [3 GOIS] :

("otur+Hl+yAcAk" ((*GAT* V)(*R* "otur")(*V0!GE* PASS)(*G0IV* ADJ "yacak")
(♦AGR* 3SG)(*GASE* lOH)))

- ev [2 GOIS] :
("ev" ((*GAT* l)(*R* "ev")(*AGR* 3SG)(*GASE* lOM)))

- İGin [6 GOIS] :
("İGin" ((*GAT* P0STP)(*R* "İGin")(*SUBGAT* lOH)))

APPENDIX A. SAMPLE TAGGED OUTPUT 65

” ,[!]: ((♦CAT* PUICT)(*R* ",")))
- iki [2 COBS] :

("iki" ((♦CAT* ADJ)(*R* "iki")(*SUB* IUM)(*VALUE* 2)(*AGR* 3SG)(*CASE* BOM)))
- tarafin [4 COBS] :

C’taraf+nHn" ((*CAT* B)(*R* "taraf")(*AGR* 3SG)(*CASE* GEB)))
- anlaSmasI [4 COBS] :

("anlaSma+sH" ((*CAT* B)(*R* "anlaSma")(*AGR* 3SG)(*P0SS* 3SG)(*CASE* BOM)))
- gerekiyor [1] :

("gereK+Hyor" ((*CAT* V)(*R* "gerek")(*ASPECT* PR-COBT)(*AGR* 3SG)))
- , [!] : ("," ((*CAT* PUBCT)(*R* ",")))
- anlaSamlyorlarsa [1] :

("anlaS+yAmA+Hyor+lAr+ysA" ((*CAT* V)(*R* "anlaS") (*SEBSE* BEGC)
(♦ASPECT* PR-COBT)(*AGR* 3PL)(*TEBSE* COBD)))

- , [!] : ("," ((*CAT* PUBCT)(*R* ".")))
- hakime [1] :

("hakim+yA" ((*CAT* B)(*R* "hakim")(*AGR* 3SG)(*CASE* DAT)))
- gidecekler [4 COBS] :

("gid+yAcAk+lAr" ((*CAT* V)(*R* "git")(*ASPECT* FUT)(*AGR* 3PL)))
- . [1] : (" ((*CAT* PUNCT)(*R* " . ")))

- . [1] : (·' ." ((*CAT* PUBCT)(*R* " . ")))

- . [1] : (" ." ((*CAT* PUBCT)(*R* " .")))

- Simdi [1] :
("Simdi" ((*CAT* ADV)(*R* "Simdi")(*SUB* TEMP)))

- erkekler [3 COBS] :
("erkek+lAr" ((*CAT* B)(*R* "erkek")(*R0LE* ADJ)(*AGR* 3PL)(*CASE* BOM)))

X diyecekler [4 COBS] :
("diyecek+lAr" ((*CAT* V)(*R* "de")(*C0BV* ADJ "yacak")(*AGR* 3PL)(*CASE* BOH)))

- ki [1] :
("ki" ((*CAT* C0B)(*R* "ki")))

- : [1] : (··:·· ((*CAT* PUBCT) (*R* " :")))
- ·· [1] : (.. ((*CAT* PUBCT)(*R* """)))
- aile [2 COBS] :

("aile" ((*CAT* B)(*R* "aile")(*AGR* 3SG)(*CASE* BOM)))
- reisliGi [3 COBS] :

("reislik+sH" ((*CAT* B)(*R* "reislik")(*AGR* 3SG)(*P0SS* 3SG)(*CASE* BOM)))
- gitti [1] :

("gid+DH" ((*CAT* V)(*R* "git")(*ASPECT* PAST)(*AGR* 3SG)))
- , [!] : ('·," ((*CAT* PUBCT)(*R* ",")))
- ev [2 COBS] :

("ev" ((*CAT* B)(*R* "ev")(*AGR* 3SG)(*CASE*-BOM)))
- seCme [3 COBS]

("seJ+mA" ((*CAT* V)(*R* "seC")(*C0BV* B "ma")(*AGR* 3SG)(*CASE* BOM)))
- hakkimiz [3 COBS] :

("hakkimiz" ((*CAT* B)(*R* "hak")(*P0SS* 1 PL)(*CASE* BOM)))
- da [1] :

("da" ((*CAT* COB)(*R* "de")))
- k a lk t ı [1] :

("kalK+DH" ((*CAT* V)(*R* "kalk")(*ASPECT* PAST)(*AGR* 3SG)))
- , [!] : ("," ((*CAT* PUBCT)(*R* ",")))
- peki [1] :

("peki" ((*CAT* ADV)(*R* "peki")(*SÜB* YABIT)))
- , [!] : C‘,’· ((*CAT* PUBCT)(*R* ",")))
- bu [3 COBS] :

APPENDIX A. SAMPLE TAGGED OUTPUT 66

("bu" ((*CAT* ADJ)(*R* "bu")(*AGR* 3SG)(*SUB* DEMO)))
- aileyi [1] :

("aile+yH" ((♦CAT* H)(^R* "aile")(«AGR* 3SG)(»CASE* ACC)))
- kim [2 COIS] :

("kim" ((♦CAT* PE)(*R* "kim") (♦SUB* QUESK^AGR* 3SG)(*CASE* lOM)))
- geçindirecek [3 COIS] :

("geCin+DHr+yAcAk" (C*CkT* V)(*R* "geCin")(«VOICE* CAOS)(♦ASPECTO FUT)(*AGR* 3SG)))
- ? [1] : ("?" ((♦CAT* PUICT)(*R« "?")))
- " [1] : (.. ((*CAT^ PUICT)(«R* ..)))
- kadinlar [3 COIS] :

("kadIn+lAr" ((«CAT^ I)(*R* "kadin") («ROLE^ ADJK^AGR* 3PL)(»CASE* lOM)))
- ev [2 COIS] :

("ev" (i*CkT* I)(^R* "ev")(*AGR* 3SG)(*CASE* lOM)))
- geCindirmede [3 COIS] :

("geCin+DHr+mA+DA" ((»CAT* V)(*R* "geCin")(«VOICE* CAÜS)(*C0IV* I "ma")
(♦AGR^ 3SG)(«CASE* LOC)))

- de [2 COIS] :
("de" a*CkT* C0I)(*R* "de")))

- eSitlik [2 COIS] :
("eSit+lHk" ((»CAT* ADJ)(+R* "eSit") (♦SUB* QUAL)(*C0IV* I "lik")(«AGR>»' 3SG)(»CASE* lOM)))

“ istiyorlar [1] :
("iste+Hyor+lAr" ((*CAT^ V)(*R* "iste")(♦ASPECT* PR-COIT)(«AGR* 3PL)))

- . [1] : (".■• ((*CAT* PUICT)(*R* ".")))
- . [1] : (".·• ((*CAT* PUICT)(*R* ".")))
- . [1] : (".·• a*CkT* PUICT)(*R* ",.")))
- SOyle [4 COIS] :

("SOyle" ((*CAT* ADV)(*R* "SOyle")))
- diyorlar [1] :

("de+Hyor+lAr" ((*CAT* V)(*R* "de")(♦ASPECT* PR-COIT)(«AGR« 3PL)))
- : [1] : (":" ((♦CAT* PÜICT)(*R^ ":")))
- " [1] : (.. ((♦CAT* PUICT)(*R* ..)))
- eSlerden [1] :

("eS+lAr+DAn" ((♦CAT* I)(^R* "eS")(*AGR* 3PL)(*CASE* ABL)))
' her [1] :

("her" ((♦CAT* ADJ)(*R^ "her")(*SUB* ADJ-OILY)))
■ biri [5 COIS] :

("bir+sH" ((♦CAT<‘ ADJ)(*R* "bir")(*SUB* IUM)(*VALÜE« 1)(^AGR» 3SG)
(♦POSS« 3SG)(*CASE« lOH)))

evliliGin [12 COIS] :
("ev+lH+lHk+nHn" ((*CAT* "ev")(*AGRt 3SG)(«C0IV^ ADJ "li")(*SÜB* QUAL)

(♦COIV* I "lik")(*AGR* 3SG)(*CASE* GEI)))
soruroluluGuna [2 COIS] :

("sorumluluk+sH+nA" ((*CAT* I)(*R* "sorumluluk")(»AGR* 3SG)(*P0SS* 3SG)(^CASE% DAT)))
ve [1] :

("ve" ((♦CAT* C0I)(*R* "ve")))
aile [2 COIS] :

("aile" ((♦CAT* I)(*R* "aile")(«AGR* 3SG)(*CASE# lOM)))
birliGinin [8 COIS] :

("birlik+sH+nHn" ((*CAT* I)(*R* "birlik")(*AGR* 3SG)(*P0SS^ 3SG)(«CASE* GEI)))
ihtiyaClarInl [4 COIS] :

("ihtiyaC+lAr+sH+nH" ((*CAT* !)(♦!♦ "ihtiyaC")(♦AGR· 3PL)(*P0SS* 3SG)(*CASE* ACC)))
karSllamasIna [1] :

("karSIla+mA+sH+nA" ((*CAT* V)(*R* "karSIla")(»COIV* I "ma")(»AGR* 3SG)

APPENDIX A. SAMPLE TAGGED OUTPUT 67

(♦POSS* 3SG)(*CASE* DAT)))
- güCIeri [7 COHS] :

C’gUC+lArH" ((*CAT* I)(*R* "gUC'·)(*AGR^ 3PL)(*P0SS^ 3PL)(^CASE^ lOM)))
- oranlnda [4 COKS] :

("oran+sH+nDA·· ((»CAT* I)(*R* '•oran”) (*AGR* 3SG)(^P0SS^ 3SG)(*CASE^ LOO))
- katklda [2 COiS] :

('•katkl+DA'· ((♦CAT* I)(*R* "katk!") (*AGR* 3SG)(*CASE* LOO))
- bulunacaklardır [0 COIS] :

('•bulun+yAcAk+lAr+DHr'· ((♦CAT* V)(*R* "bulun") (♦SÜBCAT* L0C)(*C0IV* ADJ "yacak")
(*AGR* 3PL)(*CASE* I0H)(*C0IV* V "")(*ASPECT* PR-COIT)
(♦AGR* 3SG)))

- . [1] : ("." ((*CAT* PUICT)(*R* ".")))
- " [1] : (.. ((*CAT* PUICT)(*R* ..)))
- Simdi [1] :

("Simdi" ((*CAT* ADV)(*R* "Simdi")(*SUB* TEMP)))
- davudi [2 COIS] :

("davudi" ((*CAT* ADJ)(*R* "davudi")(*AGR* 3SG)(*CASE* iOM)))
- sesli [2 COIS] :

("ses+lH" ((*CAT* I)(*R* "ses")(*AGR* 3SG)(*C0IV* ADJ "li")(*SUB* QUAL)
(♦AGR* 3SG)(*CASE* IOM)))

- erkek [2 COIS] :
("erkek" ((*CAT* I)(*R* "erkek")(*R0LE* ADJ)(*AGR* 3SG)(*CASE* IOM)))

- itirazlarinl [4 COIS] :
("itiraz+lAr+sH+nH" ((*CAT* I)(*R* "itiraz")(*AGR* 3PL)(*P0SS* 3SG)(*CASE* ACO))

- duyuyoruz [1] :

("duy+Hyor+yHz" ((*CAT* V)(*R* "duy")(*ASPECT* PR-COIT)(*AGR* IPL)))
- : [1] : (":" ((*CAT* PUICT)(*R* ":·’)))
- ·· [1] : (.. ((*CAT* PUICT)(*R* ..)))
- kadin [2 COHS] ;

("kadin" ((*CAT* I)(*R* "kadin")(*R0LE* ADJ)(*AGR* 3SG)(*CASE* IOM)))
- , [1] : (”." ((*CAT* PUICT)(*R* ··,")))
- hangi [2 COHS] :

("hangi" ((*CAT* ADJ)(*R* "hangi")(*SUB* QUES)(*AGR* 3SG)(*CASE* IOM)))
X gUcU [3 COHS] :

("gUC+yH" ((*CAT* I)(*R* "gUC")(*AGR* 3SG)(*CASE* ACO))
- oranlnda [4 COHS] :

("oran+sH+nDA" ((*CAT* I)(*R* "oran")(*AGR* 3SG)(*P0SS· 3SG)(*CASE* LOC)))
- ailenin [4 COHS] :

("aile+nHn" ((*CAT* H)(*R* "aile")(*AGR* 3SG)(*CASE* GEI)))
- ihtiyacinl [2 COHS] :

("ihtiyaC+sH+nH" ((*CAT* I)(*R* "ihtiyaC")(*AGR* 3SG)(*P0SS* 3SG)(*CASE* ACO))
- karşılayacak [3 COHS] :

("karSIla+yAcAk" ((*CAT* V)(*R* "karSIla")(*ASPECT* FUT)(*AGR* 3SG)))
- ? [1] : ("?" ((*CAT* PUHCT)(*R* "?")))
- " [1] : (.. ((*CAT* PUHCT)(*R* ..)))
- kadin [2 COHS] :

("kadin" ((*CAT* I)(*R* "kadin")(*R0LE* ADJ)(*AGR* 3SG)(*CASE* HOM)))
- , [1] : ("," ((*CAT* PUHCT)(*R* ",")))
- dISarIda [2 COHS] :

("dISarl+DA" ((*CAT* I)(*R* "dISarI")(*SEMCASE* DAT)(*AGR* 3SG)(*CASE* LOC)))
- CalISIp [1] :

("CalIS+yHp" ((*CAT* V)(*R* "CalIS")(♦COIV* ADV "yip")(*SUB* TEMP)))
- para [2 COIS] :

APPENDIX A. SAMPLE TAGGED OUTPUT 68

(••para·· ((♦CAT* I)(*R* ••para··) (*AGR* 3SG)(*CASE* lOH)))
- kazanmlyor [1] :

(••kazan+mA+Hyor·· ((♦CAT* V)(*R* ••kazan··) (»SENSE* İEG) (»ASPECT* PR-COIT) (»AGR» 3SG)))
- ya [2 COIS] :

(••ya·· ((»CAT» EXC)(*R* ••ya··)))
- · [1] : (··!·· ((*CAT* PUICT)(*R* ··!··)))
- peki [1] :

(••peki·· ((»CAT» ADV)(»R» •'peki··) (*SUB* YANIT)))
- , [!] : ("." ((♦CAT* PUICT)(*R* '·,'·)))
- evde [2 COIS] :

(••ev+DA·· ((»CAT* I)(*R* ••ev··) (»AGR» 3SG)(*CASE* LOO))
- CalISan [2 COIS] :

(••CalIS+yAn·· ((»CAT* V)(*R* ••CalIS") (»COIV» ADJ ••yan··) (»AGR* 3SG)(*CASE» lOM)))
- kadinln [4 COIS] :

('•kadln+nHn·· ((»CAT* I)(»R* ••kadin’·) (»ROLE» ADJ)(*AGR* 3SG)(*CASE» GEN)))
- aileye [1] :

("aile+yA·· ((»CAT» I)(»R* ••aile'·) (*AGR* 3SG)(»CASE» DAT)))
- katkisl [2 COIS] :

(••katkl+sH·· ((»CAT* I)(*R» ••katkl'·) (»AGR* 3SG)(*P0SS* 3SG)(*CASE» lOM)))
- yok [3 COIS] :

(••yok·· ((»CAT» I)(*R* ••yok··) (»AGR» 3SG)(*CASE» lOH)))
- mudur [1] :

(••mu+dHr·· ((»CAT» QUES)(*R» ••mi") (»MISC» COPU)))
- ? [1] : ("?■· ((♦CAT* PUICT)(*R» ’·?")))
- hem [2 COIS] :

(••hera·· ((»CAT* C0I)(*R* ••hem'·)))
- de [2 COIS] :

(••de" ((»CAT* C0I)(*R* ••de··)))
- ne [4 COIS] :

("neY·· ((*CAT* ADJ)(*R* ••ne··) (*SUB* QUES)(*AGR* 3SG)(*CASE* lOM)))
- katkl [2 COIS] :

(••katkl·· ((»CAT* I)(»R» ••katkl·') (»AGR» 3SG)(»CASE* lOM)))
- ? [1] : (··?" ((»CAT* PUICT)(*R» "?")))
- bir [2 COIS] :

("bir" ((»CAT* ADJ)(»R* "bir")(*SUB» IUM)(*VALUE» 1)(*AGR» 3SG)(*CASE» ION)))
- de [2 COIS] :

("de" ((»CAT* C0I)(»R» "de")))
- , [!] : ((»CAT* PUICT)(»R» ",")))
- soyadi [4 COIS]

("soyaD+sH" ((»CAT» I)(»R» "soyadi")(»AGR» 3SG)(»CASE» lOH)))
- meselesi [2 COIS] :

C'mesele+sH·· ((»CAT» I)(»R» "mesele")(»AGR» 3SG)(»P0SS» 3SG)(»CASE» ION)))
- var [3 COIS] :

("var" ((»CAT» ADJ)(»R» "var")(»AGR» 3SG)(»CASE» I0H)(»C0IV» V "")
(»ASPECT» PR-COIT)(»AGR» 3SG)))

-I [1] : (··!·· ((»CAT» PUNCT)(»R» "!")))
- erkek [2 COIS] :

("erkek" ((»CAT» I)(»R* "erkek")(»ROLE» ADJ)(»AGR» 3SG)(»CASE» lOM)))
- isterse [1] :

("iste+Hr+ysA" ((»CAT» V)(»R» "iste")(»ASPECT» AOR)(»TENSE» C0ID)(»AGR» 3SG)))
- , [!] : ("," ((»CAT» PUICT)(»R» ",")))
- karisinin [2 COIS] :

C'karl+sH+nHn" ((»CAT» I)(»R» "kari")(»AGR» 3SG)(»P0SS» 3SG)(»CASE» GEI)))

APPENDIX A. SAMPLE TAGGED OUTPUT 69

- , [1] : ((♦CAT* PUICTK^R* ·',·')))
- kadin [2 COIS] :

("kadin" ((♦CAT* I)(*R* "kadln·’) (♦ROLE* ADJK^AGR* 3SG)(#CASE* lOH)))
- da [1] :

Cda" ((ФСАТ* COHK^R* "de")))
- isterse [1] :

("iste+Hr+ysA" ((*CkT* V)(*R* "iste") (♦ASPECT* AORK^TEISE* COIDH^AGR* 3SG)))
“ , [1] : ((♦CAT* PUICT)(*R« ",")))
- kocasinln [2 COIS] :

("koca+sH+nHn" ((»САТ* I)(*R* "коса")(«ROLE* ADJ)(*AGR* 3SG)(»P0SS^ 3SG)(^CASE* GEI)))
- soyadinl [3 COIS] :

("soyaD+sH+nH" ((♦CAT* !)(♦!♦ "soyadi")(^AGR* 3SG)(*P0SS* 3SG)(*CASE* ACC)))
X taSIyacak [3 COIS] :

("taSI+yAcAk" ((*CAT* V)(*R^ "taSI") (♦SUBCAT* ACCK^COIV* ADJ "yacak")
(♦AGR^ 3SG)(*CASE* lOH)))

- , [!] : ((*CAT* PUICT)(*R* ",")))
- ya da [RULE] :

((♦CAT* COIK^R* "ya da"))
- bekarllk [2 COIS] :

("bekarllk" ((♦CAT* I)(*R* "bekarllk")(*AGR^ 3SG)(*CASE* lOM)))
- soyadlarinl [4 COIS] :

("soyaD+lAr+sH+nH" ((♦CAT^ I)(«R* "soyadi")(♦AGR* 3PL)(^P0SS* 3SG)(*CASE* ACC)))
- da [1] :

("da" ((♦CAT* C0I)(*R* "de")))
- kullanabilecekler [4 COIS]

)))
- . [1] : (" ." ((*CAT* PUICT)(*R* ".")))
- . [1] : (" ." ((*CAT* PUICT)(*R* ".")))
- . [1] : (".." ((*CAT* PUICT)(*R* ".")))
- kadlnlar [3 COHS] :

("kadIn+lAr" ((*CAT* I)(^R* "kadin")(♦ROLE* ADJ)(*AGR* 3PL)(*CASE* lOM)))
- kusura [1] :

("kusur+уА" ((*CAT* I)(*R* "kusur")(*AGR* 3SG)(*CASE* DAT)))
- bakmaslnlar [1] :

("baX+mA+ZHnlAr" ((*CAT* V)(*R* "bak")(♦SEISE* lEG)(*ASPECT* IMP)(*AGR* 3PL)))
- ama [3 COIS] :

("ama" ((*CAT* C0I)(*R* "ama")))
■ , [!] : (”/' ((*CAT* PUICT)(*R* ",")))
- bu [3 COIS] :

("bu" ((*CAT* PI)(*R* "bu")(*AGR* 3SG)(*CASE* Ю Ю))
■ biraz [3 COIS] :

("biraz" ((*CAT* ADJ)(*R* "biraz")(*SUB* QTY-U)(*AGR* 3SG)(*CASE* lOM)))
• ayrinti [2 COIS] :

("ayrinti" ((*CAT* I)(*R* "ayrinti")(*AGR* 3SG)(*CASE* lOM)))
, [1] : ("," ((♦CAT* PUICT)(*R* ",")))
kari [6 COIS] :

("kari" ((*CAT* I)(*R* "kari")(*AGR* 3SG)(*CASE* lOH)))
- [1] : ("-" ((*CAT* PÜICT)(*R* "-")))
коса [3 COIS] :

("коса" ((*CAT* I)(*R* "коса")(*R0LE* ADJ)(*AGR* 3SG)(*CASE* lOH)))
ayrl ayrl [RULE] :

((♦R* "ayrl ayrI")(*CAT* ADV))
soyadları [7 COIS] :

APPENDIX A. SAMPLE TAGGED OUTPUT 70

C'soyaD+lArH" ((♦CAT* I)(*R* "soyadl")(*AGR* 3PL)(^P0SS* 3PL)(*CASE* lOH)))
- taşıyacaklar [4 COSS] :

("taSI+yAcAk+lAr” ((♦CAT* V)(*R* "taSI")(♦SUBCAT* ACC)(*C0IV» ADJ ••yacak")
(*AGR* 3PL)(*CASE# lOM)))

- , [1] : ((*CAT* PÜICT)(*R* ··,")))
- biraz [3 COIS] :

("biraz" ((♦CAT* ADJ)(*R* "biraz")(*SUB* QTY-U)(«AGR* 3SG)(*CASE« lOM)))
- garip [2 COIS] :

("garib" ((«CAT* ADJ)(*R* "garip")(«AGR* 3SG)(*CASE* lOH)))
- deGil [3 COIS] :

("deGil" ((♦CAT* !)(♦!♦ "deGil")(«AGR* 3SG)(*CASE* lOM)))
- mi [1] :

("mi" ((»CAT* QUES)(*R* "mi")))
- , [!] : (”»" ((♦CAT^ PÜICT)(*R^ ",")))
- Şekilcilik [2 COIS] :

("Şekilcilik" ((♦CAT* I)(^R^ "Şekilcilik")(«AGR* 3SG)(^CASE* lOM)))
- deGil [3 COIS] :

("deGil" ((♦CAT* !)(♦!♦ "deGil")(*AGR« 3SG)(*CASE* lOM)))
- mi [1] :

("mi" ((♦CAT* QUES)(*R* "mi")))
- ? [1] : ('·?" ((♦CAT* PUICT)(*R* "?")))
- diyelim [1] :

("diye+lHm" U*CAT* V)(*R* "de")(♦ASPECT* OPT)(*AGR^ İPL)))
- taSIdllar [1] :

("taSI+DH+lAr" ((*CAT· V)(*R* "taSI")(*SUBCAT* ACC)(♦ASPECT* PAST)(*AGR* 3PL)))
- , [1] : ((♦CAT* PUICT)(«R* ",")))
- ne [4 COIS] :

("ne" ((♦CAT* COI)(*R* "ne")))
- olacak [3 COIS] :

("ol+yAcAk" ((♦CAT* V)(^R* "ol")(♦SUBCAT* I0H)(*C0IV^ ADJ "yacak")(♦AGR* 3SG)(*CASE* lOM)))
- , [!] : ((♦CAT* PÜICT)(*R* ",")))
- temel [2 COIS] :

("temel" ((*CkT* !)(♦!♦ "temel")(♦ROLE* ADJ)(*AGR* 3SG)(*CASE* lOM)))
- sorunlar! [7 COIS] :

("sorun+lAr+sH" ((*CAT* I)(*R* "sorun")(*AGR* 3PL)(*P0SS* 3SG)(*CASE* lOH)))
- COzUlecek [3 COIS] :

("COz+Hl+yAcAk" ((*CAT* V)(*R* "COz")(*V0ICE* PASS)(*COIV* ADJ "yacak")
(♦AGR* 3SG)(*CASE* lOM)))'

- mi [1] :
("mi" ((»CAT* QUES)(*R* "mi")))

- ? [1] : C‘?·' ((♦CAT* PUICT)(*R* "?")))
- ama [3 COIS]

("ama" ((♦CAT* COI)(*R* "ama")))
- bir [2 COIS] :

("bir" ((*CAT* ADJ)(*R* "bir")(*SUB* IUM)(*VALUE* 1)(*AGR* 3SG)(*CASE* lOM)))
- kadin [2 COIS] :

("kadin" ((*CAT* I)(*R* "kadin")(*ROLE* ADJ)(*AGR* 3SG)(*CASE* lOM)))
- isterse [1] :

("iste+Hr+ysA" ((»CAT* V)(*R* "iste")(♦ASPECT* A0R)(*TEISE* COID)(*AGR* 3SG)))
- , [1] : ((♦CAT* PUICT)(*R* ",")))
' erkek [2 COIS] :

("erkek" ((♦CAT* I)(*R* "erkek")(*R0LE* ADJ)(*AGR* 3SG)(*CASE* lOM)))
- de [2 COIS] :

APPENDIX A. SAMPLE TAGGED OUTPUT 71

("de" <(*САТ· COI)(*R* "de")))
- uygun [4 COIS] :

("uygun" ((*САТФ ADJ)(*R* "uygun")(»AGR* 3SG)(*CASE« lOM)))
- gOrUrse [1] :

("gOr+Hr+ysA" ((*CAT* V)(*R* "gOr")(♦SUBCAT* ACC)(♦ASPECT* AOR)(»TEISE* COIDK^AGR^ 3SG)))
- , [1] : ('·.’· ((*CAT* PUICT)(+R* ",")))
- evlendikten [1] :

("evlen+DHktAn" ((*CAT* V)(*R* "evlen")(♦COIV* ADJ "dik")(»CASE* ABL)))
- sonra [4 COIS] :

("sonra" ((*CAT* POSTP)(*R* "sonra")(»SUBCAT* ABL)))
- kizllk [2 COIS] :

("kizllk" ((♦CAT* I)(^R* "kizllk")(«AGR* 3SG)(+CASE* lOM)))
- soyadinl [3 COIS] :

("soyaD+sH+nH" ((♦CAT* I)(*R* "soyadi")(*AGR* 3SG)(*P0SS* 3SG)(*CASE* ACC)))
- da [1] :

("da" ((»CAT* COI)(*R» "de")))
-· kocasinin [2 COIS] :

("koca+sH+nHn" ((♦CAT* I)(^R^ "koca")(*R0LE* ADJ)(»AGR* 3SG)(*P0SS* 3SG)(»CASE* GEI)))
- soyadiyla [2 COIS] :

("soyaD+sH+ylA" ((*CAT* M)(*R* "soyadi")(^AGR* 3SG)(*P0SS* 3SG)(»CASE* IIS)))
- birlikte [6 COIS]

("birlikte" ((♦CAT* P0STP)(*R* "birlikte")(♦SUBCAT* IIS)))
- taSIyabilmeli [1] :

("taSI+yAbil+mAlH" ((♦CAT* V)(*R* "taSI")(♦SUBCAT* ACC)(*C0MP* "yabil")
(♦ASPECT* IECES)(*AGR* 3SG)))

- . [1] : (··." ((*CAT* PUICT)(*R* ".")))
- . [1] : (··." ((*CAT* PUICT)(*R* ".")))
- . [1] : ("." ((*CAT* PUICT)(*R* ".")))
- Simdi [1] :

("Simdi" ((♦CAT* ADV)(*R* "Simdi")(♦SUB* TEMP)))
• gelelim [3 COIS] :

("gele+lH+Hm" ((*CAT* I)(*R* "gele")(*AGR* 3SG)(*C0IV* ADJ "li")(*SUB* QUAL)
(♦AGR* 3SG)(*P0SS* 1SG)(*CASE* lOM)))

en [3 COIS] :
("en" ((*CAT* I)(*R* "en")(*AGR* 3SG)(*CASE* lOM)))

Önemli [2 COIS] :
("Onem+IH" ((*CAT* I)(*R* "Önem")(*AGR* 3SG)(*C0IV* ADJ "li")(*SUB* QUAL)

(*AGR* 3SG)(*CASE* lOM)))
maddeye [1] :

("madde+yA" ((*CAT* I)(*R* "madde")(*AGR* 3SG)(*CASE* DAT)))
- . [1] : (■·.," ((*CAT* PUICT)(*R* "'.")))
- . [1] : (··." ((*CAT* PUICT)(*R* "'.")))
- . [1] : (··." ((*CAT* PUICT)(*R* ".")))
- siz [2 COIS]

("siz" ((*CAT* PI)(*R* "siz")(*AGR* 2PL)(*CASE* ЮИ)))
ne [4 COIS] :

("neY" ((*CAT* ADV)(*R* "ne")(*SUB* QUES)))
derseniz [2 COIS] :

("der+ZA+nHz" ((*CAT* V)(*R* "der")(*ASPECT* C0ID)(*AGR* 2PL)))
deyin [1] :

("de+yHn" ((*CAT* V)(*R* "de")(*ASPECT* IMP)(*AGR* 2PL)))
, [1] : ("," ((*CAT* PUICT)(*R* ",")))
mal [2 COIS] ;

APPENDIX A. SAMPLE TAGGED OUTPUT 72

("mal" ((♦CAT* I)(*R* "mal")(»AGR* 3SG)(^CASE* lOM)))
- canin [4 COIS] :

("can+nHn" ((♦CAT* I)(*R* "can")(*AGR* 3SG)(*CASE* GEI)))
- yongasidir [2 COIS] :

("yonga+sH+DHr" ((*CAT* I)(»R* "yonga")(*AGR* 3SG)(*P0SS* 3SG)(*CASE* lOM)
(♦COIV^ V "")(»ASPECTO PR-COIT)(*AGR* 3SG)))

- . [1] : ("." ((♦CAT* PUICT)(*R* ".")))
- . [1] : ("." ((*CAT* PUICT)(*R* ".")))
- . [1] : ("." ((«CAT* PÜICT)(»R* ".")))
- yürürlükteki [2 COIS] :

("yürürlük+DA+ki" ((»CAT* I)(^R^ "yürürlük")(*AGR^ 3SG)(*CASE* LOC)
(♦COIV* ADJ "ki")(^AGR* 3SG)(*CASE* lOH)))

- kanuna [1] :

("kanun+yA" ((*CAT^ I)(*R* "kanun")(♦AGR* 3SG)(*CASE^ DAT)))
- gOre [2 COIS] :

("gOre" ((♦CAT* P0STP)(*R* "gOre")(♦SÜBCAT* DAT)))
- , [1] : (">" ((*CAT* PÜICT)(^R* ",")))
- bizde [2 COIS] :

("biz+DA" ((*CKT* PI)(»R* "biz")(*AGR* 1PL)(*CASE* LOC)))
- " [1] ; (((*CAT* PÜICT)(*R^)))
- mal [2 COIS] :

("mal" a*CAT* I)(*R* "mal")(»AGR* 3SG)(»CASE^ lOH)))
- ayrIlIGI [6 COIS] :

("ayrIlIk+sH" ((«CAT* I)(*R* "ayrillk")(»AGR* 3SG)(*P0SS* 3SG)(»CASE* lOM)))
- " [1] : (((«CAT* PÜICT)(*R* """)))
- vardir [3 COIS] :

("var+DHr" a*Ckl* ADJ)(*R* "var")(^AGR* 3SG)(*CASE* I0M)(*C0IV* V "")
(♦ASPECT* PR-COIT)(*AGR* 3SG)))

- . [1] : ("." ((^CAT^ PÜICT)(»R« ".")))
- yani [1] :

("yani" ((♦CAT* C0I)(*R* "yani")))
- kadinln [4 COIS] :

("kadIn+nHn" ((*CAT* I)(*R* "kadin")(^ROLE* ADJ)(^AGR+ 3SG)(*CASE* GEI)))
- malí [3 COIS] :

("mal+sH" ((*CkT* I)(^R* "mal")(*AGR* 3SG)(*P0SS* 3SG)(*CASE* lOM)))
- kadinindir [4 COIS] :

("kadIn+nHn+DHr" C(*CkT* !)(♦!♦ "kadin")(♦ROLE* ADJ)(*AGR* 3SG)(*CASE* GEI)
(♦COIV* V "")(*ASPECT* PR-COIT)(*AGR* 3SG)(*MISC* COPÜ)))

“ , [1] : ('·," ((*CAT* PÜICT)(*R* ",")))
- erkeGin [4 COIS] :

("erkek+nHn" ((*CAT* I)(*R* "erkek")(*R0LE* ADJ)(*AGR* 3SG)(*CASE* GEI)))
- malí [3 COIS] :

("mal+sH" ((*CAT* I)(*R* "mal")(*AGR* 3SG)(*P0SS* 3SG)(*CASE* lOM)))
- erkeGin [4 COIS] :

("erkek+nHn" ((*CAT* I)(*R* "erkek")(*R0LE* ADJ)(*AGR* 3SG)(*CASE* GEI)
(♦COIV* V "")(*ASPECT* PR“COIT)(*AGR* 3SG)))

[1] : ("." ((*CAT* PÜICT)(*R* ".")))
[1] : ("." ((*CAT* PÜICT)(*R* ".")))
[1] ; ("." ((*CAT* PÜICT)(*R* ".")))

asllnda [11 COIS] :
("asllnda" ((*CAT* ADV)(*R* "asllnda")(*SÜB* SEIT)))

ilk [3 COIS] :
("ilK" ((*CAT* ADJ)(*R* "ilk")(*AGR* 3SG)(*CASE* lOM)))

APPENDIX A. SAMPLE TAGGED OUTPUT 73

- bakışta [2 COIS] :
("baK+yHS+DA" ((♦CAT^ V)(*R^ "bak")(♦COHV* I "yis")(*AGR» 3SG)(*CASE* LOC)))

- " [1] : (((♦CAT* PUICT)(*R*)))
- mal [2 COES] :

("mal" ((♦CAT* I)(*R* "mal")(*AGR^ 3SG)(*CASE* lOH)))
- ayrllIGI [6 COIS] :

("ayrllIk+sH" ((♦CAT* I)(*R* "ayrlllk")(«AGR* 3SG)(*P0SS* 3SG)(«CASE* lOH)))
- ·· [1] : (((*CAT* PÜICT)(»R*)))
- kadin [2 COIS] :

("kadin" ((*CAT* I)(*R* "kadin")(♦ROLE* ADJ)(*AGR* 3SG)(*CASE* lOM)))
- - [1] : ("-" ((*CAT* PUICT)(*R* "-")))
- erkek [2 COIS] :

("erkek" ((*CAT* I)(*R* "erkek")(*R0LE* ADJ)(*AGR* 3SG)(*CASE* lOM)))
- eSitliGine [2 COIS] ;

("eSit+lHk+sH+nA" ((*CAT* ADJ)(*R* "eSit")(*SUB* QUAL)(*C0IV* I "lik")
(♦AGR* 3SG)(*P0SS* 3SG)(*CASE* DAT)))

- uygun [4 COIS] :
("uygun" ((♦CAT* ADJ)(*R* "uygun")(*AGR* 3SG)(*CASE* lOM)))

- görülebilir [2 COIS] :
("gOr+Hl+yAbil+Hr" ((*CAT* V)(*R* "gOr")(♦SUBCAT* ACC)(*VOICE* PASS)

(♦COMP* "yabil")(*ASPECT* A0R)(*AGR* 3SG)))
- . [1] : ("." ((♦CAT* PUICT)(*R* ".")))
- fakat [1] :

("fakat" ((♦CAT* COI)(*R* "fakat")))
- , [1] : ('·," ((*CAT* PUICT)(*R* ",")))
- tUrkiyeMeki [2 COIS] :

("tUrkiye>+DA+ki" ((♦CAT* I)(*R* "tUrkiye")(♦SUB* PROP)(*AGR* 3SG)(*CASE* LOC)
(*COIV* ADJ "ki")(*AGR* 3SG)(*CASE* lOH)))

- uygulamada [5 COIS] :
("uygulama+DA" ((*CAT* I)(*R* "uygulama")(*AGR* 3SG)(*CASE* LOC)))

- ev [2 COIS] :
("ev" ((*CAT* I)(*R* "ev")(*AGR* 3SG)(*CASE* lOH)))

- kadlnlarlnln [8 COIS] :
("kadIn+lAr+sH+nHn" ((*CAT* I)(*R* "kadin")(*ROLE* ADJ)(*AGR* 3PL)(*P0SS* 3SG)(*CASE* GEI)))

- hakki [3 COIS] :
("hakki" ((♦CAT* I)(*R* "hak")(*P0SS* 3SG)(*CASE* lOM)))

- yenmektedir [2 COIS] :
("yen+mAktA+DHr" ((*CAT* V)(*R* "yen")(*ASPECT* PR-COIT)(*MISC* C0PU)(*AGR* 3SG)))

- . [1] : ("." ((*CAT* PUICT)(*R* ".")))
- kadin [2 COIS] :

("kadin" ((*CAT* I)(*R* "kadin") (*R0LE* ADJ)(’*AGR* 3SG)(*CASE* lOH)))
- kuruluşları [14 COIS] :

("kuruluS+lAr+sH" ((*CAT* I)(*R* "kuruluS")(*AGR* 3PL)(*P0SS* 3SG)(*CASE* lOM)))
- " [1] : (((*CAT* PUICT)(*R*)))
- mal [2 COIS] :

("mal" ((*CAT* I)(*R* "mal")(*AGR* 3SG)(*CASE* lOM)))
- birliGi [6 COIS] :

("birlik+sH" ((*CAT* I)(*R* "birlik")(*AGR* 3SG)(*P0SS* 3SG)(*CASE* lOM)))
- " [1] : (((*CAT* PUICT)(*R*)))
- isteyerek [1] :

("iste+yArAk" ((*CAT* V)(*R* "iste")(*C0IV* ADV "yarak")(*SUB* ATT)))
- SOyle [4 COIS] :

("SOyle" ((*CAT* ADV)(*R* "SOyle")))

APPENDIX A. SAMPLE TAGGED OUTPUT 74

- demektedirler [1] :
("de+mAktA+DHr+lAr" ((*CAT^ “de")(♦ASPECT* PR-COIT)(♦HISC* COPU)(*AGR# 3PL)))

- : [1] : ((♦CAT* PÜHCT)(*R* ·':'·)))
- '· [1] : (.. ((*CAT* PUHCT)(*R* '""')))
- mal [2 COHS] :

(“mal·· ((♦CAT* H)(+R* ••mal··) (tAGR* 3SG)(-««CASÊ lOH)))
- ayrllIGI [6 COIS] :

(••ayrllIk+sH·· ((♦CAT* I)(*R* ••ayrlllk··) (♦AGR* 3SG)(*P0SS* 3SG)(*CASE» MOH)))
- , [1] : ((♦CAT* PUICT)(*R* ··,··)))
- gOrUnUSte [2 COIS] :

(••gOrUn+yHS+DA·· ((.*CAT* V)(*R* '•gOrUn··) (♦COIV* I •*yis··) (»AGR* 3SG)(*CASE* LOC)))
- , [1] : ((♦CAT* PUICT)(*R« “,··)))
- kadin [2 COIS] :

(••kadin·· ((♦CAT* !)(♦!♦ ••kadin··) (»ROLE* ADJ)(*AGR* 3SG)(*CASE* lOH)))
- erkek [2 COIS] :

(••erkek·· ((»CAT* I)(*R* ''erkek··) (»ROLE* ADJ)(*AGR* 3SG)(*CASE* lOM)))
“ eSitliGine [2 COIS] :

(“eSit+lHk+sH+nA" ((*CAT* ADJ)(»R* “eSif')(*SUB* QUAL)(*COIV* I “lik")
(*AGR* 3SG)(*P0SS* 3SG)(*CASE* DAT)))

- uygun [4 COIS] :

(“uygun·· ((*CAT* ADJ)(*R* “uygun")(*AGR* 3SG)(*CASE* lOM)))
- bir [2 COIS] :

(“bir·· ((*CAT* ADJ)(*R* “bir“)(*SUB* lUH)(»VALUE* 1)(»AGR» 3SG)(»CASE» lOM)))
- rejimdir [4 COIS] :

(“reji+Hm+DHr“ ((»CAT» I)(»R» “reji")(»AGR» 3SG)(»P0SS» 1SG)(»CASE» lOH)
(»COIV» V '"')(*ASPECT* PR-COIT)(»AGR» 3SG)))

- . [1] : (“.“ ((»CAT» PUICT)(»R» “.“)))
- ancak [2 COIS] :

(“ancak“ ((»CAT» COI)(»R» “ancak“)))
uygulamada [5 ANBIGUOUS] :

(“uygulama+DA" ((»CAT» I)(»R» ''uygulama")(»AGR» 3SG)(»CASE» LOC)))
(“uygula+mA+DA" ((»CAT» V)(»R» “uygula")(»COIV» I ''ma")(»AGR» 3SG)(»CASE» LOC)))

- , [!] : (",” ((*CAT» PUICT)(»R» “,'')))
- Özellikle [3 COIS] ;

(“Özellikle·· ((»CAT» ADV)(»R» “ Özellikle")(»SUB» SEIT)))
- ev [2 COIS] :

(“ev·· ((»CAT» I)(»R» “ev")(»AGR» 3SG)(»CASE» lOM)))
- kadinl [3 COIS] :

(“kadln+sH" ((»CAT» I)(»R» “kadln")(»ROLE» ADJ)(»AGR» 3SG)(»P0SS» 3SG)(»CASE» lOM)))
- diye [2 COIS] :

(“diye“ ((»CAT» POSTP)(»R» “diye“)))
- tanımlanan [2 COIS] :

C'tanlmla+n+yAn·' ((»CAT» V)(»R» “tanlmla")(»VOICE» PASS)(»COIV» ADJ “yan")
(»AGR» 3SG)(»CASE» lOM)))

- insanların [4 COIS] :
C'insan+lAr+nHn'· ((»CAT» I)(»R» “insan")(»AGR» 3PL)(»CASE» GEI)))

- durumunu [2 COIS] :
(“durum+sH+nH" ((»CAT» I)(»R» “durum")(»AGR» 3SG)(»P0SS» 3SG)(»CASE» ACC)))

- aGIrlaStIrmaktadır [1] :
C'aGIr+lAS+DHr+mAktA+DHr“ ((»CAT» ADJ)(»R» “aGIr")(»SUB» QUAL)(»COIV» V “las")

(»VOICE» CAUS)(»ASPECT» PR-COIT)(»MISC» COPU)(»AGR» 3SG)))
- . [1] : (·'.“ ((»CAT» PUICT)(»R» ··.“)))
- milyonlarca [2 COIS] :

APPENDIX A. SAMPLE TAGGED OUTPUT 75

(••milyonlarca" ((*CAT* ADJ)(*R* "milyonlarca··) (»SUB* QTY-Ü)(*AGR« 3SG)(*CASE* HOM)))
- kadin [2 COIS] ;

(••kadin·· H) (*K* "kadin··) (♦ROLE* ADJ)(*AGR* 3SG)(*CASE* lOH)))
- tarlada [2 COIS] ;

(••tarla+DA·· ((*CAT* I)(*R* ••tarla··) (*AGR* 3SG)(*CASE* LOC)))
- CalISarak [1] :

(••CalIS+yArAk·· ((*CAT* V)(*R* '•CalIS··) (*C0IV* ADV "yarak") (*SUB* ATT)))
- veya [1] :

(••veya'· ((*CAT* COI)(*R* "veya")))
- evde [2 COIS] ;

("ev+DA" ((*CAT* I)(*R* "ev'‘)(*AGR* 3SG)(*CASE* LOC)))
- en [3 COIS] :

("en" ((*CAT* ADV)(*R* "en")(*SUB* SUPERLATIVE)))
- aGIr [4 COIS] :

("aG+Hr" ((*CAT* V)(*R* "aG")(*C0IV* ADJ "ir")))
- isleri [7 COIS] :

("iS+lAr+yH" ((*CAT* I)(*R* "İS")(*AGR* 3PL)(*CASE* ACC)))
- gOrerek [1] :

("gOr+yArAk" ((*CAT* V)(*R* "gOr")(*SUBCAT* ACC)(*C0IV* ADV "yarak")(*SUB* ATT)))
- yarattıklar! [12 COIS] :

("yara+t+DHk+lAr+sH" ((*CAT* V)(*R* "yara")(♦VOICE* CAUS)(*C0IY* ADJ "dik")
(♦AGR* 3PL)(*P0SS* 3SG)(*CASE* lOM)))

- artı [2 COIS] :
("art!" ((*CAT* I)(*R* "artI")(*R0LE* ADJ)(*AGR* 3SG)(*CASE* lOM)))

- deGere [1] :
("deGer+yA" ((*CAT* I)(*R* "deGer")(*AGR* 3SG)(*CASE* DAT)))

- sahip [2 COIS] :
("sahih" ((*CAT* I)(*R* "sahip")(*AGR* 3SG)(*CASE* lOM)))

- olamamaktadır [1] :

("ol+yAmA+mAktA+DHr" ((*CAT* V)(*R* "ol")(*SUBCAT* lOM)(♦SEISE* lEGC)
(♦ASPECT* PR-COIT)(*MISC* C0PU)(*AGR* 3SG)))

- . [1] : ("." ((*CAT* PUICT)(*R* ".")))
- evlilik [6 COIS] :

("ev+lH+lHk" ((*CAT* I)(*R* "ev")(*AGR* 3SG)(*C0IV* ADJ "li")(*SÜB* QUAL)
(*C0IV* I "lik")(*AGR* 3SG)(*CASE* lOM)))

- dOnemi [3 COIS] :
("dOnem+sH" ((*CAT* I)(*R* "dOnem")(*AGR* 3SG)(*P0SS* 3SG)(*CASE* lOM)))

- elde [2 COIS] :
("el+DA" ((*CAT* I)(*R* "ol")(*AGR* 3SG)(*CASE* LOC)))

- edilen [2 COIS] :
("ed+Hl+yAn" ((*CAT* V)(*R* "et")(*V0ICE* PASS)(*C0IV* ADJ "yan")(*AGR* 3SG)(*CASE* lOM)))

- taSInmaz [3 COIS] :
C'taSInmaz" ((*CAT* I)(*R* •‘taSInmaz")(*R0LE* ADJ)(*AGR* 3SG)(*CASE* lOH)))

- mallar [3 COIS] :
("mal+lAr" ((*CAT* I)(*R* "mal")(*AGR* 3PL)(*CASE* lOH)))

- » [1] : ("," ((*CAT* PUICT)(*R* ",")))
“ genellikle [3 COIS] :

("genellikle" ((*CAT* COI)(*R* "genellikle")))
- kocanin [5 COIS] :

("koca+nHn" ((*CAT* I)(*R* "koca")(*R0LE* ADJ)(*AGR* 3SG)(*CASE* GEI)))
- adina [2 COIS] :

("adl+nA" ((*CAT* I)(*R* "ad/name")(*P0SS* 3SG)(*CASE* DAT)))
- tapuya [1] :

APPENDIX A. SAMPLE TAGGED OUTPUT 76

("tapu+yA" ((*CAT* I)(*R* "tapu")(*AGR* 3SG)(*CASE* DAT)))
- kaydolmakta [2 CONS] :

(‘•kaydol+mAk+DA" (C*CkT* V)(*R« "kaydol")(*COIV* IMF "mak")(♦CASE* LOC)))
- ve [1] :

("ve" ((*CAT* COI)(*R* "ve")))
- gelirler [4 COIS] :

("gelir+lAr" ((♦CAT* I)(*R* "gelir")(*AGR* 3PL)(*CASE* lOM)))
- kocanin [5 COIS] :

("koca+nHn" ((*CAT* I)(*R* "koca")(*R0LE* ADJ)(*AGR* 3SG)(*CASE* GEI)))
- banka [3 COIS] :

("banka" ((*CAT* I)(*R* "banka")(*AGR* 3SG)(*CASE* lOH)))
- hesabina [2 COIS] :

("hesab+sH+nA" ((*CAT* I)(*R* "hesap")(*AGR* 3SG)(*P0SS* 3SG)(*CASE* DAT)))
- geçirilmektedir [1] :

("geJ+Hr+Hl+mAktA+DHr" ((*CAT* V)(*R* "geC")(♦VOICE* CAUS)(♦VOICE* PASS)
(♦ASPECT* PR-COIT)(♦Mise* C0PU)(*AGR* 3SG)))

- . [1] : ("." ((*CAT* PUICT)(*R* ".")))
« evliliGin [12 AHBIGUOUS] :

("ev+lH+lHk+nHn" ((*CAT* I)(*R* "ev")(*AGR* 3SG)(*C0IV* ADJ "li")(*SUB* QUAL)
(♦COIV* I "lik")(*AGR* 3SG)(*CASE* GEI)))

("evlilik+nHn" ((*CAT* I)(*R* "evlilik")(*CASE* GEI)))
("evli+lHk+nHn" ((*CAT* ADJ)(*R* "evli")(♦COIV* I "lik")(*AGR* 3SG)(*CASE* GEI)))

- boSanma [3 COIS] :
("boSa+n+mA" ((*CAT* V)(*R* "boSa")(*V0ICE* PASS)(*C0IV* I "ma")(*AGR* 3SG)(*CASE* lOH)))

- veya [1] :
("veya" ((*CAT* C0I)(*R* "veya")))

- OlUm [4 COIS] :
("OlU+Hm" ((*CAT* I)(*R* "01ü")(*R0LE* ADJ)(*AGR* 3SG)(*P0SS* 1SG)(*CASE* lOM)))

- ile [3 COIS] :
("il+yA" ((*CAT* I)(*R* "il")(*AGR* 3SG)(*CASE* DAT)))

- sona [2 COIS] :
("son+yA" ((*CAT* ADJ)(*R* "son")(*R0LE* ADJ-OILY)(*AGR* 3SG)(*CASE* DAT)))

- ermesi [2 COIS] :
("er+mA+sH" ((*CAT* V)(*R* "er")(*C0IV* I "ma")(*AGR* 3SG)(*P0SS* 3SG)(*CASE* lOH)))

- halinde [5 COIS] :
("halinde" ((*CAT* P0STP)(*R* "halinde")(*SUBCAT* lOH)))

- , [1] : ('·,” ((*CAT* PU1CT)(*R* ",")))
- kadin [2 COIS] :

("kadin" ((*CAT* I)(*R* "kadin")(*R0LE* ADJ)(*AGR* 3SG)(*CASE* lOH)))
- ortada [2 COIS] :

("orta+DA" ((*CAT* I)(*R* "orta")(*R0LE* ADJ)(*AGR* 3SG)(*CASE* LOC)))
- kalmaktadır [1] :

("kal+mAktA+DHr" ((*CAT* V)(*R* "kal")(*ASPECT* PR-COIT)(♦HISC* C0PÜ)(*AGR* 3SG)))
- . [1] : ("." ((*CAT* PUICT)(*R* ".")))
- kadinin [4 COIS] :

("kadIn+nHn" ((*CAT* I)(*R* "kadin")(*R0LE* ADJ)(*AGR* 3SG)(*CASE* GEI)))
- Cabası [2 COIS] :

("Caba+sH" ((*CAT* I)(*R* "Caba")(*AGR* 3SG)(*P0SS* 3SG)(*CASE* lOH)))
- hor [1] :

("her" ((*CAT* ADJ)(*R* "her")(*SUB* ADJ-OILY)))
- zaman [2 COIS] :

("zaman" ((*CAT* I)(*R* "zaman")(*SUB* TEHP-POIIT)(*AGR* 3SG)(*CASE* lOH)))
- gOzle [2 COIS] :

APPENDIX A. SAMPLE TAGGED OUTPUT 77

("gOz+ylA·· ((*CAT* M)(*R« ••gOz")(*AGR* 3SG)(*CASE* IIS)))
- gOrUlen [2 COIS] :

("gOr+Hl+yAn" ((♦CAT* V)(*R* •'gOr'*) (♦SUBCAT* ACC)(*VOICE» PASS)(*COHV^ ADJ "yan”)
(♦AGR» 3SG)(^CASE« lOH)))

- bir [2 COHS] :
("bir" ((*CAT* ADJ)(*R« "bir")(*SUB^ IUM)(*VALUE* i)(*AGK* 3SG)(«CASE* HOH)))

- kazanC [2 COIS] :
("kazanC" ((»CAT^ i)(*R* "kazanC")(♦AGR· 3SG)(*CASE^ lOH)))

- veya [1] :
("veya" ((♦CAT* COI)(*R* "veya")))

- gelir [4 COIS] :
("gelir" ((*CAT* I)(*R* "gelir")(«AGR* 3SG)(*CASE* lOH)))

- Seklinde [4 COIS] :
("Sek$il+sH+nDA" ((*CAT* !)(♦!♦ "Sekil")(«AGR* 3SG)(*P0SS* 3SG)(»CASE* LOC)))

- ortaya [1] :

("orta+yA" ((»CAT* I)(*R* "orta")(»ROLE* ADJ)(*AGR* 3SG)(*CASE» DAT)))
- çıkmayabilir [2 COIS] :

("CIK+mA+yAbil+Hr" ((♦CAT·̂ V)(*R* "CIk")(*SEISE* IEG)(*COMP* "yabil")
(♦ASPECT* A0R)(*AGR* 3SG)))

- . [1] : ("." ((♦CAT* PUICT)(*R* ".")))
- o [4 COIS] :

("o" ((*CAT* ADJ)(*R* "o")(*AGR* 3SG)(«SUB* DEMO)))
- nedenle [1] :

("neden+ylA" ((*CAT* !)(♦!♦ "neden")(*AGR* 3SG)(tCASE* IIS)))
- , [!] : ("," ((♦CAT* PUICT)(*R* ",")))
- bugünkü [2 COIS] :

("bugünkü" ((♦CAT* I)(*R* "bugül ")(*SÜB* TEMP)(^C0IV* ADJ "ki")(*AGR* 3SG)(*CASE+ lOM)))
- düzen [5 COIS] :

("düzen" ((*CAT* I)(*R* "düzen")(♦AGR* 3SG)(*CASE* lOM)))
- , [1] : ("," ((*CAT* PÜICT)(*R« ",")))
- sosyal [2 COIS] :

("sosy- adalet [2 COIS] :

("adalet" ((*CAT* I)(*R^ "adalet")(♦AGR* 3SG)(*CASE* lOM)))
- ve fi] :

("ve" ((*CAT* C0I)(*R* "ve")))
- eSitlik [2 COIS] :

("eSit+lHk" ((♦CAT* ADJ)(^R* "eSit")(»SÜB* QÜAL)(*C0IV* I "lik")(*AGR* 3SG)(^CASE* lOM)))
- ilkesine [1] :

("ilke+sH+nA" ((*CAT* !)(♦!♦ "ilke")(»AGR* 3SG)(*P0SS* 3SG)(*CASE» DAT)))
- aykiridir [2 COIS] :

("aykIrl+DHr" İ(*CAT* ADJ)(*R* "aykirl") («AGR* 3SG)(*CASE* I0M)(*C0NV·»« V "")
(♦ASPECT* PR-COIT)(»AGR* 3SG)))

- . [1] : ("." ((*CAT* PÜICT)(^R* ".")))
“ ayrica [1] :

("ayrica" ((♦CAT* ADV)(^R* "ayrica")))
- , [!] : ('·," ((*CAT* PÜICT)(*R* ",")))
- boSanma [3 COIS] :

("boSa+n+mA" ((♦CAT* V)(*R* "boSa")(»VOICE* PASS)(^C0IV* I "ma")(*AGR^ 3SG)(*CASE« lOM)))
- ve [1] :

("ve" ((♦CAT* C0I)(*R* "ve")))
- miras [2 COIS] :

("miras" ((»CAT* !)(♦!♦ "miras")(*AGR* 3SG)(*CASE^ lOM)))
- hukukunda [4 COIS] :

APPENDIX A. SAMPLE TAGGED OUTPUT 78

("hukuK+sH+nDA·· ((»CAT* I)(*R* "hukuk")(♦AGR* 3SG)(*P0SS^ 3SG)(*CASE* LOG)))
- yapllan [3 COHS] :

("yap+Hl+yAn" ((»CAT* V)(*R* "yap")(»VOICE* PASS)(*COIV* ADJ "yan")(*AGR* 3SG)(*CASE* ¥OM)))
- son [4 COHS] :

("son" ((»CAT* ADJ)(*R* "son")(*R0LE* ADJ-OILY)(»AGR» 3SG)(*CASE* HOM)))
- deGiSiklikler [3 COHS] :

("deGiSik+lHk+lAr" ((»CAT* ADJ)(*R* "deGiSik")(»SUB* QUAL)(*C0IV* I "lik")
(»AGR» 3PL)(*CASE* lOM)))

- , [!] : ((*CAT* PUICT)(»R* ",")))
- kadin [2 COHS] ;

("kadin" ((»CAT* H)(*R* "kadin")(»ROLE* ADJ)(*AGR* 3SG)(*CASE* HOH)))
- haklarinin [4 COHS] :

("haklar+sH+nHn" ((»CAT* H)(»R» "hak")(*AGR* PL)(»POSS» 3SG)(*CASE* GEH)))
- korunmasinl [1] :

("koru+n+mA+sH+nH" ((»CAT* V)(*R* "koru")(»VOICE* PASS)(*C0HV* H "ma")
(»AGR» 3SG)(*P0SS* 3SG)(*CASE* ACC)))

- daha [1] :

("daha" ((»CAT* ADV)(*R* "daha")(»SUB* COMPARATIVE)(»SUB* TEMP)))
- da [1] :

("da" ((»CAT* C0H)(*R* "de")))
- zorunlu [2 COHS] :

("zorunlu" ((»CAT* ADJ)(*R* "zorunlu")(»AGR» 3SG)(*CASE* HOH)))
- kllmaktadir [1] :

("kll+mAktA+DHr" ((»CAT» V)(»R* "kll")(»ASPECT* PR-COHT)(»MISC» COPU)(»AGR* 3SG)))
- . [1] : (··.” ((»CAT* PUHCT)(»R* ".")))
- ·· [1] : (.. ((»CAT* PUHCT)(»R* ..)))
- kaldl [1] :

("kal+DH" ((»CAT* V)(»R* "kal")(»ASPECT* PAST)(»AGR* 3SG)))
- ki [1] :

("ki" ((»CAT* C0H)(»R» "ki")))
- , [1] : (”." ((»CAT* PUHCT)(»R* ",")))
- eGer [3 COHS] :

("eGer" ((»CAT* C0H)(»R» "eGer")))
- evlilik [6 COHS] :

("ev+lH+lHk" ((»CAT* H)(»R» "ev")(»AGR» 3SG)(»C0HV» ADJ "li")(»SUB* QUAD
(»C0HV» H "lik")(»AGR» 3SG)(»CASE* HOH)))

- birliGi [6 COHS] :
("birlik+sH" ((»CAT* H)(»R* "birlik")(»AGR» 3SG)(»P0SS* 3SG)(»CASE* HOH)))

- esnasinda [2 COHS]
("esna+sH+nDA" ((»CAT* H)(»R* "esna")(»AGR» âSG)(»POSS» 3SG)(»CASE» LOC)))

- allnan [4 COHS] :
("al+Hn+yAn" ((»CAT* V)(»R* "al")(»SUBCAT» ACC)(»V0ICE* PASS)(»C0HV* ADJ "yan")

(»AGR» 3SG)(»CASE» HOM)))
- mallar [3 COHS] :

("mal+lAr" ((»CAT» H)(»R» "mal")(»AGR» 3PL)(»CASE» HOH)))
- kadinin [4 COHS] :

("kadIn+nHn" ((»CAT* H)(»R» "kadin")(»ROLE» ADJ)(»AGR» 3SG)(»CASE* GEH)))
- Üzerine [3 COHS] :

("Üzerine" ((»CAT* P0STP)(»R* "Üzerine")(»SUBCAT» GEH)))
- tapulanmISsa [2 COHS] :

("tapula+n+mHS+ysA" ((»CAT* V)(»R* "tapula")(»VOICE* PASS)(»ASPECT* HARR)
(»TEHSE» C0HD)(»AGR* 3SG)))

- , [1] : ("," ((»CAT* PUHCT)(»R» ",")))

APPENDIX A. SAMPLE TAGGED OUTPUT 79

- o [4 COIS] :
("o" ((♦CAT* ADJ)(*R* "o")(*AGR* 3SG)(*SÜB* DEHO)))

- takdirde [3 COIS] :
("takdir+DA" ((♦CAT* I)(*R^ "takdir") («AGR* 3SG)(*CASE* LOO))

- de [2 COIS] :
C'de" ((♦CAT* C0I)(*R* "de")))

- , [!] : ((*CAT* PUICT)(*R* ",")))
- boSanma [3 COIS] :

("boSa+n+mA" ((*CAT* V)(^R* "boSa")(♦VOICE* PASS)(*C0IV* I "«a-K+AGR« 3SG)(*CASE* lOM)))
- halinde [5 COIS] :

("halinde" ((♦CAT* P0STP)(»R* "halinde")(♦SUBCAT* lOfO))
- erkek [2 COIS] :

("erkek" ((♦CAT* I)(»R* "erkek")(♦ROLE* ADJ)(*AGR* 3SG)(*CASE* lOM)))
- maGdur [2 COIS] :

("maGdur" ((*CAT* ADJ)(*R* "maGdur")(*AGR* 3SG)(*CASE* lOH)))
- olabilmektedir [1] :

(••ol+yAbil+mAktA+DHr" ((*CAT* V)(*R* "ol")(*SUBCAT* I0H)(*C0HP* "yabil")
(♦ASPECT* PR-COIT)(*MISC* C0Pü)(*AGR* 3SG)))

- . [1] : (··." ((*CAT* PUICT)(*R* ".")))
- bunun [3 COIS] :

("bu+nHn" ((*CAT* PI)(*R* "bu")(*AGR* 3SG)(*CASE* GEI)))
- dISInda [4 COIS] :

("dIS+sH+nDA" ((*CAT* I)(*R* "dIS")(*R0LE* ADJ)(*SUB* SPATIAL)(*AGR* 3SG)
(♦POSS* 3SG)(*CASE* LOC)))

- , [1] : (”»" ((*CAT* PUICT)(*R* ",")))
- mal [2 COIS] :

("mal" ((*CAT* I)(*R* "mal")(*AGR* 3SG)(*CASE* lOM)))
- ayrIlIGI [6 COIS] :

("ayrllIk+sH" ((*CAT* I)(*R* "ayrillk")(*AGR* 3SG)(*P0SS* 3SG)(*CASE* lOH)))
- , [1] : ("»" ((*CAT* PÜFCT)(*R* ",")))
- hileli [2 COIS] :

("hile+lH" ((*CAT* I)(*R* "hile")(*AGR* 3SG)(*C0IV* ADJ "li")(*SUB* QUAL)
(*AGR* 3SG)(*CASE* lOH)))

- iflaslarda [2 COIS] :

("iflas+lAr+DA" ((*CAT* ADJ)(*R* "iflas")(*AGR* 3PL)(*CASE* LOC)))
- veya [1] :

("veya" ((*CAT* C0I)(*R* "veya")))
- geri [3 COIS] :

("geri" ((*CAT* I)(*R* "geri")(*AGR* 3SG)(*CASE* lOM)))
- Ödenmemesi [2 COIS] :

("Ode+n+mA+mA+sH" ((*CAT* V)(*R* "Ode")(*VOrCE* PASS)(*SEISE* lEG)
(♦COIV* I "ma")(*AGR* 3SG)(*P0SS* 3SG)(*CASE* HOM)))

- durumlarında [8 COIS] :
("durum+lAr+sH+nDA" ((*CAT* I)(*R* "durum")(*AGR* 3PL)(*P0SS* 3SG)(*CASE* LOC)))

X alacaklılar! [7 COIS] :
("alacak+lH+lAr+sH" ((*CAT* I)(*R* "alacak")(*AGR* 3SG)(*C0IV* ADJ "li")

(*SUB* QUAL)(*AGR* 3PL)(*P0SS* 3SG)(*CASE* ION)))
- gUC [2 COIS] :

("gUC" ((*CAT* I)(*R* "gUC")(*AGR* 3SG)(*CASE* lOH)))
- durumda [4 COIS] :

("durum+DA" ((*CAT* I)(*R* "durum")(*AGR* 3SG)(*CASE* LOO))
- bırakabilmektedir [l] :

("bIraK+yAbil+mAktA+DHr" ((*CAT* V)(*R* "birak")(♦COMP* "yabil")

APPENDIX A. SAMPLE TAGGED OUTPUT 80

(»ASPECT* PR-C0IT)(*HISC* C0PU)(*AGR* 3SG)))
- . [1] : ((»CAT* PUHCT)(*R* ".")))
- eSlere [1] :

CeS+lAr+yA'· ((*CAT* I)(*R* “eS-X^AGR* 3PL)(*CASE* DAT)))
- mal [2 COHS] :

(••mal" ((♦CAT* I)(*R* "mal·') («AGR» 3SG)(*CASE* lOM)))
- rejimi [4 COIS] :

("rejim+sH" ((♦CAT* I)(*R* "rejim")(*AGR^ 3SG)(*P0SS* 3SG)(*CASE* lOM)))
- sOzleSmesi [2 COIS] :

("sOzleSme+sH" ((«CAT« I)(*R* "sOzleSme")(♦AGR* 3SG)(«P0SS* 3SG)(*CASE* lOM)))
- yapma [3 COIS] ;

("yap+mA" ((♦CAT* V)(*R* "yap")(«COIV* I "ma")(+AGR* 3SG)(*CASE« lOM)))
- hakki [3 COIS] :

("hakki" ((«CAT* "hak'·) (♦POSS· 3SG)(^CASE* lOM)))
- da [1] :

("da" ((♦CAT* C0I)(^R* "de")))
- tanInmIStIr [6 COIS] :

("tanl+n+mHS+DHr" ((*CAT* V)(*R* "tañí")(»VOICE* PASS)(»ASPECT* lARR)(*HISC^ COPU)(*AGR* 3SG)))
- . [1] : ("." ((♦CAT* PUICT)(*R« ".")))
- yeni [5 COIS] :

("yeni" ((♦CAT* ADJ)(*R* "yeni")(*AGR* 3SG)(*CASE* ION)))
- kanun [2 COIS] :

("kanun" ((»CAT* I)(*R« "kanun")(«AGR* 3SG)(*CASE* lOM)))
- rejimi [4 COIS] :

("rejim+sH" ((»CAT« I)(*R* "rejim")(»AGR* 3SG)(*P0SS* 3SG)(*CASE» lOM)))
- . [1] : (·'," ((♦CAT* PÜICT)(*R* ",")))
- eSlerin [4 COIS] :

("eS+lAr+nHn" ((*CAT* I)(*R* "eS")(*AGR* 3PL)(*CASE* GEI)))
- mal [2 COIS] :

("mal" ((*CAT* I)(*R* "mal")(*AGR* 3SG)(*CASE* lOM)))
- rejimi [4 COIS] :

("rejim+sH" ((*CAT* I)(*R* "rejim")(*AGR* 3SG)(*P0SS* 3SG)(*CASE* lOM)))
- sOzleSmesi [2 COIS] :

("sOzleSme+sH" ((*CAT* I)(*R* "sOzleSme")(*AGR* 3SG)(*P0SS* 3SG)(*CASE* lOM)))
- ile [3 COIS] :

("ile" ((*CAT* C0I)(*R* "ile")))
- kanunda [2 COIS] :

("kanun+DA" ((*CAT* I)(*R* "kanun") (*AGR* 3SG)(*CASE* LOO))
- belirtilen [2 COIS] :

("belir+t+Hl+yAn" ((*CAT* V)(*R* "belir")(♦VOICE* CAUS)(*VOICE* PASS)
(♦COIV* ADJ "yan")(*AGR* 3SG)(*CASE* lOM)))

- diGer [2 COIS] :
("diGer" ((*CAT* ADJ)(*R* "diGer")(*AGR* 3SG)(*CASE* lOH)))

- rejimlerden [1] :
("rejim+lAr+DAn" ((*CAT* I)(*R* "rejim")(*AGR* 3PL)(*CASE* ABL)))

- birini [3 COIS] :
("bir+sH+nH" ((*CAT* ADJ)(*R* "bir")(♦SUB* IUH)(*VALUE* 1)(*AGR* 3SG)(*P0SS* 3SG)(*CASE* ACC)))

- seCemedikleri [6 COIS] :
("seJ+yAmA+DHk+lAr+sH" ((*CAT* V)(*R* "seC")(♦SEISE* IEGC)(*COIV* ADJ "dik")

(*AGR* 3PL)(*P0SS* 3SG)(*CASE* lOH)))
- takdirde [3 COIS] :

("takdir+DA" ((*CAT* I)(*R* "takdir") (*AGR* 3SG)(*CASE* LOO))
- geCerlidir [2 COIS] :

APPENDIX A. SAMPLE TAGGED OUTPUT 81

C'geCer+lH+DHr" ((♦CAT* ADJ)(*R* "geCer“)(♦AGR^ 3SG)(*C0IV# ADJ "li”)(»SUB* QUAL)
(♦AGR* 3SG)(*CASE* IOM)(*COIV* V ”")(*ASPECT» PR-COIT)(»AGR* 3SG)))

- . [1] : ((♦CAT* PUICT)(*R* '·.")))
- evlenmeden [2 COHS] :

(••evlen+mA+DAn” ((*CAT* V)(*R* "evlen")(*C0IV* I "ma")(*AGR* 3SG)(*CASE* ABL)))
- Once [4 COIS] :

("Once" ((»CAT* POSTP)(*R* "Once")(*SUBCAT* ABL)))
- sahip [2 COIS] :

("sahib" ((*CAT* I)(*R* "sahip")(*AGR* 3SG)(*CASE* lOM)))
- olunan [2 COIS] :

("ol+Hn+yAn" ((*CAT* V)(*R* "ol")(*SUBCAT* IOM)(*VOICE* PASS)
(*C0IV* ADJ "yan")(*AGR* 3SG)(*CASE* lOH)))

- mallar [3 COIS] :
("mal+lAr" ((*CAT* I)(*R* "mal")(*AGR* 3PL)(*CASE* lOH)))

- . [1] : (·'," ((*CAT* PUICT)(*R* ",")))
- mal [2 COIS] :

("mal" ((»CAT* I)(*R* "mal")(*AGR* 3SG)(*CASE* lOM)))
- ayrllIGI [6 COIS] :

("ayrllIk+sH" ((*CAT* I)(*R* "ayrlllk")(*AGR* 3SG)(*P0SS* 3SG)(*CASE* HOM)))
- esasina [2 COIS] :

("esas+sH+nA" ((*CAT* I)(*R* "esas")(*AGR* 3SG)(*P0SS* 3SG)(*CASE* DAT)))
- tabidir [2 COIS] :

("tabi+DHr" ((*CAT* ADJ)(*R* "tabi")(*AGR* 3SG)(*CASE* I0H)(*C0IV* V "")
(»ASPECT* PR-COIT)(*AGR* 3SG)))

- . [1] : ("." ((*CAT* PUICT)(*R* ".")))
- evlenmeden [2 COIS] :

("evlen+mA+DAn" ((*CAT* V)(*R* "evlen")(*C0IV* I "ma")(*AGR* 3SG)(*CASE* ABL)))
- sonra [4 COIS] :

("sonra" ((*CAT* P0STP)(*R* "sonra")(»SUBCAT* ABL)))
- edinilen [2 COIS] :

("edin+Hl+yAn" ((*CAT* V)(*R* "edin")(»VOICE* PASS)(*C0IV* ADJ "yan")
(*AGR* 3SG)(*CASE* lOM)))

- mallar [3 COIS] :
("mal+lAr" ((*CAT* I)(*R* "mal")(*AGR* 3PL)(*CASE* lOH)))

- iCin [6 COIS] :
("iCin" ((*CAT* P0STP)(*R* "iCin")(»SUBCAT* lOH)))

- ortak [2 COIS] :
("ortak" ((»CAT* I)(*R* "ortak") (»ROLE* ADJ)'(*AGR* 3SG)(*CASE* lOH)))

- katilim [4 COIS] :
("katilim" ((»CAT* I)(*R* "katilim")(»AGR* 3SG)(*CASE* lOM)))

- , [!] : ("," ((»CAT* PUICT)(*R* ",")))
- kanuni [2 COIS] :

("kanuni" ((»CAT* ADJ)(*R* "kanuni")(»AGR* 3SG)(*CASE* lOM)))
- rejim [4 COIS] :

("rejim" ((»CAT* I)(*R* "rejim")(»AGR* 3SG)(*CASE* lOH)))
“ olarak [1] :

("ol+yArAk" ((»CAT* V)(*R* "ol")(»SUBCAT* I0H)(*C0IV* ADV "yarak")(»SUB* ATT)))
- kabul edilmiştir [RULE] :

((»CAT* V)(*R* "hak et")(»VOICE* PASS)(»AGR* 3SG)(*CASE* lOH)(»ASPECT* PR-COIT))
- . [1] : ("." ((»CAT* PUICT)(*R* ".")))
- " [1] : (.. ((»CAT* PUICT)(*R* ..)))
“ kadınlar [3 COIS] :

("kadIn+lAr" ((»CAT* I)(*R* "kadin")(»ROLE* ADJ)(*AGR* 3PL)(*CASE* lOM)))

APPENDIX A. SAMPLE TAGGED OUTPUT 82

- daha [1] :
(••daha” ((♦CAT* ADV)(*R« ••daha'·) («SUB* COHPARATIVE) (*SUB* TEMP)))

- Cok [3 COIS] :
(••Cok·· ((♦CAT* ADJ)(*R* ••Cok”) (»SUB^ QTY-U)(»AGR* 3SG)(*CASE« lOM)))

- Sey [2 COIS] :
('•Sey·· ((♦CAT* H)(^R* ••Sey··) (»AGR* 3SG)(*CASE* lOM)))

- istiyor [1] :
(••iste+Hyor·· ((♦CAT* V)(*R* ••iste··) (♦ASPECT* PR-COIT) (*AGR» 3SG)))

- . [1] : (··.·· ((♦CAT* PUICT)(*R* ··.··)))
- . [1] : (··.·· ((*CAT* PÜICT)(*R* ··.··)))
- . [1] : (··.·· ((*CAT* PUHCT)(*R* ··.··)))
- biz [2 COIS] :

C'biz·· ((*CAT* PI)(*R* ”biz^^)(*AGR* 1PL)(*CASE* lOH)))
- içlerinden [4 COIS] :

('•iJ+lArH+nDAn·· ((*CAT* I)(*R* ”İC··) (♦ROLE* ADJ)(*SUB* SPATIAL)
(*AGR* 3PL)(*P0SS* 3PL)(*CASE* ABL)))

“ bir [2 COIS] :
(••bir·· ((*CAT* ADJ)(*R* ••bir”)(*SUB* IUM)(*VALUE* 1)(*AGR* 3SG)(*CASE* lOM)))

- - [!] : (”-'· ((*CAT* PUICT)(*R* ··-··)))
- ikisini [1] :

(”iki+sH+nH·· ((*CAT* ADJ)(*R* ••iki··) (*SUB* IUM)(*VALUE* 2)(*AGR* 3SG)
(♦POSS* 3SG)(*CASE* ACC)))

- seCtik [1] :
(••seJ+DH+k·· ((*CAT* V)(*R* '•seC··) (*ASPECT* PAST) (*AGR* İPL)))

- , [!] : (”,·' ((*CAT* PÜICT)(*R* ”.”)))
- diGerlerini [4 COIS] :

C'diGer+lArH+nH·· ((*CAT* ADJ)(*R* ••diGer··) (*AGR* 3PL)(*P0SS* 3PL)(*CASE* ACC)))
- OGrenmek [2 COIS] :

('•OGren+mAk·· ((*CAT* V)(*R* •’OGren·*) (*SUBCAT* ACC)(*COIV* IIF •*mak··) (*CASE* lOH)))
- istiyorsanız [1] :

(••iste+Hyor+ysA+nHz·· ((*CAT* V)(*R* ••iste··) (*ASPECT* PR-COIT) (*TEISE* C0ID)(*AGR* 2PL)))
- ve [1] :

(••ve·· ((*CAT* C0I)(*R* ••ve··)))
- aCtIklarI [6 COIS] :

('•aJ+DHk+lAr+sH·· ((*CAT* V)(*R* ••aC·’) (*SUBCAT* ACC)(*C0IV* ADJ ••dik··)
(*AGR* 3PL)(*P0SS* 3SG)(*CASE* lOH)))

- imza [2 COIS] :
C'imza·· ((*CAT* I)(*R* ••imza··) (*AGR* 3SG)(.*CASE* lOM)))

“ kampanyasinl [1] :
C'kampanya+sH+nH·· ((*CAT* I)(*R* ••kampanya·*) (*AGR* 3SG)(*P0SS* 3SG)(*CASE* ACC)))

- desteklemek [2 COIS] :
(••destekle+mAk·· ((*CAT* V)(*R* ••destekle··) (*C0IV* IIF ••mak”) (*CASE* lOM)))

- istiyorsanız [1] :
('•iste+Hyor+ysA+nHz·· ((*CAT* V)(*R* "iste··) (»ASPECT* PR-COIT) (*TEISE* COID) (*AGR* 2PL)))

- » [!] : ("," ((*CAT* PUHCT)(*R* ··,··)))
- aSaGIdaki [2 COIS] :

(••aSaGI+DA+ki·· ((*CAT* I)(*R* ••aSaGI") (*SEHCASE* DAT)(*AGR* 3SG)(*CASE* LOC)
(♦COHV* ADJ ••kî)̂(*AGR* 3SG)(*CASE* lOH)))

- telefon [2 COIS] :

(••telefon·· ((*CAT* I)(*R* ••telefon”)(*AGR* 3SG)(*CASE* lOM)))
- numarasına [1] :

(••numara+sH+nA·· ((*CAT* I)(*R* ••numara··) (*AGR* 3SG)(*P0SS* 3SG)(*CASE* DAT)))
- ve [1] ;

APPENDIX A. SAMPLE TAGGED OUTPUT 83

(“va" ((*CAT* COII)(*R· "ve")))
- adrese [1] :

("adres+yA·· ((♦CAT* I)(«R* "adres”)(♦AGR* 3SG)(*CASE* DAT)))
- başvurabilirsiniz [1] :

("baSvur+yAbil+Hr+ZHnHz" ((♦CAT* V)(*R* "baSvur")(♦COMP* "yabil")(»ASPECTO AQR)(*AGR* 2PL)))
- . [1] : ((♦CAT* PUICT)(»R* ".")))
- ille [2 COIS] :

("ille" ((♦CAT* ADV)(*R* "ille")))
- de [2 COIS] :

("de" a*CKT* C0I)(*R* "de")))
- kadin [2 COIS] :

("kadin" ((«CAT* !)(♦!♦ "kadin")(♦ROLE* ADJ)(*AGR* 3SG)(*CASE* lOH)))
- olmanlz [3 COIS] :

("ol+mA+HnHz" ((*CAT* V)(*R* "ol")(*SUBCAT* I0H)(*C0IV* I "ma")(*AGR* 3SG)
(♦POSS* 2PL)(*CASE* lOH)))

- Sart [2 COIS] :
("Sart" ((*CAT* I)(*R* "Sart")(*AGR* 3SG)(*CASE* lOM)))

- deGil [3 COIS] :
("deGil" ((*CAT* I)(*R* "deGil")(*AGR* 3SG)(*CASE* I0M)(*C0IV* V "")

(♦ASPECT* PR-COIT)(*AGR* 3SG)))
- . [1] : ("." ((*CAT* PUICT)(*R* ".")))
- . [1] : ("." ((*CAT* PUICT)(*R* ".")))
- . [1] : ("." ((*CAT* PUICT)(*R* ".")))
- biliyoruz [2 COIS] :

("bile+Hyor+yHz" ((*CAT* V)(*R* "bile")(*ASPECT* PR-COIT)(*AGR* IPL)))
- , [!] : ("," ((*CAT* PUICT)(*R* ",")))
- basta [2 COIS] :

("baS+DA" ((*CAT* I)(*R* "baS")(*R0LE* HEASURE)(*AGR* 3SG)(*CASE* LOC)))
- aile [2 COIS] :

("aile" ((*CAT* I)(*R* "aile")(*AGR* 3SG)(*CASE* lOM)))
- reisliGi [3 COIS] :

("reislik+sH" ((*CAT* I)(*R* "reislik")(*AGR* 3SG)(*P0SS* 3SG)(*CASE* lOH)))
- , [1] : (·',·' ((*CAT* PUICT)(*R* ",")))
- Cok [3 COIS] :

("Cok" ((*CAT* ADJ)(*R* "Cok")(*SUB* QTY-U)(*AGR* 3SG)(*CASE* lOH)))
- Şeylerden [1] :

("Sey+lAr+DAn" ((*CAT* I)(*R* "Sey")(*AGR* 3PL)(*CASE* ABL)))
- vazgeCmek [2 COIS] :

("vazgeJ+raAk" ((*CAT* V)(*R* "vazgeC")(*C0IV* IIF "mak")(*CASE* lOH)))
- erkekler [3 COIS] :

("erkek+lAr" ((*CAT* I)(*R* "erkek")(*R0LE* ADJ)(*AGR* 3PL)(*CASE* BOM)))
- iCin [6 COIS] :

("iCin" ((*CAT* P0STP)(*R* "iCin")(*SUBCAT* lOH)))
- kolay [2 COIS] :

("kolay" ((*CAT* ADJ)(*R* "kolay")(*AGR* 3SG)(*CASE* lOH)))
- deGil [3 COIS] :

("deGil" ((*CAT* I)(*R* "deGil")(*AGR* 3SG)(*CASE* lOM)))
- . [1] : ("." ((♦CAT* PUICT)(*R* ".")))
- . [1] : ("." ((♦CAT* PUICT)(*R* ".")))
- . [1] : ("." ((♦CAT* PUICT)(*R* ".")))
- deGil [3 COIS]

("deGil" ((*CAT* I)(*R* "deGil")(*AGR* 3SG)(*CASE* lOH)))
ama [3 COIS] :

APPENDIX A. SAMPLE TAGGED OUTPUT 84

("ama" ((*CAT* COI)(*R* "ama")))
- , [1] : ("," ((*CAT* PU«CT)(*R* ",")))
- Oturup [1] :

("otur+yHp" ((♦CAT* '•otur")(*C0IV* ADV "yip")(*SUB* TEMP)))
“ anlatmak [2 COIS] :

(••anlat+mAk" ((♦CAT* V)(*R* •'anlat") (♦COiV* IIF "mak") (*CASE* lOH)))
“ , [1] : ((♦CAT^ PUICTK^R* ",")))
- uzlaSmak [2 COIS] :

("uzlaS+mAk" ((♦CAT* V)(*R* "uzlaS")(*C0IV* IIF "mak")(*CASE* lOM)))
- da [1] :

("da" ((»CAT* C0I)(*R* "de")))
- var [3 COIS] :

("var" U*CkT* ADJ)(^R* "var")(*AGR* 3SG)(*CASE* IOM)(*COIV* V "")
(♦ASPECT* PR-COIT)(*AGR* 3SG)))

- . [1] : ("." ((*CAT* PUICT)(*R* ".")))
- . [1] : ("." ((*CAT* PUICT)(*R* ".")))
- . [1] : ("." ((♦CAT·̂ PUICT)(*R* ".")))
- ille [2 COIS] :

("ille" ((»CAT* ADV)(«R* "ille")))
- de [2 COIS] :

("de" ((«CAT* COI)(*R* "de")))
- vazgeCmek [2 COIS] :

("vazgeJ+mAk" ((*CAT» V)(*R« "vazgeC")(♦COIV* IIF "mak")(*CASE* lOH)))
- deGil [3 COIS] :

("deGil" ((*CAT* I)(*R* "deGil")(*AGR* 3SG)(*CASE* I0H)(*C0IV* V "")
(♦ASPECT* PR-COIT)(+AGR* 3SG)))

- ! [1] : ("!" ((*CAT* PUICT)(*R* "!")))

A ppendix В

Sam ple Specifications

B .l M ulti-w ord C onstruct Specifications

Duplicated optative and 3SG, koSa koSa .
Label = Rip;
R=_R1, CAT = V, ASPECT = OPT, AGR = 3SG;
R = _R1, CAT = V, ASPECT = OPT, AGR = 3SG:
Compose = ((*R* "W1 W2")(*CAT* ADV)).

Duplications with question suffix in between, gUzel mi gUzel.
Label = R2p;
R = _R1, CAT = ADJ, SUB = ?;
R = mi, CAT = QUES;
R = _R1, CAT = ADJ, SUB = ?:
Compose = ((*R* "W1 W2 W3")(*CAT* ADJ)).

adjective + adjective, mavi mavi.
Label = R3p;
R = _R1, CAT = ADJ, POSS =
R = _R1, CAT = ADJ, POSS =
Compose = ((*R* "W1 W2")(*CAT* ADV)).

85

APPENDIX B. SAMPLE SPECIFICATIONS 8 6

noun + noun, ev ev.
Label = R4pa;
R = _R1, CAT = N, CASE = NOM;
R = _R1, CAT = N, CASE = NOM:
Compose = ((*R* "W1 W2")(*CAT* ADV)).

noun + be + noun, ev be ev.
Label = R4pb;
R = _R1, CAT = N, CASE = NOM;
R = be;
R = _R1, CAT = N, CASE = NOM:
Compose = ((*R* "W1 be W2")(*CAT* ADV)).

aorist verbal construct, yapar yapmaz.
Label = R5p;
R = _R1, CAT = V, ASPECT = AOR, AGR = 3SG;
R = _R1, CAT = V, ASPECT = AOR, AGR = 3SG, SENSE = NEG:
Compose = ((*R* "Wl W2")(*CAT* ADV)).

Reflections from the nature, takir taJcIr
Label = R6p;
CAT = DUP, R = _R1;
CAT = DUP, R = _R1:
Compose = ((*CAT* ADV)(*R* "Wl W2")).

gelip gelmemiz, gelip gelmemesi
Label = R7p;
R = _R1. CAT = V, FINALCAT = ADV, CONV = "yip";
R = _R1, CAT = V, SENSE = NEG, FINALCAT=N, C0NV="ma", POSS
Compose = ((*R* "W1 W2")(*CAT* N)).

= 7

donemden doneme
Label = R7p;
R = _R1, CAT = N, AGR = 3SG, CASE = ABL;
R = _R1, CAT = N, AGR = 3SG, CASE = DAT:
Compose = ((*R* "Wl W2")(*CAT* ADV)).

APPENDIX B. SAMPLE SPECIFICATIONS 87

kaza yapmak
Label = Rlv;
LEX = kaza, CASE = NOM;
R = yap, CAT = V :
Compose = ((*CAT* V)(*R* "kaza yap")$).

kazan kaldirmak
Label = R2v;
LEX = kazan, CASE = NOM;
R = kaldir, CAT = V:
Compose = ((*CAT* V)(*R* "kazan kaldlr")$).

uygulamaya koymak
Label = R3v;
LEX = uygulamaya ;
R = koy, CAT = V:
Compose = ((*CAT* V)(*R* "uyguleuaaya koy")$).

Label = Mladv;
LEX = Şimdiye; LEX = dek:
Compose = ((*CAT* ADV)(*R* "Şimdiye dek")).

Label = Mladj;
LEX = proto; LEX = neolitik:
Compose = ((*CAT* ADJ)(*R* "proto neolitik")(+AGR* 3SG)).

Label = Ml;
LEX = topkapi; LEX = sarayl:
Compose = ((*CAT* N)(*R* "topkapi sarayl")(*SUB* PR0P)$) .

Label = M9;
LEX = gazi; LEX = hUsrev; LEX = bey; LEX = camii:
Compose = ((*CAT* N)(*R* "gazi hUsrev bey camii")(*SUB* PR0P)$)

Label = M25;
LEX = İstanbul; LEX = Üniversitesi:
Compose = ((*CAT* N) (*R* "istainbul üniversitesi") (*SUB* PR0P)$)

APPENDIX В. SAMPLE SPECIFICATIONS 8 8

В .2 C onstraint Specifications

remove 2SG-P0SS readings
Label = Cla;
POSS = 2SG, Action = Delete.

Label = Clb;
LP = 1, POSS = 2SG, Action = Delete.

Label = Clc;
LP = 2, POSS = 2SG, Action = Delete.

12. Ignore optative and imperative readings
Label = C12;
FINALCAT = V, ASPECT = OPT, AGR = ?, Action = Delete.

Label = C13;
FINALCAT = V, ASPECT = IMP, AGR = ?, Action = Delete.

Eliminate N to V conversions, unless they are at the end
Label = C93;
SP = END, CAT = V, FINALCAT = V, CASE = NOM, Action = Delete,

Eliminate ADJ to V conversions, unless they are at the end
Label = C3b;
CAT = ADJ, FINALCAT = V, SP = !END, Action = Delete.

Eliminate V to ADJ conversions at he end
Label = C4;
CAT = V, FINALCAT = ADJ, VOICE = ?, SP = END, Action = Delete,

Label = C4;
LP = 1, CAT = V, FINALCAT=ADJ, V0ICE=?, SP=END, Action=Delete.

APPENDIX B. SAMPLE SPECIFICATIONS 89

handle pronoun "bu"
Label = Cpn;
LP = 0, R = bu, CAT = PN, Action = Output;
LP = 1, FINALCAT = V.

Label = Cpn;
LP = 0, R = bu, CAT = ADJ, Action = Output;
LP = 1, FINALCAT = N.

rules for postpositions
these handle postposition subCATegorizations
Label = C25a;
CASE = _C, Action = Output;
LP = 1, CAT = POSTP, SUBCAT = _C, Action = Output,

Label = C25c;
LP = 0, SEMCASE = _C, Action = Output;
LP = 1, CAT = POSTP, SUBCAT = _C, Action = Output.

these handle special cases for sonra eind once
Label = C26;
FINALCAT = N, SUB =TEMP-UNIT, CASE = NOM, Action = Output;
LP = 1, CAT = POSTP, R = Once, Action = Output.

27.
Label = C27;
FINALCAT = N, SUB =TEMP-UNIT, Action = Output;
LP = 1, CAT = POSTP, R = sonra. Action = Output.

special cases doGru
Label = C35;
LP = -1, CASE = !DAT;
R = doGru, CAT = ADJ, Action = Output.

APPENDIX B. SAMPLE SPECIFICATIONS 90

special cases yana
Label = CyanaPOSTP;
CAT = PN, AGR = 3SG,Action = Output;
LP = 1, R = yana, CAT = POSTP, Action = Output.

icin prefer POSTP
Label = CicinPOSTP;
LP = 0, LEX = iCin, CAT = POSTP, Action = Output.

special cases uzere
Label = CuzerePOSTP;
LP = -1, FINALCAT = INF;
LP = 0, LEX = Uzere, CAT = POSTP, Action = Output.

special cases kadar
Label = CkadarPOSTP;
LP = -1, FINALCAT = INF;
LP = 0, LEX = kadar, CAT = POSTP, Action = Output.

if all above fails remove POSTP
Label = CDeletUnwantedPostP;
CAT = POSTP, R = !ile. Action = Delete.

Probably an exclamation, if succeeded by "!"
Label = C8-0;
CAT = EXC, Action = Output;
LP = 1, CAT = PUNCT, R = \!.

Remove accusative readings if followed by a nominal
Label = CAcc;
LP = 0, CASE = ACC, Action = Delete;
LP = 1, FINALCAT = N.

remove derived ADjs if there is an underived one
e.g. mutlu, mut+lu
Label = C16-0;

APPENDIX B. SAMPLE SPECIEICATIONS 91

CAT = ADJ, FINALCAT = ADJ;
CAT = !ADJ, FINALCAT = ADJ, Action = Delete.

some rules for handling noun phrases

smt's ADV ADJ smt
Label = C16b;
CASE = GEN, AGR = _A1, Action = Output;
LP = 1, FINALCAT = ADV, Action = Output;
LP = 2, FINALCAT = ADJ, Action = Output;
LP = 3, POSS = _A1, Action = Output.

smt's ADJ ADJ smt
Label = C16b;
CASE = GEN, AGR = _A1, Action = Output;
LP = 1, FINALCAT = ADJ, Action = Output;
LP = 2, FINALCAT = ADJ, Action = Output;
LP = 3, POSS = _A1, Action = Output.

smt’ s smt’s smt
Label = C16b;
CASE = GEN, AGR = _A1, Action = Output;
LP = 1, CASE = GEN, POSS = _A1, AGR = _A2, Action = Output;
LP = 2, POSS = _A2, Action = Output.

Handle 3PL posses something singular
Label = C16b;
CASE = GEN, AGR = 3PL, Action = Output;
LP = 1, CASE = GEN, POSS = 3SG, AGR = _A2, Action = Output;
LP = 2, POSS = _A2, Action = Output.

smt's N smt
Label = C17a;
CASE = GEN, AGR = _A1, Action = Output;
LP = 1, FINALCAT = N, Action = Output;
LP = 2, POSS = _A1, Action = Output.

APPENDIX B. SAMPLE SPECIFICATIONS 92

e.g. kitap kapaGI
Label = C18al;
FINALCAT = N, CASE = NOM, AGR = 3SG, POSS = ", Action = Output;
LP = 1, FINALCAT = N, POSS = 3SG, Action = Output.

e.g. kitap kapaGI
Label = ClSalNF;
FINALCAT = INF, CASE = NOM, AGR = 3SG, Action = Output;
LP = 1, FINALCAT = N, POSS = 3SG, Action = Output.

some heuristics
#

Label = C44;
R = dUn, CAT = N, AGR = 3SG, CASE = NOM, Action = Delete.

Label = C45;
R = bugUn, CAT = N, AGR = 3SG, CASE = NOM, Action = Delete.

Label = C46;
R = yarln, CAT = N, AGR = 3SG, CASE = NOM, Action = Delete.

Label = C47;
R = geri, CAT = N, AGR = 3SG, CASE = NOM, Action = Delete.

Label = C48;
R = ileri, CAT = N, AGR = 3SG, CASE = NOM, Action = Delete.

Label = C64;
LP = -1, FINALCAT = N, CASE = INS;
R = ilgi, FINALCAT = ADJ, Action = Output.

Label = C65;
LP = -1, FINALCAT = ADJ, CASE = INS;
R = ilgi, FINALCAT = ADJ, Action = Output.

APPENDIX B. SAMPLE SPECIFICATIONS 93

Label = C66;
LP = -1, LEX = ile;
R = ilgi, FINALCAT = ADJ, Action = Output.

at the sentence beginnings prefer ones without possesions
e.g. ", etrafI"

Label = C76;
LP = 0, SP = BEGINNING, POSS =
LP = 0, POSS = ?, Action = Delete.

Label = C77;
LP = -1, CAT
LP = 0, POSS
LP = 0, POSS

PUNCT;
f

?, Action = Delete.

verbal readings befor a question suffix are preferred
Label = C82;
LP = 0, FINALCAT = V, Action = Output;
LP = 1, CAT = qUES, Action = Output.

try to eliminate some derivations
Label = HI;
LP = 0, R = sakal;
LP = 0, R = saka. Action = Delete.

Label = H2;
LP = 0, R = konuS;
LP = 0, R = kon. Action = Delete.

Label = H3;
LP = 0, R = hasta;
LP = 0, R = has. Action = Delete.

Label = H26;
LP = 0, R = yalin;
LP = 0, R = yal. Action = Delete.

